论文发表百科

三相pwm整流器研究毕业论文

发布时间:2024-07-06 22:07:50

三相pwm整流器研究毕业论文

在这里求可能么?话说现在找人做毕设是要花钱的。。。

需要哪篇和我说一下,文件比较大,提供个邮箱我发给你1 基于Matlab改进遗传算法的有功负荷分配研究2 基于人工神经网络的系统建模及MATLAB实现3 运用ANN-BP建模进行各类水质评价的应用研究4 电液位置伺服系统的H∞混合灵敏度控制研究5 基于MATLAB的蹦极跳系统建模及其安全性研究6 基于MATLAB/Simulink的变频调速系统建模与仿真 7 基于SwissPdbViewer和MATLAB对东北虎Sox蛋白三级结构建模及分析8 二级倒立摆的建模与MATLAB仿真9 基于遗传算法设计的一种数字式显示仪表的PD控制器10 开关磁阻电机控制系统仿真建模研究11 利用Matlab数据建模软件对溶血标本AST的校正12 质子交换膜燃料电池的动态特性仿真实验方法的研究13 大气激光通信系统建模及关键技术研究14 基于MATLAB的滚珠丝杠动力学建模与仿真分析15 基于的异步电动机直接转矩控制系统仿真16 调速型液力偶合器控制系统数学模型的建模过程17 基于MATLAB工具箱的机组负荷分配的建模与优化18 左心循环系统的建模与仿真19 基于Matlab的三相电压型PWM整流器建模与仿真20 多谐差相信号激励下的频域建模方法及MATLAB仿真21 红外L型探测器的数学建模

判断是否流过电流需要电感。输入通过相应的开关函数,可以确定三相 PWM 整流器的工作模式,但功率开关管中是否流过电流,则通过电感电流的方向决定。电流方向与开关管中电流同方向时,开关管闭合,而方向相反时,电流从相对应的续流二极管流过,为进一步分析 VSR 拓扑导通回路,选定ia>0,ib<0,ic>0 来研究对应 8 种开关模式下的拓扑结构整流回路。

我在中国知网上面找了几个,《三相电压型PWM整流器研究 》、《三相电压型PWM整流器及其控制策略研究 》、《三相PWM整流器及其控制》,你看看那对你有没有帮助,需要的话可以到你们学校的电子阅览室下载,应该是免费的

pwm整流器毕业论文下载

进入二十一世纪以来,我国的电力发展取得了举世瞩目的成就,为我国的经济社会发展作出了重大贡献,这得益于电力技术的快速发展。下文是我为大家搜集整理的关于电力技术论文参考的内容,欢迎大家阅读参考!电力技术论文参考篇1 浅析电力技术监督管理 摘要 电力企业的技术监督管理作为电力企业管理中的重要组成部分,对整个企业技术监督的发展以及企业管理的发展都有着重要的影响作用。笔者联系我国电力技术监督管理的发展现状,结合自身工作经验,对电力技术监督管理的问题进行论述,主要突出电力技术监督管理的对策,更好促进电力企业的发展。 关键词 电力企业;技术监督;管理创新 技术监督作为企业生产中的重要组成部分,是企业管理中不可忽视的内容。作为国家重要战略资源管理的电力企业,其技术监督管理更是面临着更高的要求。电力企业一直坚决执行国家的相关管理方针和政策,贯彻电力行业的相关规定,不断建立和完善企业技术监督管理体系,注重企业技术监督管理工作人员综合素质的提高,尽力完善企业技术监督管理综合评价体系,确保企业技术监督管理的全面健康发展。在我国社会不断发展进步的背景下,电力企业面临着节能减排的高效要求,因此,电力技术监督管理工作也要求电力技术向着更低能耗的方向发展。立足于这样的趋势下,笔者作为一名电力企业工作人员,更加体会到技术监督管理的创新要求,因此,下面将对电力技术监督管理进行系统论述,主要突出其创新内容。 1 电力企业技术监督管理工作的发展现状 在我国社会不断发展进步的趋势下,我国电力行业的发展取得了一定的成绩,也还存在一定的缺陷,下面,笔者将对我国电力企业技术监督管理的现状进行论述。 电力企业不断重视企业技术监督管理工作 电力企业作为生产电能的重要产业,其生产出来的产品质量和安全系数都是备受关注的问题。在国家不断加强管理,社会不断加强监督的趋势下,电力企业也更加注重企业技术监督管理的发展了。在电力企业不断重视技术监督管理发展的背景下,企业技术监督管理得到很快发展。 电力企业的安全生产和经济效益相适应 安全生产与企业的经济效益是相互制约、相互影响的,只有在安全生产的前提下才能实现企业的经济效益,也只有确保了企业的经济效益,才能为企业安全生产提供有效保障。企业技术监督管理是保证企业安全生产的重要手段之一,在企业技术监督管理不断发展的条件下,企业的安全生产也得到了长足进步,使得企业的安全生产与经济效益得到平衡。 电力行业之间的技术监督得到协调发展 在社会不断发展的条件下,电力行业与其他行业之间的联系也不断密切了,因此,电力行业的技术监督不仅仅是电力行业自身的工作,也是电力行业与其他行业之间一起面临的工作。在电力技术监督不断发展的趋势下,电力行业与其他行业之间的技术监督也更加联系密切,并且促进了与其他行业之间的技术监督协调发展。 2 如何促进电力技术监督管理工作的发展 不断建立和完善企业技术监督管理体系 由于条件的限制,很多电力企业的技术监督管理体系还在不断探索建立和完善过程中,还没有形成完善的技术监督管理体系,因此,不断建立和完善电力企业技术监督管理体系是尤为重要的。笔者在认真调查的基础上,联系自身工作经验认为,电力技术监督管理可以建立起包括技术监督三级网络和技术监督管理部门以及技术监督深化扩展的技术研究部门的管理体系。其中,技术监督三级网络可以由电力企业的专业技术监督工作团队来担任;而电力技术监督管理部门可以由电力企业的发电运营部、项目管理部和技术监督管理的归口部门来承担,主要任务是理清三级技术监督网络的工作内容和范围,根据国家的相关规定和监督管理标准监督企业技术监督管理工作的开展,保证企业技术监督管理目标的有效实现;技术监督的研究部门主要有企业的研究部门来承担工作任务。 制度适合企业自身的技术监督标准,确保企业技术监督管理按标准进行 任何企业的技术监督管理工作都应该有相应的标准来严格要求管理工作,所以电力企业也不例外,作为国家的重要战略资源,电力的技术监督管理更是应该按照具体的标准来保证工作的顺利进行,因此,笔者提倡电力企业建立适合企业自身的技术监督管理标准。电力企业技术监督管理标准应该对发电公司的技术监督工作进行全面的界定,划清技术部门的各项职责和权限,并对企业技术监督进行全面合理的评价,确保企业技术监督管理目标的实现。 推动电力技术监督管理的信息化发展 在全球信息化不断发展的趋势下,众多企业技术监督管理都向着信息化迈进,为应对时代发展的趋势,电力企业技术监督管理也应该向着信息化发展,不断推动技术监督管理的规范化、信息化体系建设。企业根据自身发展的现状,结合企业技术监督管理模式,在企业实行按照级别管理的责任制,实现数据的有效及时管理和资源的共享。在企业技术监督管理目标指导下,促进企业技术监督信息发布平台的建设,为企业技术监督管理提供更加科学合理的支持。笔者认为电力企业的技术监督管理信息系统可以分为两个层级,即电力公司的技术监督管理信息系统以及发电公司的技术监督管理信息系统。两个层级的主要工作任务各有不同,电力公司的技术监督管理主要是对结果进行管理,而发电公司的技术监督管理则主要是完成对过程进行管理。 3 结论 在我国不断强化和谐发展战略的趋势下,电力企业也面临着更艰巨的挑战,要向着更加节能环保的方向发展。电力技术监督管理在电力企业中发挥着重要的作用,对电力企业的管理有着深刻的影响作用。笔者在文中论述了电力企业技术监督管理的发展现状,并结合自身工作经验提出了促进电力技术监督管理发展的对策。 参考文献 [1]肖云莲,王敏.做好电力技术监督的措施[J].云南电力技术,2006(1). [2]洪波,魏杰.用信息化手段建立新型电力技术监督管理体系[J].云南电业,2007(7). [3]胡青波.电力技术监督现状与发展的思考[J].天津电力技术,2004(1). 电力技术论文参考篇2 浅论电力滤波技术 【摘要】本文以电力滤波器的基本原理为分析对象,并对电力滤波技能的运用进行了阐述,最后对电力滤波器技能的发展进行了探讨。 【关键词】电力,滤波技术,探究 一、前言 电力滤波技术管理工作的主要任务是运用科学的方法建立技术管理体系,完善电力滤波技术,卓有成效地开展技术工作。 二、电力滤波器的基本原理 一般来说,谐波是沟通体系中的概念,而纹波是关于直流体系来讲的,二者有差异,更有联系。沟通滤波,是期望滤除工频(基波)重量以外的一切谐波重量,确保电源的正弦性。沟通体系的电流畸变首要是由非线性负载导致的。而直流滤波,是期望滤除负载中直流重量以外的一切纹(谐)波重量,这些纹(谐)波重量首要是由直流电(压)源(一般是由沟通电源整流取得)中的纹波电压重量在负载中导致的。而经过傅里叶剖析可知,直流体系中的纹波重量也是由各次谐波重量构成的。在这个意义上讲,沟通体系和直流体系中按捺谐波的意图是相同的:按捺不期望在电源或负载中出现的谐波重量。直流有源电力滤波器(DCAPF)与沟通有源电力滤波器,也即是咱们一般所说的有源电力滤波器(APF),都是选用自动的而不是被迫的办法或手法去吸收或消除谐(纹)波。因而直流有源电力滤波器和沟通有源电力滤波器的作业原理是相同或相近的。可是,因为效果的目标不相同,直流有源电力滤波器也有本身的特点。 三、电力滤波技能的运用 1、PPF的运用 到当前为止,高压大功率谐波管理范畴最首要的滤波办法仍然是无源电力滤波器。PPF选用LC单调谐滤波器或许高通滤波器,电感、电容接受的电压等级比电力电子开关要高得多,并且抵偿容量也要比APF大得多,因而,在高压大功率的运用场合,PPF得到了广泛运用。 2、APF的运用 依照APF的容量和运用规模可将有源滤波器分为小功率运用体系和中等功率运用体系以及大功率运用体系三大类。小功率运用体系首要是指额定功率低于100 kVA的体系,首要运用于负载和电机驱动体系。在这类运用中,一般选用技能领先的动态有源滤波器,如开关频率较高的PWM电压型逆变器或电流型逆变器,其呼应时刻相应来说一般很短,从十几微秒到毫秒。小功率的谐波管理体系运用对比灵敏,能够选用单相有源滤波器,也能够选用三相电力滤波器。当运用于单相电力体系时,选用单相有源滤波器,并且很简单经过改动电路布局完结不相同的抵偿意图。电力电子器材难以接受几百千伏的超高压,即使是最领先的半导体器材也只能接受几千伏,因而,和中等功率运用相同,因为缺少大功率高频电力器材,完结大功率的体系动态逆变器很不经济,也就约束了有源逆变器在大功率体系中的运用。有人提出选用多重化技能和相序脉宽调制技能,来处理功率和开关频率的矛盾,这是一个极好的主意,可是很难完结,并且性价比也很低。 四、电力滤波器技能的发展 1、电力滤波器的接入拓扑 电力滤波器的接入拓扑的基本方式为并联型APF和串联型APF ,并联型滤波器首要用于理性电流源型负载的抵偿,它也是工业上已投入运转最多的一种计划,但因为电源电压直接加在逆变桥上,因而对开关元件的电压等级需求较高。为战胜单独运用时面对的缺点,并联型APF常常与PF混合运用。 2、谐波检测技能 电力滤波器的抵偿效果在很大程度上依赖于能否检测到真实反映欲抵偿的谐波重量的参考信号。因而,电力滤波器规划中的关键技能之一即是找到一种可由负载电流中精确地获取谐波重量的幅值和相位的算法。这种检测办法的速度也是需要考量的重要要素。一般,谐波的检测获取技能可分为直接法和间接法两种。 (一)、基干傅立叶改换的检测办法 选用傅立叶改换(FFT)对电网电流进行核算,得到电网电流中的谐波重量。它是一种纯频域的剖析办法,其长处是能够恣意挑选拟消除的谐波次数,可是核算量大,具有较长的时刻延迟,实时性较差。 (二)、瞬时无功功率法 此办法的实时性较好,但因为检测时选用了数字低通滤波器,因而检测出的成果会有必定的延时。瞬时无功功率理论是当前电力滤波器中选用最多的一种谐波检测办法。 (三)、依据自适应的检测办法 依据自适应搅扰抵消原理,具检测精度高和对电网电压畸变及电网参数改变不灵敏的长处,但动态呼应速度较慢。其改善办法包含用神经网络完结的自适应检测法。检测精度和实时性是判断谐波检测办法的重要指标,各种检测办法都有其长处,但也都存在局限性。跟着各种谐波检测办法的不断改善,以及新的检测办法。 3、电力滤波器的电流盯梢操控战略 当精确地检测出电网中的谐波电流后,怎么操控APF主电路,使APF输出电流盯梢谐波电流改变,是电流盯梢操控战略所需完结的作业。因为谐波电流具有时变和高改变率的特点,这就需求APF电流操控器具有较快动态呼应功能和较高的操控精度,电流操控器的稳定性也是必需要思考的要素。 4、主电路布局及参数规划 当前,电力滤波器主电路首要选用PWM变流器的方式,当选用单个变流器不能满意体系容量需求时,能够选用多重化或多电平的主电路布局方式。 (一)、单个PWM变流器的主电路 布局依据主电路直流侧储能元件的不相同,能够分为电压型和电流型两种。电压型PWM变流器直流侧电容损耗较小,适宜构成大容量电力滤,也是当前干流的PWM布局。实践规划中,储能电容和接入电感的巨细对APF设备的本钱和功能有很大的影响。 (二)、多重化主电路布局方式 多重化布局是经过将多个PWM变流器串联或并联的办法,以完结运用较低开关频率,较小容量的开关器材。 (三)、多电平主电路布局方式 经过添加电力电子器材,规划多电平主电路拓扑布局,将变流器的输出由传统的两电平输出变为多电平输出。其长处是开关频率低,开关器材所接受的电压应力小,因为不运用变压器和电抗器,体积减小而功率进步。多电平主电路操控办法较为杂乱,是当前研讨和运用的方向。 (四)、参数规划 因为APF布局多样,抵偿的谐波源也多种多样,对APF的容量和谐波抵偿的功能指标也有不相同的需求。当前,关于APF主电路各项参数的规划没有一致的理论,参数的挑选过程为:首要依据被抵偿的谐波源挑选主电路布局方式。 (五)、电力滤波技能的研讨方向 怎么经过对谐波理论的进一步研讨,找出非常好的谐波检测算法是进步APF功能的有用手法;优化体系操控战略:寻求非常好的操控战略,如依据体系能量平衡的操控战略,到达对输出电流/电压的精确操控;优化电路规划:改善抵偿功能,操控体系本钱,如多电平主电路布局的研讨。这些研讨的首要意图是进步体系运转的功率,进一步削减抵偿设备的制造本钱和损耗,进步设备的可靠性和易用性,并完结一机多用。 五、结束语 电力滤波技术管理在施工生产中呈面极其重要的地位,我们不仅要努力做好各项工作,还要与其它方面协调一致、相辅相成。从而使技术工作不断得到完善和提高,为工程项目的顺利实施提供可靠的技术保障。 参考文献 [1]粟梅.矩阵变换器――异步电动机高性能调速系统控制策略研究[D].长沙:中南大学信息科学与工程学院, 2005. [2]谭甜源,罗安,唐欣,等.大功率并联混合型有源电力滤波器的研制[J]中国电机工程学报,2004 [3]姜齐荣,谢小荣,陈建业.电力系统并联补偿――结构、.原理、控制与应用[M]北京:机械工业出版社,2004. 猜你喜欢: 1. 电力技术论文范文 2. 电力技术毕业论文范文 3. 浅谈电力技术论文 4. 有关电力行业技术论文 5. 电力电气论文参考

