论文发表百科

复杂直流电路研究实验报告及论文

发布时间:2024-07-03 17:39:35

复杂直流电路研究实验报告及论文

实验报告要点

一、扉页

并非所有的实验报告都有标题页,但是如果讲师想要标题页,那么它应该是一个单独的页面,包括:实验的题目、自己的名字和实验室伙伴的名字、导师的名字、进行实验或提交报告的日期。

二、标题

标题写着做了什么。它应该简短,并描述实验或调查的要点。

三、介绍

通常情况下介绍是解释实验室目标或目的的一个段落。用一句话陈述假设。有时介绍可能包含背景信息,简要总结实验是如何进行的,陈述实验的发现,并列出调查的结论。

四、步骤

描述在调查过程中完成的步骤。要足够详细,任何人都可以阅读这一部分并复制实验。提供一个图表来描述实验设置可能会有所帮助。

五、数据

从过程中获得的数字数据通常以表格的形式呈现。数据包括进行实验时记录的内容。

六、结果

用语言描述数据的含义。有时“结果”部分会与“讨论”部分结合在一起。

七、讨论或分析

数据部分包含数字,“分析”部分包含根据这些数字进行的任何计算。这是解释数据和确定假设是否被接受的地方,也是讨论在进行调查时可能犯的任何错误的地方。

八、结论

大多数情况下,结论是一个段落,总结了实验中发生的事情,假设是被接受还是被拒绝,以及这意味着什么。

九、图形和图表

图表和图形都必须标有描述性的标题。在图表上标注轴,确保包含测量单位。一定要参考报告正文中的图和图表。

十、参考

如果研究是基于别人的文献,或者引用了需要文档的事实,那么应该列出这些参考文献。

1)实验所使用的电压表虽内阻很大,但不可能达到无穷大,电流表虽内阻很小,但不可能为零,所以会产生一定的误差。 (2)读数时的视差。 (3)实验中所使用的元器件的标称值和实际值的误差。 (4)仪器本身的误差。 (5)系统误差。

