论文发表百科

图像复原基本方法的研究毕业论文

发布时间:2024-07-03 04:25:06

图像复原基本方法的研究毕业论文

基本内容 图像处理一般指数字图像处理。数字图像是指用数字摄像机、扫描仪等设备经过采样和数字化得到的一个大的二维数组,该数组的元素称为像素,其值为一整数,称为灰度值。图像处理技术的主要内容包括图像压缩,增强和复原,匹配、描述和识别3个部分。 图像压缩 由数字化得到的一幅图像的数据量十分巨大,一幅典型的数字图像通常由500×500或1000×1000个像素组成。如果是动态图像,是其数据量更大。因此图像压缩对于图像的存储和传输都十分必要。 有两类压缩算法,即不失真的方法和近似的方法。最常用的不失真压缩取空间或时间上相邻像素值的差,再进行编码。游程码就是这类压缩码的例子。近似压缩算法大都采用图像交换的途径,例如对图像进行快速傅里叶变换或离散的余弦变换。著名的、已作为图像压缩国际标准的JPEG和MPEG均属于近似压缩算法。前者用于静态图像,后者用于动态图像。它们已由芯片实现。 图像增强和复原 图像增强的目标是改进图片的质量,例如增加对比度,去掉模糊和噪声,修正几何畸变等;图像复原是在假定已知模糊或噪声的模型时,试图估计原图像的一种技术。 图像增强按所用方法可分成频率域法和空间域法。前者把图像看成一种二维信号,对其进行基于二维傅里叶变换的信号增强。采用低通滤波(即只让低频信号通过)法,可去掉图中的噪声;采用高通滤波法,则可增强边缘等高频信号,使模糊的图片变得清晰。具有代表性的空间域算法有局部求平均值法和中值滤波(取局部邻域中的中间像素值)法等,它们可用于去除或减弱噪声。 早期的数字图像复原亦来自频率域的概念。现代采取的是一种代数的方法,即通过解一个大的方程组来复原理想的图片。 图像匹配、描述和识别 对图像进行比较和配准,通过分制提取图像的特征及相互关系,得到图像符号化的描述,再把它同模型比较,以确定其分类。图像匹配试图建立两张图片之间的几何对应关系,度量其类似或不同的程度。匹配用于图片之间或图片与地图之间的配准,例如检测不同时间所拍图片之间景物的变化,找出运动物体的轨迹。 从图像中抽取某些有用的度量、数据或信息称为图像分析。图像分析的基本步骤是把图像分割成一些互不重叠的区域,每一区域是像素的一个连续集,度量它们的性质和关系,最后把得到的图像关系结构和描述景物分类的模型进行比较,以确定其类型。识别或分类的基础是图像的相似度。一种简单的相似度可用区域特征空间中的距离来定义。另一种基于像素值的相似度量是图像函数的相关性。最后一种定义在关系结构上的相似度称为结构相似度。 以提高图像质量为目的的图像增强和复原对于一些难以得到的图片或者在拍摄条件十分恶劣情况下得到的图片都有广泛的应用。例如从太空中拍摄到的地球或其他星球的照片,用电子显微镜或X光拍摄的生物医疗图片等。 以图片分析和理解为目的的分割、描述和识别将用于各种自动化的系统,如字符和图形识别、用机器人进行产品的装配和检验、自动军事目标识别和跟踪、指纹识别、X光照片和血样的自动处理等。在这类应用中,往往需综合应用模式识别和计算机视觉等技术,图像处理更多的是作为前置处理而出现的。 多媒体应用的掀起,对图像压缩技术的应用起了很大的推动作用。图像,包括录像带一类动态图像将转为数字图像,并和文字、声音、图形一起存储在计算机内,显示在计算机的屏幕上。它的应用将扩展到教育、培训和娱乐等新的领域。

数字图像处理主要方法:1 )图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。2 )图像编码压缩:图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。 3 )图像增强和复原:图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。4 )图像分割:图像分割是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。5 )图像描述:图像描述是图像识别和理解的必要前提。作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。6 )图像分类(识别):图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。

论文简介: 利用图像传输理论测量海水的点扩散函数和调制传递函数并且使用维纳滤波器复原模糊的图像。退化方程H(u,v)在水槽中测量得到。在实验中利用狭缝图像和光源,第一步:一维光照射到水中从而得到不同距离下的狭缝图像数据,这样一维的海水点扩散函数就可以通过去卷积得到。又因为点扩散函数的对称性二维的函数模型也可以通过数学方法得到。利用相似的方法调制传递函数也可以得到。这样传输方程便可以得到:

图像可以由下式获得:

论文简介: 论文中提出自然光照下的水下图像退化效果与光偏振相关,而场景有效箱射则与光偏振无关。在相机镜头端安装可调偏振器,使用不同偏振角度对同一场景成两幅图像,所得到的图像中的背景光会有明显不同。通过对成像物理模型的分析,利用这两幅图像和估计出的偏振度,就能恢复出有效场景辐射。他还提出了一个计算机视觉方法水下视频中的退化效应。分析清晰度退化的物理原因发现主要与光的部分偏振有关。然后提出一个逆成像方法来复原能见度。该方法基于几张通过不同偏振方向的偏振片采集图像。