1 PWM控制的基本原理理论基础:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同.冲量指窄脉冲的面积.效果基本相同,是指环节的输出响应波形基本相同.低频段非常接近,仅在高频段略有差异.图6-1 形状不同而冲量相同的各种窄脉冲面积等效原理:分别将如图6-1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图6-2a所示.其输出电流i(t)对不同窄脉冲时的响应波形如图6-2b所示.从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同.脉冲越窄,各i(t)响应波形的差异也越小.如果周期性地施加上述脉冲,则响应i(t)也是周期性的.用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同.图6-2 冲量相同的各种窄脉冲的响应波形用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化.SPWM波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM波形.图6-3 用PWM波代替正弦半波要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可.等幅PWM波和不等幅PWM波:由直流电源产生的PWM波通常是等幅PWM波,如直流斩波电路及本章主要介绍的PWM逆变电路,节的PWM整流电路.输入电源是交流,得到不等幅PWM波,如节讲述的斩控式交流调压电路,节的矩阵式变频电路.基于面积等效原理,本质是相同的.PWM电流波:电流型逆变电路进行PWM控制,得到的就是PWM电流波.PWM波形可等效的各种波形:直流斩波电路:等效直流波形SPWM波:等效正弦波形,还可以等效成其他所需波形,如等效所需非正弦交流波形等,其基本原理和SPWM控制相同,也基于等效面积原理.2 PWM逆变电路及其控制方法目前中小功率的逆变电路几乎都采用PWM技术.逆变电路是PWM控制技术最为重要的应用场合.本节内容构成了本章的主体PWM逆变电路也可分为电压型和电流型两种,目前实用的几乎都是电压型.(1)计算法和调制法1,计算法根据正弦波频率,幅值和半周期脉冲数,准确计算PWM波各脉冲宽度和间隔,据此控制逆变电路开关器件的通断,就可得到所需PWM波形.缺点:繁琐,当输出正弦波的频率,幅值或相位变化时,结果都要变化2,调制法输出波形作调制信号,进行调制得到期望的PWM波;通常采用等腰三角波或锯齿波作为载波;等腰三角波应用最多,其任一点水平宽度和高度成线性关系且左右对称;与任一平缓变化的调制信号波相交,在交点控制器件通断,就得宽度正比于信号波幅值的脉冲,符合PWM的要求.调制信号波为正弦波时,得到的就是SPWM波;调制信号不是正弦波,而是其他所需波形时,也能得到等效的PWM波.结合IGBT单相桥式电压型逆变电路对调制法进行说明:设负载为阻感负载,工作时V1和V2通断互补,V3和V4通断也互补.控制规律:uo正半周,V1通,V2断,V3和V4交替通断,负载电流比电压滞后,在电压正半周,电流有一段为正,一段为负,负载电流为正区间,V1和V4导通时,uo等于Ud,V4关断时,负载电流通过V1和VD3续流,uo=0,负载电流为负区间,io为负,实际上从VD1和VD4流过,仍有uo=Ud,V4断,V3通后,io从V3和VD1续流,uo=0,uo总可得到Ud和零两种电平.uo负半周,让V2保持通,V1保持断,V3和V4交替通断,uo可得-Ud和零两种电平.图6-4 单相桥式PWM逆变电路单极性PWM控制方式(单相桥逆变):在ur和uc的交点时刻控制IGBT的通断.ur正半周,V1保持通,V2保持断,当ur>uc时使V4通,V3断,uo=Ud,当ur图6-5 单极性PWM控制方式波形双极性PWM控制方式(单相桥逆变):在ur半个周期内,三角波载波有正有负,所得PWM波也有正有负.在ur一周期内,输出PWM波只有±Ud两种电平,仍在调制信号ur和载波信号uc的交点控制器件通断.ur正负半周,对各开关器件的控制规律相同,当ur >uc时,给V1和V4导通信号,给V2和V3关断信号,如io>0,V1和V4通,如io<0,VD1和VD4通, uo=Ud,当ur单相桥式电路既可采取单极性调制,也可采用双极性调制.图6-6 双极性PWM控制方式波形双极性PWM控制方式(三相桥逆变):见图6-7.三相PWM控制公用uc,三相的调制信号urU,urV和urW依次相差120°.U相的控制规律:当urU>uc时,给V1导通信号,给V4关断信号,uUN =Ud/2,当urUuVN 和uWN 的PWM波形只有±Ud/2两种电平,uUV波形可由uUN -uVN 得出,当1和6通时,uUV=Ud,当3和4通时,uUV=-Ud,当1和3或4和6通时,uUV=0.波形见图6-8.输出线电压PWM波由±Ud和0三种电平构成,负载相电压PWM波由(±2/3)Ud,(±1/3)Ud和0共5种电平组成.图6-8 三相桥式PWM逆变电路波形防直通死区时间:同一相上下两臂的驱动信号互补,为防止上下臂直通造成短路,留一小段上下臂都施加关断信号的死区时间.死区时间的长短主要由器件关断时间决定.死区时间会给输出PWM波带来影响,使其稍稍偏离正弦波.特定谐波消去法(Selected Harmonic Elimination PWM—SHEPWM):计算法中一种较有代表性的方法,图6-9.输出电压半周期内,器件通,断各3次(不包括0和π),共6个开关时刻可控.为减少谐波并简化控制,要尽量使波形对称.首先,为消除偶次谐波,使波形正负两半周期镜对称,即:(6-1)图6-9 特定谐波消去法的输出PWM波形其次,为消除谐波中余弦项,使波形在半周期内前后1/4周期以π/2为轴线对称.(6-2)四分之一周期对称波形,用傅里叶级数表示为:(6-3)式中,an为 图6-9,能独立控制a1,a2和a3共3个时刻.该波形的an为(6-4)式中n=1,3,5,…确定a1的值,再令两个不同的an=0,就可建三个方程,求得a1,a2和a3.消去两种特定频率的谐波:在三相对称电路的线电压中,相电压所含的3次谐波相互抵消,可考虑消去5次和7次谐波,得如下联立方程:(6-5)给定a1,解方程可得a1,a2和变,a1,a2和a3也相应改变.一般,在输出电压半周期内器件通,断各k次,考虑PWM波四分之一周期对称,k个开关时刻可控,除用一个控制基波幅值,可消去k-1个频率的特定谐波,k越大,开关时刻的计算越复杂.除计算法和调制法外,还有跟踪控制方法,在节介绍(2)异步调制和同步调制载波比——载波频率fc与调制信号频率fr之比,N= fc / fr.根据载波和信号波是否同步及载波比的变化情况,PWM调制方式分为异步调制和同步调制:1,异步调制异步调制——载波信号和调制信号不同步的调制方式.通常保持fc固定不变,当fr变化时,载波比N是变化的.在信号波的半周期内,PWM波的脉冲个数不固定,相位也不固定,正负半周期的脉冲不对称,半周期内前后1/4周期的脉冲也不对称.当fr较低时,N较大,一周期内脉冲数较多,脉冲不对称的不利影响都较小,当fr增高时,N减小,一周期内的脉冲数减少,PWM脉冲不对称的影响就变大.因此,在采用异步调制方式时,希望采用较高的载波频率,以使在信号波频率较高时仍能保持较大的载波比.2,同步调制同步调制——N等于常数,并在变频时使载波和信号波保持同步.基本同步调制方式,fr变化时N不变,信号波一周期内输出脉冲数固定.三相,公用一个三角波载波,且取N为3的整数倍,使三相输出对称.为使一相的PWM波正负半周镜对称,N应取奇数.当N=9时的同步调制三相PWM波形如图6-10所示.fr很低时,fc也很低,由调制带来的谐波不易滤除,fr很高时,fc会过高,使开关器件难以承受.为了克服上述缺点,可以采用分段同步调制的方法.3,分段同步调制把fr范围划分成若干个频段,每个频段内保持N恒定,不同频段N不同.在fr高的频段采用较低的N,使载波频率不致过高,在fr低的频段采用较高的N,使载波频率不致过低.图6-11,分段同步调制一例.为防止fc在切换点附近来回跳动,采用滞后切换的方法.同步调制比异步调制复杂,但用微机控制时容易实现.可在低频输出时采用异步调制方式,高频输出时切换到同步调制方式,这样把两者的优点结合起来,和分段同步方式效果接近.图6-10 同步调制三相PWM波形图6-11 分段同步调制方式举例(3) 规则采样法按SPWM基本原理,自然采样法中要求解复杂的超越方程,难以在实时控制中在线计算,工程应用不多.规则采样法特点:工程实用方法,效果接近自然采样法,计算量小得多.规则采样法原理:图6-12,三角波两个正峰值之间为一个采样周期Tc.自然采样法中,脉冲中点不和三角波一周期中点(即负峰点)重合.规则采样法使两者重合,每个脉冲中点为相应三角波中点,计算大为简化.三角波负峰时刻tD对信号波采样得D点,过D作水平线和三角波交于A,B点,在A点时刻tA和B点时刻tB控制器件的通断,脉冲宽度δ 和用自然采样法得到的脉冲宽度非常接近.图6-12 规则采样法规则采样法计算公式推导:正弦调制信号波公式中,a称为调制度,0≤a<1;ωr为信号波角频率.从图6-12因此可得: (6-6)三角波一周期内,脉冲两边间隙宽度 (6-7)三相桥逆变电路的情况:通常三相的三角波载波公用,三相调制波相位依次差120 ,同一三角波周期内三相的脉宽分别为δU,δV和δW,脉冲两边的间隙宽度分别为δ u,δ v和δ w,同一时刻三相正弦调制波电压之和为零,由式(6-6)得 (6-8)由式(6-7)得: (6-9)故由式(6-8)可得: (6-10)故由式(6-9)可得: (6-11)利用以上两式可简化三相SPWM波的计算(4)PWM逆变电路的谐波分析使用载波对正弦信号波调制,产生了和载波有关的谐波分量.谐波频率和幅值是衡量PWM逆变电路性能的重要指标之一.分析双极性SPWM波形:同步调制可看成异步调制的特殊情况,只分析异步调制方式.分析方法:不同信号波周期的PWM波不同,无法直接以信号波周期为基准分析,以载波周期为基础,再利用贝塞尔函数推导出PWM波的傅里叶级数表达式,分析过程相当复杂,结论却简单而直观.1,单相的分析结果:不同调制度a时的单相桥式PWM逆变电路在双极性调制方式下输出电压的频谱图如图6-13所示.其中所包含的谐波角频率为 式中,n=1,3,5,…时,k=0,2,4,…;n=2,4,6,…时,k=1,3,5,….可以看出,PWM波中不含低次谐波,只含有角频率为ωc,及其附近的谐波,以及2ωc,3ωc等及其附近的谐波.在上述谐波中,幅值最高影响最大的是角频率为ωc的谐波分量.图6-13 单相PWM桥式逆变电路输出电压频谱图2,三相的分析结果:三相桥式PWM逆变电路采用公用载波信号时不同调制度a时的三相桥式PWM逆变电路输出线电压的频谱图如图6-14所示.在输出线电压中,所包含的谐波角频率为式中,n=1,3,5,…时,k=3(2m-1)±1,m=1,2,…;6m +1,m =0,1,…;n =2,4,6,…时,k = 6m -1,m =1,2,….和单相比较,共同点是都不含低次谐波,一个较显著的区别是载波角频率ωc整数倍的谐波被消去了,谐波中幅值较高的是ωc±2ωr和2ωc±ωr.图6-14 三相桥式PWM逆变电路输出线电压频谱图SPWM波中谐波主要是角频率为ωc,2ωc及其附近的谐波,很容易滤除.当调制信号波不是正弦波时,谐波由两部分组成:一部分是对信号波本身进行谐波分析所得的结果,另一部分是由于信号波对载波的调制而产生的谐波.后者的谐波分布情况和SPWM波的谐波分析一致.(5) 提高直流电压利用率和减少开关次数直流电压利用率——逆变电路输出交流电压基波最大幅值U1m和直流电压Ud之比.提高直流电压利用率可提高逆变器的输出能力;减少器件的开关次数可以降低开关损耗;正弦波调制的三相PWM逆变电路,调制度a为1时,输出相电压的基波幅值为Ud/2,输出线电压的基波幅值为,即直流电压利用率仅为.这个值是比较低的,其原因是正弦调制信号的幅值不能超过三角波幅值,实际电路工作时,考虑到功率器件的开通和关断都需要时间,如不采取其他措施,调制度不可能达到1.采用这种调制方法实际能得到的直流电压利用率比还要低.1,梯形波调制方法的思路采用梯形波作为调制信号,可有效提高直流电压利用率.当梯形波幅值和三角波幅值相等时,梯形波所含的基波分量幅值更大.梯形波调制方法的原理及波形,见图6-15.梯形波的形状用三角化率s =Ut/Uto描述,Ut为以横轴为底时梯形波的高,Uto为以横轴为底边把梯形两腰延长后相交所形成的三角形的高.s =0时梯形波变为矩形波,s =1时梯形波变为三角波.梯形波含低次谐波,PWM波含同样的低次谐波,低次谐波(不包括由载波引起的谐波)产生的波形畸变率为δ.图6-16,δ 和U1m /Ud随s 变化的情况.