摘要 电路仿真技术是近十年来在电子技术研究领域的一场革命。设计人员利用计算机及其软件的强大功能,在电路模型上进行电路的性能分析和模拟实验,从而得到准确的结果,然后再付诸生产,极大的减少了实验周期和试制成本,提高了生产效率和经济效益,受到了电子生产厂家的一致欢迎。现在,电子仿真技术已成为电子工业领域不可缺少的先进技术。可进行电子仿真的软件有多种,其中以PROTEL99流行最广。尤其是PROTEL99-SE仿真器,提供了强大的仿真功能,仅仿真元件就有6400多种,对模拟电路、数字电路和模拟数字混合电路均能实现仿真。PROTEL99-SE具有WINDOWS风格的菜单、对话框和工具栏,极大的方便了用户的操作。 Protel最新产品已不是单纯的PCB(印制电路板)设计工具,而是一个系统工具,覆盖了以PCB为核心的整个物理设计。它的下层软件有Protel dxp,用这个来做仿真就相对容易不少。用它做PCB电路,由于给定的电路相对而言很复杂,画电路原理图时还好画,但是制作PCB时就显得很麻烦,不过还好有自动布线这一功能,所以还是很简单的。关键词:仿真、PROTEL99、PCB、自动布线Abstract ̥ Circuit simulation technology is in recent ten years electronic technology research in the field of a revolution. Researchers used the computer and software design of the powerful function, in the circuit model on the circuit performance analysis and simulation experiment, so as to get the exact results, and then put into production, greatly reducing the experimental cycle, and manufacture cost, improve the production efficiency and economic benefit, by the electronic manufacturer's consistent welcome. Now, electronic simulation technology has become indispensable in the electronic industry of advanced technology. Electronic simulation software can be a variety of, among them with PROTEL99's most prevalent. Especially PROTEL99-SE simulators, providing a powerful function of the simulation, the simulation component only has 6400 a variety of, for analog and digital circuit simulation and digital hybrid circuit all can realize simulation. PROTEL99-SE has WINDOWS style of menus, dialog boxes and toolbar, greatly convenient user operation. Latest product already is not merely Protel PCB (printed circuit board) design tools, but a system tools, covered with PCB as the core of the whole physical design. It is the software Protel DXP, use this to do many simulation is relatively easy. Use it to make PCB circuit, due to a given circuit is relatively complex, the picture of the circuit principle diagram when still good painting, but when making PCB appears very troublesome, but also good have automatic wiring this functionality, so is very words:Circuit simulation、PROTEL99、PCB1直流稳压电源原理分析直流稳压电源的类型划分(1) 线性电源 传统线性电源 低压差线性电源(LDO) (2)开关类电源 Charge pump (inductor less DC-DC) DC-DC (inductor)各类直流稳压源的优缺点(1)线性电源n 优点 外围器件少,PCB面积小,花费少 无开关噪声,纹波小n 缺点 降压输出 效率低,功耗大(2)开关电源n 优点 可升压、可降压 效率高,功耗小n 缺点 设计更复杂,外围器件多,花费也较高 输出纹波大 DC-DC类直流稳压源原理类直流稳压源介绍将一个不受控制的输入直流电压变换成为另一个受控的输出直流电压称之为DC-DC变换。随着科学技术的发展,对电子设备的要求是:①性能更加可靠;②功能不断增加;③使用更加方便;④体积日益减小。这些使DC-DC变换技术变得更加重要。目前,DC-DC变换器在计算机、航空、航天、水下行器、通信及电视等领域得到了广泛的应用,同时,这些应用也促进了DC-DC变换技术的进一步发展。DC-DC类直流稳压源的原理框图如图1所示:图1 DC-DC原理图的基本电路DC-DC所包含的三种基本电路分别如下图图2、图3、图4所示:(1) Step Down “Buck” Converter图2 buck电路图(2) Step UP “Boost” Converter图3 boost电路图(3) Step Up / Step Down“Buck - Boost” Converter图4 Buck – Boost电路图 类直流稳压源原理类直流稳压源介绍LDO 是一种线性稳压器。线性稳压器使用在其线性区域内运行的晶体管或 FET,从应用的输入电压中减去超额的电压,产生经过调节的输出电压。所谓压降电压,是指稳压器将输出电压维持在其额定值上下 100mV 之内所需的输入电压与输出电压差额的最小值。正输出电压的LDO(低压降)稳压器通常使用功率晶体管(也称为传递设备)作为 PNP。这种晶体管允许饱和,所以稳压器可以有一个非常低的压降电压,通常为 200mV 左右;与之相比,使用 NPN 复合电源晶体管的传统线性稳压器的压降为 2V 左右。负输出 LDO 使用 NPN 作为它的传递设备,其运行模式与正输出 LDO 的 PNP设备类似。 更新的发展使用 MOS 功率晶体管,它能够提供最低的压降电压。使用 功率MOS,通过稳压器的唯一电压压降是电源设备负载电流的 ON 电阻造成的。如果负载较小,这种方式产生的压降只有几十毫伏。其原理框图如图5所示:图5 LDO类直流稳压源原理图 LDO电路图图6 LDO电路图电路工作原理n 电路开始启动,恒流源电路给整个电路提供偏置,基准源电压快速建立n 输出随着输入不断上升,输出达到规定值n 误差放大器将输出反馈电压和基准电压之间的误差小信号进行放大,再经调整管放大到输出,从而形成负反馈,保证了输出电压稳定n 输入电压变化或输出电流变化,这个闭环回路将使输出电压保持不变2 电路仿真仿真用电路图图7 LDO结构的直流稳压源原理图图8 DC-DC结构的直流稳压源原理图仿真步骤具体的仿真步骤如下所示: (1)在原理图编辑器中载入仿真元件库""。 (2) 在电路图中放置仿真元件,并设置元件的仿真参数。 (3) 连接好仿真线路,绘制仿真电路原理图。 (4) 在仿真电路图中添加电源及激励源。 (5) 设置仿真节点以及电路的初始状态。 (6)对电路原理图进行ERC检查,当电路中没有错误的时候进行仿真。 (7)设置仿真分析的参数,使仿真图形清晰明了,得到仿真结果。仿真结果 图9 LDO结构的直流稳压源电路仿真图图10 DC-DC结构的直流稳压源电路仿真图实验结果分析根据仿真结果来看,两种结构的直流稳压源的输出均表现为一条平行的直线。由此可以看出,两种电源都能够达到直流稳压的性能要求。符合设计要求,实验仿真成功。3 用PROTEL绘制电路原理图创建ddb文件 首先打开protel99SE软件,新建一个工程项目即执行菜单命令【FILE】/【NEW】,在弹出的对话框如图所示中将文件格式设置为MS Access Database,文件名改为自己喜欢的名字,存储路径根据需要更改,然后点击“OK”就创建了一个后缀名为DDB的文件,我所做的所有内容都会在这个文件里面了。我的工程中我将它命名为 “直流稳压电源.ddb”。图11 创建DDB文件界面新建一个设计 用右键、新建、选择SCHEMATIC DOCUMENT创建一设计,命名,选择文件路径,然后进入Protel99SE的标准界面。进入Documents目录,用File/New命令,系统弹出文件类型的对话框。我们选择SCH图标,即进入SCH设计系统,同时系统界面变为SCH的设计界面。图12 创建SCH文件界面图13 绘制原理图界面 元件库的调入 我们发现,左边多了一个Browse SCH的选项卡。单击则进入了原理图管理器,Libraries即所使用的元件库图14 查找原件界面 一般来说,默认元件库Miscellaneous 即可满足需要。如需使用其他元件库,例如在本课程设计任务中我需载入sim仿真库 ,如图点击“Add ”,此元件库便添加到工作界面。如果要移除此库,点Remove即可。则可按照以下步骤选择新的库文件。点击 钮,弹出以下对话框: 图15 添加库文件界面b.选择路径,指定所要加入的元件库,再按Add按钮,即可将它复制到下面的区域,如下图所示。 图16 添加原件库界面 同样,如果程序加了太多元件库,也可以在下面的区域中指定所要移除的元件库,按Remove按钮即可将它拿掉。一切就绪后,再按OK按钮,我们所指定的元件库也就已经成功添加好了。放置元器件 在元件库元件列表中选中所需器件,双击,移动光标至工作平面的适当位置,在移动的过程中,按空格键可以将元器件进行旋转。单击左键,即可将元件定位到工作平面上了。双击该器件,弹出设计元器件属性的对话框,。 图17 设置原件属性框中各栏的意义如下:Lib Ref : 元件名称。该项是根据放置元件时的名称设置自动提供的,不可更改。Footprint : 器件封装,系统自动根据放置元件提供,不可更改。Designator : 元件标号,如R1,C2。Part : 器件类别或标准值,如1K,。此外,为更加方便地找寻元件,还可点击左边的“Browse Sch”下的“Find”可以直接搜索,打开 直接输入RES系统自动在所有库中寻找到目标元件,之间加入这个库并且点击 就可以放置这个元件到所需要的位置。 布线 在进行合理布局之后就可以开始布线了,将放置好的元器件各管脚用具有电气意义的导线、网络标号等连接起来,使各原件之间具有用户所设计的电气连接关系。执行画导线命令的方法有两种:一是用鼠标单击画原理图工具栏(Wiring tools)中的Wiring图标;二是利用菜单命令Place/Wire。执行以上操作后,单击鼠标左键,确定导线的起点,移动鼠标的位置,拖动线头至导线的末端,单击左键,确定导线的终点。最终即可得到电路原理图。 并且注意到其中的一些快捷键的用法可大大提升布线效率,如PGUP\PGDN放大缩小,TAB切换属性,E/D剪切修改等。布线时一定要考虑大局,线路拐弯时可以用两个45度角拐过去,这样布出的线路就好看一点。注意总线分支的方向转换用空格键。4电器检查及生成网络表电器检查、修改、调整选择TOOLS菜单下的ERC项,弹出对话框,直接点击OK键即可进行ERC检查,如果有问题将用坐标标注元件的位置。返回电路原理图,改正错误的元件属性,再进行ERC检查,直至完全正确。如图18:图18 电气检查界面生成网络表 执行菜单命令【 DESIGN】/【CREAT NETLIST】,弹出的对话框中将output format选择protel,将net identifier scope选择网络标号和端口全局有效,下面的选择active sheet然后点击OK就自动生成了网络表,其后缀名为.net。关于网络列表的生成对PCB文件的成功导入至关重要。 图19 网络表界面5 PROTEL PCB印制板电路的绘制绘制电路图图20 绘制pcb电路图 创建PCB文件 同创建sch电路图文件一样,双击进入document,执行右键、新建、PCBdocument即可创建PCB文件。在生成PCB文件之前应保证原理图没有错误,文件生成后将所需要的库文件导入到PCB,否则即使原理图无错误系统也会报错。图21 PCB设计界面导入网络表并规划PCB版 选择设计/加载网络表再弹出的对话框中按Browse 按钮,将弹出文件选择李念.NET文件,点击OK,弹出对话框。若元件封装、原理图均无错误后即可在PCB版上生成元器件。然后就可以开始规划PCB版了,首先在KeepoutLayer或者MutiLayer用线(track)画出一长方形区域(足以容纳元器件),以此来确定电路板大小范围。注意板子大小要适中,太大会造成材料的浪费,太小会给后面的连线带来很大的麻烦。设置工作参数 元器件导入后,我就开始设置工作参数,在图层堆栈管理器内,根据设计需要,可以将PCB版设计成单面板、双面板和多层板3种。在设定完PCB的类型后,还应当预设工作参数,如相应的布线规则。 PCB布线 在确保以上步骤正确进行后点击命令菜单【AUTO ROUTE】/【ALL】中执行【ROUTE ALL】即可进行自动布线,自动布线的前提是已经将边界框好,否则点击自动布线系统将会报错,自动布线选择的是最短路程。最后可得到如下的pcb图。 自动布线及调整生成的PCB 图22 自动布线的生成的PCB 得到的顶层的PCB图23 顶层的PCB图得到的底层的PCB图24 底层的PCB图这样就完成了一个从原理图到印刷电路板的设计。6小结与体会 这次Protel课程设计的学习,学到了很多关于电路理论方面和实践方面的知识,受益匪浅。对这门课程设计非常感兴趣。不仅锻炼了自己的动手能力,也从一定程度上学会Protel仿真软件的应用,亦加深了对书本上知识上的认识。在Protel 99SE课程设计中,最初的盲目乱划乱布线到有条理,有步骤,收获不小,但在中间总是有地方想不过去,后来请教同学,查看资料,最终解决了问题。 在Protel课程设计中,首先熟悉下理论上知识,然后重点学习对Protel的使用方法。在了解理论知识前提下,使用Protel对电路图进行绘制,然后进行相应结果与实际的理论上进行一下比较看看是否合理,在对误差进行分析,大大增加了这次课程设计的实用性。这样的模拟也大大减少了真实成品过程中实践所用的时间和金钱。对整个用Protel过程中其实也并不是很难,重点是自己不要粗心大意掉这个掉那个,难就是难在对PCB版手动布线这不仅要很好的耐心也要有良好的动手基础。这也是对学生我们自己的考验。 我觉得老师给我们作类似的课程设计是十分必要的,这不仅可以提起我们对这门课的学习兴趣,同时还可以在专业上用实践锻炼一下我们,使我们不但不在对所学专业感到陌生,而且还可以培养大家的动手积极性。 总的来说,对于作为通信类的学生,我觉得能做类似的课程设计不仅是十分有意义,而且是十分必要的。我深知课程设计的重要性。这不仅使一次实践也是一次对所学的总结,理解,赋予实际的绝好时机。这次课程设计中我从刚开始的什么都不懂不会,以一种不可下手的无力感。到现在的基本了解了一个电路元件是构成,封号的,还可很好完成软件的使用。其中用软件仿真也让我对以前学习的电路理论知识有了详细地了解。7参考文献[1] Protel99 入门与提高.赵品编著.人民邮电出版社.[2] Protel99 高级应用.赵品编著.人民邮电出版社.[3] Protel 99 SE电路设计与仿真应用[4] Protel99 SE电路设计与制版. 赵广林. 北京:电子工业出版社,2005[5] Protel 99 入门与提高.高鹏等编. 北京:人民邮电出版社,2003[6] Protel 99 高级应用. 赵晶等编. 北京:人民邮电出版社,2003[7] Protel DXP 电路原理图与PCB设计. 郝文化. 北京:机械工业出版社,2004

