论文发表百科

人工智能翻译论文

发布时间:2024-07-08 09:50:13

人工智能翻译论文

Artificial Intelligence (AI) is the intelligence of machines and the branch of computer science which aims to create it. Textbooks define the field as "the study and design of intelligent agents,"[1] where an intelligent agent is a system that perceives its environment and takes actions which maximize its chances of success.[2] John McCarthy, who coined the term in 1956,[3] defines it as "the science and engineering of making intelligent machines."[4]The field was founded on the claim that a central property of human beings, intelligence—the sapience of Homo sapiens—can be so precisely described that it can be simulated by a machine.[5] This raises philosophical issues about the nature of the mind and limits of scientific hubris, issues which have been addressed by myth, fiction and philosophy since antiquity.[6] Artificial intelligence has been the subject of breathtaking optimism,[7] has suffered stunning setbacks[8] and, today, has become an essential part of the technology industry, providing the heavy lifting for many of the most difficult problems in computer science.[9]AI research is highly technical and specialized, deeply divided into subfields that often fail to communicate with each other.[10] Subfields have grown up around particular institutions, the work of individual researchers, the solution of specific problems, longstanding differences of opinion about how AI should be done and the application of widely differing tools. The central problems of AI include such traits as reasoning, knowledge, planning, learning, communication, perception and the ability to move and manipulate objects.[11] General intelligence (or "strong AI") is still a long-term goal of (some) research.[12]Thinking machines and artificial beings appear in Greek myths, such as Talos of Crete, the golden robots of Hephaestus and Pygmalion's Galatea.[13] Human likenesses believed to have intelligence were built in every major civilization: animated statues were worshipped in Egypt and Greece[14] and humanoid automatons were built by Yan Shi,[15] Hero of Alexandria,[16] Al-Jazari[17] and Wolfgang von Kempelen.[18] It was also widely believed that artificial beings had been created by Jābir ibn Hayyān,[19] Judah Loew[20] and Paracelsus.[21] By the 19th and 20th centuries, artificial beings had become a common feature in fiction, as in Mary Shelley's Frankenstein or Karel Čapek's . (Rossum's Universal Robots).[22] Pamela McCorduck argues that all of these are examples of an ancient urge, as she describes it, "to forge the gods".[6] Stories of these creatures and their fates discuss many of the same hopes, fears and ethical concerns that are presented by artificial problem of simulating (or creating) intelligence has been broken down into a number of specific sub-problems. These consist of particular traits or capabilities that researchers would like an intelligent system to display. The traits described below have received the most attention.[11][edit] Deduction, reasoning, problem solvingEarly AI researchers developed algorithms that imitated the step-by-step reasoning that human beings use when they solve puzzles, play board games or make logical deductions.[39] By the late 80s and 90s, AI research had also developed highly successful methods for dealing with uncertain or incomplete information, employing concepts from probability and economics.[40]For difficult problems, most of these algorithms can require enormous computational resources — most experience a "combinatorial explosion": the amount of memory or computer time required becomes astronomical when the problem goes beyond a certain size. The search for more efficient problem solving algorithms is a high priority for AI research.[41]Human beings solve most of their problems using fast, intuitive judgments rather than the conscious, step-by-step deduction that early AI research was able to model.[42] AI has made some progress at imitating this kind of "sub-symbolic" problem solving: embodied approaches emphasize the importance of sensorimotor skills to higher reasoning; neural net research attempts to simulate the structures inside human and animal brains that gives rise to this intelligenceMain articles: Strong AI and AI-completeMost researchers hope that their work will eventually be incorporated into a machine with general intelligence (known as strong AI), combining all the skills above and exceeding human abilities at most or all of them.[12] A few believe that anthropomorphic features like artificial consciousness or an artificial brain may be required for such a project.[74]Many of the problems above are considered AI-complete: to solve one problem, you must solve them all. For example, even a straightforward, specific task like machine translation requires that the machine follow the author's argument (reason), know what is being talked about (knowledge), and faithfully reproduce the author's intention (social intelligence). Machine translation, therefore, is believed to be AI-complete: it may require strong AI to be done as well as humans can do it.[75][edit] ApproachesThere is no established unifying theory or paradigm that guides AI research. Researchers disagree about many issues.[76] A few of the most long standing questions that have remained unanswered are these: should artificial intelligence simulate natural intelligence, by studying psychology or neurology? Or is human biology as irrelevant to AI research as bird biology is to aeronautical engineering?[77] Can intelligent behavior be described using simple, elegant principles (such as logic or optimization)? Or does it necessarily require solving a large number of completely unrelated problems?[78] Can intelligence be reproduced using high-level symbols, similar to words and ideas? Or does it require "sub-symbolic" processing?[79][edit] Cybernetics and brain simulationMain articles: Cybernetics and Computational neuroscience There is no consensus on how closely the brain should be the 1940s and 1950s, a number of researchers explored the connection between neurology, information theory, and cybernetics. Some of them built machines that used electronic networks to exhibit rudimentary intelligence, such as W. Grey Walter's turtles and the Johns Hopkins Beast. Many of these researchers gathered for meetings of the Teleological Society at Princeton University and the Ratio Club in England.[24] By 1960, this approach was largely abandoned, although elements of it would be revived in the can one determine if an agent is intelligent? In 1950, Alan Turing proposed a general procedure to test the intelligence of an agent now known as the Turing test. This procedure allows almost all the major problems of artificial intelligence to be tested. However, it is a very difficult challenge and at present all agents intelligence can also be evaluated on specific problems such as small problems in chemistry, hand-writing recognition and game-playing. Such tests have been termed subject matter expert Turing tests. Smaller problems provide more achievable goals and there are an ever-increasing number of positive broad classes of outcome for an AI test are:Optimal: it is not possible to perform better Strong super-human: performs better than all humans Super-human: performs better than most humans Sub-human: performs worse than most humans For example, performance at draughts is optimal,[143] performance at chess is super-human and nearing strong super-human,[144] and performance at many everyday tasks performed by humans is quite different approach is based on measuring machine intelligence through tests which are developed from mathematical definitions of intelligence. Examples of this kind of tests start in the late nineties devising intelligence tests using notions from Kolmogorov Complexity and compression [145] [146]. Similar definitions of machine intelligence have been put forward by Marcus Hutter in his book Universal Artificial Intelligence (Springer 2005), which was further developed by Legg and Hutter [147]. Mathematical definitions have, as one advantage, that they could be applied to nonhuman intelligences and in the absence of human is a common topic in both science fiction and in projections about the future of technology and society. The existence of an artificial intelligence that rivals human intelligence raises difficult ethical issues and the potential power of the technology inspires both hopes and Shelley's Frankenstein,[160] considers a key issue in the ethics of artificial intelligence: if a machine can be created that has intelligence, could it also feel? If it can feel, does it have the same rights as a human being? The idea also appears in modern science fiction: the film Artificial Intelligence: . considers a machine in the form of a small boy which has been given the ability to feel human emotions, including, tragically, the capacity to suffer. This issue, now known as "robot rights", is currently being considered by, for example, California's Institute for the Future,[161] although many critics believe that the discussion is premature.[162]Another issue explored by both science fiction writers and futurists is the impact of artificial intelligence on society. In fiction, AI has appeared as a servant (R2D2 in Star Wars), a law enforcer (. "Knight Rider"), a comrade (Lt. Commander Data in Star Trek), a conqueror (The Matrix), a dictator (With Folded Hands), an exterminator (Terminator, Battlestar Galactica), an extension to human abilities (Ghost in the Shell) and the saviour of the human race (R. Daneel Olivaw in the Foundation Series). Academic sources have considered such consequences as: a decreased demand for human labor,[163] the enhancement of human ability or experience,[164] and a need for redefinition of human identity and basic values.[165]Several futurists argue that artificial intelligence will transcend the limits of progress and fundamentally transform humanity. Ray Kurzweil has used Moore's law (which describes the relentless exponential improvement in digital technology with uncanny accuracy) to calculate that desktop computers will have the same processing power as human brains by the year 2029, and that by 2045 artificial intelligence will reach a point where it is able to improve itself at a rate that far exceeds anything conceivable in the past, a scenario that science fiction writer Vernor Vinge named the "technological singularity".[164] Edward Fredkin argues that "artificial intelligence is the next stage in evolution,"[166] an idea first proposed by Samuel Butler's "Darwin among the Machines" (1863), and expanded upon by George Dyson in his book of the same name in 1998. Several futurists and science fiction writers have predicted that human beings and machines will merge in the future into cyborgs that are more capable and powerful than either. This idea, called transhumanism, which has roots in Aldous Huxley and Robert Ettinger, is now associated with robot designer Hans Moravec, cyberneticist Kevin Warwick and inventor Ray Kurzweil.[164] Transhumanism has been illustrated in fiction as well, for example in the manga Ghost in the Shell and the science fiction series Dune. Pamela McCorduck writes that these scenarios are expressions of the ancient human desire to, as she calls it, "forge the gods."[6]