论文简介: 论文提出了一种自适应滤波的水下图像复原方法。通过最优化图像局部对比度质量判决函数,可以估计出滤波器中所使用的参数值。 论文提出一种基于简化的Jaffe-McGlamery水下成像模型的自调谐图像复原滤波器。滤波器的最优参数值是针对每幅图像通过优化一个基于全局对比度的质量准则自动估算的。(对一幅图像滤波器能根据全局对比度自动估计最优参数值),简化的模型理想地适合后向散射较少的漫射光成像.1.首先简化Jaffe-McGlamery水下成像模型:假设光照均匀(浅水区阳光直射),并且忽略后向散射部分.然后基于简化后的成像模型设计一个简单的反滤波器2.将滤波器设计成自适应滤波器。

论文简介: 论文对于调制传递函数给出了详细准确的系统函数信息,水下图像可以用它或点扩散函数进行复原.作者进行实验测量了水质参数得出了这些函数,并用得出的函数进行了图像复原。同时他还建立了一个框架来最大限度复原水下图像,在这个框架下传统的图像复原方法得到了拓展,水下光学参数被包含了进去,尤其时域的点扩散函数和频域的调制传递函数。设计了一个根据环境光学特性进行调整的客观图像质量度量标准来测量复原的有效性。

论文简介: 调制传递函数给出了详细准确的系统函数信息,水下图像可以用它或点扩散函数进行复原.作者进行实验测量了水质参数得出了这些函数,并用得出的函数进行了图像复原。(这一部分在王子韬的论文中有比较详细介绍)

论文简介: 在散射媒介中的正则化图像复原。论文在基于物理原因的复原方法难以去除噪声以及透射率低的基础上,提出一种自适应的过滤方法,即能明显的改善可见性,又能抑制噪声放大。本质上,恢复方法的正规化,是适合变化媒介的透射率,因此这个正则化不会模糊近距离的目标。

论文简介: 论文提出一种基于对边缘进行GSA(灰度规范角度)加权的测量图像清晰度的方法。图像首先被小波变换分解,去除部分随机噪声,增加真实边缘检测的可能性。每个边缘锐度由回归分析方法基于灰度的一个角的正切来确定边缘像素的灰度值之间的斜率和位置。整个图像的清晰度是平均每个测量的GSA的比例加权的第一级分解细节的量,作为图像的总功率,最后通过图像噪声方差自适应的边缘宽度。

论文简介: 论文提出了基于主动偏振的人工光照下水下图像处理技术。在宽场人工光照下的水下成像中,在光源端或相机端安装可调偏振器。通过调整光源或相机端的偏振器,同时拍摄两幅或多幅同一场景的图像,从两幅图像中可估计出背景光的偏振度。结合水下成像物理模型,就可以进行图像复原和场景3D信息估计。该方法操作简单,设备筒易,适用于水下画定目标的成像。 大范围人工照明条件下研究成像过程,基于该成像模型,提出一种恢复object signal的方法,同时能获得粗糙的3D scene structure.相机配备检偏振器,瞬间获取同一场景的两帧图片with different states of the analyzer or light-source polarizer,然后用算法处理获取的图片.它统一并推广了以前提出的基于偏振的方法.后向散射可以用偏振技术降低,作者在此基础上又用图像后处理去除剩余的后向散射,同时粗糙估测出3D场景结构.创新:之前的方法有的认为目标物反射光的偏振度可以忽略(即认为只有后向散射是偏振的);另外还有的认为后向散射的偏振度可以忽略(即认为只有目标物反射光是偏振的)。本文作者认为两者都是部分偏振光。

论文简介: 论文在没有应用任何标准模式、图像先验、多视点或主动照明的条件下同时估算了水面形状和恢复水下二维场景。重点是应用水面波动方程建立紧凑的空间扭曲模型,基于这个模型,提出一个新的跟踪技术,该技术主要是解决对象模型的缺失以及水的波动存在的复杂的外观变化。在模拟的和真实的场景中,文本和纹理信息得到了有效的复原。

论文简介: 论文提出暗通道先验算法复原有雾图像。暗通道先验是一系列户外无雾图像的数理统计,基于观察户外无雾图像的大部分补丁补丁中包含至少一个颜色通道中低强度的像素点。在有雾图像中应用这些先验,我们可以直接的估算雾的厚度,复原成高质量的无雾图像,同时还能获得高质量的深度图。

论文简介: 论文比较研究了盲反卷积算法中的:R-L算法(Richardson-Lucy)、最小二乘法以及乘法迭代法。并且应用了水下图像去噪和威尔斯小角度近似理论推导出点分布函数。通过执行威尔斯的小角度散射理论和模糊度量方法对三种盲反卷积算法进行比较,确定总迭代次数和最佳图像复原结果。通过比较得出:最小二乘算法的复原率最高,但是乘法迭代的速度最好。

