论文发表百科

磺胺醋酰钠的合成毕业论文

发布时间:2024-07-03 12:57:14

磺胺醋酰钠的合成毕业论文

磺胺,醋肝,浓盐酸,硅油,PH试纸磺胺醋酰的制备在装有搅拌棒及温度计的100 mL三颈瓶中,加入磺胺 g,氢氧化钠22 mL,开动搅拌,于水浴上加热至50℃左右。待磺胺溶解后,分次加入醋酐 mL,77% 氢氧化钠 mL(首先,加入醋酐 mL,77% 氢氧化钠 mL;随后,每次间隔5 min,将剩余的77% 氢氧化钠和醋酐分5次交替加入)。加料期间反应温度维持在50~55℃;加料完毕继续保持此温度反应30 min。反应完毕,停止搅拌,将反应液倾入250 mL烧杯中,加水20 mL稀释,于冷水浴中用36% 盐酸调至pH 7,放置30 min,并不时搅拌析出固体,抽滤除去。滤液用36% 盐酸调至pH 4~5,抽滤,得白色粉末。用3倍量(3 mL / g)10% 盐酸溶解得到的白色粉末,不时搅拌,尽量使单乙酰物成盐酸盐溶解,抽滤除不溶物。滤液加少量活性碳室温脱色10 min,抽滤。滤液用40% 氢氧化钠调至pH 5,析出磺胺醋酰,抽滤,压干。干燥,测熔点(℃)。若产品不和格,可用热水(1:5)精制。PH>13时加醋肝,PH<12时加NaOH磺胺醋酰钠的制备将磺胺醋酰置于50 mL烧杯中,于90℃热水浴上滴加计算量的20%氢氧化钠至固体恰好溶解,放冷,析出结晶,抽滤(用丙酮转移),压干,干燥.

磺胺类药物为无臭、无味白色或微黄色的结晶粉末,难溶于水,可溶于丙酮或乙醇,它具有磺酰氨基和芳伯氨基的通性。多课程知识点综合:酰化反应1 定义:有机物分子中O、N、C原字上导入酰基的反应,酰基 2 酰化剂强弱与种类结论:离去基团共轭酸的酸性越强,酰化剂的酰化能力越强酰化能力:RCOClO4> RCOBF4> RCOX >RCOOCOR> RCOOH >RCOOR'> RCONHR五、实验步骤(一)乙酰化1.原料规格及投药量名称 规格 摩尔比 投料量 磺胺 药用 1 醋酐 氢氧化钠 氢氧化钠 77% 氢氧化钠 40% . 操作方法在装有搅拌、温度计和回流冷凝管的250ml三口瓶中投入摩尔(克)的磺胺和计算量的的氢氧化钠溶液(22ml),开搅拌,于水浴上加热至50~55℃左右,待物料溶解后加氢氧化钠NaOH3ml和醋酸酐4ml,因反应为放热反应,加料后温度会上升,加料期间反应温度控制在50~55℃,重复上述加料共5次,每次间隔不少于5分钟。加料完成后,继续在水浴上保温搅拌30分钟,反应结束。将反应液倾入250ml的烧杯中,加30ml常水稀释,用浓盐酸调至pH=7,放置结晶,待精制用。

试验:磺胺醋酰钠的合成 一、目的要求 1、通过实验掌握磺胺类药物的一般理化性质和特点,并通过临床的需要对药物结构进行必要的修饰. 2、通过实验掌握乙酰化反应的原理及成盐反应. 3、掌握如何控制反应过程的pH等条件及利用生成物与副产物不同的性质来分离副产物. 二、反应原理 三、分离原理 四、实验方法 (一)磺胺醋酰的制备(1) 1、主要仪器 250mL三颈瓶,搅拌,温度计,球形冷凝管,量筒,烧杯,抽滤瓶,布氏漏斗,电热套. 2、原料规格及配比 原料名称 规 格 用 量 摩尔数 摩尔比 磺胺 药用 1 乙酸酐 CP 氢氧化钠 22mL 氢氧化钠 77% 3、操作 在装有搅拌、温度计、球形冷凝管的250mL三颈瓶内加入磺胺克,氢氧化钠溶液22mL,搅拌,加热,至50℃左右,溶解后,加乙酸酐、77%氢氧化钠,保持反应温度在50~55℃之间,每隔5分钟分次交替加入乙酸酐、77%氢氧化钠,每次各2mL,加毕,继续保温,搅拌30分钟,反应液倒入烧杯中,加水20mL水,搅拌下用浓盐酸调pH7~8,冰浴冷却30分钟,析出固体,抽滤,用适量冰水洗涤固体,合并滤液,固体弃去,滤液用浓盐酸调pH4~5,过滤,滤液弃去,滤饼压干,放置. 4、注意事项 (1)本实验中使用氢氧化钠溶液浓度有差别,在实验中切勿用错,否则会影响实验结果,保持反应液最佳碱度是反应成功的关键之一. (2)滴加乙酸酐和氢氧化钠溶液是交替进行的,每滴完一种溶液后,反应搅拌5分钟,再滴入另一种溶液,滴加速度以液滴一滴一滴加入为宜. (3)利用主产物和副产物不同的理化性质在不同的pH下分别除去副产物.本实验中溶液pH的调节应小心注意,否则实验会失败或收率降低. 5、思考题 (1)反应过程中,调节pH是非常重要的.若碱性过强,其结果是磺胺较多,磺胺醋酰次之,磺胺双醋酰较少;若碱性过弱,其结果是磺胺双醋酰较多,磺胺醋酰次之,磺胺较少,为什么? (2)反应温度对实验的影响如何? (3)反应液处理时,pH7时析出的固体是什么?pH5时析出的固体是什么? (二)磺胺醋酰的制备(2) 1、主要仪器 量筒,烧杯,抽滤瓶,布氏漏斗. 2、原料规格及配比 原料名称 规 格 用 量 摩尔数 摩尔比 磺胺醋酰 自制 上步得量 盐酸 CP 10% 3倍磺胺醋酰量 氢氧化钠 40% 适量 3、操作 上次所得的固体,称重,用3倍量10%盐酸搅拌溶解固体,放置30分钟,抽滤,除去不溶物,滤液用适量活性碳室温脱色,搅拌15分钟,滤去碳渣,滤液用40%氢氧化钠溶液调pH4~5,冷却,抽滤,得磺胺醋酰晶体.干燥,测mp,装入纸盒中,计算产率(y1). 4、注意事项 (1)用10%HCI溶解上次所得的固体,放置30分钟后,过滤,滤液进一步处理. (2)活性碳脱色在室温下进行. 5、思考题 (1)在10%HCI溶解上次所得的固体后,过滤,需要的是滤液,为什么? (2)本产品精制时用活性碳脱色为什么应在室温下进行? (三)磺胺醋酰钠的制备 1、主要仪器 锥形瓶,量筒,烧杯,抽滤瓶,布氏漏斗. 2、原料规格及配比 原料名称 规 格 用 量 摩尔数 摩尔比 磺胺醋酰 自制 2g 无水乙醇 CP 30mL 氢氧化钠溶液 40% 适量 3、操作 称取上次所得的固体2克,加入30mL无水乙醇,50~60℃水浴加热,溶解,40%氢氧化钠溶液调pH7~8,冷却,抽滤,得磺胺醋酰钠结晶,烘干,称重,计算产率(y2). 4、注意事项 (1)磺胺醋酰在无水乙醇溶解时,置水溶加热时间不宜太长(约3~5分钟为宜),否则产品易氧化和水解.固体溶解如溶液混浊,则需抽滤. (2)必须严格控制水浴温度,若温度过高易引起磺胺醋酰钠水解和氧化,影响产量和质量,温度低不易成钠盐. (3)滴加40%氢氧化钠溶液调pH7~8时可见溶液澄明,显示磺胺醋酰已生成磺胺醋酰钠,若有微量不溶物,可能是未除尽的副产物.氢氧化钠溶液切勿过量,因磺胺醋酰钠在强碱性溶液中和受热情况下,易氧化水解而致产量和质量下降. (4)产品过滤时,严禁用水洗涤产品,因所得产品为钠盐,在水中有较大的溶解度. (5)总产率的计算: Y= y1 y2