直流电路研究实验报告及论文

实验报告要点

一、扉页

并非所有的实验报告都有标题页,但是如果讲师想要标题页,那么它应该是一个单独的页面,包括:实验的题目、自己的名字和实验室伙伴的名字、导师的名字、进行实验或提交报告的日期。

二、标题

标题写着做了什么。它应该简短,并描述实验或调查的要点。

三、介绍

通常情况下介绍是解释实验室目标或目的的一个段落。用一句话陈述假设。有时介绍可能包含背景信息,简要总结实验是如何进行的,陈述实验的发现,并列出调查的结论。

四、步骤

描述在调查过程中完成的步骤。要足够详细,任何人都可以阅读这一部分并复制实验。提供一个图表来描述实验设置可能会有所帮助。

五、数据

从过程中获得的数字数据通常以表格的形式呈现。数据包括进行实验时记录的内容。

六、结果

用语言描述数据的含义。有时“结果”部分会与“讨论”部分结合在一起。

七、讨论或分析

数据部分包含数字,“分析”部分包含根据这些数字进行的任何计算。这是解释数据和确定假设是否被接受的地方,也是讨论在进行调查时可能犯的任何错误的地方。

八、结论

大多数情况下,结论是一个段落,总结了实验中发生的事情,假设是被接受还是被拒绝,以及这意味着什么。

九、图形和图表

图表和图形都必须标有描述性的标题。在图表上标注轴,确保包含测量单位。一定要参考报告正文中的图和图表。

十、参考

如果研究是基于别人的文献,或者引用了需要文档的事实,那么应该列出这些参考文献。

戴维南定理及功率传输最大条件一、实验目的 1、用实验方法验证戴维南定理的正确性。 2、学习线性含源一端口网络等效电路参数的测量方法。 3、验证功率传输最大条件。

戴维南定理及功率传输最大条件一、实验目的 1、用实验方法验证戴维南定理的正确性。 2、学习线性含源一端口网络等效电路参数的测量方法。 3、验证功率传输最大条件。二、原理及说明1、戴维南定理任何一个线性含源一端口网络,对外部电路而言,总可以用一个理想电压源和电阻相串联的有源支路来代替,如图3-1所示。理想电压源的电压等于原网络端口的开路电压UOC,其电阻等于原网络中所有独立电源为零时入端等效电阻R0 。2、等效电阻R0对于已知的线性含源一端口网络,其入端等效电阻R0可以从原网络计算得出,也可以通过实验手段测出。下面介绍几种测量方法。 方法1:由戴维南定理和诺顿定理可知: 因此,只要测出含源一端口网络的开路电压UOC和短路电流ISC, R0就可得出,这种方法最简便。但是,对于不允许将外部电路直接短路的网络(例如有可能因短路电流过大而损坏网络内部的器件时),不能采用此法。方法2:测出含源一端口网络的开路电压UOC以后,在端口处接一负载电阻RL,然后再测出负载电阻的端电压URL ,因为:则入端等效电阻为:方法3:令有源一端口网络中的所有独立电源置零,然后在端口处加一给定电压U,测得流入端口的电流I (如图3-2a所示),则:也可以在端口处接入电流源I′,测得端口电压U′(如图3-2b所示),则: 3、功率传输最大条件一个含有内阻ro的电源给RL供电,其功率为: 为求得RL从电源中获得最大功率的最佳值,我们可以将功率P对RL求导,并令其导数等于零: 解得: RL=r0得最大功率: 即:负载电阻RL从电源中获得最大功率条件是负载电阻RL等于电源内阻r0 。三、仪器设备电工实验装置 :DG011 、 DY031 、 DG053 四、实验内容 1、线性含源一端口网络的外特性按图3-3接线,改变电阻RL值,测量对应的电流和电压值,数据填在表3-1内。根据测量结果,求出对应于戴维南等效参数Uoc,Isc。表3-1 线性含源一端口网络的外特性RL(Ω) 0短路 100 200 300 500 700 800 ∞开路I(mA) U( V ) 2、求等效电阻Ro利用原理及说明2中介绍的3种方法求R。,并将结果填入表3-2中,方法(1)和方法(2)数据在表3-1中取,方法(3)实验线路如图3-4所示。 表3-2 等效电阻R0方法 1 2 3R0(KΩ) R0的平均值 3、戴维南等效电路 利用图3-4构成戴维南等效电路如图3-5所示,其中U0= R0= 。 测量其外特性U=f(I)。将数据填在表3-3中。表3-3 戴维南等效电路 RL(Ω) 0短路 100 200 300 500 700 800 ∞开路I(mA) U( V ) 4、最大功率传输条件 1.根据表3-3中数据计算并绘制功率随RL变化的曲线:P=f(RL) 。 2.观察P=f(RL)曲线,验证最大功率传输条件是否正确。 六、报告要求1、 根据实验1和3测量结果,在同一张座标纸上做它们的外特性曲线U=f(I),并分析比较。2、 完成实验内容2的要求。

直流电路实验报告中,若用直流表进行测量时,则会有分支电流的显示。根据查询相关资料显示,用直流数字毫安表进行测量,会显示流经该直流数字毫安表这一电路分支的电流。直流电力仪表测量的是直流电压或直流电流信号。

研究电流与电阻实验探究论文

探究电流与电阻的关系实验

一、实验原理

1、电流表和电压表:

将电路连接好后,用导线连接好电压表和电流表的接线柱。调节电压表的量程至所需范围,再调节好电压计的旋钮到合适位置后,观察电压值的变化情况。然后断开电源并断开负载的开关。此时如果测得电流为0V或1A时,则说明测量正确(若测量值大于2A时,则需更换新式仪表)。

2、伏安法:

(1)首先将电池接入电路中(一般选用5号电池),接通电路开关。在路端接一个发光二极管(发光二极管的正极接被测直流电的正极;负极接直流电的负极)。在另一端接入伏特表或欧姆表等仪器进行测量。(注意:不能直接接入220V交流电)

(2)当伏特表中显示出的读数达到所规定的数值时,(例如10V或100mW)可认为该组数据基本准确可靠了。(注意:不要超过额定容量使用电池。)

