论文发表百科

原油破乳剂研究论文

发布时间:2024-07-18 00:22:11

原油破乳剂研究论文

近些年来,原油乳状液破乳机理研究多集中在液滴聚结过程的精细考察和破乳剂对界面流变性质的影响等方面。但由于破乳剂对乳状液的作用非常复杂,尽管在这个领域进行了大量的研究工作,目前对破乳机理尚无统一论断。以下几种目前公认的破乳机理:③增溶机理。使用的破乳剂一个或少数几个分子即可形成胶束,这种高分子线团或胶束可增溶乳化剂分子,引起乳化原油破乳。④褶皱变形机理。显微镜观察结果表明,W/O型乳状液具有双层或多层水圈,两层水圈之间是油圈。液滴在加热搅拌和破乳剂的作用下,液滴内部各层相互连通,使液滴发生凝聚而破乳。此外,国内在对O/W型乳化原油体系的破乳机理研究方面也有一些研究工作,认为理想的破乳剂必须具备下列条件:较强的表面活性;良好的润湿性能;足够的絮凝能力;较好的聚结效果。

原油破乳剂的机理是相转移一反向变形机理。加入破乳剂后发生了相转变,即能够生成与乳化剂形成的乳状液类型相反的表面活性剂(反相破乳剂)。这类破乳剂与憎水的乳化剂作用生成络合物,从而使乳化剂失去了乳化性能。碰撞击破界面膜机理。在加热或搅拌的条件下,破乳剂有许多的机会碰撞乳状液的界面膜,或吸附在界面膜上,或排除替代部分表面活性物质,从而击破界面膜,使其稳定性大大降低,发生了絮凝、聚结而破乳。

按分子结构可把化学破乳剂分为离子型和非离子型两大类。当破乳剂溶于水时,凡能电离生成离子的,称为离子型破乳剂;凡在水溶液中不能电离的,称非离子型破乳剂。离子型破乳剂按其在水溶液中具有表面活性作用的离子电性,还可分为阴离子、阳离子和两性离子等类别。早期使用的烷基磺酸钠、烷基苯磺酸钠等属于对原油脱水效果较好的阴离子型破乳剂,价格低廉,但用量大,约1000mg/L,脱水效果不太稳定。非离子型化学破乳剂是以环氧乙烷、环氧丙烷等基本有机合成原料为基础,在具有活泼氢起始剂引发下、有催化剂存在时,按照一定程序聚合而成。原料配比,操作条件、分子量大小等参数,都可以在合成时人为控制。分子量都在1000~10000之间,具有较高的活性和较好的脱水效果。与离子型相比,非离子型化学破乳剂有如下优点:(1)用量少。剂量约为20~50mg/L;(2)不产生沉淀。一般不会同油水混合物中的盐类和酸类起化学反应,在管路和设备内产生沉淀;(3)脱出水中含油少。非离子型化学破乳剂仅破坏W/O型乳状液,破乳时一般不生成O/W型乳状液,脱出的水清澈,水中含油少;(4)脱水成本低。虽然非离子型破乳剂的单价较高,但用量仅为离子型破乳剂的几十分之一,故使原油脱水成本降低。由于非离子型破乳剂的上述优点,在原油脱水中已取代阴离子型破乳剂,起着极为重要的作用。根据溶解性能,非离子型破乳剂可分为水溶性、油溶性和部分溶解于水、部分溶解于油三类。(1)水溶性破乳剂,可根据需要配制成任意浓度的水溶液。(2)油溶性破乳剂的特点是不会被脱出水带走,且随着水的不断脱出原油中破乳剂的浓度逐渐提高,有利于净化原油水含率的继续下降。油溶性破乳剂的分子量较水溶性大,净化油的能力比水溶性高,但有时脱出水含油率稍高。(3)部分溶于水、部分溶于油的破乳剂能增加使用的灵活性。