对甲苯磺酰腙博士毕业论文

对甲苯磺酰氯(CAS: 98-59-91),中文别名4-甲基苯磺酰氯、对甲苯磺酰氯(PTSC)、对氯化甲苯砜、对甲苯磺酰氯、4-甲苯磺酰氯、4-甲苯磺酰氯、对甲苯磺酰氯、甲苯-4-磺酰氯、对嫁苯磺酰氯。白色片状结晶。易溶于醇、醚和苯,不溶于水。

对甲苯磺酰基是一种化学物质,分子式是p-CH3-C6H4-SO2-。

1-四氢萘酮对甲苯磺酰腙的制备原理是分解。1-四氢萘酮是一种有机化合物,化学式是C10H10O。按规格使用和贮存,不会发生分解,避免与氧化物接触。避免蒸气吸入。食入造成危害,皮肤接触、吸入有刺激。应穿戴防护眼镜、防护衣、防护手套。其气体与空气形成爆炸性物。燃烧产生有刺激性、腐蚀性及(或)有毒性的气体。存在于烟气中。

关于己内酰胺生产的毕业论文

中文名称: 己内酰胺 英文名称: epsilon-Caprolactam 中文别名: ;卡普隆;CPL; CAS RN.: 105-60-2 分 子 式: C6H11NO 己内酰胺(CPL)是制造聚酰胺纤维和树脂的主要原料。聚酰胺广泛应用于纺织、电子和汽车及食品包装薄膜等行业。世界上己内酰胺98%用于聚合、生产尼龙6;其次是工程塑料及薄膜。美国、俄罗斯、日本、荷兰是己内酰胺主要生产国,占世界总生产能力的三分之二。2001年世界己内酰胺生产能力为450万吨/年,产量为416万吨/年。在国内,己内酰胺的产能为万吨,2000产量为13万吨,主要用于帘子布,民用丝、工程塑料三方面,所占比例分别为70%、28%、2%。国内己内酰胺产量长期不能满足需求,现在仅能满足市场消费不足50%,2000年国内己内酰胺进口量约为万吨,2001年进口量达30万吨。聚酰胺共分为脂肪族、半芳香、芳香、聚亚酰胺、共聚酰胺五大类,用得最多的是脂肪族聚酰胺,特别是尼纶6(也叫锦纶6或PA6),占所有聚酰胺用量的60%左右(2004年地区性报告),尼纶66(也叫锦纶66或PA66)占30%左右,其余的尼龙46、尼纶1010/1212/10/12/610等等占总量的10%左右。 聚酰胺的分类是以大分子链重复结构中所含有的特殊基团来区分的,含酰胺基团—CONH—的是脂肪族聚酰胺;含酰亚胺基—CO—N—CO—的是聚亚酰胺;含芳香基或酰胺键连接芳香基的是芳香族;共聚酰胺则是由两种或两种以上聚酰胺共聚生成的聚酰胺产品。 聚酰胺的命名特点是以原料单分子(或大分子中重复单元)所含碳原子数目多少来定,如尼纶6的原料己内酰胺俯含6个碳原子,就叫尼纶6或PA6;尼龙66是由己二酸和己二胺两种物质聚合而成,每种原料都含6个碳原子,所以就叫尼龙66;而芳香酰胺是因为原料含有苯环,一般会称为聚对苯(聚间苯)二甲酰对二胺(间二胺);共聚酰则是将主成份的放前,次要成份放在后,如尼龙66/6。 下面我们重点谈论各种脂肪族聚酰胺的用途,因为从通用性上来讲,各种聚酰胺都有共同性,都适合做某一类或几类产品,但从实际用量来考虑,则主要是指尼纶6和尼纶66。以下如未做特殊说明,则通指尼龙6切片。 聚酰胺切片从后续加工设备结构和加工的的特点来分,切片可分为以下四种; 1、纺丝 2、挤塑 3、注塑 4、浇注(特别注意:它不是切片,它是直接利用原料己内酰胺来成型) 实际上纺丝和拉膜也是挤压出来的,可以算作是挤塑一类,但为了更清楚地理解和比较,下面将聚酰胺的用途分类更细化一点:1、纺丝(纤维丝和单丝);2、拉膜(双向拉伸和多层复合);3、挤塑(板、管材等)、4、注塑、5、浇注。参考资料:

中文名称: 己内酰胺 英文名称: epsilon-Caprolactam 中文别名: ;卡普隆;CPL; CAS RN.: 105-60-2 分 子 式: C6H11NO 己内酰胺(CPL)是制造聚酰胺纤维和树脂的主要原料。聚酰胺广泛应用于纺织、电子和汽车及食品包装薄膜等行业。世界上己内酰胺98%用于聚合、生产尼龙6;其次是工程塑料及薄膜。美国、俄罗斯、日本、荷兰是己内酰胺主要生产国,占世界总生产能力的三分之二。2001年世界己内酰胺生产能力为450万吨/年,产量为416万吨/年。在国内,己内酰胺的产能为万吨,2000产量为13万吨,主要用于帘子布,民用丝、工程塑料三方面,所占比例分别为70%、28%、2%。国内己内酰胺产量长期不能满足需求,现在仅能满足市场消费不足50%,2000年国内己内酰胺进口量约为万吨,2001年进口量达30万吨。