图6-17,s 变化时各次谐波分量幅值Unm和基波幅值U1m之比.s = 时,谐波含量也较少,δ 约为,直流电压利用率为,综合效果较好.图6-15 梯形波为调制信号的PWM控制梯形波调制的缺点:输出波形中含5次,7次等低次谐波.实际使用时,可以考虑当输出电压较低时用正弦波作为调制信号,使输出电压不含低次谐波;当正弦波调制不能满足输出电压的要求时,改用梯形波调制,以提高直流电压利用率.图6-16 s 变化时的d 和直流电压利用率 图6-17 s 变化时的各次谐波含量2,线电压控制方式(叠加3次谐波)对两个线电压进行控制,适当地利用多余的一个自由度来改善控制性能.目标——使输出线电压不含低次谐波的同时尽可能提高直流电压利用率,并尽量减少器件开关次数.直接控制手段仍是对相电压进行控制,但控制目标却是线电压.相对线电压控制方式,控制目标为相电压时称为相电压控制方式.在相电压调制信号中叠加3次谐波,使之成为鞍形波,输出相电压中也含3次谐波,且三相的三次谐波相位相同.合成线电压时,3次谐波相互抵消,线电压为正弦波.如图6-18所示.鞍形波的基波分量幅值大.除叠加3次谐波外,还可叠加其他3倍频的信号,也可叠加直流分量,都不会影响线电压.图6-18 叠加3次谐波的调制信号3,线电压控制方式(叠加3倍次谐波和直流分量):叠加up,既包含3倍次谐波,也包含直流分量,up大小随正弦信号的大小而变化.设三角波载波幅值为1,三相调制信号的正弦分别为urU1,urV1和urW1,并令:(6-12)则三相的调制信号分别为(6-13)图6-19 线电压控制方式举例不论urU1,urV1和urW1幅值的大小,urU,urV,urW总有1/3周期的值和三角波负峰值相等.在这1/3周期中,不对调制信号值为-1的相进行控制,只对其他两相进行控制,因此,这种控制方式也称为两相控制方式.优点:(1)在1/3周期内器件不动作,开关损耗减少1/3(2)最大输出线电压基波幅值为Ud,直流电压利用率提高(3)输出线电压不含低次谐波,优于梯形波调制方式(6) PWM逆变电路的多重化和一般逆变电路一样,大容量PWM逆变电路也可采用多重化技术.采用SPWM技术理论上可以不产生低次谐波,因此,在构成PWM多重化逆变电路时,一般不再以减少低次谐波为目的,而是为了提高等效开关频率,减少开关损耗,减少和载波有关的谐波分量.PWM逆变电路多重化联结方式有变压器方式和电抗器方式,利用电抗器联接实现二重PWM逆变电路的例子如图6-20所示.电路的输出从电抗器中心抽头处引出,图中两个逆变电路单元的载波信号相互错开180°,所得到的输出电压波形如图6-21所示.图中,输出端相对于直流电源中点的电压,已变为单极性PWM波了.输出线电压共有0,±(1/2)Ud,±Ud五个电平,比非多重化时谐波有所减少.一般多重化逆变电路中电抗器所加电压频率为输出频率,因而需要的电抗器较大.而在多重PWM型逆变电路中,电抗器上所加电压的频率为载波频率,比输出频率高得多,因此只要很小的电抗器就可以了.二重化后,输出电压中所含谐波的角频率仍可表示为,但其中当n奇数时的谐波已全部被除去,谐波的最低频率在附近,相当于电路的等效载波频率提高了一倍.图6-20 二重PWM型逆变电路图6-21 二重PWM型逆变电路输出波形电抗器上所加电压频率为载波频率,比输出频率高得多,很小.输出电压所含谐波角频率仍可表示为nwc+kwr,但其中n为奇数时的谐波已全被除去,谐波最低频率在2wc附近,相当于电路的等效载波频率提高一倍.3 PWM跟踪控制技术PWM波形生成的第三种方法——跟踪控制方法.把希望输出的波形作为指令信号,把实际波形作为反馈信号,通过两者的瞬时值比较来决定逆变电路各器件的通断,使实际的输出跟踪指令信号变化,常用的有滞环比较方式和三角波比较方式.(1)滞环比较方式1,电流跟踪控制基本原理:把指令电流i*和实际输出电流i的偏差i*-i作为滞环比较器的输入,比较器输出控制器件V1和V2的通断.V1(或VD1)通时,i增大,V2(或VD2)通时,i减小.通过环宽为2DI的滞环比较器的控制,i就在i*+DI和i*-DI的范围内,呈锯齿状地跟踪指令电流i*.滞环环宽对跟踪性能的影响:环宽过宽时,开关频率低,跟踪误差大;环宽过窄时,跟踪误差小,但开关频率过高.电抗器L的作用:L大时,i的变化率小,跟踪慢.L小时,i的变化率大,开关频率过高.图6-22 滞环比较方式电流跟踪控制举例图6-23 滞环比较方式的指令电流和输出电流三相的情况:图6-24 三相电流跟踪型PWM逆变电路图6-25 三相电流跟踪型PWM逆变电路输出波形采用滞环比较方式的电流跟踪型PWM变流电路有如下特点(1)硬件电路简单(2)实时控制,电流响应快(3)不用载波,输出电压波形中不含特定频率的谐波(4)和计算法及调制法相比,相同开关频率时输出电流中高次谐波含量多(5)闭环控制,是各种跟踪型PWM变流电路的共同特点2,电压跟踪控制采用滞环比较方式实现电压跟踪控制.如图6-26所示.把指令电压u*和输出电压u进行比较,滤除偏差信号中的谐波,滤波器的输出送入滞环比较器,由比较器输出控制开关通断,从而实现电压跟踪控制.和电流跟踪控制电路相比,只是把指令和反馈从电流变为电压.输出电压PWM波形中含大量高次谐波,必须用适当的滤波器滤除.图6-26 电压跟踪控制电路举例u*=0时,输出u为频率较高的矩形波,相当于一个自励振荡电路.u*为直流时,u产生直流偏移,变为正负脉冲宽度不等,正宽负窄或正窄负宽的矩形波.u*为交流信号时,只要其频率远低于上述自励振荡频率,从u中滤除由器件通断产生的高次谐波后,所得的波形就几乎和u* 相同,从而实现电压跟踪控制.(2)三角波比较方式基本原理:不是把指令信号和三角波直接进行比较,而是闭环控制.把指令电流i*U,i*V和i*W和实际输出电流iU,iV,iW进行比较,求出偏差,放大器A放大后,再和三角波进行比较,产生PWM波形.放大器A通常具有比例积分特性或比例特性,其系数直接影响电流跟踪特性.图6-27 三角波比较方式电流跟踪型逆变电路特点:开关频率固定,等于载波频率,高频滤波器设计方便;为改善输出电压波形,三角波载波常用三相;和滞环比较控制方式相比,这种控制方式输出电流谐波少.定时比较方式:不用滞环比较器,而是设置一个固定的时钟.以固定采样周期对指令信号和被控量采样,按偏差的极性来控制开关器件通断.在时钟信号到来时刻,如i i*,令V1断,V2通,使i减小.每个采样时刻的控制作用都使实际电流与指令电流的误差减小.采用定时比较方式时,器件最高开关频率为时钟频率的1/2,和滞环比较方式相比,电流误差没有一定的环宽,控制的精度低一些.4 PWM整流电路及其控制方法实用的整流电路几乎都是晶闸管整流或二极管整流.晶闸管相控整流电路:输入电流滞后于电压,且谐波分量大,因此功率因数很低.二极管整流电路:虽位移因数接近1,但输入电流谐波很大,所以功率因数也很低.把逆变电路中的SPWM控制技术用于整流电路,就形成了PWM整流电路.可使其输入电流非常接近正弦波,且和输入电压同相位,功率因数近似为1,也称单位功率因数变流器,或高功率因数整流器.(1)PWM整流电路的工作原理PWM整流电路也可分为电压型和电流型两大类,目前电压型的较多1,单相PWM整流电路图6-28a和b分别为单相半桥和全桥PWM整流电路.半桥电路直流侧电容必须由两个电容串联,其中点和交流电源连接.全桥电路直流侧电容只要一个就可以.交流侧电感Ls包括外接电抗器的电感和交流电源内部电感,是电路正常工作所必须的.图6-28 单相PWM整流电路a) 单相半桥电路 b) 单相全桥电路单相全桥PWM整流电路的工作原理:正弦信号波和三角波相比较的方法对V1~V4进行SPWM控制,就可在交流输入端AB产生SPWM波中含有和信号波同频率且幅值成比例的基波,和载波有关的高频谐波,不含低次谐波.由于Ls的滤波作用,谐波电压只使is产生很小的脉动.当信号波频率和电源频率相同时,is也为与电源频率相同的正弦波.us一定时,is幅值和相位仅由uAB中基波uABf的幅值及其与us的相位差决定.改变uABf的幅值和相位,可使is和us同相或反相,is比us超前90°,或is与us相位差为所需角度.相量图(图6-29)a:滞后相角δ,Is和Us同相,整流状态,功率因数为1,PWM整流电路最基本的工作状态b:超前相角δ,Is和Us反相,逆变状态,说明PWM整流电路可实现能量正反两方向流动,这一特点对于需再生制动的交流电动机调速系统很重要.c:滞后相角δ,Is超前Us90°,电路向交流电源送出无功功率,这时称为静止无功功率发送器(Static Var Generator—SVG)d:通过对幅值和相位的控制,可以使Is比Us超前或滞后任一角度φ.图6-29 PWM整流电路的运行方式相量图a)整流运行 b)逆变运行 c)无功补偿运行 d) 超前角为φ对单相全桥PWM整流电路工作原理的进一步说明整流状态下,us > 0时,(V2,VD4,VD1,Ls)和(V3,VD1,VD4,Ls)分别组成两个升压斩波电路,以(V2,VD4,VD1,Ls)为例.V2通时,us通过V2,VD4向Ls储能.V2关断时,Ls中的储能通过VD1,VD4向C充电.us < 0时,(V1,VD3,VD2,Ls)和(V4,VD2,VD3,Ls)分别组成两个升压斩波电路.由于是按升压斩波电路工作,如控制不当,直流侧电容电压可能比交流电压峰值高出许多倍,对器件形成威胁.另一方面,如直流侧电压过低,例如低于us的峰值,则uAB中就得不到图6-29a中所需的足够高的基波电压幅值,或uAB中含有较大的低次谐波,这样就不能按需要控制is,is波形会畸变.可见,电压型PWM整流电路是升压型整流电路,其输出直流电压可从交流电源电压峰值附近向高调节,如要向低调节就会使性能恶化,以至不能工作.2,三相PWM整流电路图6-30,三相桥式PWM整流电路最基本的PWM整流电路之一,应用最广.工作原理和前述的单相全桥电路相似,只是从单相扩展到三相进行SPWM控制,在交流输入端A,B和C可得SPWM电压,按图6-29a的相量图控制,可使ia,ib,ic为正弦波且和电压同相且功率因数近似为1.和单相相同,该电路也可工作在逆变运行状态及图c或d的状态.(2)PWM整流电路的控制方法有多种控制方法,根据有没有引入电流反馈可分为两种:没有引入交流电流反馈的——间接电流控制;引入交流电流反馈的——直接电流控制.1,间接电流控制间接电流控制也称为相位和幅值控制.按图6-29a(逆变时为图6-29b)的相量关系来控制整流桥交流输入端电压,使得输入电流和电压同相位,从而得到功率因数为1的控制效果.图6-31,间接电流控制的系统结构图.图中的PWM整流电路为图6-30的三相桥式电路.控制系统的闭环是整流器直流侧电压控制环.控制原理:和实际直流电压ud比较后送入PI调节器,PI调节器的输出为一直流电流信号id,id的大小和交流输入电流幅值成正比.稳态时,ud= ,PI调节器输入为零,PI调节器的输出id和负载电流大小对应,也和交流输入电流幅值对应.负载电流增大时,C放电而使ud下降,PI的输入端正偏差,使其输出id增大,进而使交流输入电流增大,也使ud回升.达到新的稳态时,ud和 相等,id为新的较大的值,与较大的负载电流和较大的交流输入电流对应.负载电流减小时,调节过程和上述过程相反.从整流运行向逆变运行转换首先负载电流反向而向C充电,ud抬高,PI调节器负偏差,id减小后变为负值,使交流输入电流相位和电压相位反相,实现逆变运行.稳态时,ud和 仍然相等,PI调节器输入恢复到零,id为负值,并与逆变电流的大小对应.控制系统中其余部分的工作原理上面的乘法器是id分别乘以和a,b,c三相相电压同相位的正弦信号,再乘以电阻R,得到各相电流在Rs上的压降uRa,uRb和uRc下面的乘法器是id分别乘以比a,b,c三相相电压相位超前π/2的余弦信号,再乘以电感L的感抗,得到各相电流在电感Ls上的压降uLa,uLb和uLc.各相电源相电压ua,ub,uc分别减去前面求得的输入电流在电阻R和电感L上的压降,就可得到所需要的交流输入端各相的相电压uA,uB和uC的信号,用该信号对三角波载波进行调制,得到PWM开关信号去控制整流桥,就可以得到需要的控制效果.存在的问题:在信号运算过程中用到电路参数Ls和Rs,当Ls和Rs的运算值和实际值有误差时,会影响到控制效果;基于系统的静态模型设计,动态特性较差;应用较少.2,直接电流控制通过运算求出交流输入电流指令值,再引入交流电流反馈,通过对交流电流的直接控制而使其跟踪指令电流值,因此称为直接电流控制.有不同的电流跟踪控制方法,图6-32,一种最常用的采用电流滞环比较方式的控制系统结构图.控制系统组成双闭环控制系统,外环是直流电压控制环,内环是交流电流控制环外环的结构,工作原理和图6-31间接电流控制系统相同.外环PI的输出为id,id分别乘以和a,b,c三相相电压同相位的正弦信号,得到三相交流电流的正弦指令信号 , 和 , 和 分别和各自的电源电压同相位,其幅值和反映负载电流大小的直流信号id成正比,指令信号和实际交流电流信号比较后,通过滞环对器件进行控制,便可使实际交流输入电流跟踪指令值.