(3)最后闭合开关并打开负载开关即可得到所测的直流电的大小及正负极性了。(注意:120V交流电不能直接用伏特计来测试;2使用时一定要关闭总电源;3在使用前应检查仪器是否完好无损;4每次使用完后要立即关掉电源;5不要用手触摸伏特计;6不要使探头触及金属物体。)

二、器材:

1、导线若干根,长度约10m。其中一根用铜丝或铁皮制成,直径约。另一根用细铜丝绕成螺旋状(也可用铁丝),直径约为1mm。另外两根分别连接在导线的两端,并连有开关和指示灯各一个;

2、电源插座一个;

3、灯泡两个(可用日光灯管代替)。灯泡应放在电路的中间位置;如果采用双孔插座时,则应将其中一个插孔插入到电路中。灯泡的瓦数一般选用40W左右为宜;若采用三孔插座时(即三个插孔),可选用60W左右的灯泡。

4、小电珠两颗。(可用电池或小磁针代替)小磁针的长度应为之间为佳;

5、滑动变阻器一只;(或用弹簧测力计代替)它的长度为之间为佳。

三、步骤:

1、将导线的一端接好电源插头后,另一端接入电路中任一接线桩上(如左图所示);然后接通电源开关,此时电流表指针应指在零位附近处.注意!此时切勿用手接触电流表的外壳或拔出电线插头.

2、待电流表指示稳定后,将导线的一端接入变阻器的滑片上(注意:要使滑片刚好接触到电阻的两极).

3、当滑动变阻器上的刻度盘转动至最大时.即可关闭电源开关并取下小电珠.此时测量电阻值为无穷大.(注意!此过程中不要用手触摸滑片.)

4、再重复上述步骤一次.测量两次所得结果的平均值即为该导体的实际电阻值了.

“探究电阻上的电流跟两端电压的关系”详细探究过程(探究报告):a.提出问题:电流与电阻、电压之间有什么定量关系呢?b.猜想和假设:1.电流和电阻成反比;2.电流和电压成正比。c.设计实验:概说:要研究电流与电阻、电压的关系,采用的研究方法是:控制变量法。即:保持电阻不变,改变电压研究电流随电压的变化关系;保持电压不变,改变电阻研究电流随电阻的变化关系。实验设计思想:定值电阻的阻值是已知的且不改变,干电池的电压值也是已知的,且每节 V,把定值电阻连入电路,用电流表测出电路中的电流值,用电压表测出定值电阻两端的电压,就可以知道电阻、电压、电流的数量关系,换用不同阻值的定值电阻及改变干电池组电池的节数进行多次测量,就能得出电阻、电压、电流关系的一般规律。实验电路图:根据实验设计思想,画出电路图。实验器材:根据实验设计思想及所画电路图,选择如下器材:电池组、定值电阻(三个不同阻值)、电流表、电压表、开关各一个,导线若干。d.进行实验:步骤一:按设计好的电路图正确连接实验电路;步骤二:先保持电池组的电池节数不变,分别将5 Ω、10 Ω、15 Ω、20Ω、25Ω的定值电阻接入电路,合上开关,读出电压表和电流表的读数,将数据依次填入第一、二、三、四、五次数据表中;步骤三:保持定值电阻不变,改变电池组电池节数(分别为1节、2节、3节、4节、5节),合上开关,分别读取电流表、电压表的数值,依次填入第六、七、八、九、十次测量数据表中。实验数据表格:实验次数 电阻R(Ω) 电压U(V) 电流I(A)1 2 3 4 5 6 7 8 9 10 e.分析和论证:分析由实验得到的数据:(a) 第一、二、三、四、五次测量中电压不变,电流随着接入电阻值的增大而减小,但每次电流值和电阻值的乘积都等于或近似等于电压值。(b) 第六、七、八、九、十次测量中,电阻的阻值不变,随着电池组节数的改变,电压表指示数值几乎成倍地增加,但每次都很接近电池组的电压。电流表的指示数也几乎成倍地增大,并且和电压增大的倍数相同。每次电压除以电流的值都等于或近似等于电阻的值。(c) 以电流I为纵坐标,以电阻R的倒数为横坐标,建立平面直角坐标系,将第一、二、三、四、五次测量中的电流I和电阻R的倒数的值分别在平面直角坐标系中标出。观察所有点,采用数学方法总结规律。(d)以电压U为纵坐标,以电流I为横坐标,建立平面直角坐标系,将第四、五、六、七、八次测量中的电流和电压值分别在平面直角坐标系中标出。观察所有点,采用数学方法总结规律(见下图2)。f.得出结论: 综合以上分析结果,可以得到结论:猜想是正确的。在电阻一定的情况下,通过电阻的电流与加在电阻两端的电压成正比;在电压不变的情况下,通过电阻的电流与电阻成反比。希望帮助到你,若有疑问,可以追问~~~祝你学习进步,更上一层楼!(*^__^*)

欧姆定律的简述是:在同一电路中,通过某段导体的电流跟这段导体两端的电压成正比,跟这段导体的电阻成反比。

随研究电路工作的进展,人们逐渐认识到欧姆定律的重要性,欧姆本人的声誉也大大提高。为了纪念欧姆对电磁学的贡献,物理学界将电阻的单位命名为欧姆,以符号Ω表示。

常见简述:在同一电路中,通过某一导体的电流跟这段导体两端的电压成正比,跟这段导体的电阻成反比,这就是欧姆定律。

标准式:

(变形公式:

;

)

注意:公式中物理量的单位:I:(电流)的单位是安培(A)、U:(电压)的单位是伏特(V)、R :(电阻)的单位是欧姆(Ω)。

部分电路公式:I=U/R,或I=U/R=P/U(I=U:R)

(由欧姆定律的推导式【U=IR;R=U/I】不能得到①:电压即为电流与电阻之积;②:电阻即为电压与电流的比值。所以,这些变形公式仅作计算参考,并无具体实际意义。)

欧姆定律成立时,以导体两端电压为横坐标,导体中的电流I为纵坐标,所做出的曲线,称为伏安特性曲线。这是一条通过坐标原点的直线,它的斜率为电阻的倒数。具有这种性质的电器元件叫线性元件,其电阻叫线性电阻或欧姆电阻。

欧姆第一阶段的实验是探讨电流产生的电磁力的衰减与导线长度的关系,其结果于1825年5月在他的第一篇科学论文中发表。在这个实验中,他碰到了测量电流强度的困难。在德国科学家施威格发明的检流计启发下,他把奥斯特关于电流磁效应的发现和库仑扭秤方法结合起来,设计了一个电流扭力秤,用它测量电流强度。欧姆从初步的实验中发出,电流的电磁力与导体的长度有关。其关系式与今天的欧姆定律表示式之间看不出有什么直接联系。欧姆在当时也没有把电势差(或电动势)、电流强度和电阻三个量联系起来。

在欧姆之前,虽然还没有电阻的概念,但是已经有人对金属的电导率(传导率)进行研究。1825年7月,欧姆也用上述初步实验中所用的装置,研究了金属的相对电导率。他把各种金属制成直径相同的导线进行测量,确定了金、银、锌、黄铜、铁等金属的相对电导率。虽然这个实验较为粗糙,而且有不少错误,但欧姆想到,在整条导线中电流不变的事实表明电流强度可以作为电路的一个重要基本量,他决定在下一次实验中把它当作一个主要观测量来研究。