绿色化学在石油化工中的研究进展和应用 2003 年5 月国际工程学会在美国Sandestin 主办了“绿色工程: 定义原则”( Green Engineering :Defining the Principle) 的会议,目的是确定一套绿色工程的原则以指导工程师在设计产品和工艺时,使其符合企业、政府和社会的需要,这包括了成本、安全、使用性能和对环境的影响. 最后发表了“工程师工作框架的Sandestin 原则”,提出了在工程项目中为全面实现绿色工程,工程师要遵循的9 条原则. 这9 条原则是: (1) 整体考虑工艺过程和产品,使用系统分析与集成的方法来评估对环境的影响; (2) 保障并改善自然生态系统,同时也要保护人类健康和生活安宁; (3) 在工程活动中考虑整个生态循环; (4) 尽可能保障所有的物质和能量安全并良性地输入和输出; (5) 尽可能减少对自然资源的消耗; (6) 努力减少废物产生; (7) 在对当地地理和人文认知的基础上,开发和实施工程解决方案; (8) 革新、创造和发明技术以实现可持续发展,在传统和主流工艺之上,创造性地提出工程解决方案; (9) 让股东和社会共同积极参与工程解决方案的开发[2 ] .20 世纪的化学工业是建立在煤、石油和天然气等矿物质资源基础上的, 尤其是到了60 年代前后, 石油化学工业获得了飞速发展, 与此同时, 也产生了日益严重的资源、环境等社会问题。1990年以来, 绿色化学的理念迅速崛起, 并成为包括石化工业在内的化学工业可持续发展的方向, 越来越受到各国政府、企业和学术界的普遍重视。在石油化工领域, 一批绿色化工技术不断被开发和应用,甚至逐渐成为一些新兴产业。本文作者介绍可持续发展的石油化工技术的一些新进展。1 以过氧化氢作氧化剂的烃类“原子经济”氧化反应反应的“原子经济”性是衡量在化学反应中究竟有多少原料的原子进入到产品之中, 这一标准既要求尽可能地节约原料资源, 又要求最大限度地减少废物排放。在石化工业中烃类的氧化反应是一类非常重要的反应过程, 由于具有含氧官能团的产物分子比原料烃类要活泼得多, 此类反应的选择性通常较低, 还有一些反应需要经多步骤才能完成, 过程往往产生很多废物。过氧化氢作为一种温和的氧化剂, 在某些材料的催化作用下, 可进行选择性很高的定向氧化反应, 而且其本身无毒并在反应后转化为无害的水, 使反应的“原子经济”性大大提高, 因而被看作是绿色的氧化剂[1 ] 。 钛硅分子筛催化环己酮氨肟化制备环己酮肟实现工业应用环己酮肟的制备作为目前化纤单体ε- 己内酰胺主流生产技术的核心工艺, 需经环己酮与羟胺的盐进行反应而得, 而羟胺盐制备过程的“原子经济”性较差, 腐蚀和污染严重。20 世纪80 年代后期意大利EniChem 公司提出了一种全新的环己酮氨肟化工艺, 即在钛硅分子筛的催化作用下, 环己酮与氨、过氧化氢一步“原子经济”反应直接合成环己酮肟。中国石化石油化工科学研究院也开发成功具有自主知识产权的环己酮氨肟化新工艺, 并与中国石化巴陵分公司合作, 于2003 年8 月率先完成了70 kt/ a 的工业试验, 环己酮转化率和环己酮肟选择性均超过 % , 氨的利用率达97 %以上。而传统的磷酸羟铵肟化法工艺(HPO) 氨的利用率不足60 %; 同时, 新工艺避免了NOx 、SOx(HPO) 等的生成和使用, 使环己酮肟的制备成为清洁生产过程。传统的以苯为原料的己内酰胺生产过程流程长、工艺复杂、投资大、成本高, 国外Du Pont 、BASF 和DSM 等公司已分别研究开发了以丁二烯为原料的己内酰胺生产新技术[2 , 3 ] , 可简化工艺流程和降低生产成本, 但由于新建装置巨大的投资和技术风险等原因, 至今尚未工业化。环己酮氨肟化新工艺适宜对现有装置的技术改造, 将使由苯生产己内酰胺的工艺路线更具竞争性。 丙烯环氧化制备环氧丙烷新技术取得新进展自从钛硅分子筛( TS - 1) 诞生以来, 低温下利用过氧化氢作氧化剂的液相氧化反应工艺一直在不断地研究开发, 另一类取得突出进展的是烯烃与过氧化氢进行环氧化反应制取环氧化物, 其中最重要的过程是丙烯环氧化制备环氧丙烷。以TS - 1 为催化剂, 用过氧化氢环氧化丙烯制备环氧丙烷, 产物环氧丙烷的收率达97 %以上(以丙烯计) ,以过氧化氢计其收率为87 %[4 ] , 副产物主要为水和氧气。该过程原子的有效利用率达76 %。而传统的二步氯醇法生产工艺原子的有效利用率仅为31 % , 需要消耗大量的氯气和石灰, 并且设备腐蚀和环境污染严重。针对TS - 1 分子筛价格较高、与产物分离难度较大, 丙烯环氧化的其他催化剂体系也在不断研究之中, 以过氧化氢为氧化剂的新型氧化催化材料正在研究的有负载锡的β- 沸石[5 ] 、有机氮络合Fe2 系催化剂[6 , 7 ] 和含钨的金属簇相转移催化剂[8 ]等。最近, BASF 和Dow 化学公司合作, 在丙烯的过氧化氢环氧化反应工艺(HPPO) 的开发中取得了重大进展, 已完成各自的详细评估。据称, HPPO工艺由于不联产其他产品, 流程短, 投资低, 占地少, 尤其对较小规模生产装置投资回报率大幅度提高。双方计划近期完成中试放大, 开始建设第一套300 kt/ a 规模生产装置, 预计2007 年初建成投产[9 ] 。此外, Degussa 和Uhde 也拟在南非Sasol 建设60 kt/ a 环氧丙烷装置, 将采用HPPO 工艺。据报道[10 ]其开发了一种专用分子筛催化剂, 副产物生成量可降低到最低限度。丙烯环氧化新工艺虽然使用了价格较高的过氧化氢作氧化剂, 但只要采用适合的催化剂, 可使产物收率大幅提高, 同时由于工艺简化, 该工艺仍具有较好的技术经济性, 加之该技术的环保优势, 有望对环氧丙烷行业产生重要的影响。 其他有机含氧化合物的制备技术以过氧化氢为氧化剂, 烯烃、醇和羰基化合物可高选择性地氧化生产环氧化物、醇和羧酸, 并可避免使用金属催化剂、含氯氧化剂和有机溶剂。文献[11 ]介绍Kazuhiko Sato 等开发了由烯烃氧化生成二醇类化合物的新工艺。采用普通的树脂负载的磺酸催化剂, 用不同的链烯烃和环烯烃与过量的30 %双氧水反应, 可高选择性和高收率地得到反-1 , 2 - 二醇, 带有端基羟基的链烯烃也可一步反应生成三羟基化合物。杜泽学等[12 ]以钛硅分子筛为催化剂, 开发了氯丙烯与过氧化氢环氧化制备环氧氯丙烷的悬浮催化蒸馏新工艺, 反应选择性达98 %以上, 有望取代现有的氯醇法生产工艺。2 取代有毒有害原材料的绿色化工技术光气、氢氰酸等是剧毒物质, 因它们的化学性质极为活泼, 至今仍作为化工原料广泛使用, 但这些化学品在制造和使用中一旦不慎泄漏, 就将造成难以估量的人身伤亡和环境灾难, 因此, 用无毒、无害的原料代替剧毒光气、氢氰酸等绿色化工技术的开发受到重视[13 ] 。取代光气, 生产异氰酸酯、聚碳酸酯新工艺 目前替代光气制造异氰酸酯的工艺有: 由伯胺和二氧化碳或碳酸二甲酯制造异氰酸酯, 由伯胺和一氧化碳进行氧化羰化制异氰酸酯, 由硝基苯和一氧化碳羰基化制异氰酸酯。这些技术有的正在小试, 有的已进入中试阶段, 但是生产成本比原有的光气法高10 %左右, 不经济, 所以还需改进。代替光气生产聚碳酸酯, 已经开发成功以碳酸二甲酯为原料的工艺。首先由碳酸二甲酯与苯酚反应生成碳酸二苯酯, 再和双酚A 进行酯交换、缩聚生成高分子聚碳酸酯, 现正在建厂, 而且生产碳酸二甲酯采用甲醇氧化羰基化法, 取代了传统光气为原料的路线。韩国L G化学公司称独自开发了一种非光气的聚碳酸酯生产新工艺, 由于工艺简化,可减少投资70 % , 装置操作费用和生产成本明显降低。可见, 代替剧毒原料也可找到经济合理的绿色工艺路线。 甲基丙烯酸甲酯生产新工艺继异丁烯氧化法、乙烯氢甲酰化法生产甲基丙烯酸甲酯(MMA) 技术工业化后, 人们仍在积极开发新工艺以取代传统氢氰酸为原料的丙酮氰醇法。异丁烷直接氧化法因资源更丰富、廉价而受到重视。这种方法包括异丁烷氧化制取甲基丙烯醛、甲基丙烯醛再氧化制取MMA 两步反应。由于异丁烷反应活性低于异丁烯, 通常选用具有强氧化性的杂多酸类催化剂。近年来研究发现, P - Mo 系杂多酸中引入V、Cu、Cs 等元素, 可促进甲基丙烯醛的氧化反应, 提高反应收率; 进一步将P - Mo - V- Cu - Cs 五元催化剂和Mo - V 的复合氧化物作为助剂, 添加到“MMA 高选择性催化剂”浆态杂多酸催化剂中, 可使MMA 的收率提高2 倍, 达到10 %以上, 表现出一定的工业应用前景。英国Lucite 国际公司开发成功其专有的α-MMA 技术, 并计划建设第一套100 kt/ a MMA 生产装置, 预计2007 年末建成投产。α- MMA 是两步法工艺。第一步由乙烯与甲醇、一氧化碳进行羰基化反应生成丙酸甲酯。据称, 所用的钯基催化剂活性很高, 选择性达9919 % , 且具有良好的稳定性, 反应温度和压力条件温和, 对装置的腐蚀性小; 第二步中丙酸甲酯与甲醛反应生成MMA 和水, 采用专有的多相催化剂, MMA 的选择性较高[14 ] 。该工艺大大改进了产品的经济性, 是三十年来开发的最重要的MMA 生产工艺。MMA 在中国是一个发展前景良好的有机化工原料, 随着国民经济的持续高速增长, 其需求还将不断增长, 中国应该慎选一条符合国情的绿色路线进行开发, 注意克服其不足之处。3 使用环境友好催化剂的化学反应石油化工生产技术的核心是催化剂, 催化剂的消耗虽不大, 但同样可能对环境产生很大的危害。硫酸、氢氟酸、三氯化铝等液态酸是广泛应用的酸性催化剂, 使用过程易腐蚀设备、危害人身健康和社区安全, 同时还产生废液、废渣污染环境。目前应大力开发环境友好的固体酸催化剂代替液体酸,已有一批工业化成果。在苯与烯烃烷基化过程中采用ZSM - 5 分子筛代替三氯化铝的气相法合成乙苯, 采用USY 或β- 沸石或MCM - 22 沸石代替三氯化铝的液相法合成异丙苯等; 此外, 还有采用固体酸替代氢氟酸的长链烷基苯合成的新工艺。采用上述分子筛固体酸取代三氯化铝、氢氟酸等催化剂, 虽然推出了新一代的烯烃烷基化绿色技术, 但是由于分子筛催化剂的酸强度不如氢氟酸、三氯化铝高, 分布也不够均匀, 而且酸中心数量较少, 于是采用这类固体酸催化剂时反应温度升高, 压力增加, 同时少量的副产物和杂质有所增高, 所以又出现了开发新固体酸催化剂的热点。负载型杂多酸催化剂可望克服上述缺点, 成为新一代的催化剂; 正在研究的还有一些新型催化材料, 如包裹型液体酸、纳米分子筛复合材料、离子液体等。这方面的研究, 中国已有一定基础, 应组织人力, 加速开发, 力争取得领先地位。