机械类毕业设计类资料你可以百度搜索一下九爱图纸或者9icad,网站里面有上万机械图纸和上千套机械毕业设计(图纸+说明书),相信这些资料对你做毕业设计一定会有帮助的。

不是吧,0分你也来

整流器毕业论文

我在中国知网上面找了几个,《三相电压型PWM整流器研究 》、《三相电压型PWM整流器及其控制策略研究 》、《三相PWM整流器及其控制》,你看看那对你有没有帮助,需要的话可以到你们学校的电子阅览室下载,应该是免费的

在这里求可能么?话说现在找人做毕设是要花钱的。。。

能提供低成本风电的新型风力机 - 【摘要】第一代商用扩散体增强型风力机(DAWT)在新西兰刚开始两年试运行,如果开发者的预期结果得以实现,这种新设计的风力机可促使风电成本大幅度降低。 在距新西兰奥克兰南约100km的Waikaretu的一座小山顶上,一台革命性的新型风力机正在进行为期两年的试运行。这座风力机的外观与常规风力机相比完全不同,其高度为17m,很象一巨物蹲在山顶上,而常规风力机则为一细长体,高高地矗立在山顶上。 这是投入运行的第一代商用扩散体增强型风力机(DAWT: diffuser augmented wind turbine),如果开发者的预期结果得以实现,将导致风力发电成本大幅度降低。在试验新的风力机技术的同时,也可以试验扩散体环罩的新材料、高强钢丝纤维加强的钢筋混凝土。此种风力机在当地被称为"混凝土风力机"。在商业上,它被称为Vortec7型风力机,因为它有一个7m直径的转子。 风力机由近100家小型投资商组建的私人公司-Vortec能源有限公司负责设计和建设,该公司筹集了350万美元开发原型机。Vortec能源有限公司目前正在进一步筹集约700万美元,拟建设两台转子直径为20m的机组。其中一台新机组将在高风速地区试验,很可能在新西兰的惠灵顿附近,另一台在平均风速区。南澳大利亚州政府已对设计表示了很大的兴趣并将在Adelaide附近加速安装平均风速机组,因为州政府认为风力是一种少有的可再生能源,需要从技术上突破来带动州内占优势的较低平均风速资源的开发。 两台新型的转子直径20m的机组成功地运行后,Vortec能源有限公司将考虑在Nasdaq股票交易所上市的可能性。Vortec7机组的性能数据表明,转子直径20m的设计能够以低于美元/kWh的价格上网,它将使风力发电可与新西兰现有的电厂相竞争,与其它新的发电方式相比,更具竞争力。如果Vortec型风力机能以这种价格水平发电,在风电开发中它将迅速成为一股强大的新生力量。 Vortec能源有限公司的后盾是企业家Robin Johannink,他成功地经营着一系列业务,也是Pacific Lithium公司(一家从海水中提取锂的公司)的后盾。Johannink先生讲Vortec技术是一项国际产品,但该技术在新西兰股票市场上所获得的认可和重视还不太高,难以在此上市。因此Vortec能源有限公司正在考虑在纽约的Nasdaq交易所上市,很可能在1999年实现。 1 扩散体技术 美国的航天巨头Grumman空间公司(现在的Northrop Grumman公司)花费了8年时间开发扩散体技术并拥有扩散体增强型风力机技术的专利。它进行了扩散体流体动力学的详细分析,并使用一5m的模型在风洞中证实了分析结果。扩散体位于风力机转子的下游,其作用就象一个机翼,在转子后部产生低压部位。这种"抽吸效应"有效地使转子周围的风速成倍增加。常规的风力机只能有效地利用转子周围风速的60%左右。<图01>示出了扩散体的流态。 扩散体经济性的关键在于以最低成本获得最大的尺寸。风洞研究表明在45度扩散体结构中,内壁附面流可由两级风槽射流所维持。在该原型中,扩散体的总尺寸进一步减少,通过采用总长与出口直径比为30%的弧形结构,环罩硬度增强。使已选择的设计以最低的材料用量获得了最大的扩散体尺寸。 Vortec能源有限公司获得了Northrop Grumman公司颁发的拥有扩散体技术、为期20年的全球专利权及此后20年专利更新权的许可证。Northrop Grumman公司保留了它们自己内部使用扩散体增强技术而不用于风能商业市场的权利。Kenneth Foreman,原Grumman空间公司研究小组的领导者,为Vortec Energy公司的技术咨询,Vortec能源有限公司获得了Grumman空间公司研究小组8年研究的所有记录、试验报告及专利。 2 材料技术 Grumman空间研究小组在开发扩散体增强技术中所遇到的一个问题是商业规模风力机材料必须具有强度高、寿命长、成本低的特点。曾对铝、玻璃纤维、钢和传统钢筋混凝土进行过评估和核算,但都不能满足风力机经济开发的要求。在所有评估的材料中,最可取的是钢筋混凝土,但使用传统的钢筋混凝土,扩散体尺寸使风力机额定出力只能达到70kW。由于机组规模太小无法对扩散体增强技术进行商业开发。 新西兰在使用钢筋混凝土建造水塔和远洋快艇之类设备方面有悠久历史。在此基础上,结构工程师Alexander和Associates在20年中开发了一种新型的产品-高强钢丝纤维加强的钢筋混凝土。这种新材料的抗弯强度是低碳钢的3倍,基本上不需要维修。这种新材料可以经济地建造较大的扩散体,从而使风力机有足够的出力和常规风力机相竞争。 原型机转子直径为7m,高度为17m,最高出力为1MW。将要建设的两台机组使用20m直径的转子,高52m,出力为3MW。 扩散体使用两层3m×1m×30mm的高强钢丝纤维加强的钢筋混凝土板复合而成。第一层板沿着复杂的框架弯成所需的双向曲面,并固定就位。第二层板放在顶部,弯曲成形,然后在基础板上灌浆锁定双向曲面。再将这些曲面板粘结到一起,并对其边缘进行硬化处理构成扩散体扇形段。完整的扩散体装配好之前,在奥克兰大学工程院对单块板和装配好的扩散体扇形段样品进行了应力测试。 3 设备平衡 除了扩散体增强技术和材料技术外,风力机全部是常规的。转子配备有定节距的4个叶片,该叶片内为焊接钢架构,表面材料为玻璃纤维。转子通过一David Brown升速变速箱驱动一常规的1 200min-1、400V的ABB公司生产的同步发电机,发电机变频运行。转子、变速箱和发电机(<图02>)由美国的新世界电力公司(New World Power)提供。 变频交流电先整流成直流电,然后逆变为50Hz的交流电,经升压变压器送入当地电力公司的11kV电网。整流器/换流器设备由奥克兰公司Santon技术有限公司设计和制造,该公司对电池充电器和变速驱动器的制造有多年经验。 考虑到扩散体的尺寸,需要一大型稳定的地基防止在大风载荷下和地震时倒伏。设备被安装到一大直径环行轨道上,风力机可以沿它旋转360度,轨道上的旋转装置装有迎风控制系统的电动装置(<图03>)。这种布置提供了稳定的基础。 由于该种风力机可以避开大风且扩散体罩具有保护转子不受大风影响的能力,因而转子设计简单不需要控制叶片节距。这使得该种风力机非常适合在大风地区使用,且维修量很小。 4 设计的优点 扩散体增强型风力机与常规风力机相比有许多优点,包括: 噪音低。常规风力机噪音来自速度最高的转子顶部,并通过叶片传向支柱。在Vortec机组中,转子被一种高密度材料所覆盖(扩散体),它防止了噪音从转子末端向外辐射,因此没有像用常规设备时大的支柱产生的噪音。 用地少。就同样的能源输出而言,Vortec机组与常规风力机相比需要较少的用地,减少了土地购置和租用费用。 不影响景观。Vortec机组很容易地涂上各种颜色,当从远距离观看时能与各种背景相融合,设备蹲坐的外形与起伏的山村很协调。 可衰减阵风。扩散体在增加出力的同时,也作为阻风门,衰减阵风的峰值,因而减少了转子所承受的转距波动和驱动器上的应力。 鸟类撞击少。尽管风力机能涂上不同的颜色降低了视觉影响,但对于飞到附近的鸟类却很醒目,不会出现鸟类撞击快速旋转的风力机叶片的事故。 基建费用和发电成本低。风力机使用了非常简单的定节距叶片,不需要节距控制制动器或控制系统。这将大幅度降低维修费用,特别是在新西兰的大风地区,并将确保很高的设备可用率。 5 发展前景 转子直径为7m的原型风力机将要进行6个月的试运行,对控制系统进行仔细调试并验证设计参数。初步测量数据表明,风力机转子风速增强了约倍,这与Grumman空间公司研究小组的计算和它们在模型上进行的风洞试验结果相吻合。 Vortec Energy公司已获得新西兰科学与技术研究基金业务发展部的资助约350000美元,用以支付6个月试验期的费用。 监视和试验方案的技术支持由工业研究有限公司(Industrial Research Ltd.)和奥克兰大学咨询小组(Auckland Uniservices)提供,另外还邀请了英国国际风能咨询专家Garrad Hassan独立检验和监督Vortec7机组的试运行计划。 表1给出了Vortec机组未来的开发方案。 如果试验方案产生的结果与预期的相吻合,将来扩散体增强型风力机将成为全球风电开发方案的一个主要部分,可广泛用于其它待开发的地区。支持该技术的投资者虽承受高风险,但它可能获得高的回报。

三相交流调压器设计毕业论文

VB类作品

财务管理系统

点灯游戏

学生档案管理系统(VB+...

医院工资管理系统

旅游资源管理系统(综合版...

POS(财务+人事+库房...

销售管理系统(VB+SQ...

图书管理系统

Delphi类作品

酒店客房管理系统(前台+...

人事档案管理系统

工资管理系统

固定资产管理系统

人力资源管理系统

库存管理系统

手机销售管理系统

远程教育管理系统

ASP类作品

课程辅助教学网站

在线考试系统

留言板(2)

在线校友录

学生成绩管理系统

在线聊天室(2)

企业网上办公系统

在线聊天室

VC类作品

电话拨号程序

Web浏览与搜索

传真收发

对Modem的控制

云台控制系统

自动报警系统

VC串口编程调试精灵

VC单片机通信

JSP类作品

简易论坛

在线聊天室

物流信息管理

企业网站

电子商务系统

企业经销存管理系统

企业OA(办公自动化系统...

人力资源管理系统

其他类作品

人事管理系统

企业员工考勤管理系统

简易留言本

贸易管理系统

小区管理系统(综合版)

会员管理系统

票据管理系统

经销存管理系统

企业员工计时和帐单管理

图片库管理系统

.NET类作品

在线购物网站(C#)

简易公司网站

在线图书管理系统(C#)

多彩网络文本编辑器(C#...

音乐合(C#)

论坛(C#)

在线服务网站(C#)

个人秘书办公系统

定做作品展示

工程图纸管理系统

电话号码查询系统

出版社信息系统

火车站售票系统

学生成绩管理系统

彩票号码查询分析系统

成绩查询系统

超市后台管理系统

电脑销售管理系统

工地工伤信息管理系统

访问地址 www 51ebysj com

我发到你邮箱里了,请签收。

给你一部分参考,如果赏分的话,本人为你设计,给你现成的。

引 言

变电站自动化是自动化的一种具体形式。它是指应用各种具有自动检测、决策和控制功能的装置,并通过信号系统和数据传输对电力系统各元件、局部系统或全系统进行就地或远方的自动监视、协调、调节和控制,保证变电站安全经济运行和具有合格的电能质量。由于电力系统的结构复杂而庞大,电能不能储存,暂态过程非常迅速,电能对人民日常生活又非常重要,220KV变电站在电力系统中的地位越来越重要,此次设计的题目正是适应电力系统当今发展趋势的一个实用题目。目前,220KV变电站在电力系统中的重要地位更彰显出来,设计一座大型城市变电站,使设计者了解现行变电站的先进技术,培养设计者的创新能力、实践能力和独立工作能力,更使设计者把所学的专业知识有机融合,由此,应运而生了此次毕业设计。

概 述

变电站是以变换电压,交换功率和汇集、分配电能为主的电能设施。在电力系统中,变电站介于发电厂和电力用户之间的中间环节。变电站由主变压器、母线、断路器、隔离开关、避雷器、互感器等设备或元件集合而成。它具有汇集电源、变换电压等级、分配电能等功能。电力系统内继电保护装置、自动装置、调度控制的远动设备等也安装在变电站内,因此变电站是电力系统的重要组成部分。

此次设计所述变电站为一大型城市变电站,位于地区电网的枢纽点上,以高压侧和中压侧接受电能,但以高压侧为主,中压侧还肩负着向地区供电的任务,低压侧则直接向邻近负荷供电,并以此来选择变压器、进行短路计算,和设备选择。

在此次设计的最后一部分,进行了变电站的监控系统设计,把微机技术加入到变电站中,利用微机的人工操作性和电气量在电力系统运行中的变化,完成电力设备的信息采集,使一次设备信息中模拟量和开关量数字化,上送测量和保护信息,接受站控层下传的控制命令和参数。

电气主接线的设计

电气主接线是发电厂、变电站设计的主体。采用何种接线形式,与电力系统原始资料,发电厂、变、电站本身运行的可靠性、灵活性和经济性的要求等密切相关,而且对电气设备选择、配电装置布置和控制方式的拟订都有较大的影响。

因此,主接线的设计必须根据电力系统、发电厂或变电站的具体情况,全面分析,正确处理好各方面的关系,通过技术经济比较,合理地选择主接线方案。

 电气主接线概述

变电站电气主接线是电力系统接线的主要部分,它表明了变压器、线路和断路器等电气设备的数量和连接方式及可能的运行方式,从而完成变电、输配电的任务。变电所的主接线是电力系统接线组成中的一个重要组成部分。主接线的确定,对电力系统的安全、稳定、灵活、经济、运行以及变电所电气设备的选择、配电装置的布置、继电保护和控制方法的拟定将会产生直接的影响。

 主接线设计考虑的因素

(1)考虑变电所在电力系统中的地位和作用;② 考虑近期和远期的发展规模;③ 考虑负荷的重要性分级和出线回数多少对主接线的影响;④ 考虑主变台数对主接线的影响;⑤考虑备用容量的有无和大小对主接线的影响。

 主接线的设计原则和要求

(1)接线方式

在本次设计中,220KV线路有6回架空线,根据接线原则应选择双母线带旁路接线方式;110KV线路有5回架空线,根据设计原则应选择双母线接线方式,35KV线路有25回出线,由于出线回路多, 所以选择双母分段接线。

(2)中性点接地原则

电网中性点接地方式与电网的电压等级,单相接地故障电流,过电压水平以及保护配置等有密切关系。电网中性点接地方式直接影响电网的绝缘水平;电网供电的可靠性、连续性和运行的安全性;电网对通信线路及无线电的干扰。选择接地点时应保证在任何故障形式下,都不应使电网解列成为中性点不接地系统。

(3)断路器的配置

根据电气接线方式,每回线路均应设有相应数量的断路器,用以完成切、合电路任务。

 电气主接线设计方案的确定

按照设计任务书中所提供的变电站带负荷数及出线回路数等信息,按变电站设计技术的相关规定,“220KV配电装置出线回路数在4回及以上时,宜采用单母分段、双母线及其他接线形式”,因此在设计变电站时分别考虑了两种方案。

电气主接线设计方案1本变电站220KV侧采用双母线带旁路接线,此接法可靠性高,即使检修母线或断路器时都不会停电;运行操作方便,不影响双母线正常运行。35KV采用双母三分段接线形式,该种接线,负荷分配均匀,调度灵活方便,运行可靠性高,任一条母线或母线上设备检修时,不需要停掉线路,且较方案2投资少;发电厂方案2采用的是35KV侧采用及220KV侧采用双母线的接线形式,双母四分段它是用分段断路器将一般双母线中的两组母线各分为两段,并设置两台母联断路器。正常运行时,电源和线路大致均分在四段母线上,母联断路器和分段断路器均合上,四段母线同时运行。当任一段母线故障时,只有1/4的电源和负荷停电;当任一母联断路其或分段断路器故障时,只有1/2左右的电源和负荷停电(分段单母线及一般双母线接线都会全停电)。但这种接线的断路器及配电装置投资更大,用于进出线回路数甚多的配电装置。图2-1是发电厂电气主接线设计图(方案1)。