论文简介: 论文提出点扩算函数(PSF)和调制解调函数(MFT)的方法用于水下图像复原,应用基于威尔斯小角度近似理论来进行图像增强。在本文中作者分析了水下图像退化的原因,在强化超快激光成像系统中采用了距离选通脉冲的方法,降低了反向散射中的加性噪声。本文对图像的基本噪声模式进行了分析,并使用算术平均滤波首先对图像进行去噪,然后,使用执行迭代盲反褶积方法的去噪图像的初始点扩散函数的理想值,来获得更好的恢复结果。本文通过比较得出,盲反褶积算法中,正确使用点扩散函数和调制解调函数对于水下图像复原的重要性。

论文简介: 本文提出一种图像复原的新方法,该方法不需要专门的硬件、水下条件或现在知识结构只是一个与小波变换的融合框架支持相邻帧之间的时间相干性进行一个有效的边缘保留噪声的方法。该图像增强的特点是降低噪声水平、更好的暴露黑暗区域、改善全局对比、增强细节和边缘显著性。此算法不使用补充信息,只处理未去噪的输入退化图像,三个输入主要来源于计算输入图像的白平衡和min-max增强版本。结论证明,融合和小波变换方法的复原结果优于直接对水下退化图像进行去雾得到的结果。

论文简介: 本文是一篇综述性质的论文。介绍了:1、水下光学成像系统 2、图像复原的方法(对各种图像复原方法的总结) 3、图像增强和颜色校正的方法总结 4、光学问题总结。

论文简介: 论文针对普通水下图像处理的方法不适用于水下非均匀光场中的问题,提出一种基于专业区域的水下非均匀光场图像复原方法,在该算法中,考虑去除噪声和颜色补偿,相对于普通的水下图像复原和增强算法,该方法获得的复原复原的清晰度和色彩保真度通过视觉评估,质量评估的分数也很高。

论文简介: 论文基于水下图像的衰减与光的波长的关系,提出一种R通道复原方法,复原与短波长的颜色,作为水下图像的预期,可以对低对比度进行复原。这个R通道复原的方法可以看做大气中有雾图像的暗通道先验方法的变体。实验表明,该方法在人工照明领域应用良好,颜色校正和可见性得到提高。

论文简介: 作者对各种水下图像增强和复原的算法做了调查和综述,然后对自己的提高水下质量的方法做了介绍。作者依次用到了过滤技术中的同态滤波、小波去噪、双边过滤和对比度均衡。相比于其他方法,该方法有效的提高了水下目标物的可见性。

论文简介: 论文应用湍流退化模型以质量标准为导向复原因水下湍流退化的图像。参考大气湍流图像复原的算法,省略了盐分的影响,只考虑水中波动引起的湍流对水下成像的影响,应用一种自适应的平均各向异性的度量标准进行水下图像复原。经过验证,使用STOIQ的方法优于双频谱的复原方法。

论文简介: 本文提出了一种新的方法来提高对比度和降低图像噪声,该方法将修改后的图像直方图合并入RGB和HSV颜色模型。在RGB通道中,占主导地位的直方图中的蓝色通道以95%的最大限度延伸向低水平通道,RGB通道中的低水平通道即红色通道以5%的最低限度向上层延伸且RGB颜色模型中的所有处理都满足瑞利分布。将RGB颜色模型转化为HSV颜色模型,S和V的参数以最大限度和最小限度的1%进行修改。这种方法降低了输出图像的欠拟合和过拟合,提高了水下图像的对比度。

论文简介: 论文根据简化的J-M模型提出一种水下图像复原的有效算法。在论文中定义了R通道,推导估算得到背景光和变换。场景可见度被深度补偿,背景与目标物之间的颜色得到恢复。通过分析PSF的物理特性,提出一种简单、有效的低通滤波器来去模糊。论文框架如下:1.重新定义暗通道先验,来估算背景光和变化,在RGB的每个通道中通过标准化变换来复原扭曲颜色。2.根据PSF的性能,选择没有被散射的光,用低通滤波器进行处理来提高图片的对比度和可见度。

论文简介: 论文中对当代水下图像处理的复原与增强做了综述,作者阐明了两种方法的模型的假设和分类,同时分析了优缺点以及适用的场景。

参考:

模糊图像复原的方法的话,用手机和电脑都可以的,手机可以去一些P图软件,她有一间复原的作用,电脑可以用PS等软件进行复原

基于图像融合方法研究论文

图像融合是多传感器信息融合领域的一个重要分支[1],它是指将来自同一目标的不同传感器的信息通过一定的算法融合到一幅图上,从而获得比在单幅图上更完整、更精确的信息。图像融合在军事(如军事侦察、识别伪装)和非军事(如医疗诊断、遥感、计算机技术等)领域得到广泛的应用。就遥感图像融合而言,目前大致分4种类型:多种分辨率的融合处理、多时相的融合处理、多种传感器类型的融合处理、多波段大容量的融合处理。本文研究的对象属于最后一种,即不同光谱获得的图像。这里使用基于小波变换的塔式结构的优点是小波变换具有紧凑性、正交性、很好的方向性,这使得小波变换可以很好地提取不同尺度上的显著特征,相对于高斯—拉普拉斯金字塔技术而言,不仅可以产生更好的融合结果,而且进行反向变换时稳定性更好;另外小波变换的塔式结构还使得不管原图像的长度是否2的幂次方,最终变换后的图像与原图像尺寸相同,这使得开发实用的并行算法系统成为可能。本文正是基于这点,在对图像小波多分辨分解叙述的基础上,构造了一种图像融合算法,最后对算法进行了仿真,并对结果进行了分析。1图像的小波变换定义1多分辨分解设fj+1∈V2j+1,由V2j+1=V2j W2j可得,存在fj∈V2j,gj∈W2j,有fj+1=fj+gj对于图像f(x,y)而言,由文献[2]可得图像的Mallat二进小波的塔式分解为fj+1(x,y) =∑k,mCj,k,mj,k,m+∑ε=1,2,3∑k,mDεj,k,mΨεj,k,m(1)式中:Cj,k,m=∑l,nhl-2khn-2mCj+1,l,n;D1j,k,m=∑l,nhl-2kgn-2mCj+1,l,nD2j,k,m=∑l,ngl-2khn-2mCj+1,l,n;D3j,k,m=∑l,ngl-2kgn-2mCj+1,l,n在图像小波分解的表达式中Cj,k,m, D1j,k,m, D2j,k,m, D3j,k,m,分别对应图像的低频子带及水平、垂直与对角线3个方向的高频子带, Cj,k,m为图像在aj分辨率下的离散逼近,D1j,k,m, D2j,k,m, D3j,k,m为2j分辨率下的离散细节。{hk}k∈z可看作低通滤波器系数, {gk}k∈z可看作高通滤波器系数,为尺度函数,Ψ为正交小波函数。{j,k,m|k,m,∈z}构成Vj2的规范正交基,{Ψεj,k,m|j,k,m∈z}构成W2j的规范正交基。另外,通过小波分解,除了低频子带都是一些正的变换值外,其它的3个高频子带都包含了一些在零附近的变换值,在这些子带中,较大的变换值对应着亮度急剧变化的点,也就是图像中的显著特征,如边缘、亮线及区域轮廓。既然小波变换具有很好的空域及频域局部性,融合的效果就是:对来自同一目标的两个不同传感器所获解的图象A和B,融合前在图像A中若比图像B中显著,融合后图像A中的目标就被保留,图像B中的目标就被忽略;对不同的场景,比如图像A中的目标的外部轮廓比较明显,图像B中目标的内部轮廓比较明显,这种情况,图像A、B中目标的小波变换系数将在不同的分辨率水平上占统治地位,从而在最终的融合图像中,图像A中的外部结构与图像B中的内部结构都被保留。因此通过融合可以实现在单幅图像上的片面的、不完整、不精确的信息得到更一致更精确的体现。最后对组合后的变换系数进行反向小波变换,就可得到融合后的图像。2基于区域的图像增强算法在图像的融合算法中,图像不同,图像的数据表征不同,融合算法也各不相同,目前采用的融合方法主要有[3]:基于像素的代数组合法、统计/数值法以及与颜色有关的技术。但是我们知道图像中的有用特征通常大于1个像素,因此基于像素的选择方法可能不是最适合的,近几年又提出了基于区域的选择方法,比较有代表性的是文献[4]中提出的基于区域的均值选择法,该方法用一M×N的窗口对图像块进行求方差运算,计算结果作为与窗口中心像素对应的一种度量方法,中心像素的选择方法为:如果两幅图像方差在对应位置上的度量值相近,取2者的均值作为输出的新值,否则取较大的值作为输出。文献[5]中提出利用不同的特征选择算子,有方向的计算对应细节图像的局域能量,由局部能量构造匹配度及加权因子,从而对图像进行加权运算。这里以均值、方差、相关等统计参量构造一种新的区域融合算法。以下计算以两幅图像为例,对3幅以上的图像融合算法与此类似,具体步骤如下:首先,利用M×N (一般选M,N为奇数,常用的窗口为3×5或5×5)窗口计算小波分解各子带系数的均值和方差,子带中以(x,y)位置为中心的区域均值与方差分别为mi(x,y) =1M×N∑Mm=1∑Mn=1fi(x+ m -M+12,y+ n -N+12) (2)σ2i(x,y) =1M×N∑Mm=1∑Mn=1(fi(x+ m -M+12,y+ n -N+12)- mi(x,y))2(3)图像1以(x,y)位置为中心与图像2对应区域的协方差为β2(x,y)=1M×N∑Mm=1∑Mn=1(fi(x+m-M+12,y+n-N+12)-m1(x,y))×(f2(x+m-M+12,y+n-N+12)-m2(x,y))(4)构造匹配度ρ及加权系数W:ρ=β2σ1σ2;Wmax=1-12ρ;Wmin=1-Wmax然后,利用下式对两幅图像中的对应子带像素进行融合计算f(x,y)=Wmax·MAX(f1(x,y),f2(x,y))+Wmin·MIN(f1(x,y),f2(x,y)) (5)这里f1(x,y),f2(x,y)是上述对应窗口中心位置的两幅图像的像素灰度值。这样就完成了2j分辨率下的数据融合,最后对融合后的子带系数进行反变换就可得到融合后的图像。需要的话给我你的邮箱,发到你邮箱!