1.单体己内酰胺的制备苯酚法:由苯酚加氢生成环己醇,氧化脱氢生成环己酮,肟化生成环己肟,再经转位生成己内酰胺。环氧己烷法:环己烷氧化生成环己醇和环己酮的混合物,环己醇分离后脱氢生成环己酮,再肟化生成环己酮肟,再经转位生成己内酰胺。光亚硝化法:环己烷在光照下用氯化亚硝酰进行亚硝酰化反应生成环己酮肟盐酸盐,在硫酸中进行贝克曼重排生成己内酰胺。甲苯法:由甲苯氧化制得苯甲酸,氢化生成环己甲酸,再用亚硝基硫酸和发烟硫酸进行亚硝基化反应即生成己内酰胺。己内酯法:环己酮在醋酸或过氧化氢作用下生成己内酯,再于高温高压下氨化即得己内酰胺。2.尼龙6树脂的制备:以己内酰胺为原料,在高温(220~260℃)及引发剂(水)存在下,首先制得氨基己酸,然后缩聚和加成反应同时进行而制得尼龙6树脂。 原料制备:单体己内酰胺的合成最早采用苯酚法,所得环己酮进行肟化,生成环己酮肟,再通过贝克曼重排反应,转位成己内酰胺。目前的工业生产主要采用环己烷氧化法和环己烷光亚硝化法合成环己酮肟。还有一种甲苯法,所得六氢苯甲酸在亚硝酰硫酸作用下重排,制得己内酰胺(见图)。 聚己内酰胺

聚酰亚胺类及塑料毕业论文

聚酰亚胺是综合性能最佳的有机高分子材料之一,耐高温达 400℃以上 ,长期使用温度范围-200~300℃,无明显熔点,高绝缘性能,103 赫下介电常数,介电损耗仅,属F至H级绝缘材料。聚酰亚胺作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域。一些聚酰亚胺品种不溶于有机溶剂,对稀酸稳定,一般的品种不大耐水解,这个看似缺点的性能却使聚酰亚胺有别于其他高性能聚合物的一个很大的特点,即可以利用碱性水解回收原料二酐和二胺,例如对于Kapton薄膜,其回收率可达80%-90%。改变结构也可以得到相当耐水解的品种,如经得起120℃,500 小时水煮。外观淡黄色粉末弯曲强度(20℃) ≥170MPa密度 冲击强度(无缺口) ≥28kJ/m2拉伸强度 ≥100 MPa维卡软化点 >270℃吸水性(25℃,24h)伸长率 >120%