近年来,随着信息技术以及计算机技术的不断发展,人工智能在计算机中的应用也随之加深,其被广泛应用于计算机的各个领域。下面是我给大家推荐的浅谈计算机人工智能论文,希望大家喜欢!

《计算机在人工智能中的应用研究》

摘要:近年来,随着信息技术以及计算机技术的不断发展,人工智能在计算机中的应用也随之加深,其被广泛应用于计算机的各个领域。本文针对计算机在人工智能中的应用进行研究,阐述了人工智能的理论概念,分析当前其应用于人工智能所存在的问题,并介绍人工智能在部分领域中的应用。

关键词:计算机;人工智能;应用研究

一、前言

人工智能又称机器智能,来自于1956年的Dartmouth学会,在这学会上人们最初提出了“人工智能”这一词。人工智能作为一门综合性的学科,其是在计算机科学、信息论、心理学、神经生理学以及语言学等多种学科的互相渗透下发展而成。在计算机的应用系统方面,人工智能是专门研究如何制造智能系统或智能机器来模仿人类进行智能活动的能力,从而延伸人们的科学化智能。人工智能是一门富有挑战性的科学,从事这项工作的人必须懂得计算机知识、心理学与哲学。人工智能是处于思维科学的技术应用层次,是其应用分支之一。数学常被认为是多种学科的基础科学,数学也进入语言及思维领域,人工智能学科须借用数学工具。数学在标准逻辑及模糊数学等范围发挥作用,其进入人工智能学科,两者将互相促进且快速发展。

二、人工智能应用于计算机中存在的问题

(一)计算机语言理解的弱点。当前,计算机尚未能确切的理解语言的复杂性。然而,正处于初步研制阶段的计算机语言翻译器,对于算法上的规范句子,已能显示出极高的造句能力及理解能力。但其在理解句子意思上,尚未获得明显成就。我们所获取的信息多来自于上下文的关系以及自身掌握的知识。人们在日常生活中的个人见解、社会见解以及文化见解给句子附加的意义带来很大影响。

(二)模式识别的疑惑。采用计算机进行研究及开展模式识别,在一定程度上虽取得良好效果,有些已作为产品进行实际应用,但其理论以及方法和人的感官识别机制决然不同。人的形象思维能力以及识别手段,即使是计算机中最先进的识别系统也无法达到。此外,在现实社会中,生活作为一项结构宽松的任务,普通的家畜均能轻易对付,但机器却无法做到,这并不意味着其永久不会,而是暂时的。

三、人工智能在部分领域中的应用

伴随着AI技术的快速发展,当今时代的各种信息技术发展均与人工智能技术密切相关,这意味着人工智能已广泛应用于计算机的各个领域,以下是笔者对于人工智能应用于计算机的部分领域进行阐述。具体情况如下。

(一)人工智能进行符号计算。科学计算作为计算机的一种重要用途,可分为两大类别。第一是纯数值的计算,如求函数值。其次是符号的计算,亦称代数运算,是一种智能的快速的计算,处理的内容均为符号。符号可代表实数、整数、复数以及有理数,或者代表集合、函数以及多项式等。随着人工智能的不断发展以及计算机的逐渐普及,多种功能的计算机代数系统软件相继出现,如Maple或Mathematic。由于这些软件均用C语言写成,因此,其可在多数的计算机上使用。

(二)人工智能用于模式识别。模式识别即计算机通过数学的技术方法对模式的判读及自动处理进行研究。计算机模式识别的实现,是研发智能机器的突破点,其使人类深度的认识自身智能。其识别特点为准确、快速以及高效。计算机的模式识别过程相似于人类的学习过程,如语音识别。语音识别即为使计算机听懂人说

的话而进行自动翻译,如七国语言的口语自动翻译系统。该系统的实现使人们出国时在购买机票、预定旅馆及兑换外币等方面,只需通过国际互联网及电话网络,即可用电话或手机与“老外”进行对话。

(三)人工智能计算机网络安全中的应用。当前,在计算机的网络安全管理中常见的技术主要有入侵检测技术以及防火墙技术。防火墙作为计算机网络安全的设备之一,其在计算机的网络安全管理方面发挥重要作用。以往的防火墙尚未有检测加密Web流量的功能,原因在于其未能见到加密的SSL流中的数据,无法快速的获取SSL流中的数据且未能对其进行解密。因而,以往的防火墙无法有效的阻止应用程序的攻击。此外,一般的应用程序进行加密后,可轻易的躲避以往防火墙的检测。因此,由于以往的防火墙无法对应用数据流进行完整的监控,使其难以预防新型攻击。新型的防火墙是通过利用统计、概率以及决策的智能方法以识别数据,达到访问受到权限的目地。然而此方法大多数是从人工智能的学科中采取,因此,被命名为“智能防火墙”。

(四)人工智能应用于计算机网络系统的故障诊断。人工神经网络作为一种信息处理系统,是通过人类的认知过程以及模拟人脑的组织结构而成。1943年时,人工神经网络首次被人提出并得到快速发展,其成为了人工智能技术的另一个分支。人工神经网络通过自身的优点,如联想记忆、自适应以及并列分布处理等,在智能故障诊断中受到广泛关注,并且发挥极大的潜力,为智能故障诊断的探索开辟新的道路。人工神经网络的诊断方法异于专家系统的诊断方法,其通过现场众多的标准样本进行学习及训练,加强调整人工神经网络中的阀值与连接权,使从中获取的知识隐藏分布于整个网络,以达到人工神经网络的模式记忆目的。因此,人工神经网络具备较强的知识捕捉能力,能有效处理异常数据,弥补专家系统方法的缺陷。

四、结束语

总而言之,人工智能作为计算机技术的潮流,其研究的理论及发现决定了计算机技术的发展前景。现今,多数人工智能的研究成果已渗入到人们的日常生活。因此,我们应加强人工智能技术的研究及开发,只有对其应用于各领域中存在的问题进行全面分析,并对此采取相应措施,使其顺利发展。人工智能技术的发展将给人们的生活、学习以及工作带来极大的影响。