图 2-1  发电厂电气主接线方案

  变电站中主变的选择

 主变的选择原则

(1)变压器原、副边额定电压应分别与引接点和厂(所)用电系统的额定电压相适应。

(2)联接组别的选择,宜使同一电压级(高压或低压)的厂(所)用变压器输出电压的相位一致,220KV主变压器选用三项,应根据变电站在系统中的作用和地位、可靠性要求、制造条件运输条件等选择,经技术经济比较来确定。

(3)阻抗电压及调压型式的选择,宜使引接点电压及厂(所)用电负荷正常波动范围内,厂(所)用电各级母线的电压偏移不超过额定电压的±5%。

(4)变压器的容量必须保证厂(所)用机械及设备能从电源获得足够的功率,变压器容量、台数、相数、绕组数等的选择,应根据电力负荷情况及潮流变化情况而定。

 主变型号的选择

变电所主变压器的容量一般应根据主变电站建成5~10年的规划负荷考虑,并且按照其中一台(组)事故停运后,其余几台变压器应保证承担该所全部负荷的(KV变电所为60%,KV变电所为70%)或重要负荷(当Ⅰ、Ⅱ类负荷超过上述比例时)选择,即为了保证供电的可靠性,变电所一般应装设2台主变压器;枢纽变电所应装设台;地区性孤立的一次变电所或大型工业专用变电所,可装设3台。

(1)根据毕业设计任务书可知220KV于110KV之间的潮流变化范围是200~400MW,可以确定220KV最大负荷为400MW,本变电站是通过220KV和110KV接受电能。

根据发电厂电气部分变电站选择原则有

根据发电厂电气部分中220KV三绕组变压器技术数据可知

表2-1 主变压器参数

型号

相数

频率

额定容量

阻抗电压

SFPS7-240000/220

三项

50HZ

240/240/120MVA

(3)负荷率计算

据电力工程电气设计200例中负荷率计算公式可知

(3-2)

1)根据式(3-2),110KV侧最大、最小负荷率计算

2)根据式(3-2),35KV侧最大、最小负荷率计算

① 近期最小

② 远期最大

根据以上负荷计算可得,110KV和35KV的最大负荷、最小负荷均不过载,所以选择的变压器满足过载要求。

 变电站所用变的选择

摘 要 现在流行的异步电动机的调速方法可分为两种:变频调速和变压调速,其中异步电动机的变频调速应用较多,它的调速方法可分为两种:变频变压调速和矢量控制法,前者的控制方法相对简单,有二十多年的发展经验。因此应用的比较多,目前市场上出售的变频器多数都是采用这种控制方法。 关键词: 交流调速系统, 异步电动机, PWM技术.....目录摘 要 1前言 设计的目的和意义 变频器调速运行的节能原理 3第二章 变频器 变频器选型: 变频器控制原理图设计: 变频器控制柜设计 变频器接线规范 变频器的运行和相关参数的设置 常见故障分析 8第三章 交流调速系统概述 交流调速系统的特点 10第四章变频电动机的特点 电磁设计 结构设计 14第五章 变频电机主要特点和变频电机的构造原理 变频专用电动机具有如下特点: 变频电机的构造原理 15第六章 交流异步电动机 交流异步电动机变频调速基本原理 变频变压(VVVF)调速时电动机的机械特性 变压变频运行时机械特性分折 19第七章 PWM技术原理 正弦波脉宽调制(SPWM) 25 单极性SPWM法 ..................................................................................................................26结论 31致 谢 32参 考 文 献 33前言 设计的目的和意义 近年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。电机交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。深入了解交流传动与控制技术的走向,具有十分积极的意义.变频器调速运行的节能原理 实现变频调速的装置称为变频器。变频器一般由整流器、滤波器、驱动电路、保护电路以及控制器(MCU/DSP)等部分组成。首先将单相或三相交流电源通过整流器并经电容滤波后,形成幅值基本固定的直流电压加在逆变器上,利用逆变器功率元件的通断控制,使逆变器输出端获得一定形状的矩形脉冲波形。在这里,通过改变矩形脉冲的宽度控制其电压幅值;通过改变调制周期控制其输出频率,从而在逆变器上同时进行输出电压和频率的控制,而满足变频调速对U/f协调控制的要求。PWM的优点是能消除或抑制低次谐波,使负载电机在近正弦波的交变电压下运行,转矩脉冲小,调速范围宽。 采用PWM控制方式的电机转速受到上限转速的限制。如对压缩机来讲,一般不超过7000r/rain。而采用PAM控制方式的压缩机转速可提高1.5倍左右,这样大大提高了快速增速和减速能力。同时,由于PAM在调整电压时具有对电流波形的整形作用,因而可以获得比PWM更高的效率。此外,在抗干扰方面也有着PWM无法比拟的优越性,可抑制高次谐波的生成,减小对电网的污染。采用该控制方式的变频调速技术后,电机定子电流下降64% ,电源频率降低30% ,出胶压力降低57% 。由电机理论可知,异步电机的转速可表示为:n=60•f 8(1—8)/p第二章 变频器变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。 变频器选型: 变频器选型时要确定以下几点: 1) 采用变频的目的;恒压控制或恒流控制等。 2) 变频器的负载类型;如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。 3) 变频器与负载的匹配问题; I.电压匹配;变频器的额定电压与负载的额定电压相符。 II. 电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。 III.转矩匹配;这种情况在恒转矩负载或有减速装置时有可能发生。 4) 在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加导致输出电流值增大。因此用于高速电机的变频器的选型,其容量要稍大于普通电机的选型。 5) 变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。 6) 对于一些特殊的应用场合,如高温,高海拔,此时会引起变频器的降容,变频器容量要放大一挡。 变频器控制原理图设计: 1) 首先确认变频器的安装环境; I.工作温度。变频器内部是大功率的电子元件,极易受到工作温度的影响,产品一般要求为0~55℃,但为了保证工作安全、可靠,使用时应考虑留有余地,最好控制在40℃以下。在控制箱中,变频器一般应安装在箱体上部,并严格遵守产品说明书中的安装要求,绝对不允许把发热元件或易发热的元件紧靠变频器的底部安装。 II. 环境温度。温度太高且温度变化较大时,变频器内部易出现结露现象,其绝缘性能就会大大降低,甚至可能引发短路事故。必要时,必须在箱中增加干燥剂和加热器。在水处理间,一般水汽都比较重,如果温度变化大的话,这个问题会比较突出。 III.腐蚀性气体。使用环境如果腐蚀性气体浓度大,不仅会腐蚀元器件的引线、印刷电路板等,而且还会加速塑料器件的老化,降低绝缘性能。 IV. 振动和冲击。装有变频器的控制柜受到机械振动和冲击时,会引起电气接触不良。淮安热电就出现这样的问题。这时除了提高控制柜的机械强度、远离振动源和冲击源外,还应使用抗震橡皮垫固定控制柜外和内电磁开关之类产生振动的元器件。设备运行一段时间后,应对其进行检查和维护。 V. 电磁波干扰。变频器在工作中由于整流和变频,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰。因此,柜内仪表和电子系统,应该选用金属外壳,屏蔽变频器对仪表的干扰。所有的元器件均应可靠接地,除此之外,各电气元件、仪器及仪表之间的连线应选用屏蔽控制电缆,且屏蔽层应接地。如果处理不好电磁干扰,往往会使整个系统无法工作,导致控制单元失灵或损坏。 2) 变频器和电机的距离确定电缆和布线方法; I.变频器和电机的距离应该尽量的短。这样减小了电缆的对地电容,减少干扰的发射源。 II. 控制电缆选用屏蔽电缆,动力电缆选用屏蔽电缆或者从变频器到电机全部用穿线管屏蔽。 III.电机电缆应独立于其它电缆走线,其最小距离为500mm。同时应避免电机电缆与其它电缆长距离平行走线,这样才能减少变频器输出电压快速变化而产生的电磁干扰。如果控制电缆和电源电缆交叉,应尽可能使它们按90度角交叉。与变频器有关的模拟量信号线与主回路线分开走线,即使在控制柜中也要如此。 IV. 与变频器有关的模拟信号线最好选用屏蔽双绞线,动力电缆选用屏蔽的三芯电缆(其规格要比普通电机的电缆大档)或遵从变频器的用户手册。 3) 变频器控制原理图; I.主回路:电抗器的作用是防止变频器产生的高次谐波通过电源的输入回路返回到电网从而影响其他的受电设备,需要根据变频器的容量大小来决定是否需要加电抗器;滤波器是安装在变频器的输出端,减少变频器输出的高次谐波,当变频器到电机的距离较远时,应该安装滤波器。虽然变频器本身有各种保护功能,但缺相保护却并不完美,断路器在主回路中起到过载,缺相等保护,选型时可按照变频器的容量进行选择。可以用变频器本身的过载保护代替热继电器。 II. 控制回路:具有工频变频的手动切换,以便在变频出现故障时可以手动切工频运行,因输出端不能加电压,固工频和变频要有互锁。 4) 变频器的接地; 变频器正确接地是提高系统稳定性,抑制噪声能力的重要手段。变频器的接地端子的接地电阻越小越好,接地导线的截面不小于4mm,长度不超过5m。变频器的接地应和动力设备的接地点分开,不能共地。信号线的屏蔽层一端接到变频器的接地端,另一端浮空。变频器与控制柜之间电气相通。 变频器控制柜设计 变频器应该安装在控制柜内部,控制柜在设计时要注意以下问题 1) 散热问题:变频器的发热是由内部的损耗产生的。在变频器中各部分损耗中主要以主电路为主,约占98%,控制电路占2%。为了保证变频器正常可靠运行,必须对变频器进行散热我们通常采用风扇散热;变频器的内装风扇可将变频器的箱体内部散热带走,若风扇不能正常工作,应立即停止变频器运行;大功率的变频器还需要在控制柜上加风扇,控制柜的风道要设计合理,所有进风口要设置防尘网,排风通畅,避免在柜中形成涡流,在固定的位置形成灰尘堆积;根据变频器说明书的通风量来选择匹配的风扇,风扇安装要注意防震问题。 2) 电磁干扰问题: I.