融合算法fusion algorithm 如:(多传感器单目标位置融合算法)经纬仪引导数据的数据融合可以采用参数估计融合算法,即对8组引导数据,按照某种估计准则函数其研究热点在于有效可行的多传感器融合算法,特别是在非线性及非平稳、非正态分布的情形下的多传感器融合算法。

【关键词】 图像配准; 多源传感器; 位置约束; 特征提取; 多种特征组合 【摘要】 随着遥感技术迅速发展和新型传感器的不断涌现,人们获取遥感图像数据的能力不断提高。在利用这些多源遥感图像进行数据融合、目标变化检测、目标识别等多源协同处理工作之前,必须进行多源图像配准工作,配准精度的高低直接影响到后续应用效果的好坏。为此,本文主要研究了多源遥感图像间的配准技术,作为协同系统中的关键技术,要求配准方法在运算能力和配准精度方面都能够达到较好的效果。首先,本文对现有的多源图像配准技术进行原理上的分析与介绍。通过对多种配准方法的分类与比较,指出了遥感图像配准的通用技术环节与技术要点。并在研究过程中分析关键技术环节的难点与所面临问题。其次,本文针对传统多源配准方法在进行控制点对应时运算量大,误配情况多的现状,提出了一种基于位置约束的多源遥感影像配准技术。该方法首先利用人工粗略选取少量控制点对,得到粗略位置映射关系,之后利用位置信息以及分辨率信息建立局部窗函数进行搜索匹配,对两幅图像中提取的Harris角点进行筛选,最终得到的控制点对作为求取配准参数的控制点输入,并利用此方法进行了多组图像的实验来证明方法的通用性。然后,本文针对传统配准方法需要人工参与,并且仅使用单一特征进行匹配效...更多果差的缺点,提出了一种基于多特征组合的多源遥感图像自动配准技术。这种方法利用了由粗至精的配准思想,结合使用点、线、面特征分别进行粗配准及精细配准两个过程。重点解决了其中少量初始控制点对的匹配和更多控制点对的获取。完成了存在闭合区域的多源遥感图像间的自动配准过程,并实验验证了方法的配准精度。最后,为了对配准后的遥感图像进行直观的视觉评价,本文介绍了配准后图像间的镶嵌以及融合等简单应用。通过实验,可以很直观的看出配准的效果,完成配准的定性评价。

数字图像修复算法的研究毕业论文

你的论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向?写论文之前,一定要写个大纲,这样老师,好确定了框架,避免以后论文修改过程中出现大改的情况!!排版一定要遵循学校格式模板要求,否则参考文献、字体间距格式不对,要发回来重改,老师还会说你不认真希望可以帮到你,有什么不懂的可以问我,下面对论文写作提供一些参考建议仅供参考:论文题目论文题目应该简短、明确、有概括性。读者通过题目,能大致了解论文的内容、专业的特点和学科的范畴。但字数要适当,一般不宜超过24字。必要时可加副标题。摘要与关键词论文摘要论文摘要应概括地反映出毕业设计(论文)的目的、内容、方法、成果和结论。摘要中不宜使用公式、图表,不标注引用文献编号。摘要以300~500字为宜。关键词关键词是供检索用的主题词条,应采用能覆盖论文主要内容的通用技术词条(参照相应的技术术语标准)。关键词一般为3~5个,按词条的外延层次排列(外延大的排在前面)。目录按章、节、条三级标题编写,要求标题层次清晰。目录中的标题要与正文中标题一致。目录中应包括绪论、论文主体、结论、致谢、参考文献、附录等。论文正文是毕业设计(论文)的主体和核心部分,一般应包括绪论、论文主体及结论等部分。绪论一般作为第一章,是毕业设计(论文)主体的开端。绪论应包括:毕业设计的背景及目的;国内外研究状况和相关领域中已有的研究成果;课题的研究方法;论文构成及研究内容等。绪论一般不少于1千字。论文主体是毕业设计(论文)的主要部分,应该结构合理,层次清楚,重点突出,文字简练、通顺。论文主体的内容应包括以下各方面:(1) 毕业设计(论文)总体方案设计与选择的论证。(2) 毕业设计(论文)各部分(包括硬件与软件)的设计计算。(3) 试验方案设计的可行性、有效性以及试验数据的处理及分析。(4) 对本研究内容及成果应进行较全面、客观的理论阐述,应着重指出本研究内容中的创新、改进与实际应用之处。理论分析中,应将他人研究成果单独书写,并注明出处,不得将其与本人提出的理论分析混淆在一起。对于将其他领域的理论、结果引用到本研究领域者,应说明该理论的出处,并论述引用的可行性与有效性。(5) 自然科学的论文应推理正确,结论清晰,无科学性错误。(6) 管理和人文学科的论文应包括对研究问题的论述及系统分析,比较研究,模型或方案设计,案例论证或实证分析,模型运行的结果分析或建议、改进措施等。结论学位论文的结论单独作为一章排写,但不加章号。结论是毕业设计(论文)的总结,是整篇论文的归宿。要求精炼、准确地阐述自己的创造性工作或新的见解及其意义和作用,还可进一步提出需要讨论的问题和建议。致谢致谢中主要感谢导师和对论文工作有直接贡献及帮助的人士和单位。参考文献按论文正文中出现的顺序列出直接引用的主要参考文献。毕业设计(论文)的撰写应本着严谨求实的科学态度,凡有引用他人成果之处,均应按论文中所出现的先后次序列于参考文献中。并且只应列出正文中以标注形式引用或参考的有关著作和论文。一篇论著在论文中多处引用时,在参考文献中只应出现一次,序号以第一次出现的位置为准。附录对于一些不宜放入正文中、但作为毕业设计(论文)又是不可缺少的部分,或有重要参考价值的内容,可编入毕业设计(论文)的附录中。例如,过长的公式推导、重复性的数据、图表、程序全文及其说明等。