参考文献:

[1]杨英.智能型计算机辅助教学系统的实现与研究[J].电脑知识与技术,2009,9

[2]毛毅.人工智能研究热点及其发展方向[J].技术与市场,2008,3

[3]李德毅.网络时代人工智能研究与发展[J].智能系统学报,2009,1

[4]陈步英,冯红.人工智能的应用研究[J].邢台职业技术学院学报,2008,1

人工智能与机器人研究这本期刊的领域有这些:智能机器人、模式识别与智能系统、虚拟现实技术与应用、系统仿真技术与应用、工业过程建模与智能控制、智能计算与机器博弈、人工智能理论、语音识别与合成、机器翻译、图像处理与计算机视觉、计算机感知、计算机神经网络、知识发现与机器学习、建筑智能化技术与应用、人智能其他学科人工智能与机器人研究这本期刊的领域,你可以参考下:智能机器人、模式识别与智能系统、虚拟现实技术与应用、系统仿真技术与应用、工业过程建模与智能控制、智能计算与机器博弈、人工智能理论、语音识别与合成、机器翻译、图像处理与计算机视觉、计算机感知、计算机神经网络、知识发现与机器学习、建筑智能化技术与应用、人智能其他学科 具体那个好写就看你自己的专业知识了,你擅长哪方面的就写哪方面的吧

关于人工智能的定义众说不一。美国 斯坦福大学人工智能研究中心尼尔逊教授 下过这样一个定义:“人工智能是关于知识 的学科——怎样表示知识以及怎样获得知 识并使用知识的科学 。” 而麻省理工学院 的温斯顿教授认为:“人工智能就是研究如 何使计算机去做过去只有人才能做的智能 工作。”人们普遍认为人工智能(Artificial Intelligence),英文缩写为 AI,也称机器智 能。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系 统的一门新的技术科学。它是从计算机应 用系统的角度出发 , 研究如何制造出人造 的智能机器或智能系统 , 来模拟人类智能 活动的能力, 以延伸人们智能的科学。 人工智能就其本质而言 , 是对人的思 维的信息过程的模拟。人工智能不是人的 智能 , 更不会超过人的智能。 对于人的思 维模拟可以从两条道路进行, 一是结构模 拟 , 仿照人脑的结构机制 , 制造出 “类人 脑”的机器;二是功能模拟,暂时撇开人脑 的内部结构, 而从其功能过程进行模拟。 人工智能可以分为强人工智能和弱人 工智能。强人工智能观点认为有可能制造 出真正能推理 (Reasoning) 和解决问题 (Problem solving)的智能机器,并且,这样的 机器能将被认为是有知觉的, 有自我意识 的。弱人工智能观点认为不可能制造出能 真正地推理和解决问题的智能机器 , 这些 机器只不过看起来像是智能的 , 但并不真 正拥有智能 , 也不会有自主意识。 人工智 能的研究经历了以下几个阶段: 第一阶段:20 世纪 50 年代人工智能的兴 起和冷落。人工智能概念首次提出后,出现了 一批显著的成果,如机器定理证明、跳棋程序、 LISP 表处理语言等。但由于解法推理能力有 限,以及机器翻译失败等,使人工智能走入低 谷。这一阶段的特点是:重视问题求解的方 法,忽视知识重要性。第二阶段:20 世纪 60 年代末到 70 年代,专 家系统出现使人工智能研究出现新高潮。 DENDRAL 化学质谱分析系统、MYCIN 疾病诊断和治疗系统、PROSPECTIOR 探矿系统、Hearsay-II 语音理解系统等专家系统的研究 和开发,将人工智能引向了实用化。1969 年成立了国际人工智能联合会议(IJCAI)。 第三阶段:20 世纪 80 年代,随着第五代计 算机的研制,人工智能得到了很大发展。日本1982 年开始了“第五代计算机研制计划”,即“知识信息处理计算机系统KIPS”,其目的是使 逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。 第四阶段:20 世纪 80 年代末,神经网络飞 速发展。1987 年,美国召开第一次神经网络 国际会议,宣告了这一新学科的诞生。此后, 各国在神经网络方面的投资逐渐增加,神经网 络迅速发展起来。 第五阶段:20 世纪 90 年代,人工智能出现 新的研究高潮。由于网络技术特别是国际互 连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问 题求解,而且研究多个智能主体的多目标问题求解,将人工智能面向实用。人工智能研究范畴有自然语言处理 , 知识表现,智能搜索,推理,知识获取,组合调度问题,感知问题,模式识别,逻辑程序设计,软计算,不精确和不确定的管理,人 工生命,神经网络,复杂系统等。目前,人工智能是与具体领域相结合进行研究的,有如下领域:(1)专家系统。依靠人 类已有的知识建立起来的知识系统,目前专家系统是人工智能研究中开展较早、最活跃、成效最多的领域。(2)机器学习。主要在三 个方面进行:一是研究人类学习的机理、人 脑思维的过程;二是机器学习的方法;三是建立针对具体任务的学习系统。(3)模式识别。研究如何使机器具有感知能力,主要研究视觉 模式和听觉模式的识别。(4)理解自然语言。计算机如能“听懂”人的语言,便可以直接用口语操作计算机,这将给人们带极大的便 利。(5)机器人学。机器人是一种能模拟人的行为的机械,对它的研究经历了三代发展过程:第一代(程序控制)机器人:这种机器人只能刻板地按程序完成工作,环境稍有变化就会出问题,甚至发生危险。第二代(自适应)机器人:这种机器人配备有相应的感觉传感器, 能取得作业环境、操作对象等简单的信息,并由机器人体内的计算机进行分析处理,控制机器人的动作。第三代(智能)机器人:智能机 器人具有类似人的智能,它装备了高灵敏度传感器,因而具有超过人的视觉、听觉、 、嗅觉、触觉的能力,能对感知的信息进行分析,控制自 己的行为,处理环境发生的变化,完成各种复杂的任务。而且有自我学习、归纳、总结、提高已掌握知识的能力。(6)智能决策支持系统。20 世纪 80 年代以来专家系统在许多方面取得 成功,将人工智能中特别是智能和知识处理技术应用于决策支持系统,扩大了决策支持系统 的应用范围,提高了系统解决问题的能力,这就成为智能决策支持系统。(7)人工神经网络。在研究人脑的奥秘中得到启发,试图用大量的 处理单元模仿人脑神经系统工程结构和工作机理。

毕业论文人工智能翻译

在阅读SCI论文时,英文的翻译总是会难倒很多人。今天学术堂为大家整理了一些好用的英文翻译工具,总有一款适合你!

1、谷歌浏览器翻译

在百度搜索引擎或者360软件管家中搜索“谷歌浏览器”,因谷歌浏览器默认安装C盘,所以直接点击安装即可。待安装完成后点击设置,点击管理搜索引擎,将默认搜索引擎修改为百度或者其他(因防火墙限制,不要修改为Google),这样就可以正常使用谷歌浏览器。

具体使用方法是:

把PDF或者word文档导出为HTML格式,用谷歌浏览器打开。然后点击右键,选择翻译成中文即可。

这是一篇论文翻译之后的结果:

优点:页面简洁,使用方便,随开随用,不用担心软件升级问题,也不会弹出各种小广告,多种语言随时切换,支持段落翻译,极其方便,只要有网就能翻译。

缺点:功能比较单一,排版比较乱,界面不是很美观。

2、SCI

目前有普通版以及VIP版,两者区别在于:

VIP版内置Google 人工智能云翻译引擎,翻译精准度号称史上最强;

VIP版没有广告。

最重要的是两个版本都不需要用户再输入API了!