附件1:外文资料翻译译文含有非共面的2,2'-二甲基-4,4'-二苯基单元和纽结性的二苯甲撑键的高度有机可溶解的聚醚酰亚胺的合成和特征两种新的双醚酐2,2'-二甲基-4,4'-双[4-(3,4-二羧基苯氧基)]二苯基二酐(4A)和双[4-(3,4-二羧基苯氧基)苯基]二苯甲烷二酐(4B)可以由三步反应制得。首先,由4-硝基邻苯二甲腈分别与2,2'-二甲基二苯基-4,4'-二醇和双(4-羧基苯基)二苯甲烷发生硝基取代,然后双醚四腈在碱性条件下水解和随后的双醚四酸脱水。一系列的新的高度有机可溶解的聚醚酰亚胺采用常规的两步合成法由双醚二酐和各样的二胺制得。制得的聚醚酰亚胺固有粘度在-范围内。GPC测量显示这些聚合物的数均分子量和重均分子量分别高达45000和82000所有的聚合物表现出典型的无定型衍射图样。几乎所有的聚醚酰亚胺都表现出优良的溶解性以及容易在不同的溶剂中,例如N-甲基-2-吡咯烷酮,N,N-二甲基乙酰胺(DMAC),N,N-二甲基甲酰胺,吡啶,环己酮,四氢呋喃和氯仿。这些聚合物的玻璃化转变温度在224-256℃范围内。热重分析表明这些聚合物都是稳定的,在氮气下10%重量损失点在489℃以上。等温重量分析结果说明这些聚合物在350℃的静态空气中等温老化的重量损失都在-%。具有韧性和柔性的聚合物膜可以通过其DMAC溶液浇注制得。这些膜的抗张强度具有84-116MPa,抗张模量具有-。引言芳香族聚酰亚胺由于其突出的热稳定性,因具有低介电常数而有优良的电绝缘性,对常用基材具有好的黏附性,以及卓越的化学稳定性,及其在半导体和电子封装工业领域被广泛的应用。但是由于最初的聚酰亚胺是不溶不熔的,它们在许多领域的应用受到限制。因此,目前已经进行了大量的研究来寻找新的方法来绕过这些局限性.改变聚酰亚胺回避化学结构的通用方法是引入柔性基团和/或庞大的单元到聚合物主链中。聚醚酰亚胺作为芳香族的亲核取代反应产物得到迅速发展,又成为与市场需要接轨的高性能的而且能够用注射挤出工艺制造的聚合物。GeneralElectric Co.开发并商业化的Ultem 1000就是一个重要的例子,它表现出比较好的热稳定性和良好的力学性能另外还有良好的可塑性。目前的研究主要集中在一系列新的有好的溶解性的聚醚酰亚胺的合成和特性化,主要基于包含异面的2,2'-二甲基-4,4'-二苯撑单元的4A和包含二苯甲撑纽结环的双[4-(3,4-二羧基苯氧基)苯基]二苯甲烷二酐的4B。在对位键合的聚合物链中结合2,2'-二取代的二苯撑降低了聚合物分子链间的相互影响。通过2,2'-二取代将苯环加在异面构象中,减弱了分子链间的分子间力,结晶倾向明显降低,溶解性显著提高。另外获得有机可溶性的聚酰亚胺的另一个有效途径是结合取代的甲撑键,例如异丙叉[(CH3)2C=]、六氟异丙叉和二苯甲撑单元,它们提供主链上的刚性苯环间的纽结,来提高聚合物的溶解性。聚合物主链中的纽结单元的出现降低了分子链的刚性,以至提高了聚合物的溶解性。试验发现有二苯甲撑单元的聚合物比含有异丙叉和六氟异丙叉单元的聚合物有更好的热稳定性。因此,结合异面的2,2'-二甲基-4,4'-二苯撑和纽结单元的二苯甲撑可以制成具有良好热稳定性的可溶性聚醚酰亚胺。不同的结构单元对聚合物性能的影响如溶解性、热稳定性和力学性能,这里也将讨论。实验步骤材料:原料二元醇,2,2'-二甲基-4,4'-二羟基-二苯(1A)和双(4-羟基苯基)二苯甲烷(1B)分别由2,2'-二甲基-4,4'-二氨基二苯和4,4'-二氯二苯甲烷制得。DMF,DMAC和吡啶在使用前减压蒸馏纯化,醋酐用真空蒸馏纯化。单体合成:见图12,2'-二甲基-4,4'-双[4-(3,4-二腈基苯氧基)]二苯(2A)。在100mL圆底烧瓶中加入()的2,2'-二甲基-4,4'-二羟基-二苯(1A)和(70mmol)的4—硝基邻苯二腈溶解在80ml的纯DMF中。加入无水碳酸钾(, 73mmol),浊液在室温下搅拌两天。然后将反应的混合物加入到500ml的水中沉析,得到浅黄固体产物,用水和甲醇重复冲洗,过滤和干燥。粗产品在乙腈中重结晶得到黄色晶体双(醚二腈)(2A),产率83%,熔点227-228℃。双[4-(3,4-二腈基苯氧基)苯基]二苯(2B)。合成2B的步骤和合成2A的步骤相似,用双(4-羟基苯基)二苯甲烷替换二元醇做反应物。同样在乙腈中重结晶两次得到棕色晶体双(醚二腈)(2B),产率86%,熔点219-220℃。2,2'-二甲基-4,4'-双[4-(3,4-二羧基苯氧基)]二苯(3A)。在100ml的圆底烧瓶中将()的双(醚四腈)(2A)加入到含有()gKOH的40ml水/40ml乙醇溶液。固体双醚四腈在一个小时内溶解。回流持续两天直到不再放出氨气。在过滤和减压下除去剩下的乙醇后,用200ml水稀释然后用分析纯盐酸酸化。过滤双(醚四酸)沉淀用蒸馏水洗涤直到滤液澄清。产率在92%。反应物因为热环化脱水而产生的吸收峰在165℃附近(用DSC)。双[4-(3,4-二羧基苯氧基)苯基]二苯(3B)。3B的合成步骤类似3A,只是用2B替换双(醚四腈)做反应物。产物收率为91%,熔点138-170℃。2,2'-二甲基-4,4'-双[4-(3,4-二羧基苯氧基)]二苯酐(4A)。在100ml的原地烧瓶中,将双(醚四酸)(3A)溶解于35ml冰醋酸和25ml醋酐的溶液中,回流24小时。然后,过滤混合物放置结晶一天。过滤出沉淀物再在醋酐中重结晶。过滤得到棕色晶体,用纯甲苯洗涤并在100℃下真空中烘干24h得到双(醚二酐)(4A)。产率81%,熔点217-218℃。双[4-(3,4-二羧基苯氧基)苯基]二苯酐(4B)。4B的合成步骤类似4A,只是用3B替换双(醚四酸)做反应物。获得产率84%,熔点262℃。聚合步骤:见图二。在搅拌下缓慢地将双醚二酐(4A)(,)加入到3,3',5,5'-四甲基-2,2'-双[4-(4氨基苯氧基)苯基]丙烷(5b)()的DMAC溶液中。混合物在室温下于氩气环境下反应2h形成聚醚酰亚胺酸预聚体(A- 6b)。化学亚胺化可通过将3mlDMAC、1ml酸酐和吡啶加入到上述A-6b溶液中,在室温下搅拌1h升温至100℃反应3h。接着将均匀的溶液加入到甲醇中过滤,将沉析出的黄色固体用甲醇和热水洗涤,然后在100℃下干燥24h,得到聚醚酰亚胺A-7b。在浓度为温度为30℃ 的条件下,聚合物在DMAC中的固有粘度是。所有其他聚醚酰亚胺用采用相似步骤来制备。表征熔点用BUCHI装置的毛细管测量(型号 BUCHI 535)。红外光谱在4000-400cm‐1范围用JASCO IR-700光谱仪测量。13C和1H的核磁共振光谱由在的炭和的质子通过JEOLEX-400获得。所有的聚醚酰亚胺的固有粘度通过Ubbelohocle粘度计测得。用Perkin-Elmer2400装置作元素分析。用(GPC)凝胶渗透色谱的方法确定质均和数均分子量。四个300*水柱(105、104、103、50埃系列)由THF(四氢呋喃)冲洗液用来作GPC(凝胶渗透色谱)分析。用UV探测器(Gillon型号116)在254nm处监测,用聚苯乙烯做标样。在室温下,与胶片样品上用Ni过滤地Cu,Ka射线的X射线(30KV,20mA)衍射仪测得广角X射线衍射图样。热解重量通过流动速率为(100cm3·min‐1)的以20℃·min‐1的加热速率加热的空气或氮气的热解重量分析仪(TGA 250)来获得。差示量热分析通过Dupont的差示量热分析仪来实现,该差示量热分析仪的加热速率是20℃·min‐1。玻璃化转变温度就是它的屈服点。抗张性能通过一个载荷为10Kg的定向拉伸机测得的应力-应变曲线决定。通过ULVAC等温重量分析仪(型号7000)来获得等温重量分析。这项研究用厚度3cm的试样在应变速率为2cm·min‐1的条件下进行,在室温下用5个胶片样品(4mm宽,5cm长,厚)来测量。结果和讨论单体合成如图1所示,二醚酐由三步合成方法制得,以二元醇(1A和1B)与4-硝基邻苯二腈在室温下碳酸钾的存在下于无水的DMF中的亲核硝基取代开始。硝基取代反应最好在低温下进行,不要在高温(高于100℃)下进行。因为在高温下得到的产品(2A和2B)往往是黑色的。获得的双(醚二腈)2A和2B各自在碱性溶液中水解得到双(醚二酸)3A和3B。2A的水解反应需要进行两天。然而,2B因为其溶解性小于2A,所以2B的水解反应还要用更长的时间等到完全水解,完全水解的溶液变得澄清。在用盐酸酸化以前必需除去残留的乙醇,如果在水溶液中有未除尽的乙醇存在,往往使反应物在酸化的时候发粘,然后双(醚二酸)环化脱水得到双醚酐4A和4B。这些合成化合物的结构可以用元素分析、IR和NMR的方法的得到确认。例如,二醚酐的红外光谱显示出环酐的特征吸收峰在1837和1767cm-1,分别归属于酐基团中的C=O地对称和部对称的伸缩振动。NMR谱数据列在实验部分。NMR光谱提供了清晰的证据,在此制备的双(醚二酐)单体与预期结构是相互关联的。聚醚酰亚胺的制备聚醚酰亚胺是用常规的两步法合成的,如流程2所示。包括开环加成聚合行成聚醚酰胺酸和随后的化学环化脱水。一般聚醚酰亚胺酸的热环化脱水反应也可在减压高温(大约300℃)下进行。然而如此热环化脱水得到的产物比化学环化脱水产物的溶解性差。因为我们研究的目的就是制得有机可溶性的PEI,在此采用了化学环化脱水。聚醚酰胺酸的预聚物是通过聚醚二酐(4A合4B)缓慢地加入到二胺溶液中反应制得。然后将脱水剂如醋酐和吡啶的混合物加到获得的粘性聚醚酰胺酸溶液中得到各种PEI。这些PEI固有粘度在-(表1)。除了聚合物A-7c,这些PEI地数均分子量(——Mn)和重均分子量(——Mw)分别在32000和52000g/mol以上。以聚苯乙烯为标样采用GPC法测量,所有的聚合物膜都可以由其DMAC溶液浇注制得。所有的聚合物膜都是坚韧的、透明的、柔软的。这些膜都经受了拉力试验。聚合物表征聚合物的结晶性用广角X-射线衍射图谱检测。所有的聚合物都在2θ=8°和40°之间表现完全非晶样式,说明聚合物是非晶的,这个发现是合理的。因为异面结构2,2'-二取代苯撑单元的存在和二苯甲撑中的苯结构减弱了分子链间的分子间力,引起了结晶度的减少。一般,聚合物主链中二苯撑单元的存在导致刚性棒聚合物有高结晶性和低溶解性。尽管如此,在4,4´-二苯撑单元上结合2,2´-二甲基取代基,可以有效地降低聚合物的堆砌效应。值得注意的是聚合物链中含有对称的取代基往往带来好的堆砌。在甲撑结构中的二苯基取代,也可以看成是聚合物主链上的对称取代。尽管如此,二苯甲撑键往往以扭结构型存在,因此聚合物分子链的刚性降低了。因而结晶性也因为聚合物含有纽结链降低了。这些PEI在一些有机溶剂中的%(w/v)的溶解度也概括到了表2中。几乎所有的PEI都溶解在这些测试的溶剂中,包括N-甲基-2-吡咯烷酮、 DMAC、吡啶、环己酮、四氢呋喃、甚至氯仿在室温下溶解。这些PEI有好的溶解性可以归结为柔软的醚键,异面的二苯撑和纽结键的存在。正是这些结构降低了分子间的作用力和刚性。这些PEI溶解性的对比暗示着含有二苯甲撑的PEI比含有2,2'-二甲基-4,4'-二苯撑单元的PEI有稍好的溶解性。这就说明了扭结单元对于增加聚合物的溶解性比异面的2,2'-二甲基-4,4'-二苯撑单元更有效。这些PEI地热稳定性也在表3中列出。用DSC法测得这些PEI的玻璃化转变温度(Tg's),其值在224-256℃范围内。DSC检测中没有发现熔融吸收峰,这也证明了PEI是非晶的。显而易见含有2,2'-二甲基-4,4'-二苯撑的单元比含有纽结键的聚合物显示出更高的Tg值。这是因为有二苯撑单元的聚合物比有纽结键的表现出更高的刚性。热重分析(TG)揭示了这些PEI有优良的热稳定性。它们在450℃以上仍然保持稳定。在氮气气氛下,这些聚合物有10%重量损失的温度(Td10)可以达到489-535℃。研究发现有二苯撑单元的2,2'-二甲基-4,4'-二苯撑的聚合物比那些有二苯甲撑键的单元有更高的Td10。通过对用二胺(A-C)制得的聚合物A-7a-A-7c的比较,可以发现有2,2'-二甲基-4,4'-二苯撑单元的聚合物(A -7c)比含有不对称的特丁基取代基团的聚合物(A-7a)表现出更高的Td10,含有四甲基取代的聚合物(A-7b)在这些聚合物中(A-7a-A- 7c)表现出最低的Td10。和我们以前的研究中的相似发现差不多,异面结构比特丁基取代基和四甲基取代基团赋予聚合物更好的热稳定性。另外有2,2'-二甲基-4,4'-二苯撑单元的聚合物(B-7c)比含有不对称的特丁基取代基团的聚合物(B-7a)表现出更高的Td10,含有四甲基取代基的聚合物 (B-7b)在这些聚合物中(B-7a-B-7c)表现出最低的Td10。在我们以前的研究中就发现异面结构2,2'-二甲基-4,4'-二苯撑在聚合物的主链上可以提高聚合物的溶解性。因为它降低了分子间作用力和刚性,就像以前的相似结论一样,在2,2'-二甲基-4,4'-二苯撑单元上结合上甲基取代基在有效范围内牺牲了聚合物少量的热稳定性但却提高了加工性。根据以前的研究结果,在苯撑单元上有四甲基取代的聚合物比没有的,不仅有效地提高了聚合物的溶解性还提高了聚合物的热氧稳定性。这些聚合物的IGA测试结果说明了异面二苯撑结构的聚合物比哪些有二苯甲撑纽结结构的聚合物有更高的热稳定性。IGA 的结果说明了这些PEI有好的热氧稳定性,一般地,IGA结果与TGA数据相仿。特别地在静止的空气中350℃下进行20h的恒温老化,聚合物重量损失在 -%(表3),通过重量损失值的对比发现,有2,2'-二甲基-4,4'-二苯撑单元的聚酰亚胺要比含有二苯甲撑单元的有稍高的热稳定性。 2,2'-二甲基-4,4'-二苯撑的聚合物有较少的重量损失,包括PEI在空气中主链中的甲基结构被氧化生成(C=O)结构导致增重。通过热稳定性的对比,所有的这些聚酰亚胺都比我们以前报告过的聚酰亚胺热稳定性好。这些聚酰亚胺可以被称为新的高性能工程塑料。这两系列在DMAC溶液中用溶液浇注的方法得到的PEI膜的机械性能概括在表4中。这些坚韧有弹性的膜抗张强度在84-116MPa,断裂伸长率在6- 12%,初始模量为-。这些膜有强而韧的物理性能,可以总结出含有2,2'-二甲基-4,4'-二苯撑单元的聚合物膜比有纽结的二苯甲撑键的强度大,这是非常合理的。在PEI中有4,4'-二苯撑单元表现出棒状结构以致聚合物链比纽结键有更高的刚性。通过对这些聚合物的机械性能的对比,聚酰亚胺A-7b-A-7c也比商业化的聚酰亚胺Ultem 1000(105MPa)有更高的抗张强度。所有这些聚酰亚胺的机械性能也必我们以前的报告中提到的要高。结论含有异面2,2'-二甲基-4,4'-二苯撑单元和含有扭结性的二苯甲撑键的两种新的双醚二酐用三步方法成功制得。一系列有适当的分子量的PEI用这些双醚二酐单体和不同的二胺制得。这些PEI可以很容易在多种有机溶剂中溶解,包括常用的有机溶剂如环己酮和氯仿。另一方面这些PEI有好的热稳定性和机械性能。因此这些新的可溶性的PEI可以被认为是新的高性能的工程塑料。这里提供的结果也说明了含有2,2'-二甲基-4,4'-二苯撑单元的聚合物比那些有扭结性二苯甲撑键的聚合物表现出更高的热稳定性和机械性能。然而,后者比前者有更好的溶解性。