变频器在工作中由于整流和变频,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰,而且会产生高次谐波,这种高次谐波会通过供电回路进入整个供电网络,从而影响其他仪表。如果变频器的功率很大占整个系统25%以上,需要考虑控制电源的抗干扰措施。 II.当系统中有高频冲击负载如电焊机、电镀电源时,变频器本身会因为干扰而出现保护,则考虑整个系统的电源质量问题。 3) 防护问题需要注意以下几点: I.防水防结露:如果变频器放在现场,需要注意变频器柜上方不的有管道法兰或其他漏点,在变频器附近不能有喷溅水流,总之现场柜体防护等级要在IP43以上。 II. 防尘:所有进风口要设置防尘网阻隔絮状杂物进入,防尘网应该设计为可拆卸式,以方便清理,维护。防尘网的网格根据现场的具体情况确定,防尘网四周与控制柜的结合处要处理严密。 III.防腐蚀性气体:在化工行业这种情况比较多见,此时可以将变频柜放在控制室中。 变频器接线规范 信号线与动力线必须分开走线:使用模拟量信号进行远程控制变频器时,为了减少模拟量受来自变频器和其它设备的干扰,请将控制变频器的信号线与强电回路(主回路及顺控回路)分开走线。距离应在30cm以上。即使在控制柜内,同样要保持这样的接线规范。该信号与变频器之间的控制回路线最长不得超过50m。 信号线与动力线必须分别放置在不同的金属管道或者金属软管内部:连接PLC和变频器的信号线如果不放置在金属管道内,极易受到变频器和外部设备的干扰;同时由于变频器无内置的电抗器,所以变频器的输入和输出级动力线对外部会产生极强的干扰,因此放置信号线的金属管或金属软管一直要延伸到变频器的控制端子处,以保证信号线与动力线的彻底分开。 1) 模拟量控制信号线应使用双股绞合屏蔽线,电线规格为。在接线时一定要注意,电缆剥线要尽可能的短(5-7mm左右),同时对剥线以后的屏蔽层要用绝缘胶布包起来,以防止屏蔽线与其它设备接触引入干扰。 2) 为了提高接线的简易性和可靠性,推荐信号线上使用压线棒端子。 变频器的运行和相关参数的设置 变频器的设定参数多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象。 控制方式:即速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。 最低运行频率:即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。而且低速时,其电缆中的电流也会增大,也会导致电缆发热。 最高运行频率:一般的变频器最大频率到60Hz,有的甚至到400 Hz,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。 载波频率:载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。 电机参数:变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。 跳频:在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。 常见故障分析 1) 过流故障:过流故障可分为加速、减速、恒速过电流。其可能是由于变频器的加减速时间太短、负载发生突变、负荷分配不均,输出短路等原因引起的。这时一般可通过延长加减速时间、减少负荷的突变、外加能耗制动元件、进行负荷分配设计、对线路进行检查。如果断开负载变频器还是过流故障,说明变频器逆变电路已环,需要更换变频器。 2) 过载故障:过载故障包括变频过载和电机过载。其可能是加速时间太短,电网电压太低、负载过重等原因引起的。一般可通过延长加速时间、延长制动时间、检查电网电压等。负载过重,所选的电机和变频器不能拖动该负载,也可能是由于机械润滑不好引起。如前者则必须更换大功率的电机和变频器;如后者则要对生产机械进行检修。 3) 欠压:说明变频器电源输入部分有问题,需检查后才可以运行。第三章 交流调速系统概述 交流调速系统的特点对于可调速的电力拖动系统,工程上往往把它分为直流调速系统和交流调速系统两类。这主要是根据采用什么电流制型式的电动机来进行电能与机械能的转换而划分的,所谓交流调速系统,就是以交流电动机作为电能—机械能的转换装置,并对其进行控制以产生所需要的转速。纵观电力拖动的发展过程,交、直流两大调速系统一直并存于各个工业领域,虽然由于各个时期科学技术的发展使得它们所处的地位有所不同,但它们始终是随着工业技术的发展,特别是随着电力电子元器件的发展而在相互竞争。在过去很长一段时期,由于直流电动机的优良调速性能,在可逆、可调速与高精度、宽调速范围的电力拖动技术领域中,几乎都是采用直流调速系统。然而由于直流电动机其有机械式换向器这一致命的弱点,致使直流电动机制造成本高、价格昂贵、维护麻烦、使用环境受到限制,其自身结构也约束了单台电机的转速,功率上限,从而给直流传动的应用带来了一系列的限制。相对于直流电动机来说,交流电动机特别是鼠笼式异步电动机具有结构简单,制造成本低,坚固耐用,运行可靠,维护方便,惯性小,动态响应好,以及易于向高压、高速和大功率方向发展等优点。因此,近几十年以来,不少国家都在致力于交流调速系统的研究,用没有换向器的交流电动机实现调速来取代直流电动机,突破它的限制。随着电力电子器件,大规模集成电路和计算机控制技术的迅速发展,以及现代控制理论向交流电气传动领域的渗透,为交流调速系统的开发研究进一步创造了有利的条件。诸如交流电动机的串级调速、各种类型的变频调速,特别是矢量控制技术的应用,使得交流调速系统逐步具备了宽的调速范围、较高的稳速精度、快速的动态响应以及在四象限作可逆运行等良好的技术性能。现在从数百瓦的伺服系统到数百千瓦的特大功率高速传动系统,从一般要求的小范围调速传动到高精度、快响应、大范围的调速传动,从单机传动到多机协调运转,已几乎都可采用交流调速传动。交流调速传动的客观发展趋势已表明,它完全可以和直流传动相媲美、相抗衡,并有取代的趋势。 交流调速常用的调速方案及其性能比较由电机学知,交流异步电动机的转速公式如下:n= 60ƒ1 (1-s) pn (1-1)式中 Pn——电动机定子绕阻的磁极对数; f1——电动机定子电压供电频率; s ——电动机的转差率。从式(1-1)中可以看出,调节交流异步电动机的转速有三大类方案。(1)改变电动机的磁极对数由异步电动机的同步转速no= 60ƒ1 pn可知,在供电电源频率f1不变的条件下,通过改接定子绕组的连接方式来改变异步电动机定子绕组的磁极对数Pn,即可改变异步电动机的同步转速n0,从而达到调速的目的。这种控制方式比较简单,只要求电动机定子绕组有多个抽头,然后通过触点的通断来改变电动机的磁极对数。采用这种控制方式,电动机转速的变化是有级的,不是连续的,一般最多只有三档,适用于自动化程度不高,且只须有级调速的场合。(2)变频调速 从式(1—1)中可以看出,当异步电动机的磁极对数Pn一定,转差率s—定时,改变定子绕组的供电频率f1可以达到调速目的,电动机转速n基本上与电源的频率f1成正比,因此,平滑地调节供电电源的频率,就能平滑,无级地调节异步电动机的转速。变频调速调速范围大,低速特性较硬,基频f=50Hz以下,属于恒转矩调速方式,在基频以上,属于恒功率调速方式,与直流电动机的降压和弱磁调速十分相似。且采用变频起动更能显著改善交流电动机的起动性能,大幅度降低电机的起动电流,增加起动转矩。所以变频调速是交流电动机的理想调速方案。(3)变转差率调速改变转差率调速的方法很多,常用的方案有:异步电动机定子调压调速,电磁转差离合器调速和绕线式异步电动机转子回路串电阻调速,串级调速等。定子调压调速系统就是在恒定交流电源与交流电动机之间接入晶闸管作为交流电压控制器,这种调压调速系统仅适用于一些属短时与重复短时作深调速运行的负载。为了能得到好的调速精度与能稳定运行,一般采用带转速负反馈的控制方式。所使用的电动机可以是绕线式异电动机或是有高转差率的鼠笼式异步电动机。电磁转差离台器调速系统,是由鼠笼式异步电动机、电磁转差离合器以及控制装置组合而成。鼠笼式电动机作为原动机以恒速带动电磁离合器的电枢转动,通过对电磁离合器励磁电流的控制实现对其磁极的速度调节。这种系统一般也采用转速闭环控制。绕线式异步电动机转子回路串电阻调速就是通过改变转子回路所串电阻来进行调速,这种调速方法简单,但调速是有级的,串入较大附加电阻后,电动机的机械特性很软,低速运行损耗大,稳定性差。绕线式异步电动机串级调速系统就是在电动机的转子回路中引入与转子电势同频率的反向电势Ef,只要改变这个附加的,同电动机转子电压同频率的反向电势Ef,就可以对绕线式异步电动机进行平滑调速。Ef越大,电动机转速越低。 上述这些调速的共同特点是调速过程中没有改变电动机的同步转速n0,所以低速时,转差率s较大。 在交流异步电动机中,从定子传入转子的电磁功率PM可以分成两部分:一部分P2=(1—s)PM是拖动负载的有效功率,另一部分是转差功率PS=sPM,与转差率s成正比,它的去向是调速系统效率高低的标志。就转差功率的去向而言,交流异步电动机调速系统可以分为三种:1)转差功率消耗型 这种调速系统全部转差功率都被消耗掉,用增加转差功率的消耗来换取转速的降低,转差率s增大,转差功率PS=sPM增大,以发热形式消耗在转子电路里,使得系统效率也随之降低。定子调压调速、电磁转差离合器调速及绕线式异步电动机转子串电阻调速这三种方法属于这一类,这类调速系统存在着调速范围愈宽,转差功率PS愈大,系统效率愈低的问题,故不值得提倡。2)转差功率回馈型 这种调速系统的大部分转差功率通过变流装置回馈给电网或者加以利用,转速越低回馈的功率越多,但是增设的装置也要多消耗一部分功率。绕线式异步电动机转子串级调速即属于这一类,它将转差功率通过整流和逆变作用,经变压器回馈到交流电网,但没有以发热形式消耗能量,即使在低速时,串级调速系统的效率也是很高的。3)转差功率不变型 这种调速系统中,转差功率仍旧消耗在转子里,但不论转速高低,转差功率基本不变。如变极对数调速,变频调速即属于这一类,由于在调速过程中改变同步转速n0,转差率s是一定的,故系统效率不会因调速而降低。在改变n0的两种调速方案中,又因变极对数调速为有极调速,且极数很有限,调速范围窄,所以,目前在交流调速方案中,变频调速是最理想,最有前途的交流调速方案。第四章变频电动机的特点电磁设计 对普通异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。方式一般如下:

三相全控桥式整流电路毕业论文

浅谈波浪能发电装置发电机优化设计

引言:发电机的三相输出接到风光互补控制器上,通过控制器可以得到48V的稳定电压,可将稳定的电能存储在蓄电池中。以下是我来浅谈波浪能发电装置发电机优化设计,希望对你们有帮助。

【论文摘要】 本文在上海海洋大学研制的“浪流一体化发电装置”的基础上,对其发电机进行了优化设计,去掉了发电机和水轮机的中间转换装置,满足了海洋能直驱发电的形式,通过电机实验室性能测试验证了其可行性,提高了发电效率和可靠率,降低了维护成本,可以应用于实际生产中。

【关键词】浪流一体化;发电装置;发电机;优化设计;直驱发电

0 前言

上海海洋大学研制的“浪流一体化发电装置”同时可以捕获波浪和海流的向前的推力,在接受到海洋能量之后产生惯性而发生连续转动;通过主轴带动发电机旋转而产生电能。为海洋观测、岛礁生活、海洋养殖、海水淡化等提供稳定的电能,并用于解决边远海域的国防设施、部分电网未覆盖的有居民海岛、偏远无居民海岛生态建设中的供电需求。本文以此发电装置为研究对象,对其水轮机匹配的发电机进行了优化设计,克服了传统的海洋能需要经过三个部分转换的缺点,没有齿轮箱,减少了传动损耗,采用发电机输出电压稳定控制器,实现了浪轮机的输出转速稳定,提高了发电效率,降低了运行维护成本。尤其是在低转速环境下,效果更加显著。

1 研究对象与方法

本项目设计的发电机是满足海洋能直驱发电形式的。然而,齿轮箱的存在却成为制约海洋能发电机组发展的因素之一:机组运行过程中齿轮箱一直处于高速旋转,增加了系统损耗,降低了能量利用率;海洋能发电机组往往安装在海平面或海水之中,经受严寒酷暑,海水腐蚀、温度变化大,环境条件恶劣,导致升速齿轮箱的工况严峻,维护保养工作量大;为了能适应恶劣的运行环境,齿轮箱毕竟造价昂贵,更由于海洋能能量多变,往往会造成过载,这样就更容易损坏齿轮箱,使得系统运行成本增大。

因此,本设计取掉了中间转换环节,水轮机主轴右端通过联轴器和电机连接在一起,直接带动电机发电,中间不经过任何环节,这就实现了绝对的直驱。本文研制海洋能直驱发电方式有以下几个方面优点:

(1)提高了发电效率高。直驱式发电没有齿轮箱,减少了传动损耗,提高了发电效率,尤其是在低转速环境下,效果更加显著。

(2)提高了可靠性。直驱技术省去了齿轮箱及其附件,简化了传动结构,提高了机组的可靠性。同时,机组在低转速下运行,旋转部件少,可靠性更高。

(3)运行及维护成本低。采用无齿轮直驱技术可减少发电机组装置零部件数量,避免齿轮箱油的定期更换,降低了运行维护成本。

然而,这样的海洋能直驱发电方式就需要发电机具有低速运行的'特性,并且有较高的效率,更者要求发电机要能在海水中运行。

2 直驱发电机设计

直驱发电机结构设计

发电机采用盘式结构:波浪能单位体积所携带的能量有限,要能高效的收集这些能源,发电机则成为本装置中能源转换的关键设备之一。波浪能发电机,最多每分钟几百转,因此发电机的技术指标、经济性等决定本装置在市场中的竞争力。常用发电机分为盘式和圆柱式两种:圆柱式发电机的气隙磁场延轴向分布,要想获得较高的发电效率,圆柱式发电机必须运行在高速下,而盘式发电机的定转子为平行结构,克服了圆柱式发电机定子包容转子的结构缺点,轴向尺寸小,没有叠片和铆压工序,工艺好,因此盘式发电机可以运行在低速条件下。因此发电机选用盘式发电机结构,能够在低转速下达到额定功率,从而满足了波浪能发电系统对发电机的技术要求,提高了效率。