3、专业词汇翻译--MedSci

MedSci,拼写检查及中英互译 ,收录超过200万个专业词汇,尤其是对新词的收录能力强。象生物医药领域出现的新词,或复杂的化学名均有收录,很全面,更新及时。与各家相比,算是更全面。

Artificial Intelligence (AI) is the intelligence of machines and the branch of computer science which aims to create it. Textbooks define the field as "the study and design of intelligent agents,"[1] where an intelligent agent is a system that perceives its environment and takes actions which maximize its chances of success.[2] John McCarthy, who coined the term in 1956,[3] defines it as "the science and engineering of making intelligent machines."[4]The field was founded on the claim that a central property of human beings, intelligence—the sapience of Homo sapiens—can be so precisely described that it can be simulated by a machine.[5] This raises philosophical issues about the nature of the mind and limits of scientific hubris, issues which have been addressed by myth, fiction and philosophy since antiquity.[6] Artificial intelligence has been the subject of breathtaking optimism,[7] has suffered stunning setbacks[8] and, today, has become an essential part of the technology industry, providing the heavy lifting for many of the most difficult problems in computer science.[9]AI research is highly technical and specialized, deeply divided into subfields that often fail to communicate with each other.[10] Subfields have grown up around particular institutions, the work of individual researchers, the solution of specific problems, longstanding differences of opinion about how AI should be done and the application of widely differing tools. The central problems of AI include such traits as reasoning, knowledge, planning, learning, communication, perception and the ability to move and manipulate objects.[11] General intelligence (or "strong AI") is still a long-term goal of (some) research.[12]Thinking machines and artificial beings appear in Greek myths, such as Talos of Crete, the golden robots of Hephaestus and Pygmalion's Galatea.[13] Human likenesses believed to have intelligence were built in every major civilization: animated statues were worshipped in Egypt and Greece[14] and humanoid automatons were built by Yan Shi,[15] Hero of Alexandria,[16] Al-Jazari[17] and Wolfgang von Kempelen.[18] It was also widely believed that artificial beings had been created by Jābir ibn Hayyān,[19] Judah Loew[20] and Paracelsus.[21] By the 19th and 20th centuries, artificial beings had become a common feature in fiction, as in Mary Shelley's Frankenstein or Karel Čapek's . (Rossum's Universal Robots).[22] Pamela McCorduck argues that all of these are examples of an ancient urge, as she describes it, "to forge the gods".[6] Stories of these creatures and their fates discuss many of the same hopes, fears and ethical concerns that are presented by artificial problem of simulating (or creating) intelligence has been broken down into a number of specific sub-problems. These consist of particular traits or capabilities that researchers would like an intelligent system to display. The traits described below have received the most attention.[11][edit] Deduction, reasoning, problem solvingEarly AI researchers developed algorithms that imitated the step-by-step reasoning that human beings use when they solve puzzles, play board games or make logical deductions.[39] By the late 80s and 90s, AI research had also developed highly successful methods for dealing with uncertain or incomplete information, employing concepts from probability and economics.[40]For difficult problems, most of these algorithms can require enormous computational resources — most experience a "combinatorial explosion": the amount of memory or computer time required becomes astronomical when the problem goes beyond a certain size. The search for more efficient problem solving algorithms is a high priority for AI research.[41]Human beings solve most of their problems using fast, intuitive judgments rather than the conscious, step-by-step deduction that early AI research was able to model.[42] AI has made some progress at imitating this kind of "sub-symbolic" problem solving: embodied approaches emphasize the importance of sensorimotor skills to higher reasoning; neural net research attempts to simulate the structures inside human and animal brains that gives rise to this intelligenceMain articles: Strong AI and AI-completeMost researchers hope that their work will eventually be incorporated into a machine with general intelligence (known as strong AI), combining all the skills above and exceeding human abilities at most or all of them.[12] A few believe that anthropomorphic features like artificial consciousness or an artificial brain may be required for such a project.[74]Many of the problems above are considered AI-complete: to solve one problem, you must solve them all. For example, even a straightforward, specific task like machine translation requires that the machine follow the author's argument (reason), know what is being talked about (knowledge), and faithfully reproduce the author's intention (social intelligence). Machine translation, therefore, is believed to be AI-complete: it may require strong AI to be done as well as humans can do it.[75][edit] ApproachesThere is no established unifying theory or paradigm that guides AI research. Researchers disagree about many issues.[76] A few of the most long standing questions that have remained unanswered are these: should artificial intelligence simulate natural intelligence, by studying psychology or neurology? Or is human biology as irrelevant to AI research as bird biology is to aeronautical engineering?[77] Can intelligent behavior be described using simple, elegant principles (such as logic or optimization)? Or does it necessarily require solving a large number of completely unrelated problems?[78] Can intelligence be reproduced using high-level symbols, similar to words and ideas? Or does it require "sub-symbolic" processing?[79][edit] Cybernetics and brain simulationMain articles: Cybernetics and Computational neuroscience There is no consensus on how closely the brain should be the 1940s and 1950s, a number of researchers explored the connection between neurology, information theory, and cybernetics. Some of them built machines that used electronic networks to exhibit rudimentary intelligence, such as W. Grey Walter's turtles and the Johns Hopkins Beast. Many of these researchers gathered for meetings of the Teleological Society at Princeton University and the Ratio Club in England.[24] By 1960, this approach was largely abandoned, although elements of it would be revived in the can one determine if an agent is intelligent? In 1950, Alan Turing proposed a general procedure to test the intelligence of an agent now known as the Turing test. This procedure allows almost all the major problems of artificial intelligence to be tested. However, it is a very difficult challenge and at present all agents intelligence can also be evaluated on specific problems such as small problems in chemistry, hand-writing recognition and game-playing. Such tests have been termed subject matter expert Turing tests. Smaller problems provide more achievable goals and there are an ever-increasing number of positive broad classes of outcome for an AI test are:Optimal: it is not possible to perform better Strong super-human: performs better than all humans Super-human: performs better than most humans Sub-human: performs worse than most humans For example, performance at draughts is optimal,[143] performance at chess is super-human and nearing strong super-human,[144] and performance at many everyday tasks performed by humans is quite different approach is based on measuring machine intelligence through tests which are developed from mathematical definitions of intelligence. Examples of this kind of tests start in the late nineties devising intelligence tests using notions from Kolmogorov Complexity and compression [145] [146]. Similar definitions of machine intelligence have been put forward by Marcus Hutter in his book Universal Artificial Intelligence (Springer 2005), which was further developed by Legg and Hutter [147]. Mathematical definitions have, as one advantage, that they could be applied to nonhuman intelligences and in the absence of human is a common topic in both science fiction and in projections about the future of technology and society. The existence of an artificial intelligence that rivals human intelligence raises difficult ethical issues and the potential power of the technology inspires both hopes and Shelley's Frankenstein,[160] considers a key issue in the ethics of artificial intelligence: if a machine can be created that has intelligence, could it also feel? If it can feel, does it have the same rights as a human being? The idea also appears in modern science fiction: the film Artificial Intelligence: . considers a machine in the form of a small boy which has been given the ability to feel human emotions, including, tragically, the capacity to suffer. This issue, now known as "robot rights", is currently being considered by, for example, California's Institute for the Future,[161] although many critics believe that the discussion is premature.[162]Another issue explored by both science fiction writers and futurists is the impact of artificial intelligence on society. In fiction, AI has appeared as a servant (R2D2 in Star Wars), a law enforcer (. "Knight Rider"), a comrade (Lt. Commander Data in Star Trek), a conqueror (The Matrix), a dictator (With Folded Hands), an exterminator (Terminator, Battlestar Galactica), an extension to human abilities (Ghost in the Shell) and the saviour of the human race (R. Daneel Olivaw in the Foundation Series). Academic sources have considered such consequences as: a decreased demand for human labor,[163] the enhancement of human ability or experience,[164] and a need for redefinition of human identity and basic values.[165]Several futurists argue that artificial intelligence will transcend the limits of progress and fundamentally transform humanity. Ray Kurzweil has used Moore's law (which describes the relentless exponential improvement in digital technology with uncanny accuracy) to calculate that desktop computers will have the same processing power as human brains by the year 2029, and that by 2045 artificial intelligence will reach a point where it is able to improve itself at a rate that far exceeds anything conceivable in the past, a scenario that science fiction writer Vernor Vinge named the "technological singularity".[164] Edward Fredkin argues that "artificial intelligence is the next stage in evolution,"[166] an idea first proposed by Samuel Butler's "Darwin among the Machines" (1863), and expanded upon by George Dyson in his book of the same name in 1998. Several futurists and science fiction writers have predicted that human beings and machines will merge in the future into cyborgs that are more capable and powerful than either. This idea, called transhumanism, which has roots in Aldous Huxley and Robert Ettinger, is now associated with robot designer Hans Moravec, cyberneticist Kevin Warwick and inventor Ray Kurzweil.[164] Transhumanism has been illustrated in fiction as well, for example in the manga Ghost in the Shell and the science fiction series Dune. Pamela McCorduck writes that these scenarios are expressions of the ancient human desire to, as she calls it, "forge the gods."[6]