聚酰亚胺性能:1、全芳香聚酰亚胺按热重分析,其开始分解温度一般都聚酰亚胺在500℃左右。由联苯四甲酸二酐和对苯二胺合成的聚酰亚胺,热分解温度达600℃,是迄今聚合物中热稳定性最高的品种之一。2、聚酰亚胺可耐极低温,如在-269℃的液态氦中不会脆裂。3、聚酰亚胺具有优良的机械性能,未填充的塑料的抗张强度都在100Mpa以上,均苯型聚酰亚胺的薄膜(Kapton)为170Mpa以上,杭州塑盟特热塑性聚酰亚胺(TPI)的冲击强度高达261KJ/m2。而联苯型聚酰亚胺(Upilex S)达到400Mpa。作为工程塑料,弹性膜量通常为3-4Gpa,纤维可达到200Gpa,据理论计算,均苯四甲酸二酐和对苯二胺合成的纤维可达 500Gpa,仅次于碳纤维。4、一些聚酰亚胺品种不溶于有机溶剂,对稀酸稳定,一般的品种不大耐水解,这个看似缺点的性能却使聚酰亚胺有别于其他高性能聚合物的一个很大的特点,即可以利用碱性水解回收原料二酐和二胺,例如对于Kapton薄膜,其回收率可达80%-90%。改变结构也可以得到相当耐水解的品种,如经得起120℃,500 小时水煮。5、 聚酰亚胺的热膨胀系数在2×10-5-3×10-5℃,南京岳子化工YZPI热塑性聚酰亚胺3×10-5℃,联苯型可达10-6℃,个别品种可达10-7℃。6、 聚酰亚胺具有很高的耐辐照性能,其薄膜在5×109rad快电子辐照后强度保持率为90%。7、 聚酰亚胺具有良好的介电性能,介电常数为左右,引入氟,或将空气纳米尺寸分散在聚酰亚胺中,介电常数可以降到左右。介电损耗为10-3,介电强度为100-300KV/mm,广成热塑性聚酰亚胺为300KV/mm,体积电阻为10∧17Ω·cm。这些性能在宽广的温度范围和频率范围内仍能保持在较高的水平。8、 聚酰亚胺是自熄性聚合物,发烟率低。9、 聚酰亚胺在极高的真空下放气量很少。10、聚酰亚胺无毒,可用来制造餐具和医用器具,并经得起数千次消毒。有一些聚酰亚胺还具有很好的生物相容性,例如,在血液相容性实验为非溶血性,体外细胞毒性实验为无毒。参数:外观淡黄色粉末弯曲强度(20℃) ≥170MPa密度 ~冲击强度(无缺口) ≥28kJ/m2拉伸强度 ≥100 MPa维卡软化点 >270℃吸水性(25℃,24h)伸长率 >120%