发电机输出电压稳定控制器设计

发电机的三相输出接到风光互补控制器上,通过控制器可以得到48V的稳定电压,可将稳定的电能存储在蓄电池中。控制器的原理是将输入的交流电流通过三相桥式全控整流电路转化成直流电流,直流电流通过升降压斩波电路将电压输出控制在48V。值得注意的是发电机转速达到54r/min控制器输出端才会有电流输出。控制器如图2所示,经过控制器流出的电流为直流,将控制器后面的电池组“+”“-”接到蓄电池的接口即可,反面细节如图3所示。

直驱电机工作原理

三相桥式全控整流电路

在三相桥式全控整流电路中,如图4所示,晶闸管KP1和KP4接a相,晶闸管KP3和KP6接b相,晶管KP5和KP2接c相。晶闸管KP1、KP3、KP5组成共阴极组,而晶闸管KP2、KP4、KP6组成共阳极组。

升降压斩波电路原理

如图5所示为升降压斩波电路原理,V通时,电源E经V向L供电使其贮能,此时电流为i1。同时,C维持输出电压恒定并向负载R供电。V断时,L的能量向负载释放,电流为i2。负载电压极性为上负下正,与电源电压极性相反,该电路也称作反极性斩波电路。

3 实验分析

在实验室中模拟不同工况水流下轮机所具有的转数,并以可控转数电动机带动发电机测试其发电性能。为此,我们搭建了发电机测试平台。发电机测试平台如图7所示,通过机架将发电机固定,通过联轴器与传感器相连。在发电机测试平台中,右边是直流电动机,模拟水轮机的作用,作为动力的出入。通过联轴器与电动机相连的是传感器,这种传感器连接显示屏后可以看到瞬态的扭矩、转速、功率。其中功率可是为发电机的输入功率,这样我们测出输出功率后可以得到发电机的效率。电阻箱、整流器与扭矩仪如图8所示,扭矩仪上的3个显示屏即为扭矩、转速、功率。

发电机所发出的是三相交流电,三相交流电输入电子测试平台,通过电子测试平台,可以得到三相交流电的瞬态电压、电流、功率、功率因数。流出整流器的电流经过整流变为直流电流,流入功率计,并将滑动变阻箱串联到整个电路中。

4 电机方案总结与展望

方案采用直驱式发电形式不仅增加了发电效率,而且提高的发电装置的可靠性,无障碍运行时间满足了要求。发电机采用盘式发电机结构,其能够在低转速下达到额定功率,从而满足了波浪能发电系统对发电机的技术要求,提高了效率。装置发出的三相交流电通过控制器后,经实际测量,电压基本维持在48V左右,且为直流电,这将电能存储到蓄电池中提供了条件,并最终达到了我们的要求。

但是发电机组安装在海平面或海水之中,经受严寒酷暑,海水腐蚀、温度变化大,环境条件恶劣,容易遭受海水腐蚀,因此今后可以做的研究方向还有以下几个方面:

1)发电机本身要具有良好的机械密封设计,评估不同海水深度、压力下密封系统的可靠性。研究海水环流条件下,涉海材料在淤泥、深海、浅海、浪花飞溅、海雾等不同区域环境下,其腐蚀规律,设计相应的耐腐蚀材料;

2)发电机外部可增设防水箱,使发电机与海水具有了隔离层,不仅达到了防水的效果,也使发电机无需浸泡在海水中。

【参考文献】

[1]游亚戈.我国海洋波浪能的发展进展[J].中国科技成果,2006(2):17-19.

[2]李允武.海洋能源开发[M].海洋出版社,2008.

[3]盛松伟,游亚戈,马玉久.一种波浪能实验装置水动力学分析与优化设计[J].海洋工程,2006,24(3):107-112.

[4]张峰,游亚戈,吴必军,李甫杰.中国海洋能专利研究[J].可再生能源,2007,25(2):79-81.

总结三相全控桥带电阻和阻感负载的工作原理如下:1.三相桥式全控整流电路在任何时刻都必须有两个晶闸管导通,而且这两个晶闸管一个是共阴极组,另一个是共阳极组的,只有它们能同时导通,才能形成导电回路。2、三相桥式全控整流电路就是两组三相半波整流电路的串联,所以与三相半波整流电路一样,对于共阴极组触发脉冲的要求是保证晶闸管KPl、KP3和KP5依次导通,因此它们的触发脉冲之间的相位差应为120°。对于共阳极组触发脉冲的要求是保证晶闸管KP2、KP4和KP6依次导通,因此它们的触发脉冲之间的相位差也是120°。3、由于共阴极的晶闸管是在正半周触发,共阳极组是在负半周触发,因此接在同一相的两个晶闸管的触发脉冲的相位应该相差180°。导体对电流的阻碍作用就叫该导体的电阻。电阻,通常用“R”表示,是一个物理量,在物理学中表示导体对电流阻碍作用的大小。导体的电阻越大,表示导体对电流的阻碍作用越大。不同的导体,电阻一般不同,电阻是导体本身的一种性质。

一、三相桥式全控整流电路分析 三相桥式全控整流电路原理图如图所示。三相桥式全控整流电路是由三相半波可控整流电路演变而来的,它由三相半波共阴极接法(VT1,VT3,VT5)和三相半波共阳极接法(VT1,VT6,VT2)的串联组合。其工作特点是任何时刻都有不同组别的两只晶闸管同时导通,构成电流通路,因此为保证电路启动或电流断续后能正常导通,必须对不同组别应到导通的一对晶闸管同时加触发脉冲,所以触发脉冲的宽度应大于π/3的宽脉冲。宽脉冲触发要求触发功率大,易使脉冲变压器饱和,所以可以采用脉冲列代替双窄脉冲;每隔π/3换相一次,换相过程在共阴极组和共阳极组轮流进行,但只在同一组别中换相。接线图中晶闸管的编号方法使每个周期内6个管子的组合导通顺序是VT1-VT2-VT3-VT4-VT5-VT6;共阴极组T1,T3,T5的脉冲依次相差2π/3;同一相的上下两个桥臂,即VT1和VT4,VT3和VT6,VT5和VT2的脉冲相差π,给分析带来了方便;当α=O时,输出电压Ud一周期内的波形第 2 页是6个线电压的包络线。所以输出脉动直流电压频率是电源频率的6倍,比三相半波电路高l倍,脉动减小,而且每次脉动的波形都一样,故该电路又可称为6脉动整流电路。 在第(1)段期间,a相电压最高,而共阴第 3 页极组的晶闸管VT1被触发导通,b相电位最低,所以供阳极组的晶闸管KP6被触发导通。这时电流由a相经VT1流向负载,再经VT6流入b相。变压器a、b两相工作,共阴极组的a相电流为正,共阳极组的b相电流为负。加在负载上的整流电压为ud=ua-ub=uab经过60°后进入第(2)段时期。这时a相电位仍然最高,晶闸管VTl继续导通,但是c相电位却变成最低,当经过自然换相点时触发c相晶闸管VT2,电流即从b相换到c相,VT6承受反向电压而关断。这时电流由a相流出经VTl、负载、VT2流回电源c相。变压器a、c两相工作。这时a相电流为正,c相电流为负。在负载上的电压为ud=ua-uc=uac第 4 页 再经过60°,进入第(3)段时期。这时b相电位最高,共阴极组在经过自然换相点时,触发导通晶闸管VT3,电流即从a相换到b相,c相晶闸管VT2因电位仍然最低而继续导通。此时变压器bc两相工作,在负载上的电压为ud=ub-uc=ubc余相依此类推。仿真实验“alpha_deg”是移相控制角信号输入端,通过设置输入信号给它的常数模块参数便可以得到不同的触发角α,从而产生给出间隔60度的双脉冲。二、MATLAB仿真第 5 页(1)MATLAB simulink模型如图(2)参数设置 电源参数设置:电压设置为380V,频率设为50Hz。注意初相角的设置,a相电压设为0,b相电压设为-120,a相电压设为-240。 第 6 页负载参数设置:电阻负载:电阻设为100Ω,电感设为0,电容设为0 阻感负载:电阻设为100Ω,电感设为10H,电容设为0第 7 页 第 8 页同步6脉冲发生器:频率设为50Hz,脉冲宽度为1度,选择双脉冲触发方式第 9 页Universal bridge的结构如下“alpha_deg”是移相控制角信号输入端,通第 10 页过设置输入信号给它的常数模块参数便可以得到不同的触发角α,从而产生给出间隔60度的双脉冲。(3)实验记录三项桥式全控整流电路的电阻负载(电阻设为100Ω,电感设为0,电容设为0)电阻负载α=0度(左边从上到下依次为三相交流源电压(红黄蓝依次为三项电源的电压),变压器二次电流(红黄蓝依次为Ia,Ib,Ic),晶闸管VT1的电压,输出整流电压Ud(通过负载电压),输出整流电流(通过负载电流)Id)第 11 页电阻负载α=30度(左边从上到下依次为三相交流源电压(红黄蓝依次为三项电源的电压),变压器二次电流(红黄蓝依次为Ia,Ib,Ic),晶闸管VT1的电压,输出整流电压Ud(通过负载电压),输出整流电流(通过负载电流)Id)第 12 页电阻负载α=60度(左边从上到下依次为三相交流源电压(红黄蓝依次为三项电源的电压),变压器二次电流(红黄蓝依次为Ia,Ib,Ic),晶闸管VT1的电压,输出整流电压Ud(通过负载电压),输出整流电流(通过负载电流)Id)第 13 页百度文库 搜索三相全控桥式整流电路国内现状

很简单啊

电流从ABC进入VT1,,二极管吧正玄波整流成半波,因为是3相线三个线的电流依次进入三个三极管(三相交流电是有相位差的就是先后顺序)所以他们出了3个三极管进入一条线就会变成有杂波的直流电,过负载L ,R从VT4,VT6,VT2,3个三极管回路!

当整流容量较大,要求直流电压脉动较小,对快速性有特殊要求的场合,应考虑采用三相可控整流电路。这是因为三相整流装置三相是平衡的,输出的直流电压和电流脉动小,对电网影响小,且控制滞后时间短。图2为三相桥式全控整流电路及其输出电压波形。在理想情况下,电路在任何时刻都必须有两个晶闸管导通,一个是共阳极组的,另一个是共阴级组的,只有它们同时导通才能形成导电回路。T1、T2、T3、T4、T5、T6的触发脉冲互差60°。因此,电路每隔60°有一个晶闸管换流,导通次序为1→2→3→4→5→6,每个晶闸管导通120°。在整流电路合闸后,共阴极和共阳级组各有一个晶闸管导通。因此,每个触发脉冲的宽度应大于60°、小于120°,或用两个窄脉冲等效地代替大于60°的宽脉冲,即在向某一个晶闸管送出触发脉冲的同时,向前一个元件补送一个脉冲,称双脉冲触发。整流输出电压波形如图2 所示。当T1、T6导通时,ud=uab;T1、T2导通时,ud=uac;同理,依次为ubc,uba,uca,ucb,均为线电压的一部分,脉动频率为300Hz,晶闸管T1上的电压uT1波形分为三段,在T1导电的120°中,uT1=0(仅管压降);当T3导通,T1受反向电压关断,uT1=uab;T5导通时,T3关断,uT1=uac。因此晶闸承受的最大正、反向电压为线电压的峰值。

采用三相全控桥式整流电路时,输出电压交变分量的最低频率是电网频率的6倍,交流分量与直流分量之比也较小,因此滤波器的电感量比同容量的单相或三相半波电路小得多。另外,晶闸管的额定电压值也较低。因此,这种电路适用于大功率变流装置。

相关百科
热门百科
首页
发表服务