原料油包水乳化体系研究论文

下午好,w/o型要形成稳定乳化,乳化剂的HLB不能太高,3-6为宜。但你说用的是极性油脂这我就不太理解了,比如聚乙二醇橄榄油酯和氨基硅油这样易溶于水的极性油脂么?这种应该是o/w型才对的,HLB要选10-15。极性油脂本身亲水,不存在「油包水」体系只能「水包油」,只有非极性油脂比如常见的植物油、动物油及脂肪烃才会有上述情况发生的。请参考。另外猜测是不是打错了,把非极性打成极性了少了个「非」字……

光学显微镜只能观测到微米级别,而油包水是微乳化技术的产物,一般微乳液小球的粒径小于10nm,这个是观察不到现象的,如果用电子显微镜的话就能清楚看到水分子和油分子(长链分子)的区别,油包水/水包油自然很容易分辨出来了。

不一定的,这要看油性物质和水性物质的具体分子结构

你的乳液是“水包油”还是“油包水”

乳剂研究硕士毕业论文

兽药中纳米乳的优点和缺点分析论文

无论在学习或是工作中,大家都不可避免地会接触到论文吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。那么一般论文是怎么写的呢?以下是我为大家整理的兽药中纳米乳的优点和缺点分析论文,仅供参考,欢迎大家阅读。

摘要:

纳米乳技术是纳米乳化技术的简称,是在乳化剂作用下将水相、油相进行乳化后获得纳米级别药物微粒的一项制药技术,其在兽药临床应用过程中的优点很多,如可使油相和水相共为一体,增加药物的溶解度,提高药物生物利用度,避开肝脏首关效应等,也存在制药成本高,保质期短,影响标准检测等缺点;相信随着科学的发展和技术的进步,纳米乳技术因缺点带来的推广困难会逐步解决,在不久的将来能广泛应用于养殖业。

关键词:

纳米乳;纳米技术;兽药;推广;应用;

引言:

纳米乳技术是纳米乳化技术的简称,纳米乳实质上是乳剂的一种,是在乳化剂作用下利用特殊的'乳化工艺,将药物制备成纳米级别的小乳粒的技术[1]。和普通剂型相比,纳米乳剂型药物微粒更小,比表面积更大,生物利用度更高,药效更加理想。为了能帮助大家更清楚地认识纳米乳技术,笔者以此为话题和大家作一下交流。

1、纳米乳

纳米乳是药物的一种剂型,由水相、油相和表面活性剂组成,有的药物中还加入了助表面活性剂而使体系更加稳定[2]。纳米乳早在上世纪90年代就有企业在兽药产品中进行了应用,但由于多种原因,如乳化设备不够先进、制造成本高、市场接受度低等,导致当时该剂型在兽药临床并未得到广泛应用。随着畜牧业的发展和时代的不断进步,兽药监察力度空前加大,市场上不规范的兽药品类越来越少,90%以上都是按照国家、地方或行业标准制成的国标药物。而国标药物临床效果要想充分体现,第一需要药物的配伍技术,第二就是对于药物本身来讲,需要提升本身的生物利用度。纳米乳技术正是基于上述背景在近些年脱颖而出,在化药领域、中兽药领域、饲料添加剂等领域都得到了应用。

2、纳米乳的优点

纳米乳在兽药临床应用过程中的优点很多,如可使油相和水相共为一体,增加药物溶解度,提高药物生物利用度,避开肝脏首关效应等。

、使油相和水相共为一体

纳米乳体系由油相、水相、表面活性剂以及助表面活性剂等成分组成,其中表面活性剂又称乳化剂,其分子结构中,一端亲水,一端亲油,这种特殊的结构可使得体系在表面活性剂作用下,将油相溶解于水或将水相溶解于油中,前者又称“水包油”型纳米乳剂,后者则称之为“油包水”型纳米乳剂。只要选择的配方得当,表面活性剂本身的亲水亲油平衡值(HLB值)和油相乳化所需的亲水亲油平衡值相同或相近,则做出来的体系就比较稳定,能使油相和水相非常均匀地共为一体,而不是油相漂浮在水相上面出现分层现象。