聚酰亚胺的市场及技术分析

2007年,全球聚酰亚胺(PI)的年消费量为6万吨左右,美国、日本、欧洲是世界上聚酰亚胺最主要的消费市场。

2007年,美国、日本、欧洲聚酰亚胺的消费量分别约为万吨、万吨和万吨。

专家预测,世界对聚酰亚胺的需要将以每年6%的速度递增,到2012年总消费量将达到约8万吨。

2007年,全球聚酰亚胺(PI)的年消费量为6万吨左右,美国、欧洲、日本是世界上聚酰亚胺最主要的消费市场。

2007年,美国、欧洲、日本聚酰亚胺的消费量分别约为万吨、万吨和万吨。

专家预测,世界对聚酰亚胺的需要将以每年6%的速度递增,到2012年总消费量将达到约8万吨。

PI是综合性能最佳的有机高分子材料之一,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域,各国都在将聚酰亚胺的研究、开发及利用列入21世纪最有希望的工程塑料之一。

由于聚酰亚胺在性能和合成化学上的特点,其应用也十分广泛,聚酰亚胺有包括工程塑料、纤维、薄膜、先进复合材料、泡沫塑料、胶粘剂、分离膜、液晶显示用的取向排列剂等数十种。

目前,聚酰亚胺在各个国家和地区消费构成有所不同,美国主要消费领域是塑料,占消费量的80%左右;欧洲主要消费领域是漆包线漆,占消费量的70%~80%;日本主要消费领域是薄膜和塑料,合计占消费量的95%左右。

高端纤维市场潜力大

在种类众多的特种工程塑料中,由于聚酰亚胺的耐高温性能、抗拉强度均优于同类产品,因此价格也相对较贵。

但对性能要求不高的领域,如果使用PI替代其他材料,依然存在一定的困难。

据不完全统计,目前世界上聚酰亚胺的主要生产厂家约有50家,主要的生产厂家有美国杜邦公司、日本三井东亚公司以及日本宇部兴产公司等。

据了解,同聚酰亚胺纤维竞争的纤维品种主要有:PTFE(聚四氟乙烯)、PPS(聚苯硫醚)、玻纤、Nomex(芳纶)。

各纤维由于性能不同,应用领域及应用环境也不尽相同,但从相关性能来看PI纤维竞争优势明显。

高温滤料主要应用于环保行业的袋式除尘领域,主要与钢铁、冶金、水泥、化工行业以及电力和垃圾焚烧炉等有密切关系,而袋式除尘替代电除尘是大势所趋。

随着国家对环保的日益重视, *** 和民间资本在这一领域的投入越来越大,环保产业因而呈现出了高速发展的态势。

相比2008年,2009年高温过滤材料大幅增加,尤其是高端产品发展较快。

2008年,我国滤料总产量中低端滤料约占40%,中端滤料约占40%,高端滤料约占20%,未来发展空间巨大。

薄膜市场仍将高速增长

在我国的PI产品中,90%以上是薄膜。

截至2009年,Pl薄膜规模达到约4700吨/年,生产厂家在40家以上,年产量达到2000~3000吨。

国内90%以上企业都采用普通流延法,产品低端,主要应用于绝缘材料和柔性覆铜板(FCCL)两大领域。

目前,我国90%以上的Pl薄膜应用于绝缘材料领域,年消费量2000~3000吨,应用领域包括机车、电机、核电设备绝缘、耐高温电线电缆、扬声器音圈骨架、电磁线、耐高温导线、耐高温压敏胶带、绝缘复合材料等,对PI薄膜质量要求不高。

柔性覆铜板是广泛应用于电子工业、汽车工业、信息产业和各种国防工业所用挠性印刷电路板(FPC)的主要材料。

在该领域,PI薄膜主要用做绝缘基膜,此外还可用做FPC高温胶带。

在家电下乡、3G通讯、信息家电及汽车电子等方面的高速增长,都成为了推动FCCL市场发展的动力。

然而,我国FCCL领域应用的PI薄膜85%以上依赖进口,年进口量为800~900吨。

国内仅漂阳华晶、江阴天华科技、无锡高拓和山东万达微电子材料公司等厂家能生产。

以电子领域的双向拉伸薄膜为例,我国企业最高报价是每千克1500元左右,一般报价只有几百元,而美国杜邦、日本宇部兴产公司报价在3000元以上。

在绝缘材料领域,国产PI薄膜价格一般在每千克10~30元,而进口产品价格在1800~3000元。

随着中国电子工业的快速发展,预计未来几年我国PI薄膜市场将以年均12%以上的速率快速增长,2013年我国PI薄膜需求量将达5000吨左右。

产能不足成本高

聚酰亚胺品种繁多、形式多样,在合成上具有多种途径,因此可以根据各种应用目的进行选择,这种合成上的易变通性也是其他高分子材料所难以具备的。

从历史文献的研究中,由于各国对聚酰亚胺的详细情况披露有限,所以成本数据并不透明。

从深圳惠程相关资料中可以看出,聚酰亚胺的原料构成主要有二酐、二胺、异构二酐、二甲基乙酰胺、去离子水等。

其中,目前国内二酐即均苯四甲酸二酐(PMDA)的生产方法多采用均四甲苯以钒钛氧化物为催化剂。

国内PMDA生产厂家虽有几家,但产能不足万吨。

市场缺口仍然需要进口,均酐生产主要集中在杜邦、赫司特等少数大公司。

据了解,目前国内PMDA报价在万~万元/吨不等,而吨聚酰亚胺需原料为吨左右。

二胺即二苯醚二胺(又称二氨基二苯醚,ODA),主要用作聚酰亚胺树脂、聚酰胺树脂、环氧树脂的原料和交联剂。

目前,国内ODA生产量不大,全年大约1000多吨,价格约为万元/吨。

另外,异构二酐包括异构BP鄄DA、异构ODPA、异构TDPA等。

而二甲基乙酰胺(DMAC)是无色透明的可燃液体,主要用于耐热合成纤维、塑料薄膜、涂料、医药、丙烯腈纺丝的溶剂,目前市场报价在万元/吨。

根据上述各单项成本的估算,吨聚酰亚胺成本为8万元/吨左右。

生产新技术成功面世

聚酰亚胺产品可用于汽车和飞行器发动机、通讯仪器、建筑机械、工业机械、商用设备、电子电器和微电子、分析和医疗设备以及传输和纺织设备等领域。

由于其昂贵的价格,依然对部分应用领域具有挤出效应。

长春应用化学研究所开发的聚酰亚胺及制品合成新工艺,改变了传统聚酰亚胺的合成方法,开辟了一条新的氯代苯酐合成聚酰亚胺反应途径。

经综合测算,新加工工艺可使聚酰亚胺的生产成本降低30%以上。

目前,世界上只有美国通用电气(GE)公司采用以硝基酞酰亚胺为原料生产聚醚酰亚胺,其规模已经达到万吨级。

但是,以硝基酞酰亚胺生产聚醚酰亚胺路线存在有大量废酸,提纯使用有机溶剂,难以用直接法合成聚酰亚胺,副产物是产生对反应不利并污染环境的亚硝酸钠,且存在不能生产联苯二酐等缺点。

而采用氯代苯酐路线,这些缺点全部可以克服,因此可以认为氯代苯酐路线是目前世界上产生聚酰亚胺最先进和最经济的路线。

聚酰亚胺定义

聚酰亚胺是分子结构含有酰亚胺基团的芳杂环高分子化合物,英文名Polyimide(简称PI),可分为均苯型PI、可溶性PI、聚酰胺-酰亚胺(PAI)和聚醚亚胺(PEI)四类。