在以前的实验中,欧姆使用的电池组是伏打电堆,这种电堆的电动势不稳定,使他大为头痛。后来经人建议,改用铋铜温差电偶作电源,从而保证了电源电动势的稳定。

1826年,欧姆用上面图中的实验装置导出了他的定律。在木质座架上装有电流扭力秤,DD'是扭力秤的玻璃罩,CC'是刻度盘,s是观察用的放大镜,m和m'为水银杯,abb'a'为铋框架,铋、铜框架的一条腿相互接触,这样就组成了温差电偶。A、B是两个用来产生温差的锡容器。实验时把待研究的导体插在m和m'两个盛水银的杯子中,m和m'成了温差电池的两个极。

欧姆准备了截面相同但长度不同的导体,依次将各个导体接入电路进行实验,观测扭力拖拉磁针偏转角的大小,然后改变条件反复操作,根据实验数据归纳成下关系:

x=q/(b+l)式中x表示流过导线的电流的大小,它与电流强度成正比,A和B为电路的两个参数,L表示实验导线的长度。

1826年4月欧姆发表论文,把欧姆定律改写为:X=KSA/L,s为导线的横截面积,K表示电导率,A为导线两端的电势差,L为导线的长度,X表示通过L的电流强度。如果用电阻l'=L/KS代入上式,就得到X=A/I'这就是欧姆定律的定量表达式,即电路中的电流强度和电势差成正比而与电阻成反比。为了纪念欧姆对电磁学的贡献,物理学界将电阻的单位命名为欧姆,以符号Ω表示。1欧姆定义为电位差为1伏特时恰好通过1安培电流的电阻。

欧姆第一阶段的实验是探讨电流产生的电磁力的衰减与导线长度的关系,其结果于1825年5月在他的第一篇科学论文中发表。在这个实验中,他碰到了测量电流强度的困难。在德国科学家施威格发明的检流计启发下,他把斯特关于电流磁效应的发现和库仑扭秤方法巧妙地结合起来,设计了一个电流扭力秤,用它测量电流强度。欧姆从初步的实验中发出,电流的电磁力与导体的长度有关。其关系式与今天的欧姆定律表示式之间看不出有什么直接联系。欧姆在当时也没有把电势差(或电动势)、电流强度和电阻三个量联系起来。

欧姆定律

在欧姆之前,虽然还没有电阻的概念,但是已经有人对金属的电导率(传导率)进行研究。欧姆很努力,1825年7月,欧姆也用上述初步实验中所用的装置,研究了金属的相对电导率。他把各种金属制成直径相同的导线进行测量,确定了金、银、锌、黄铜、铁等金属的相对电导率。虽然这个实验较为粗糙,而且有不少错误,但欧姆想到,在整条导线中电流不变的事实表明电流强度可以作为电路的一个重要基本量,他决定在下一次实验中把它当作一个主要观测量来研究。

在以前的实验中,欧姆使用的电池组是伏打电堆,这种电堆的电动势不稳定,使他大为头痛。后来经人建议,改用铋铜温差电偶作电源,从而保证了电源电动势的稳定。

1826年,欧姆用上面图中的实验装置导出了他的定律。在木质座架上装有电流扭力秤,DD'是扭力秤的玻璃罩,CC'是刻度盘,s是观察用的放大镜,m和m'为水银杯,abb'a'为铋框架,铋、铜框架的一条腿相互接触,这样就组成了温差电偶。A、B是两个用来产生温差的锡容器。实验时把待研究的导体插在m和m'两个盛水银的杯子中,m和m'成了温差电池的两个极。

欧姆准备了截面相同但长度不同的导体,依次将各个导体接入电路进行实验,观测扭力拖拉磁针偏转角的大小,然后改变条件反复操作,根据实验数据归纳成下关系:

x=q/(b+l)式中x表示流过导线的电流的大小,它与电流强度成正比,A和B为电路的两个参数,L表示实验导线的长度。1826年4月欧姆发表论文,把欧姆定律改写为:x=ksa/ls为导线的横截面积,K表示电导率,A为导线两端的电势差,L为导线的长度,X表示通过L的电流强度。如果用电阻l'=l/ks代入上式,就得到X=a/I'这就是欧姆定律的定量表达式,即电路中的电流强度和电势差成正比而与电阻成反比。