、增加药物溶解度

有些药物本身不溶于水,但能溶于某种油中,利用这个原理,可以先将药物溶解在油中,之后将此作为油相,通过纳米乳化技术将油相在表面活性剂的作用下溶解于水,从而增加药物在水中的溶解度。一般来讲,以纳米乳为载体制备的药物,载药量通常在~5%之间,载药量过低就会失去意义,载药量过高又会引发体系的不稳定,药物很容易在后期储藏过程中出现析出现象,尤其是耐低温性能下降,冬季很容易析出,但和普通剂型相比,纳米乳剂型已经显着提高了药物在水中的溶解度。

、提高药物生物利用度

纳米乳的乳滴粒径一般在100nm以下,有些药甚至能够做到10nm左右,如此小的粒径使其在口服后很容易穿透细胞膜或细胞间隙而进入体循环中。这种小尺寸效应是纳米乳剂型有别于其他剂型的重要一点,加上粒径变小后药物的比表面积大幅增加,和靶器官的组织细胞接触面也得到增大,最终使得药物生物利用度提高。拿临床常用的兽药替米考星来讲,通过药代动力学检测发现,普通的口服液剂型只是纳米乳剂型的~倍左右。药物生物利用度的提高有利于降低用药剂量和缩短疗程,从而降低治疗费用,也有利于减少病原菌耐药性的产生,还有利于解决因兽药残留产生的食品安全问题。

、避开肝脏首关效应

纳米乳剂型有别于其他制剂,由于药物是溶解在油相当中的,而油相成分为脂类物质,在进入肠道后,其吸收不是通过小肠血管的,而是先进入到肠淋巴管,最后再经淋巴循环汇入到血液中,如此吸收方式使得药物没有经过肠道静脉进入到肝门静脉,再经过肝脏进入到体循环,也就避免了肝药酶的灭活作用,有效避开了肝脏首关效应。这种特殊的吸收方式使得药物使用时无需首次加倍,即节约了药物使用成本,同时也降低了药物对肝脏的损害,可谓一举两得。

3、纳米乳的缺点

纳米乳临床应用过程中虽然具有多种优点,但也同样具有一些不可回避的缺点,如制备成本就比较高,纳米乳的工艺中大部分都是通过高速乳化机的乳化作用来制备的,设备的投入和对乳化过程的工艺要求都较高,加上本身表面活性剂的市场价格也不低,实际纳米乳原液中表面活性剂含量能占到18%~36%之间,这些成本加起来导致药物市场售价较高,对推广造成了一定困难。另外,纳米乳为液体制剂,和固体制剂相比稳定性会差一些,药物保质期通常在6~18个月,而固体制剂的则为2~3年。还有在中药制剂中,尤其是口服液制剂和注射液制剂,产品在按照国家标准检测过程中有一项是薄层检验,其中的有关物质通过条带的位置对照能判定产品质量,但表面活性剂的存在会影响薄层检验结果,这也是导致很多中药液体制剂无法使用纳米乳技术的原因。虽然纳米乳技术在推广和应用过程中有诸多困难,但相信随着科技的不断发展,该技术在推广过程中的困难会逐渐被克服。

4、小结

纳米乳化技术是一种新型药物制剂技术,属于纳米技术的一种,由于药物粒子达到了纳米级别,这种小尺寸效应直接解决了很多传统技术无法解决的难题[3]。在我国,目前多家兽药巨头已经将氟苯尼考、替米考星、土霉素、红霉素等药物制成了纳米乳剂应用于临床,添加剂领域则以纳米维生素应用最为广泛,植物精油领域目前薄荷油、牛至油、香芹酚、连翘油、桉叶油等也制成了纳米乳剂在无抗养殖领域得到了应用。相信通过以产品为载体的纳米乳化技术的不断普及,在不久的将来一定会给兽药行业带来革命性的改变。

参考文献

[1]吴旭锦,欧阳五庆,朱小甫,等.黄芩甙纳米乳的制备[J].精细化工,2007(5):470-472.