要花费一定的时间寻找润色公司,有时会像楼主一样选到不靠谱或者不专业的公司。那作为行业者就给大家几个找靠谱、专业论文润色公司的秘诀,希望能在选择上帮到大家。秘诀一:100%英语母语通常情况来说SCI论文润色要达到以下要求:1、对论文的观点进行“画龙点睛”。2、对论文的用语进行有“针对性”和“渲染性”的收缩。3、对论文的段落以及字数的添加、减少、合并、归类。4、对“独创性的观点”进行突出。5、对“专业用语”进行精准性的描述和表达。6、对论文第一次出现的英文缩写名词“进行全英文”和“中文标识”。 7、对参考文献来路进行路径准确性表达。 要达到以上这些要求我们就必须选择一个编辑团队为100%英语母语的专业润色团队。所以在选择sci论文润色公司时一定要了解清楚公司编辑团队,看看是否有与自己专业相同的学术编辑,这样的sci论文润色才能在语言及学术问题上更准确,更能达到自己本身想要表述的效果。秘诀二:公司服务保障有时选择了一家sci论文润色公司进行润色,会遇到这样一类问题,最后的润色成果比预期的糟糕或者达不到

国际学术会议人工智能与翻译论文

国际学术会议是一种学术影响度较高的会议,它具有国际性、权威性、高知识性、高互动性等特点,其参会者一般为科学家、学者、教师等。具有高学历的研究人员把它作为一种科研学术的交流方式,够为科研成果的发表和对科研学术论文的研讨提供一种途径 ;同时也能促进科研学术理论水平的提高。针对自然语言处理方向比较重要的几个会议有:ACL、EMNLP、NACAL、CoNLL、IJCNLP、CoNLL、IJCNLP、COLING、ICLR、AAAI、NLPCC等

会议链接地址: ACL     它是自然语言处理与计算语言学领域 最高级别 的学术会议,由计算语言学协会主办,每年一届。主要涉及对话(Dialogue)、篇章(Discourse)、评测( Eval)、信息抽取( IE)、信息检索( IR)、语言生成(LanguageGen)、语言资源(LanguageRes)、机器翻译(MT)、多模态(Multimodal)音韵学/ 形态学( Phon/ Morph)、自动问答(QA)、语义(Semantics)、情感(Sentiment)、语音(Speech)、统计机器学习(Stat ML)、文摘(Summarisation)、句法(Syntax)等多个方面。     ACL 成立于1962年, 每年举办一次 。这个学会主办了 NLP/CL 领域最权威的国际会议,即ACL年会。1982年和1999年,ACL分别成立了欧洲分会([EACL)和北美分会(NAACL)两个区域性分会。近年来,亚太地区在自然语言处理方面的研究进步显著,2018年7月15日,第56届ACL年会在澳大利亚墨尔本举行。开幕仪式上,ACL主席Marti Hearst正式宣布成立国际计算语言学学会亚太地区分会( AACL ,The Asia-Pacific Chapter of Association for Computational Linguistics)。此次成立ACL亚太分会,将进一步促进亚太地区NLP相关技术和研究的发展。据悉,首届AACL会议预计在2020年举行,此后将每两年举行一次。

会议链接地址: EMNLP     EMNLP涉及多个研究方向,其中包括:信息提取、信息检索和问答系统,语言和视觉,语言理论和心理语言学,机器学习,机器翻译和多语言,分割、标记和语法 分析,语义学,情感分析和观点挖掘,社交媒体和计算社交科学,口语处理,概述,生成,论述和对话,文本挖掘和自然语言分析。     EMNLP也是由ACL主办的,其中ACL学会下设多个特殊兴趣小组(Special Interest Groups ),SIGs聚集了NLP/CL不同子领域的学者,性质类似一个大学校园的兴趣社团。其中比较有名的诸如 SIGDAT(Special Interest Group on Linguistic Data & Corpus-based Approaches to Natural Language Processing)、SIGNLL(Special Interest Group on Natural Language Learning)等。这些 SIGs 也会召开一些国际学术会议,其中比较有名的就是 SIGDAT 组织的 EMNLP 和 SIGNLL 组织的 CoNLL(Conference on Computational Natural Language Learning), 均为每年举办一次 。

会议链接地址: NACAL     NACAL会议主要涉及对话,篇章,评测,信息抽取,信息检索,语言生成,语言资源,机器翻译,多模态,音韵学/ 形态学,自动问答,语义,情感,语音,统计机器学习,文摘,句法等多个方面。     NACAL是 ACL 的的北美分会,当然也是由 ACL 主办。这里把 NAACL 单独列出来是因为相比于 ACL 的欧洲分会 EACL(之前是 每三年举办一次 ,过去存在感不太强,据说从2020年开始将改为每年举办,相信会逐渐被大家重视起来),NAACL 是 每年举办一次 ,就目前而言,大家对它的认可度比 EACL 高。ACL、EMNLP、NAACL 均为每年举办一次。因为是同一学术组织举办,所以会有些有意思的潜规则。例如 ACL、EMNLP 会在各大洲轮流举办,而每当ACL在北美举办时,当年NAACL就停办一次(同理,当ACL在欧洲举办时,当年EACL就停办一次)。

会议链接地址: CoNLL      SIGDAT 组织的 EMNLP 和 SIGNLL 组织的 CoNLL( Conference on Computational Natural Language Learning),均为每年举办一次。其中CoNLL的主要涉及的方向有:对话与互动系统、信息提取、信息检索,问题回答、从认知角度研究学习方法(如机器学习、生物启发、主动学习、混合模型)、语言模型、分割、词汇语义和成分语义、语言理论与资源、用于NLP的机器学习、机器翻译、语言学中的归纳法和类比法、词法分析、词性标注和序列标注等。