希望我能帮助你解疑释惑。

问题描述不清晰,最好有电路图

直流电动机研究论文

论文题目:直流电动机调速器硬件设计专业:自动化本科生:刘小煜 (签名)____指导教师:胡晓东 (签名)____直流电动机调速器硬件设计摘 要直流电动机广泛应用于各种场合,为使机械设备以合理速度进行工作则需要对直流电机进行调速。该实验中搭建了基于C8051F020单片机的转速单闭环调速系统,利用PWM信号改变电动机电枢电压,并由软件完成转速单闭环PI控制,旨在实现直流电动机的平滑调速,并对PI控制原理及其参数的确定进行更深的理解。实验结果显示,控制8位PWM信号输出可平滑改变电动机电枢电压,实现电动机升速、降速及反转等功能。实验中使用霍尔元件进行电动机转速的检测、反馈。期望转速则可通过功能按键给定。当选择比例参数为、积分参数为时,电机转速可以在3秒左右达到稳定。由实验结果知,该单闭环调速系统可对直流电机进行调速,达到预期效果。关键字:直流电机, C8051F020,PWM,调速,数字式Subject: Hardware Design of Speed Regulator for DC motorMajor: AutomationName: Xiao yu Liu (Signature)____Instructor:Xiao dong Hu (Signature) ____Hardware Design of Speed Regulator for DC motorAbstractThe dc motor is a widely used machine in various speed regulaiting systerm is used to satisfy the requirement that the speed of dc motor be controlled over a range in some applications. In this experiment,the digital Close-loop control systerm is based on C8051F020 used PI regulator and PWM to regulate the speed of dc motor. The method of speed regulating of dc motor is discussed in this paper and, make a deep understanding about PI to experiment ,the armature voltage can be controlled linearnized with regulating the 8 bit the dc motor can accelerate or decelerate or experiment, hall component is used as a detector and feed back the speed .The expecting speed can be given by using the PI regulator,the dc motor will have a stable speed in ten seconds when choose P value as and I value as . At last,the experiment shows that the speed regulating systerm can work as words: dc motor,C8051F020,PWM,speed regulating,digital目录第一章 绪论 直流调速系统发展概况 国内外发展概况 国内发展概况 国外发展概况 总结 本课题研究目的及意义 论文主要研究内容 4第二章 直流电动机调速器工作原理 直流电机调速方法及原理 直流电机PWM(脉宽调制)调速工作原理 转速负反馈单闭环直流调速系统原理 单闭环直流调速系统的组成 速度负反馈单闭环系统的静特性 转速负反馈单闭环系统的基本特征 转速负反馈单闭环系统的局限性 采用PI调节器的单闭环无静差调速系统 数字式转速负反馈单闭环系统原理 原理框图 数字式PI调节器设计原理 18第三章 直流电动机调速器硬件设计 系统硬件设计总体方案及框图 系统硬件设计总体方案 总体框图 系统硬件设计 C8051F020单片机 单片机简介 使用可编程定时器/计数器阵列获得8位PWM信号 单片机端口配置 主电路 LED显示电路 按键控制电路 转速检测、反馈电路 12V电源电路 硬件设计总结 31第四章 实验运行结果及讨论 实验条件及运行结果 开环系统运行结果 单闭环系统运行结果 结果分析及讨论 实验中遇到的问题及讨论 33结论 34致谢 35参考文献 36论文小结 38附录1 直流电动机调速器硬件设计电路图 39附录2 直流电动机控制系统程序清单 42附录3 硬件实物图 57第一章 绪论直流调速系统发展概况在现代工业中,电动机作为电能转换的传动装置被广泛应用于机械、冶金、石油化学、国防等工业部门中,随着对生产工艺、产品质量的要求不断提高和产量的增长,越来越多的生产机械要求能实现自动调速。在可调速传动系统中,按照传动电动机的类型来分,可分为两大类:直流调速系统和交流调速系统。交流电动机直流具有结构简单、价格低廉、维修简便、转动惯量小等优点,但主要缺点为调速较为困难。相比之下,直流电动机虽然存在结构复杂、价格较高、维修麻烦等缺点,但由于具有较大的起动转矩和良好的起、制动性能以及易于在宽范围内实现平滑调速,因此直流调速系统至今仍是自动调速系统的主要形式。直流调速系统的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术和微机应用技术的最新发展成就。正是这些技术的进步使直流调速系统发生翻天覆地的变化。其中电机的控制部分已经由模拟控制逐渐让位于以单片机为主的微处理器控制,形成数字与模拟的混合控制系统和纯数字控制系统,并正向全数字控制方向快速发展。电动机的驱动部分所用的功率器件亦经历了几次更新换代。目前开关速度更快、控制更容易的全控型功率器件MOSFET和IGBT成为主流。功率器件控制条件的变化和微电子技术的使用也使新型的电动机控制方法能够得到实现。脉宽调制控制方法在直流调速中获得了广泛的应用。1964年和首先提出把PWM技术应用到电机传动中从此为电机传动的推广应用开辟了新的局面。进入70年代以来,体积小、耗电少、成本低、速度快、功能强、可靠性高的大规模集成电路微处理器已经商品化,把电机控制推上了一个崭新的阶段,以微处理器为核心的数字控制(简称微机数字控制)成为现代电气传动系统控制器的主要形式。PWM常取代数模转换器(DAC)用于功率输出控制,其中,直流电机的速度控制是最常见的应用。通常PWM配合桥式驱动电路实现直流电机调速,非常简单,且调速范围大。在直流电动机的控制中,主要使用定频调宽法。目前,电机调速控制模块主要有以下三种:(1)、采用电阻网络或数字电位器调整直流电机的分压,从而达到调速的目的;(2)、采用继电器对直流电机的开或关进行控制,通过开关的切换对电机的速度进行调整;(3)、采用由IGBT管组成的H型PWM电路。用单片机控制IGBT管使之工作在占空比可调的开关状态,精确调整电动机转速。 国内外发展概况 国内发展概况我国从六十年代初试制成功第一只硅晶闸管以来,晶闸管直流调速系统开始得到迅速的发展和广泛的应用。用于中、小功率的 ~200KW晶闸管直流调速装置已作为标准化、系列化通用产品批量生产。目前,全国各大专院校、科研单位和厂家都在进行数字式直流调速系统的开发,提出了许多关于直流调速系统的控制算法:(1)、直流电动机及直流调速系统的参数辩识的方法。该方法据系统或环节的输入输出特性,应用最小二乘法,即可获得系统环节的内部参数。所获得的参数具有较高的精度,方法简便易行。(2)、直流电动机调速系统的内模控制方法。该方法依据内模控制原理,针对双闭环直流电动机调速系统设计了一种内模控制器,取代常规的PI调节器,成功解决了转速超调问题,能使系统获得优良的动态和静态性能,而且设计方法简单,控制器容易实现。(3)、单神经元自适应智能控制的方法。该方法针对直流传动系统的特点,提出了单神经元自适应智能控制策略。这种单神经元自适应智能控制系统不仅具有良好的静、动态性能,而且还具有令人满意的鲁棒性与自适应性。(4)、模糊控制方法。该方法对模糊控制理论在小惯性系统上对其应用进行了尝试。经电机实验证明,模糊控制理论可以用于直流并励电动机的限流起动和恒速运行控制,并能获得理想的控制曲线。上诉的控制方法仅是直流电机调速系统应用和研究的一个侧面,国内外还有许多学者对此进行了不同程度的研究。 国外发展概况随着各种微处理器的出现和发展,国外对直流电机的数字控制调速系统的研究也在不断发展和完善,尤其80年代在这方面的研究达到空前的繁荣。大型直流电机的调速系统一般采用晶闸管整流来实现,为了提高调速系统的性能,研究工作者对晶闸管触发脉冲的控制算法作了大量研究,提出了内模控制算法、I-P控制器取代PI调节器的方法、自适应和模糊PID算法等等。目前,国外主要的电气公司,如瑞典ABB公司,德国西门子公司、AEG公司,日本三菱公司、东芝公司、美国GE公司等,均已开发出数字式直流调装置,有成熟的系列化、标准化、模版化的应用产品供选用。如西门子公司生产的SIMOREG-K 6RA24 系列整流装置为三相交流电源直接供电的全数字控制装置,其结构紧凑,用于直流电机电枢和励磁供电,完成调速任务。设计电流范围为15A至1200A,并可通过并联SITOR可控硅单元进行扩展。根据不同的应用场合,可选择单象限或四象限运行的装置,装置本身带有参数设定单元,不需要其它任何附加设备便可以完成参数设定。所有控制调节监控及附加功能都由微处理器来实现,可选择给定值和反馈值为数字量或模拟量。 总结随着生产技术的发展,对直流电气传动在起制动、正反转以及调速精度、调速范围、静态特性、动态响应等方面都提出了更高的要求,这就要求大量使用直流调速系统。因此人们对直流调速系统的研究将会更深一步。 本课题研究目的及意义直流电动机是最早出现的电动机,也是最早实现调速的电动机。长期以来,直流电动机一直占据着调速控制的统治地位。由于它具有良好的线性调速特性,简单的控制性能,高效率,优异的动态特性,现在仍是大多数调速控制电动机的最优选择。因此研究直流电机的速度控制,有着非常重要的意义。随着单片机的发展,数字化直流PWM调速系统在工业上得到了广泛的应用,控制方法也日益成熟。它对单片机的要求是:具有足够快的速度;有PWM口,用于自动产生PWM波;有捕捉功能,用于测频;有A/D转换器、用来对电动机的输出转速、输出电压和电流的模拟量进行模/数转换;有各种同步串行接口、足够的内部ROM和RAM,以减小控制系统的无力尺寸;有看门狗、电源管理功能等。因此该实验中选用Cygnal公司的单片机C8051F020。通过设计基于C8051F020单片机的直流PWM调速系统并调试得出结论,在掌握C8051F020的同时进一步加深对直流电动机调速方法、PI控制器的理解,对运动控制的相关知识进行巩固。 论文主要研究内容本课题的研究对象为直流电动机,对其转速进行控制。基本思想是利用C8051F020自带的PWM口,通过调整PWM的占空比,控制电机的电枢电压,进而控制转速。系统硬件设计为:以C8051F020为核心,由转速环、显示、按键控制等电路组成。具体内容如下:(1)、介绍直流电动机工作原理及PWM调速方法。(2)、完成以C8051F020为控制核心的直流电机数字控制系统硬件设计。(3)、以该系统的特点为基础进行分析,使用PWM控制电机调速,并由实验得到合适的PI控制及相关参数。(4)、对该数字式直流电动机调速系统的性能做出总结。第二章 直流电动机调速器工作原理 直流电机调速方法及原理直流电动机的转速和各参量的关系可用下式表示:由上式可以看出,要想改变直流电机的转速,即调速,可有三种不同的方式:调节电枢供电电压U,改变电枢回路电阻R,调节励磁磁通Φ。3种调速方式的比较表2-1所示.表2-1 3种电动机调速方式对比调速方式和方法 控制装置 调速范围 转速变化率 平滑性 动态性能 恒转矩或恒功 率 效率改变电枢电阻 串电枢电阻 变阻器或接触器、电阻器 2:1 低速时大 用变阻器较好用接触器、电阻器较差 无自动调节能力 恒转矩 低改变电枢电压 电动机-发电机组 发电机组或电机扩大机(磁放大器) 10:1~20:1 小 好 较好 恒转矩 60%~70%静止变流器 晶闸管变流器 50:1~100:1 小 好 好 恒转矩 80%~90%直流脉冲调宽 晶体管或晶闸管直流开关电路 50:1~100:1 小 好 好 恒转矩 80%~90%改变磁通 串联电阻或可变直流电源 直流电源变阻器 3:1~5:1 较大 差 差 恒功率 80%~90%电机扩大机或磁放大器 好 较好晶闸管变流器 好由表2-1知,对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最佳,而变电枢电压调速方法亦是应用最广的调速方法。直流电机PWM(脉宽调制)调速工作原理在直流调速系统中,开关放大器提供驱动电机所需要的电压和电流,通过改变加在电动机上的电压的平均值来控制电机的运转。在开关放大器中,常采用晶体管作为开关器件,晶体管如同开关一样,总是处在接通和断开的状态。在晶体管处在接通时,其上的压降可以略去;当晶体管处在断开时,其上的压降很大,但是电流为零,所以不论晶体管导通还是关断,输出晶体管中的功耗都是很小的。一种比较简单的开关放大器是按照一个固定的频率去接通和断开放大器,并根据需要改变一个周期内“接通”和“断开”的相位宽窄,这样的放大器被称为脉冲调制放大器。PWM脉冲宽度调制技术就是通过对一系列脉冲的宽度进行调制,来等效地获得获得所需要波形(含形状和幅值)的技术。根据PWM控制技术的特点,到目前为止主要有八类方法:相电压控制PWM、线电压控制PWM、电流控制PWM、非线性控制PWM,谐振软开关PWM、矢量控制PWM、直接转矩控制PWM、空间电压矢量控制PWM。利用开关管对直流电动机进行PWM调速控制原理图及输入输出电压波形如图2-1、图2-2所示。当开关管MOSFET的栅极输入高电平时,开关管导通,直流电动机电枢绕组两端由电压。秒后,栅极输入变为低电平,开关管截止,电动机电枢两端电压为0。秒后,栅极输入重新变为高电平,开关管的动作重复前面的过程。这样,对应着输入的电平高低,直流电动机电枢绕组两端的电压波形如图2-2所示。电动机的电枢绕组两端的电压平均值为:式2-1式中 ——占空比,占空比表示了在一个周期里,开关管导通的时间与周期的比值。的变化范围为0≤≤1。由式2-1可知,当电源电压不变的情况下,电枢的端电压的平均值取决于占空比的大小,改变值就可以改变端电压的平均值,从而达到调速的目的,这就是PWM调速原理。在PWM调速时,占空比是一个重要参数。以下是三种可改变占空比的方法:(1)、定宽调频法:保持不变,改变,从而改变周期(或频率)。(2)、调宽调频法:保持不变,改变,从而改变周期(或频率)。(3)、定频调宽法:保持周期(或频率)不变,同时改变、。前2种方法由于在调速时改变了控制脉冲的周期(或频率),当控制脉冲的频率与系统的固有频率接近时,将会引起振荡,因此应用较少。目前,在直流电动机的控制中,主要使用第3种方法。图2-1 PWM调速控制原理图2-2 输入输出电压波形产生PWM控制信号的方法有4种,分别为:(1)、分立电子元件组成的PWM信号发生器这种方法是用分立的逻辑电子元件组成PWM信号电路。它是最早期的方式,现在已经被淘汰了。(2)、软件模拟法利用单片机的一个I/O引脚,通过软件对该引脚不断地输出高低电平来实现PWM信号输出。这种方法要占用CPU大量时间,需要很高的单片机性能,易于实现,目前也逐渐被淘汰。(3)、专用PWM集成电路从PWM控制技术出现之日起,就有芯片制造商生产专用的PWM集成电路芯片,现在市场上已有许多种。这些芯片除了由PWM信号发生功能外,还有“死区”调节功能、保护功能等。在单片机控制直流电动机系统中,使用专用PWM集成电路可以减轻单片机负担,工作也更可靠。(4)、单片机PWM口新一代的单片机增加了许多功能,其中包括PWM功能。单片机通过初始化设置,使其能自动地发出PWM脉冲波,只能在改变占空比时CPU才进行干预。其中常用后两中方法获得PWM信号。实验中使用方法(4)获得PWM信号。 转速负反馈单闭环直流调速系统原理 单闭环直流调速系统的组成只通过改变触发或驱动电路的控制电压来改变功率变换电路的输出平均电压,达到调节电动机转速的目的,称为开环调速系统。但开环直流调速系统具有局限性:(1)、通过控制可调直流电源的输入信号,可以连续调节直流电动机的电枢电压,实现直流电动机的平滑无极调速,但是,在启动或大范围阶跃升速时,电枢电流可能远远超过电机额定电流,可能会损坏电动机,也会使直流可调电源因过流而烧毁。因此必须设法限制电枢动态电流的幅值。(2)、开环系统的额定速降一般都比较大,使得开环系统的调速范围D都很小,对于大部分需要调速的生产机械都无法满足要求。因此必须采用闭环反馈控制的方法减小额定动态速降,以增大调速范围。(3)、开环系统对于负载扰动是有静差的。必须采用闭环反馈控制消除扰动静差为克服其缺点,提高系统的控制质量,必须采用带有负反馈的闭环系统,方框图如图2-3所示。在闭环系统中,把系统输出量通过检测装置(传感器)引向系统的输入端,与系统的输入量进行比较,从而得到反馈量与输入量之间的偏差信号。利用此偏差信号通过控制器(调节器)产生控制作用,自动纠正偏差。因此,带输出量负反馈的闭环控制系统能提高系统抗扰性,改善控制精度的性能,广泛用于各类自动调节系统中。