[2]刘岳,曹丹丹.纳米乳在兽医药剂学中的应用[J].畜牧兽医科技信息,2018(10):155.

[3]胡宏伟,李剑勇,吴培星,等.纳米乳在药剂学中的研究进展及其应用[J].湖北农业科学,2009,48(3):747-750.

1977年获上海市重大科技成果奖“中医扶正法治疗晚期支气管肺癌200例” 医学1979年获上海市高等教育局国庆三十周年献礼科技成果奖“中医辨证治疗晚期原发性肺癌300例疗效分析”1980年获上海市中医、中西医结合科研成果三等奖“养阴法治疗阴虚型晚期原发性肺癌及其机理探讨”1983年获中国出版工作者协会1982年度全国优秀科技图书一等奖《肺癌》(刘嘉湘教授为本书编委及作者)1984年获上海中医学院科技成果二等奖“蟾酥膏治疗恶性肿瘤疼痛的临床应用及其研制”1984年获上海市中医、中西医结合科研成果二等奖“蟾酥膏治疗恶性肿瘤疼痛的临床应用及其研制”1985年获中央卫生部医药卫生重大科技成果部级甲级奖“蟾酥膏治疗恶性肿瘤疼痛的临床应用及其研制”1987年获上海中医学院科技进步一等奖“扶正法为主治疗晚期原发性非小细胞肺癌的临床及实验研究”1987年获上海市卫生局科技进步一等奖“扶正法为主治疗晚期原发性非小细胞肺癌的临床及实验研究”1988年获上海市科技进步三等奖“扶正法为主治疗晚期原发性非小细胞肺癌的临床及实验研究”1989年获国家教育委员会科技进步二等奖“扶正法为主治疗晚期原发性非小细胞肺癌的临床及实验研究”1989年获上海市科学技术协会授予上海市科技精英提名奖1988年获中华全国中医学会、《中国医药学报》首届优秀论文二等奖“扶正法治疗122例晚期原发性非小细胞肺癌的前瞻性研究”1992年获上海市科技进步二等奖“滋阴生津,益气温阳法治疗晚期原发性肺腺癌的临床和实验研究”1992年获国家中医药管理局科技进步三等奖“滋阴生津,益气温阳法治疗晚期原发性肺腺癌的临床和实验研究”1993年获上海中医药大学科技进步一等奖“滋阴生津,益气温阳法治疗晚期原发性肺腺癌的临床和实验研究”1993年获上海市卫生局科技进步三等奖“从细胞生物学水平研究益气养阴类中药对肺癌细胞周期及核酸的影响”1993年获上海市中医药大学科技成果三等奖“从细胞生物学水平研究益气养阴类中药对肺癌细胞周期及核酸的影响”1995年获上海市科技进步二等奖“癌转移过程中癌细胞与血管内皮细胞的关系及益肺抗瘤饮对其的影响”1995年10月获上海中医药大学授予1994-1995学年研究生“山田奖学金”优秀导师奖1995年3月获上海市经济委员会上海市优秀新产品成果二等奖“蟾酥膏巴布剂”1995年获国家中医药管理局科技进步一等奖“薏苡仁酯乳剂药学研究和治疗肺癌的研究”(刘嘉湘为第七完成者)1996年获中国中医药学会“辽沈杯”全国中医药防治肿瘤优秀论文一等奖及全国中医药防治肿瘤优秀论文金奖金复康治疗非小细胞肺癌的临床观察”1996年获上海市中医药科技进步二等奖“正得康对癌症患者扶正作用的研究”1996年获上海市中医药科技进步二等奖“益肺抗瘤饮对肺癌生长转移的病理学改变的影响”1997年3月获国家教育委员会科技进步二等奖“云芝糖肽(PSP)的研究”(第八完成者)1998年获上海市科技进步三等奖“正得康对癌症患者扶正作用的研究”1999年2月获本泽宝组奖励基金会“1998年度‘本泽宝组奖励基金’二等奖”2000年1月获本泽宝组奖励基金会“1999年度‘本泽宝组奖励基金’一等奖”2001年获上海市临床医学成果奖“益肺抗瘤饮治疗271例非小细胞肺癌的临床及实验研究”