(一)选题毕业论文(设计)题目应符合本专业的培养目标和教学要求,具有综合性和创新性。本科生要根据自己的实际情况和专业特长,选择适当的论文题目,但所写论文要与本专业所学课程有关。(二)查阅资料、列出论文提纲题目选定后,要在指导教师指导下开展调研和进行实验,搜集、查阅有关资料,进行加工、提炼,然后列出详细的写作提纲。(三)完成初稿根据所列提纲,按指导教师的意见认真完成初稿。(四)定稿初稿须经指导教师审阅,并按其意见和要求进行修改,然后定稿。一般毕业论文题目的选择最好不要太泛,越具体越好,而且老师希望学生能结合自己学过的知识对问题进行分析和解决。不知道你是否确定了选题,确定选题了接下来你需要根据选题去查阅前辈们的相关论文,看看人家是怎么规划论文整体框架的;其次就是需要自己动手收集资料了,进而整理和分析资料得出自己的论文框架;最后就是按照框架去组织论文了。你如果需要什么参考资料和范文我可以提供给你。还有什么不了解的可以直接问我,希望可以帮到你,祝写作过程顺利毕业论文选题的方法:一、尽快确定毕业论文的选题方向 在毕业论文工作布置后,每个人都应遵循选题的基本原则,在较短的时间内把选题的方向确定下来。从毕业论文题目的性质来看,基本上可以分为两大类:一类是社会主义现代化建设实践中提出的理论和实际问题;另一类是专业学科本身发展中存在的基本范畴和基本理论问题。大学生应根据自己的志趣和爱好,尽快从上述两大类中确定一个方向。二、在初步调查研究的基础上选定毕业论文的具体题目在选题的方向确定以后,还要经过一定的调查和研究,来进一步确定选题的范围,以至最后选定具体题目。下面介绍两种常见的选题方法。 浏览捕捉法 :这种方法就是通过对占有的文献资料快速地、大量地阅读,在比较中来确定论文题目地方法。浏览,一般是在资料占有达到一定数量时集中一段时间进行,这样便于对资料作集中的比较和鉴别。浏览的目的是在咀嚼消化已有资料的过程中,提出问题,寻找自己的研究课题。这就需要对收集到的材料作一全面的阅读研究,主要的、次要的、不同角度的、不同观点的都应了解,不能看了一些资料,有了一点看法,就到此为止,急于动笔。也不能“先入为主”,以自己头脑中原有的观点或看了第一篇资料后得到的看法去决定取舍。而应冷静地、客观地对所有资料作认真的分析思考。在浩如烟海,内容丰富的资料中吸取营养,反复思考琢磨许多时候之后,必然会有所发现,这是搞科学研究的人时常会碰到的情形。 浏览捕捉法一般可按以下步骤进行:第一步,广泛地浏览资料。在浏览中要注意勤作笔录,随时记下资料的纲目,记下资料中对自己影响最深刻的观点、论据、论证方法等,记下脑海中涌现的点滴体会。当然,手抄笔录并不等于有言必录,有文必录,而是要做细心的选择,有目的、有重点地摘录,当详则详,当略则略,一些相同的或类似的观点和材料则不必重复摘录,只需记下资料来源及页码就行,以避免浪费时间和精力。第二步,是将阅读所得到的方方面面的内容,进行分类、排列、组合,从中寻找问题、发现问题,材料可按纲目分类,如分成: 系统介绍有关问题研究发展概况的资料; 对某一个问题研究情况的资料; 对同一问题几种不同观点的资料; 对某一问题研究最新的资料和成果等等。第三步,将自己在研究中的体会与资料分别加以比较,找出哪些体会在资料中没有或部分没有;哪些体会虽然资料已有,但自己对此有不同看法;哪些体会和资料是基本一致的;哪些体会是在资料基础上的深化和发挥等等。经过几番深思熟虑的思考过程,就容易萌生自己的想法。把这种想法及时捕捉住,再作进一步的思考,选题的目标也就会渐渐明确起来。希望可以帮到你,有什么不懂的可以问我