会议链接地址: COLING     COLING会议主要涵盖的方向有:信息提取、信息检索和问答系统;机器学习;机器翻译;分割、标记和语法 分析;语义学;情感分析和观点挖掘;社交媒体和计算社交科 学;口语处理;对话生成;文本挖掘等。     COLING 全称 International Conference on Computational Linguistics,1965年开办,它是由老牌 NLP/CL 学术组织 ICCL(The International Committee on Computational Linguistics) 组织的, 每两年举办一次 。不过可能由于不是每年举行,感觉最近几次会议的质量起伏比较大,从认可度上也确有被EMNLP赶超的趋势。

会议链接地址: ICLR     ICLR主要发表深度学习各方面的前沿研究,其中涵盖人工智能、统计学和数据科学以及机器视觉、计算生物学、语音识别、文本理解、游戏和机器人等重要应用领域。     ICLR由Yann LeCun 和 Yoshua Bengio 等大牛发起,会议开创了公开评议机制(open review),但在今年取消了公开评议,改为双盲评审。它是一个很年轻的会议,今年举办到第6届,但已经成为深度学习领域不容忽视的重要会议,甚至有深度学习顶会“无冕之王”之称。ICLR也是世界上发展最快的人工智能会议之一,今年将有4000多名参会者。

会议链接地址: AAAI     AAAI是人工智能领域的主要学术会议,由美国人工智能促进协会主办。AAAI 成立于 1979 年,最初名为 “美国人工智能协会” (American Association for Artificial Intelligence),2007 年才正式更名为 “人工智能促进协会”(Association for the Advancement of Artificial Intelligence )。致力于促进对思维和智能行为机制及其在机器中的体现的科学理解。AAAI旨在促进人工智能的研究和负责任的使用。AAAI还旨在提高公众对人工智能的理解,改善人工智能从业者的教学和培训,并就当前人工智能发展的重要性和潜力以及未来方向为研究规划者和资助者提供指导     近年的 AAAI 会议不乏中国学者的身影,据统计 AAAI 2018 接收的 910 多篇论文中有1/3以上一作是华人名字。此外,2019 年 AAAI 程序主席是南京大学周志华教授,另一位程序主席是密歇根大学教授 Pascal Van Hentenryck。

会议链接地址: NLPCC     NLPCC主要涉及的方向有:分词和命名实体识别、句法分析、语义分析、语篇分析、面向少数民族和低资源语言的NLP、自然语言处理的应用、数字出版、文档工程、OCR和字体计算、用于移动计算的NLP、机器翻译和多语言信息访问、NLP的机器学习、Web/文本挖掘与大数据、信息检索与提取、知识表示与获取、个性化与推荐、用于搜索和广告的NLP等     作为自然语言处理和汉语计算领域的国际领先会议,NLPCC最近被CCF确认为C类会议。它为来自学术界、工业界和政府的研究人员和实践者提供了一个主要论坛,以分享他们的想法、研究成果和经验,并促进他们在该领域的研究和技术创新。NLPCC历届会议分别在北京(2012)、重庆(2013)、深圳(2014)、南昌(2015)、昆明(2016)、大连(2017)、呼和浩特(2018)、甘肃(2019)成功举办。

ACL、EMNLP、NAACL 和 COLING 可以说是 NLP 领域的四大顶会。其中 ACL、EMNLP、NAACL都是一家的(均由 ACL 举办)。ACL 、AAAI是 CCF 推荐A类国际学术会议,EMNLP 和 COLING 是B类,NAACL 、CoNLL、NLPCC则是C类。

更多自然语言处理、pytorch相关知识,还请关注 AINLPer 公众号,极品干货即刻送达。

你是想先写中文的大数据与人工智能的论文,然后再翻译成英文投稿国际会议对吧。这个方法不对,一般情况下是先写英文再翻译成中文的,很少说会先写中文再翻译成英文,这样难度大,而且耗费双倍时间。此外,学术类的资料翻译是没有捷径可走的,用翻译软件翻译出来的简直不能看,建议你直接写英文再翻译成中文。

CVPR的workshop审稿还是很严格的。虽然reviewers和主会不是一套班子,但也都是来自Google/Facebook的顶级学者。难度上,CVPR workshop=B类主会>C类主会。

CVPR录用标准

CVPR有着较为严苛的录用标准,会议整体的录取率通常不超过30%,而口头报告的论文比例更是不高于5%。而会议的组织方是一个循环的志愿群体,通常在某次会议召开的三年之前通过遴选产生。CVPR的审稿一般是双盲的,也就是说会议的审稿与投稿方均不知道对方的信息。

通常某一篇论文需要由三位审稿者进行审读。最后再由会议的领域主席(area chair)决定论文是否可被接收。

第一届CVPR会议于1983年在华盛顿由金出武雄和Dana Ballard举办,此后每年都在美国本土举行。会议一般在六月举行,而举办地通常情况下是在美国的西部,中部和东部地区之间循环。

例如,2013年该会议在波特兰召开。而2014年有超过1900人参加了在哥伦比亚举办的会议。而接下来的2015,2016和2017年,该会议分别于波士顿,拉斯维加斯和夏威夷举办。

CVPR有着较为严苛的录用标准,会议整体的录取率通常不超过30%,而口头报告的论文比例更是不高于5%。

而会议的组织方是一个循环的志愿群体,通常在某次会议召开的三年之前通过遴选产生。CVPR的审稿一般是双盲的,也就是说会议的审稿与投稿方均不知道对方的信息。通常某一篇论文需要由三位审稿者进行审读。最后再由会议的领域主席(area chair)决定论文是否可被接收。

在各种学术会议统计中,CVPR被认为有着很强的影响力和很高的排名。目前在中国计算机学会推荐国际学术会议的排名中,CVPR为人工智能领域的A类会议  。在巴西教育部的排名中排名为A1。基于微软学术搜索(Microsoft Academic Search)2014年的统计,CVPR中的论文总共被引用了169,936次。