乳膏剂的研究进展论文

制备方法:1.研磨法适用于油脂性基质的软膏剂的制备。把半固体状态的油脂性基质和研细过筛过的药物粉末直接研磨混合制备软膏剂的方法。制备时将药物研细过筛后,先用等量基质研匀,然后等量递加其余基质至全量,研匀即得。本法适用于少量软膏剂的制备,而且药物不溶于基质中的情况。在实验室制备时可在乳钵中研磨;大量生产时可用电动研钵制备。2.乳化法适合于乳剂型软膏剂的制备。将处方中的油脂性和油溶性成分一起加热至80℃:左右成油溶液;另将水溶性成分溶于水中,并加热至80℃:左右成水溶液。两相混合时为了防止油相中的固体成分过早析出或凝结,使水相温度略高于油相温度。将水相逐渐加入油相中,边加边搅拌,直至冷凝。大量生产时,在温度降低至30℃时再通过胶体磨或软膏研磨机使更细腻均匀。乳化法中水、油两相的混合有三种方法:①两相同时掺合,适用于大批量的机械操作;②分散相加到连续相中,适用于含小体积分散相的乳剂系统;③连续相加到分散相中,适用于多数乳剂系统。如制备O/W型乳膏基质时,在搅拌下将水相缓缓加到油相内,开始水相的量小于油相,先形成W/O型乳液,继续把水相加人油相时,乳液蒙古度继续增加,直到W/O型乳液水相的体积增加到最大限度,超过此限,乳液蒙古度降低,发生转型而成为O/W型乳液,-使内相(油相)分散的更细,冷却后形成O/W型乳剂型基质。乳化法使用的乳化机有三种类型:乳化搅拌机、胶体磨和均质机。影响乳剂型基质质量的因素:①设备搅拌速度的影响,如搅拌速度过小,达不到充分海合的目的,搅拌速度过大,会将气泡带入体系,使之成为三相体系,使乳状液不稳定;②乳化温度的影响,乳化温度取决于两相中所含有高熔点物质的熔点,另一方面在乳化过程中基质的黏度会增加很多,提高温度,降低勃度有利于基质各成分的混合均匀,一般控制在75-85℃之间,如有转相泪度,则乳化温度应控制在转相温度附近;③乳化时间的影响,要根据油相与水相的容积比,两相的蒙古度及生成乳状液的黏度,乳化剂的类型及用量,乳化温度来确定。实际工作中乳化时间与乳化设备的效率紧密相连,如用均质机(3000r/min)进行乳化,仅需用3-10 min。3.熔融法适用于油脂性基质的制备,在基质处方中含有熔点高的组分时,在常温下不能混合均匀。熔融法,先将熔点较高的基质,如蜂蜡(62-67℃)、石蜡(48-58℃)、硬脂酸(55-60℃)等熔化,再按熔点高低依次加入熔化、搅拌混合均匀,直至冷凝。制备的软膏如果不够细腻,需要通过研磨机进一步研匀,使之无颗粒的沙砾感。以下为2015版药典第四部0109对软膏剂的要求:软膏剂 系指原料药物与油脂性或水溶性基质混合制成的均匀的半固体外用制剂。因原料药物在基质中分散状态不同,分为溶液型软膏剂和混悬型软膏剂。溶液型软膏剂为原料药物溶解(或共熔)于基质或基质组分中制成的软膏剂;混悬型软膏剂为原料药物细粉均匀分散于基质中制成的软膏剂。