数字图像处理是利用计算机对图像信息进行加工以满足人的视觉心理或者应用需求的行为,应用广泛,多用于测绘学、大气科学、天文学、美图、使图像提高辨识等。这里学术堂为大家整理了一些数字图像处理毕业论文题目,希望对你有用。1、基于模糊分析的图像处理方法及其在无损检测中的应用研究2、数字图像处理与识别系统的开发3、关于数字图像处理在运动目标检测和医学检验中若干应用的研究4、基于ARM和DSP的嵌入式实时图像处理系统设计与研究5、基于图像处理技术的齿轮参数测量研究6、图像处理技术在玻璃缺陷检测中的应用研究7、图像处理技术在机械零件检测系统中的应用8、基于MATLAB的X光图像处理方法9、基于图像处理技术的自动报靶系统研究10、多小波变换及其在数字图像处理中的应用11、基于图像处理的检测系统的研究与设计12、基于DSP的图像处理系统的设计13、医学超声图像处理研究14、基于DSP的视频图像处理系统设计15、基于FPGA的图像处理算法的研究与硬件设计

1 基于形态学运算的星空图像分割 主要内容: 在获取星图像的过程中,由于某些因素的影响,获得的星图像存在噪声,而且星图像的背景经常是不均匀的,为星图像的分割造成了极大的困难。膨胀和腐蚀是形态学的两个基本运算。用形态学运算对星图像进行处理,补偿不均匀的星图像背景,然后进行星图像的阈值分割。 要求: 1> 图像预处理:对原始星空图像进行滤波去噪处理; 2> 对去噪后的图像进行形态学运算处理; 3> 选取自适应阈值对形态学运算处理后的图像进行二值化; 4> 显示每步处理后的图像; 5> 对经过形态学处理后再阈值的图像和未作形态学处理后再阈值的图像进行对比分析。 待分割图像 直接分割图像 处理后的分割图像 2 基于数字图像处理的印刷电路板智能检测方法 主要内容: 通过对由相机实时获取的印刷电路板图像进行焊盘识别,从而提高电子元件的贴片质量,有效提高电路板的印刷效率。 要求: 1> 图像预处理:将原始彩色印刷电路板图像转成灰度图像,对灰度图像进行背景平滑和滤波去噪; 2> 对去噪后的图像进行图像增强处理,增强边缘提取的效果。 3> 对增强后的图像进行边缘提取(至少两种以上的边缘提取算法); 4> 显示每步处理后的图像(原始电路板图像可自行查找); 5> 图像处理后要求能对每个焊盘进行边缘提取,边缘清晰。