人工智能和机器学习技术的快速发展,使得AI 主题会议也层出不穷,下面带大家一起了解一下人工智能领域的顶会都有哪些1. CVPR 国际计算机视觉与模式识别会议(CVPR)是IEEE一年一度的学术性会议,会议的主要内容是计算机视觉与模式识别技术。CVPR是世界顶级的计算机视觉会议(三大顶会之一,另外两个是 ICCV 和 ECCV ),近年来每年有约1500名参加者,收录的论文数量一般300篇左右。本会议每年都会有固定的研讨主题,而每一年都会有公司赞助该会议并获得在会场展示的机会。 2. ECCV ECCV 的全称是European Conference on Computer Vision(欧洲计算机视觉国际会议) ,两年一次,是计算机视觉三大会议(另外两个是ICCV和CVPR)之一。每次会议在全球范围录用论文300篇左右,主要的录用论文都来自美国、欧洲等顶尖实验室及研究所,中国大陆的论文数量一般在10-20篇之间。ECCV2010的论文录取率为27% ICCV 的全称是 IEEE International Conference on Computer Vision,即国际计算机视觉大会,由IEEE主办,与计算机视觉模式识别会议(CVPR)和欧洲计算机视觉会议(ECCV)并称计算机视觉方向的三大顶级会议,被澳大利亚ICT学术会议排名和中国计算机学会等机构评为最高级别学术会议,在业内具有极高的评价。不同于在美国每年召开一次的CVPR和只在欧洲召开的ECCV,ICCV在世界范围内每两年召开一次。ICCV论文录用率非常低,是三大会议中公认级别最高的. 4. ICLR ICLR ,全称为「International Conference on Learning  Representations」(国际学习表征会议),2013 年才刚刚成立了第一届。这个一年一度的会议虽然今年(2018)才办到第六届,但已经被学术研究者们广泛认可,被认为「深度学习的顶级会议」。这个会议的来头不小,由位列深度学习三大巨头之二的 Yoshua Bengio 和 Yann LeCun 牵头创办。 5. NIPS NIPS (NeurIPS),全称神经信息处理系统大会(Conference  and Workshop on Neural Information Processing Systems),是一个关于机器学习和计算神经科学的国际会议。该会议固定在每年的12月举行,由NIPS基金会主办。NIPS是机器学习领域的顶级会议。在中国计算机学会的国际学术会议排名中,NIPS为人工智能领域的A类会议。 ICML 是 International Conference on Machine Learning的缩写,即国际机器学习大会。ICML如今已发展为由国际机器学习学会(IMLS)主办的年度机器学习国际顶级会议。 7. IJCV 国际期刊计算机视觉,详细描绘了信息科学与工程这一领域的快速发展。一般性发表的文章提出广泛普遍关心的重大技术进步。短文章提供了一个新的研究成果快速发布通道。综述性文章给与了重要的评论,以及当今发展现状的概括。 8. PAMI PAMI 是IEEE旗下,模式识别和机器学习领域最重要的学术性汇刊之一。在各种统计中,PAMI被认为有着很强的影响因子和很高的排名。 9. AAAI 国际人工智能协会。前身为美国人工智能协会,目前是一个非盈利的学术研究组织,致力于推动针对智能行为本质的科学研究 10. IJCAI IJCAI 全称为人工智能国际联合大会(International Joint Conference on  Artificial Intelligence),是国际人工智能领域排名第一的学术会议,为 CCF A 类会议。该会议于 1969 年首度在美国华盛顿召开,随着人工智能的热度日益攀升,原本仅在奇数年召开的IJCAI 自 2015 年开始变成每年召开。 11. ACM/MM ACMMM 是全球多媒体领域的顶级会议,会议每年通过组织大规模图像视频分析、社会媒体研究、多模态人机交互、计算视觉、计算图像等影响多媒体行业的前沿命题竞赛,引领全球新媒体发展方向。 12. TNNLS 从英文翻译而来-IEEE神经网络与学习系统交易是由IEEE计算智能学会出版的月度同行评审科学期刊。它涵盖了神经网络和相关学习系统的理论,设计和应用。

人工翻译与机器翻译论文

可是可以,建议你百度谷歌(谷歌翻译是可以用的)两个一起用。然后不要整个都粘贴过去,一段话一段话的翻译会准确点。

机器翻译长处:

机器翻译劣势:

人工翻译和机器翻译刚好相反,机器的劣势就是人工的优势,反之亦然。

解决方案:

根据文本类型和时间充裕程度决定主要使用哪种翻译。两种翻译方式结合使用,比如主要使用人工翻译时,也用网上词典帮助提高效率。合理利用两种方式,争取既保证质量,也保证效率。

这还用想么?当然是人工翻译最好啊。机器翻译虽然语言转换很快,但是不论从情感上、语言的结构上,人工翻译永远都要比机器翻译好太多。机器翻译的优点和缺点不言而喻,但是人工翻译才是yyds啊!湖南雅言翻译的文章里说过:机器翻译所采用的数据库以及大数据等,完全不能直面地想表达每个人话里的中心思想,比如一些隐晦的话语,机器翻译可能会更为直白的表达,文字生硬且不圆融,而人工翻译则能更清楚地想要以什么形式展现和表述。这写得多好,完全剖析了机器翻译和人工翻译的最大差距!

科技在口译中的应用目前是怎样的?

随着现代科技日新月异的发展,人们总是时不时能get到一些意想不到的、令人欣喜的讯息和技能,让人真切的感受到科技已经渐渐渗透到我们日常生活的点点滴滴中,原本觉得不可思议的事情,已经在一一发生。

翻译,这个原本是纯粹靠脑力劳动的高精尖行业,也不例外的受惠于科技发展,正在渐渐发生变化。比如,谷歌翻译现在已经被人们广泛运用,在要求不高的情况下,能快速的帮人们解决眼下的小麻烦。除了谷歌翻译,还有很多相似的但是以更为精准的基于行业语料库的机器翻译,虽然它们目前无法完全取代人脑翻译,但是已经越来越完善,相信还会在不久的将来更加强大。

除了这些众所周知的类似“谷歌”的笔译机器翻译之外,其实让人们更想不到的是,口译工作居然也能逐渐引入科技元素,给用户带来更多的便捷。传统的高端口译可以算是服务业中的奢侈品,重大场合的会议口译对译员有着非常高的要求,不仅翻译水平要出类拔萃,同样也要举止得当、谈吐优雅、衣着得体、临场应变能力强,甚至对外表气质也有要求,所以高端的口译人才可遇不可求,价格也不菲。

然而现代科技的迅速发展,也缩小了地球上的时空距离,国际交往日益频繁便利,整个地球就如同是茫茫宇宙中的一个小村落。不同肤色不同母语的人们已经越来越频繁的在各种场合进行交流,而不仅限于高大上的国际会议,相比之下,现在多频、短暂的口译需求的使得口译服务更为平民化、随机化。如果一个简短的交流也需要提前预约一位高端口译者,那不管是可操作性和成本控制方面都是不合理的。所以现在一种应运而生的翻译平台能帮人们解决这个苦恼,用户可以轻松的通过下载手机端的app,就能便捷的享受随时发生的尴尬情景中的即时翻译服务。用户可以选择自己需要翻译的语种,即时的和该语种的翻译进行视频通话,即便用户的谈话非常简短,也不用担心,它以通话时长计费,所以很实惠。这种服务非常适用于异国商旅途中的简短会话、比如问路、就医、参观,等等。像是用户随身携带了一名翻译。

除了这种在线口译服务之外,还有一些很有用的工具能帮助人们解决“类口译”的项目困难。比如现场对话的录音文件的翻译,以往我们需要翻译员将谈话内容先听记下来,然后进行翻译,为做到一字不落,翻译可能需要反复的听。现在大家已经知道,我们最常用的微信就有“语音转文字”功能,给不方便听语音的人提供便捷。那同样的,现在也有专门针对这种需求而开发出来的APP,可以听取长时间大篇幅的会议内容,而且多国语言都能实现。只要发音比较标准,声音比较清晰,都可以轻松的用文字记录下来,便于后期存档和进行翻译加工。

相信这一切只是刚刚发生,不断发展的科技革新会带着更大的激情在不久的将来会冲击我们。

人工智能论文

1.是指“人工智能”方面的学术论文,发表在某一学术期刊上。2.是指通过某些软件或者应用,搜索某一关键词,自动生成长篇的论文,但论文一般都是不通的。

随着科学技术的发展,人工神经网络技术得到了空前的发展,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。以下是我整理分享的人工智能神经网络论文的相关资料,欢迎阅读!