乳膏剂 系指原料药物溶解或分散于乳状液型基质中形成的均匀半固体制剂。乳膏剂由于基质不同,可分为水包油型乳膏剂和油包水型乳膏剂。软膏剂、乳膏剂在生产与贮藏期间应符合下列有关规定。一、乳膏剂、乳膏剂选用基质应根据各剂型特点、原料药物的性质、制剂的疗效和产品的稳定性。基质也可由不同类型基质混合组成。软膏剂基质可分为油脂性基质和水溶性基质。油脂性基质常用的有凡士林、石蜡、液状石蜡、硅油、蜂蜡、硬脂酸、羊毛脂等;水溶性基质主要有聚乙二醇。乳膏剂常用的乳化剂可分为水包油型和油包水型。水包油型乳化剂有钠皂、三乙醇胺皂类、脂肪醇硫酸(酯)钠类和聚山梨酯类;油包水型乳化剂有钙皂、羊毛脂、单甘油酯、脂肪醇等。二、软膏剂、乳膏剂基质应均匀、细腻,涂于皮肤或黏膜上应无刺激性。软膏剂中不溶性原料药物,应预先用适宜的方法制成细粉,确保粒度符合规定。三、软膏剂、乳膏剂根据需要可加入保湿剂、抑菌剂、增稠剂、稀释剂、抗氧剂及透皮促进剂。除另有规定外,加入抑菌剂的软膏剂、乳膏剂在制剂确定处方时,该处方的抑菌效力应符合抑菌效力检查法(通则1121)的规定。四、软膏剂、乳膏剂应具有适当的黏稠度,应易涂布于皮肤或黏膜上,不融化,黏稠度随季节变化应很小。五、软膏剂、乳膏剂应无酸败、异臭、变色、变硬等变质现象。乳膏剂不得有油水分离及胀气现象。六、除另有规定外,软膏剂应避光密封贮存。乳膏剂应避光密封置25°C以下贮存,不得冷冻。七、软膏剂、乳膏剂所用内包装材料,不应与原料药物或基质发生物理化学反应,无菌产品的内包装材料应无菌。软膏剂、乳膏剂用于烧伤治疗如为非无菌制剂的,应在标签上标明“非无菌制剂”;产品说明书中应注明“本品为非无菌制剂”,同时在适应证下应明确“用于程度较轻的烧伤(Ⅰ°或浅Ⅱ°)”;注意事项下规定“应遵医嘱使用”。除另有规定外,软膏剂、乳膏剂应进行以下相应检查。【粒度】除另有规定外,混悬型软膏剂、含饮片细粉的软膏剂照下述方法检査,应符合规定。检査法取供试品适量,置于载玻片上涂成薄层,薄层面积相当于盖玻片面积,共涂3片,照粒度和粒度分布测定法(通则0982第一法)测定,均不得检出大于18CVm的粒子。【装量】照最低装量检査法(通则0942)检查,应符合规定。【无菌】用于烧伤[除程度较轻的烧伤(Ⅰ°或浅Ⅱ°外)]或严重创伤的软膏剂与乳膏剂,照无菌检查法(通则1101)检查,应符合规定。【微生物限度】除另有规定外,照非无菌产品微生物限度检查:微生物计数法(通则1105)和控制菌检查法(通则1106)及非无菌药品微生物限度标准(通则1107)检查,应符合规定。

rǔ gāo jì

cream [湘雅医学专业词典]

cremor [湘雅医学专业词典]

乳膏剂是药物溶解或分散于乳状液型基质中形成的均匀的半固体外用制剂。乳膏剂由于基质不同,可分为水包油型乳膏剂与油包水型乳膏剂。[1]