使用幸福校园需要安装Adobe Flash Player 版本以上。 请安装Flash Player。[页数]:31 [字数]:14854 [目录] 1 绪 言 2 系统设计方案的研究 3 系统设计应用举例 4 总结与展望 [摘要] 随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力拖动控制技术研究和应用的繁荣,为工业生产,交通运输,楼宇、办公、家庭自动化提供了现代化的高新技术。提高了生产效率和人们的生活质量,使人类社会生产、生活发生了巨大的变化。晶闸管-直流电动机调速系统的成熟为现代工业提供了高效、高性能的动力。直流电动机调速系统以其优良的调速性能具有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理是交流调速控制的基础。本文介绍了带电流截止负反馈转速单闭环直流电动机调速系统的设计研究,由直流电机模块、晶闸管整流模块、转速反馈环节、电流截止负反馈环节和脉冲产生模块等组成。该系统主要采用转速反馈量和电流截止负反馈量与给定量的偏差经来改变触发器移相控制信号调节晶闸管的控制角,从而改变整流器的输出电压实现对直流电动机的转速进行调节的原理。首先给出电动机的数学模型,分析了转速闭环调速系统的工作原理。为了限制启动电流过大引入了电流截止负反馈,并介绍了电流截止负反馈环节的作用。其次根据原理方案建构出系统原理框图,并利用Matlab/Simulink工具软件对该系统建立了仿真模型,对系统进行了仿真研究。然后给出了直流电动机调速系统的应用实例,并按实例设置各模块的参数进行仿真。本系统经过综合考虑和合理分析,各物理量仿真波形基本符合要求。 [正文] 1 绪 言 课题研究背景在现代化的生产和生活中,电动机一直起着十分重要的作用,无论是交通运输、国防、航空航天、医疗卫生、农业生产、商务与办公设备,还是日常中的家用电器,都大量地使用各种各样的电动机。据相关资料介绍,现有90%以上的动力源来自于电动机,我国生产的电能大约有60%消耗于电动机而动力与运动是可以互相转换的,从这个意义上讲,电动机也是最常见的运动源,对运动控制的最有效方式是对运动源的控制,因此,常常通过对电动机的控制来实现运动控制。直流调速是现代电力拖动自动控制系统中发展较早的技术。在20世纪60年代发展起来的电力电子技术,使电能可以变换和控制,产生了现代各种高效、节能的新型电源和交直流调速装置,为工业生产,交通运输,楼宇、办公、家庭自动化提供了现代化的高新技术,提高了生产效率和人们的生活质量,使人类社会生产、生活发生了巨大的变化。随着新型电力电子器件的研究和开发以及先进控制技术的发展,电力电子和电力拖动控制装置的性能也不断优化和提高,这种变化的影响将越来越大。随着晶闸管的出现,现代电力电子和控制理论、计算机的结合促进了电力转动控制技术研究和应用的繁荣。晶闸管-直流电动机调速系统为现代工业提供了高效、高性能的动力。尽管目前交流调速的迅速发展,交流调速技术越趋成熟,以及交流电动机的经济性和易维护性,使交流调速广泛受到用户的欢迎。但是直流电动机调速系统以其优良的调速性能仍有广阔的市场,并且建立在反馈控制理论基础上的直流调速原理也是交流调速控制的基础。现在的直流和交流调速装置都是数字化的,使用的芯片和软件各有特点,但基本控制原理有其共性,此文章主要通过仿真研究直流调速的基本原理和调速性能