PI是综合性能最佳的有机高分子材料之一,耐高温达400℃以上,长期使用温度范围-200℃~300℃,无明显熔点,具有高绝缘性能。

另外,PI作为一种特种工程材料,已广泛应用在航空、航天、微电子、纳米、液晶、分离膜、激光等领域,各国都在将聚酰亚胺的研究、开发及利用列入21世纪最有希望的工程塑料之一。

聚酰亚胺性能

聚酰亚胺树脂的综合性能非常优秀,它具有抗腐蚀、抗疲劳、耐高温、耐磨损、耐冲击、密度小、噪音低、使用寿命长等特点。

聚酰亚胺类型

由于聚酰亚胺在性能和合成化学上的特点,其应用也十分广泛,聚酰亚胺的形态也达数10种之众。

但我们主要分析5种形态:工程塑料、纤维、薄膜、先进复合材料、泡沫塑料。

其他形态包括泡沫塑料、胶粘剂、分离膜、液晶显示用的取向排列剂等。

主要产品

工程塑料:工程塑料分为热塑性和热固性树脂两大类。

热塑性聚酰亚胺材料由于它的不熔性质,影响了这类高性能材料的广泛应用。

而热固性工程塑料融优良的加工成型性能和高性能于一体。

其中,聚酰亚胺特种工程塑料具有较高的玻璃化转变温度(243℃)和熔点(334℃),负载热变型温度高达316℃,可在250℃下长期使用;PI树脂不仅耐热性比其他耐高温塑料优异,而且具有高强度、高模量、高断裂韧性以及优良的尺寸稳定性。

纤维:聚酰亚胺纤维又被称为芳酰亚胺纤维,分为普通耐热和高强度两类。

前者用于高温介质的过滤材料、主要电缆护套、消防服等。

后者的力学性能可达到碳纤维水平,是先进复合材料的增强剂,也可以用于防弹背心及其他防护盾甲。

目前,用于制造高温过滤材料应用广泛且迫切。

其中,国内市场广泛使用的袋式除尘装置的核心关键——耐高温滤料,普遍应用的是底端的PPS纤维,高端的聚酰亚胺纤维全部进口。

薄膜:1961年美国杜邦首次生产出PI薄膜,目前世界PI薄膜生产技术主要集中于三大生产商:美国杜邦、日本宇部兴产和日本钟渊化学。

先进复合材料:聚酰亚胺复合材料是目前最耐高温的树脂基复合材料,主要应用于航空航天等。

泡沫塑料:聚酰亚胺泡沫塑料是聚合物中热稳定性最好的泡沫材料之一,长期可耐250℃~300℃的温度,短时可耐400℃~500℃的高温。

自从20世纪70年代开发成功以来,已有近40年的发展历史。

聚酰亚胺泡沫塑料按结构可分为热固性聚酰亚胺泡沫、热塑性聚酰亚胺泡沫两类。

从全球范围来看,掌握聚酰亚胺核心技术并进行产业化的生产商只有奥地利Evonic公司,而且公司利用二酐和二胺合成聚酰亚胺的工艺相比Evonic成本更低,技术的排他性、市场的不充分竞争、一体化程度造就了公司的稀缺性。

内酰胺酶检测分析论文

我给你一些思路.

超广谱β-内酰胺酶是一种水解青霉素、头孢菌素及单胺类的酶,主要由克雷伯菌和大肠埃希菌、肠杆菌等细菌产生。当通过筛选法时对头孢泊肟、头孢他啶(10微克/片)抑菌圈≤22mm或氨曲南、头孢噻肟(30微克/片)≤27mm的菌株经头孢他啶(30微克/片)头孢他啶/克拉维酸(30/10μg);头孢噻肟30μg、头孢噻肟/克拉维酸(30/10μg)二组确证试验,其结果为二组中的任何一组药物,加克拉维酸与不加克拉维酸的抑菌圈相比,增大值≥5mm时即判定为产ESBL菌株。临床意义:产ESBL大肠埃希菌和克雷伯菌不论其体外药物敏感试验结果如何,对青霉素、头孢菌素和氨曲南治疗无效。

彩色多普勒超声显像对非哺乳期乳腺炎的诊断价值 --- 金桂龙 丁之玮 郭玉霞 赵湘湘 蒋阳平 王云忠双氧水声学造影用于诊断子宫腺肌病 --- 钟惠琴 陆海娟 陆金霞 沈姚琴602例乳腺疾病术中冰冻切片病理诊断分析 --- 麻林爱影像引导下肺肿块穿刺并发症及防治分析 --- 任剑飞 汤耀东 吴宏成 何一兵 姜静波 葛挺幽门螺杆菌分型检测90例临床分析 --- 季新明 吕再玉成份输血前预防性用药对防止非溶血性反应效果观察 --- 徐进 倪文仙 应敏洁 王芳 金雅虹超声引导下经皮肺穿刺活检18例分析 --- 顾霄 彭卫东 徐涛盐酸米多君治疗透析低血压的疗效观察 --- 叶青 郑斌 谢微加地塞米松对长春瑞滨所致静脉炎的预防作用观察 --- 罗盛 孙岚 田园 孙文瑞经胃镜鼻空肠营养管放置术 --- 王泽军 郑坚 叶水凤 张秋凤HVEGF_ 165 在兔骨髓间充质干细胞中的表达 --- 王宾 沈来根 朱越锋 李鲁滨 郭治宇 刘振杰腹膜后腔镜下输尿管切开取石的手术配合 --- 钱卫玲 范美娟老年血液透析病人诱导期心血管并发症的护理 --- 吕蕊萍 冯彩英先天性阴道斜隔综合征的围手术期护理 --- 梅慧红 周爱妹全麻术后病人有效排痰方法的探讨 --- 陈亚萍特发性肺泡蛋白沉积症行全肺灌洗术的配合 --- 钱跃飞 黄长顺宫-腹腔镜联合检查诊治不孕症162例护理 --- 王枸允 杨智莉个体化干预对慢性乙型肝炎患者治疗依从性的影响 --- 杨越明 陈秋美 周敏华全自动密闭式组织脱水机的程序改进 --- 张鹏 包磊 鲁波 任丽芳 蔡红光 杨惠英ICU病房病原菌检测分析 --- 戚均超 孟曙芳 王琴大肠埃希菌超广谱Β-内酰胺酶的检测和耐药分析 --- 郑小银 徐立群人造血管搭桥内瘘术在血液透析中的应用 --- 孙敏燕 俞凯 楼新江慢性咳嗽120例临床分析 --- 刘英文 王选锭芦荟治疗单纯性肥胖症50例临床疗效观察 --- 陈亮 竹剑平新癀片治疗妇女更年期综合征疗效观察 --- 邹丽 黄文光妊娠妇女孕晚期睡眠质量及心身状况分析 --- 徐小芬 吕杰强 蔡晓红 叶绿溺水儿童死亡危险因素与干预措施的探讨 --- 钟政武 周招美 王月武浙江临床医学杂志社 浙江临床医学编辑委员会2008年春节年会在杭召开 --- 鲍迪富右位心全内脏反位伴慢性肾炎1例 --- 李道婷 蒋欣欣 王国红 冯剑 胡卫民麦绿素对小鼠耐缺氧作用实验研究 --- 徐海鹰 郭伟娣 江月仙结核性腹膜炎和肝癌患者的腹水与血清趋化因子测定及其意义 --- 王剑超 王寅 张娟文微卡联合化疗复治涂阳肺结核病的疗效观察 --- 黄冠成多层螺旋CT及其后处理技术在泌尿系病变诊断中的应用研究 --- 陈智能 杨林 王伟巨大左心室瓣膜置换术的外科治疗经验 --- 罗凡砚 蒋海河 林国强 雷凯波参附注射液对体外循环术中肺顺应性和呼吸指数的影响 --- 郑瑛 郭建荣 潘志浩2型糖尿病患者心率变异性与尿白蛋白排泄率的关系 --- 陈越 潘文志 钟一红 丁小强自体微粒皮移植结合重组人生长激素治疗大面积深度烧伤探讨 --- 罗旭 林才 陈更新保存羊膜与生物羊膜在眼表碱烧伤中应用的疗效比较 --- 郭霞 邱海燕 陈健康

相关百科
热门百科
首页
发表服务