乳膏剂常用的乳化剂可分为水包油型和油包水型。水包油型乳化剂有钠皂、三乙醇胺皂类、脂肪醇硫酸(酯)钠类(十二烷基硫酸钠)和聚山梨酯类;油包水型乳化剂有钙皂、羊毛脂、单甘油酯、脂肪醇等。[1]

乳膏剂在生产与贮藏期间均应符合下列规定。[1]

一、乳膏剂选用基质应根据型的特点、药物的性质、制剂的疗效和产品的稳定性。基质也可由不同类型基质混合组成。

乳膏剂常用的乳化剂可分为水包油型和油包水型。水包油型乳化剂有钠皂、三乙醇胺皂类、脂肪醇硫酸(酯)钠类(十二烷基硫酸钠)和聚山梨酯类;油包水型乳化剂有钙皂、羊毛脂、单甘油酯、脂肪醇等。

二、乳膏剂基质应均匀、细腻,涂于皮肤或黏膜上应无 *** 性。

三、乳膏剂根据需要可加入保湿剂、防腐剂、增稠剂、抗氧剂及透皮促进剂。

四、乳膏剂应具有适当的黏稠度,糊剂稠度一般较大。但均应易涂布于皮肤或黏膜上,不融化,黏稠度随季节变化应很小。

五、乳膏剂应无酸败、异臭、变色、变硬,乳膏剂不得有油水分离及胀气现象。

六、除另有规定外,乳膏剂应遮光密封,宜置25℃以下贮存,不得冷冻。

除另有规定外,乳膏剂应进行以下相应检查。[1]

【装量】 照最低装量检查法(2010年版药典二部附录Ⅹ F)检查,应符合规定。

【无菌】用于烧伤或严重创伤的乳膏剂,照无菌检查法(2010年版药典二部附录Ⅺ H)检查,应符合规定。

乳膏,一种或多种难溶于水的液体药剂或溶于适当有机溶剂中的固体药剂,经加入分散剂(如亚硫酸纸浆废液)加工处理而成的膏状制剂。乳膏剂常用的乳化剂可分为水包油型和油包水型。水包油型乳化剂有钠皂、三乙醇胺皂类、脂肪醇硫酸(酯)钠类(十二烷基硫酸钠)和聚山梨酯类;油包水型乳化剂有钙皂、羊毛脂、单甘油酯、脂肪醇等。

乳油农药剂型制备论文参考文献

乳油是由不溶于水的原药、有机溶剂苯、二甲苯等和乳化剂配置加工而成的透明状液体,常温下密封存放两年一般不会浑浊、分层和沉淀,加入水中迅速均匀分散成不透明的乳状液。制作乳油使用的有机溶剂属于易燃品,储运过程中应注意安全。

各剂型有各自的优点,至于用什么类型的还是看兑水的水质,和作业方式

农药的原药一般不能直接使用,必须加工配制成各种类型的制剂,才能使用。商品农药都是以某种剂型的形式,销售到用户。我国目前使用最多的剂型是乳油、悬浮剂、可湿性粉剂、粉剂、粒剂、水剂、毒饵、母液、母粉等十余种剂型。多数农药剂型在使用前经过配制成为可喷洒状态后使用,或配制成毒饵后使用,但粉剂、种衣剂、超低容量喷雾剂、熏蒸剂等可以不经过配制而直接使用。每种农药原药可以加工成几种剂型。各种剂型都有一定的特点和使用技术要求,不宜随意改变用法。例如颗粒剂只能抛撒或处理土壤,而不能加水喷雾;可湿性粉剂只宜加水喷雾,不能直接喷粉;粉剂只能直接喷洒或拌毒土或拌种,不宜加水;各种杀鼠剂只能用粮谷等食物拌制成毒饵后才能应用。

相关百科
热门百科
首页
发表服务