双闭环调速系统ASR和ACR结构及参数设计一.基本思想本文应用工程设计方法来设计转速、电流双闭环调速系统的两个调节器。按照设计多环控制系统先内环后外环的一般原则,从内环开始,逐步向外扩展。在双闭环系统中,应该首先设计电流调节器,然后把整个电流环看作是转速系统中的一个环节,再设计转速调节器。首先考虑应把电流环校正成哪一类典型系统。从稳态要求上看,希望电流无静差,以得到理想的堵转特性,所以采用Ⅰ型系统就够了。再从动态上看,实际系统不允许电枢电流在突加控制作用下时有太大的超调,以保证电流在动态过程不超过允许值,而对电网电压波动的及时抗扰作用只是次要的因素。因而电流环应以跟随性能为主,即应选择典型Ⅰ型系统。对于转速环,由于要求满足系统抗干扰性能好、转速无静差,并且系统结构决定将转速环校正成典型Ⅱ系统。二.双闭环调速系统的实际动态结构框图图2-1 双闭环调速系统的动态结构框图双闭环调速系统的实际动态结构框图如图2-1。由于电流检测信号中常含有交流分量,为了不使它影响到调节器的输入,需要加低通滤波。这样的滤波环节传递函数可用一阶惯性环节来表示,其滤波时间常数 按需要选定,以滤平电流检测信号为准。然而,在抑制交流分量的同时,滤波环节也延迟了反馈信号的作用,为了平衡这个延迟作用,在给定信号通道上加入一个同等时间常数的惯性环节,称作给定滤波环节。其意义是让给定信号和反馈信号经过相同的延时,使得二者在时间上恰好的配合。 由测速发电机得到的转速反馈电压含有换向纹波,因此也需要滤波,滤波时间常数用 表示。根据和电流环一样的道理,在转速给定通道上也加入时间常

前言11.总体设计方案2(一)方案一:PWM波调速2(二)方案二:晶闸管调速22.单元模块设计3(一)H桥驱动电路设计方案3(二)调速设计方案5(三)系统硬件电路设计61.电源电路62.H桥驱动电路63.基于霍尔传感器的测速模块74.LCD显示模块8(四)调速设计模块91.PWM波软件软件设计92.测速软件设计123.系统功能调试13(一)调试软件介绍13(二)直流电机的调速功能仿真141.调速前的波形图142.调速后的波形图14(三)电机速度的测量并显示功能仿真15(四)系统的电路原理图15(五)系统的PCB图164.设计总结175.参考文献17附录17

论文开题报告实验研究法

开题报告的研究方法有如下:

一、跨学科研究法

运用多学科的理论、方法和成果从整体上对某一课题进行综合研究的方法,也称“交叉研究法”。科学发展运动的规律表明,科学在高度分化中又高度综合,形成一个统一的整体。

据有关专家统计,现在世界上有2000多种学科,而学科分化的趋势还在加剧,但同时各学科间的联系愈来愈紧密,在语言、方法和某些概念方面,有日益统一化的趋势。

二、规范研究与实证研究

1、规范研究方法

规范研究方法以某种价值判断为基础,解决客观现象“应该是什么”的问题,即要说明所要研究的对象本身是好还是坏,对社会具有积极意义还是具有消极意义。

2、实证研究法

实证研究法是科学实践研究的一种特殊形式。其依据现有的科学理论和实践的需要,提出设计,利用科学仪器和设备,在自然条件下,通过有目的有步骤地操纵,根据观察、记录、测定与此相伴随的现象的变化来确定条件与现象之间的因果关系的活动。主要目的在于说明各种自变量与某一个因变量的关系。

三、文献综合法与个案研究法

1、文献综合研究法

文献研究法是根据一定的研究目的或课题,通过调查文献来获得资料,从而全面地、正确地了解掌握所要研究问题的一种方法。

2、个案研究法

个案研究法是认定研究对象中的某一特定对象,加以调查分析,弄清其特点及其形成过程的一种研究方法。个案研究有三种基本类型:

(1)个人调查,即对组织中的某一个人进行调查研究。

(2)团体调查,即对某个组织或团体进行调查研究。

(3)问题调查,即对某个现象或问题进行调查研究。

四、定量分析与定性分析

1、定量分析法

在科学研究中,通过定量分析法可以使人们对研究对象的认识进一步精确化,以便更加科学地揭示规律,把握本质,理清关系,预测事物的发展趋势。

2、定性分析法

定性分析法就是对研究对象进行“质”的方面的分析。运用归纳和演绎、分析与综合以及抽象与概括等方法,对获得的各种材料进行思维加工,从而能去粗取精、去伪存真、由此及彼、由表及里,达到认识事物本质、揭示内在规律。

五、调查法与实验法

1、调查法:

常用的是问卷调查法,就调查项目编制成表式,分发,填写,回收整理、统计和研究。

2、实验法

实验法是通过主动变革、控制研究对象来发现与确认事物间的因果联系的一种科研方法。其主要特点是:

1、主动变革性。观察与调查都是在不干预研究对象的前提下去研究并发现问题,而实验却要求主动操纵实验条件,人为地改变对象的存在方式、变化过程,使它服从于科学认识的需要。

2、控制性。科学实验要求根据研究的需要,借助各种方法技术,减少或消除各种可能影响科学的无关因素的干扰,在简化、纯化的状态下认识研究对象。

3、因果性。实验以发现、确认事物之间的因果联系的有效工具和必要途径。

整理分析法,阐述分析法,例证分析法

相关百科
热门百科
首页
发表服务