人工神经网络的发展及应用

摘要随着科学技术的发展,人工神经网络技术得到了空前的发展,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力。人工神经网络的发展经历了不同的阶段,是人工智能的重要组成部分,并且在发展过程中形成了自身独特的特点。文章对人工神经网络的发展历程进行回顾,并对其在各个领域的应用情况进行探讨。

关键词人工神经网络;发展;应用

随着科学技术的发展,各个行业和领域都在进行人工智能化的研究工作,已经成为专家学者研究的热点。人工神经网络就是在人工智能基础上发展而来的重要分支,对人工智能的发展具有重要的促进作用。人工神经网络从形成之初发展至今,经历了不同的发展阶段,并且在经济、生物、医学等领域得到了广泛的应用,解决了许多技术上的难题。

1人工神经网络概述

关于人工神经网络,到目前为止还没有一个得到广泛认可的统一定义,综合各专家学者的观点可以将人工神经网络简单的概括为是模仿人脑的结构和功能的计算机信息处理系统[1]。人工神经网络具有自身的发展特性,其具有很强的并行结构以及并行处理的能力,在实时和动态控制时能够起到很好的作用;人工神经网络具有非线性映射的特性,对处理非线性控制的问题时能给予一定的帮助;人工神经网络可以通过训练掌握数据归纳和处理的能力,因此在数学模型等难以处理时对问题进行解决;人工神经网络的适应性和集成性很强,能够适应不同规模的信息处理和大规模集成数据的处理与控制;人工神经网络不但在软件技术上比较成熟,而且近年来在硬件方面也得到了较大发展,提高了人工神经网络系统的信息处理能力。

2人工神经网络的发展历程

萌芽时期

在20世纪40年代,生物学家McCulloch与数学家Pitts共同发表文章,第一次提出了关于神经元的模型M-P模型,这一理论的提出为神经网络模型的研究和开发奠定了基础,在此基础上人工神经网络研究逐渐展开。1951年,心理学家Hebb提出了关于连接权数值强化的法则,为神经网络的学习功能开发进行了铺垫。之后生物学家Eccles通过实验证实了突触的真实分流,为神经网络研究突触的模拟功能提供了真实的模型基础以及生物学的依据[2]。随后,出现了能够模拟行为以及条件反射的处理机和自适应线性网络模型,提高了人工神经网络的速度和精准度。这一系列研究成果的出现为人工神经网络的形成和发展提供了可能。

低谷时期

在人工神经网络形成的初期,人们只是热衷于对它的研究,却对其自身的局限进行了忽视。Minskyh和Papert通过多年对神经网络的研究,在1969年对之前所取得的研究成果提出了质疑,认为当前研究出的神经网络只合适处理比较简单的线性问题,对于非线性问题以及多层网络问题却无法解决。由于他们的质疑,使神经网络的发展进入了低谷时期,但是在这一时期,专家和学者也并没有停止对神经网络的研究,针对他们的质疑也得出一些相应的研究成果。

复兴时期

美国的物理学家Hopfield在1982年提出了新的神经网络模型,并通过实验证明在满足一定的条件时,神经网络是能够达到稳定的状态的。通过他的研究和带动,众多专家学者又重新开始了对人工神经网络方面的研究,推动了神经网络的再一次发展[3]。经过专家学者的不断努力,提出了各种不同的人工神经网络的模型,神经网络理论研究不断深化,新的理论和方法层出不穷,使神经网络的研究和应用进入了一个崭新的时期。

稳步发展时期

随着人工神经网络研究在世界范围内的再次兴起,我国也迎来了相关理论研究的热潮,在人工神经网络和计算机技术方面取得了突破性的进展。到20世纪90年代时,国内对于神经网络领域的研究得到了进一步的完善和发展,而且能够利用神经网络对非线性的系统控制问题进行解决,研究成果显著。随着各类人工神经网络的相关刊物的创建和相关学术会议的召开,我国人工神经网络的研究和应用条件逐步改善,得到了国际的关注。

随着人工神经网络的稳步发展,逐渐建立了光学神经网络系统,利用光学的强大功能,提高了人工神经网络的学习能力和自适应能力。对非线性动态系统的控制问题,采取有效措施,提高超平面的光滑性,对其精度进行改进。之后有专家提出了关于人工神经网络的抽取算法,虽然保证了精度,但也加大了消耗,在一定程度上降低了神经网络的效率,因此在此基础上又提出了改进算法FERNN。混沌神经网络的发展也得到了相应的进步,提高了神经网络的泛化能力。

3人工神经网络的应用

在信息领域中的应用

人工神经网络在信息领域中的应用主要体现在信息处理和模式识别两个方面。由于科技的发展,当代信息处理工作越来越复杂,利用人工神经网络系统可以对人的思维进行模仿甚至是替代,面对问题自动诊断和解决,能够轻松解决许多传统方法无法解决的问题,在军事信息处理中的应用极为广泛[4]。模式识别是对事物表象的各种信息进行整理和分析,对事物进行辨别和解释的一个过程,这样对信息进行处理的过程与人类大脑的思维方式很相像。模式识别的方法可以分为两种,一种是统计模式识别,还有一种是结构模式识别,在语音识别和指纹识别等方面得到了广泛的应用。

在医学领域的应用

人工神经网络对于非线性问题处理十分有效,而人体的构成和疾病形成的原因十分复杂,具有不可预测性,在生物信号的表现形式和变化规律上也很难掌握,信息检测和分析等诸多方面都存在着复杂的非线性联系,所以应用人工神经网络决解这些非线性问题具有特殊意义[5]。目前,在医学领域中的应用涉及到理论和临床的各个方面,最主要的是生物信号的检测和自动分析以及专家系统等方面的应用。

在经济领域中的应用

经济领域中的商品价格、供需关系、风险系数等方面的信息构成也十分复杂且变幻莫测,人工神经网络可以对不完整的信息以及模糊不确定的信息进行简单明了的处理,与传统的经济统计方法相比具有其无法比拟的优势,数据分析的稳定性和可靠性更强。

在其他领域的应用

人工神经网络在控制领域、交通领域、心理学领域等方面都有很广泛的应用,能够对高难度的非线性问题进行处理,对交通运输方面进行集成式的管理,以其高适应性和优秀的模拟性能解决了许多传统方法无法解决的问题,促进了各个领域的快速发展。

4总结

随着科技的发展,人工智能系统将进入更加高级的发展阶段,人工神经网络也将得到更快的发展和更加广泛的应用。人工神经网络也许无法完全对人脑进行取代,但是其特有的非线性信息处理能力解决了许多人工无法解决的问题,在智能系统的各个领域中得到成功应用,今后的发展趋势将向着更加智能和集成的方向发展。

参考文献

[1]徐用懋,冯恩波.人工神经网络的发展及其在控制中的应用[J].化工进展,1993(5):8-12,20.

[2]汤素丽,罗宇锋.人工神经网络技术的发展与应用[J].电脑开发与应用,2009(10):59-61.

[3]李会玲,柴秋燕.人工神经网络与神经网络控制的发展及展望[J].邢台职业技术学院学报,2009(5):44-46.

[4]过效杰,祝彦知.人工神经网络的发展及其在岩土工程领域研究现状[J].河南水利,2004(1):22-23.

[5]崔永华.基于人工神经网络的河流汇流预报模型及应用研究[D].郑州大学,2006.

下一页分享更优秀的<<<人工智能神经网络论文

人工智能与机器人研究这本期刊的领域,你可以参考下:智能机器人、模式识别与智能系统、虚拟现实技术与应用、系统仿真技术与应用、工业过程建模与智能控制、智能计算与机器博弈、人工智能理论、语音识别与合成、机器翻译、图像处理与计算机视觉、计算机感知、计算机神经网络、知识发现与机器学习、建筑智能化技术与应用、人智能其他学科

相关百科
热门百科
首页
发表服务