图像锐化方法的研究论文

图像锐化的两种方法:一、USM滤镜处理操作步骤人物照片看起来很模糊,照片中人物的发丝、身体上的汗水等细节都看不清楚,这样的照片很难吸引大家的注意。我们要做的是,把这样平凡的照片用PhotoShop的USM锐化滤镜处理。在PhotoShop中打开图像后,打开图层面板,选中图层面板中底层的背景图层点击右键,选择"复制副本"为照片复制一个副本图层,将图层的模式设定为"柔光"。选中副本图层,使用"滤镜"菜单下"锐化"中"USM锐化"滤镜,在滤镜设置窗口中,"数量"和"半径"参数影响图像的清晰度,数值越大清晰度越高。"阀值"参数可不用考虑,根据图像的具体情况设定好"数量"和"半径"的数值确定锐化。下面选择"图像"菜单下"模式→LAB颜色"命令,在弹出的窗口中选择"拼合"图层确定,将两个图层合并为一层。又回到图层面板,为合并后的这个图层复制一个副本图层,将面板窗口切换到"通道"界面,看到图层通道上增加了"明度"通道,选定这个通道再使用"滤镜"菜单下"锐化"中"USM锐化"滤镜,这次锐化参数的数值可以小一些,将这个通道锐化处理。最后把副本图层的模式修改为"柔光",此时的图像不仅画面更清晰,色彩也更加绚丽,然后只要把两个图层合并为一层保存即可。不过,在修改的过程中要根据原图的质量,对各项参数的值进行仔细调整方能获得比较好的效果。控制参数锐化操作的本质是增加图像细节边缘的对比度,这有助于我们的眼睛看清楚图像细节,从而使图像显得棱角分明、画面清晰,这是所有质量好的印刷摄影作品的必需条件。而用扫描仪直接复制的图像如果没有经过修整,看起来会有些单调而模糊不清,所以我们往往需要在图像做完处理后对它作锐化处理。最专业的锐化处理方法是Photoshop中的模糊掩盖锐化处理(unsharpmasking,USM),它提供了最完善的图像细节强调的控制方法。它提供了三种控制参数:1.半径(Radius)它用来决定作边沿强调的像素点的宽度,如果半径值为1,则从亮到暗的整个宽度是两个像素,如果半径值为2,则边沿两边各有两个像素点,那么从亮到暗的整个宽度是4个象素。半径越大,细节的差别也清晰,但同时会产生光晕。合理的半径应该设置为图像扫描分辨率除以200。例如对于200spi在扫描图就使用1:0,对于300spi图像就使用1:5的设置,这样可以在每一个边缘的附近产生1/50到1/100英寸的光晕,它大得足以提供理想的锐化效果。2.数量(Amout)该参数可以理解为锐化的强度或振幅,对于一般的印前处理,设置为200%是一个良好的开始,然后根据需要再作适当调节。数量值过大图像会变得虚假。3.阀值(Threshold)它决定多大反差的相邻像素边界可以被锐化处理,而低于此反差值就不作锐化。阀值的设置是避免因锐化处理而导致的斑点和麻点等问题的关键参数,正确设置后就可以使图像既保持平滑的自然色调(例如背景中纯蓝色的天空)的完美,又可以对变化细节的反差作出强调。在一般的印前处理中我们推荐的值为3到4,超过10是不可取的,它们会降低锐化处理效果并使图像显得很难看。总之,锐化参数调节既要能够比较好的再现图像细节,又要不至于产生新的麻烦:比如斑点和麻点。如果你是一个有经验的处理人员,还可以根据图像内容进行适当的局部锐化以达到特殊的艺术效果。二、SmartSharpen滤镜Smart Sharpen滤镜是PhotoShop CS2的新功能,它的智能锐化性能能够帮助我们有效将图像清晰处理,它将原有USM锐化滤镜的阀值功能变成高级锐化选项,添加了图像高光、阴影的锐化。我们对照一下图4,这张相片效果虽然不错,但笔者仍想把花朵的纹理显得更清晰一些,并且还不想改动花朵边缘的叶子和背景的图案。打开"滤镜"菜单下"锐化"中"Smart Sharpen"滤镜窗口,首先设置一下"Sharpen"的参数,选中Remove的模式为"镜头模糊(Lens Blur)",同时选中"More Accurate(更准确)。然后一边调节Amount和半径的数值,一边预览画面的变化。要想不改变叶子和背景的图案,又要突出花朵的纹理,这需要打开锐化工具的高级设置选项。叶子和背景在画面中颜色暗淡正好符合"Shadow"阴影的要求,在"Shadow"设置界面把Fade Amount和Tonal Width设置为"100%",半径值降低为"1"。这样前面设置的"Sharpen"锐化效果对画面上阴影暗淡部位的作用就不明显了。花朵在画面中是属于高光部分,因此把"Highlight"的参数值设置正好与"Shadow"的参数相反即可。 在以后的拍摄中,再碰到模糊的照片就不必非要将其拉进回收站,利用上面的技巧,一样能将其变的清晰和光亮^_^。

2种方法,USM滤镜处理图像和SmartSharpen滤镜。

平滑往往使图像中的边界、轮廓变得模糊,为了减少这类不利效果的影响,这就需要利用图像锐化技术,使图像的边缘变的清晰。

在水下图像的增强处理中除了去噪,对比度扩展外,有时候还需要加强图像中景物的边缘和轮廓。而边缘和轮廓常常位于图像中灰度突变的地方,因而可以直观地想到用灰度的差分对边缘和轮廓进行提取。

扩展资料:

锐化操作的本质是增加图像细节边缘的对比度,这有助于我们的眼睛看清楚图像细节,从而使图像显得棱角分明、画面清晰,这是所有质量好的印刷摄影作品的必需条件。

而用扫描仪直接复制的图像如果没有经过修整,看起来会有些单调而模糊不清,所以我们往往需要在图像做完处理后对它作锐化处理。

阈值的设置是避免因锐化处理而导致的斑点和麻点等问题的关键参数,正确设置后就可以使图像既保持平滑的自然色调(例如背景中纯蓝色的天空)的完美,又可以对变化细节的反差作出强调。

在一般的印前处理中的值为3到4,超过10是不可取的,它们会降低锐化处理效果并使图像显得很难看。

参考资料来源:百度百科--图像锐化

概念图像锐化(image sharpening)就是补偿图像的轮廓,增强图像的边缘及灰度跳变的部分,使图像变得清晰,亦分空域处理和频域处理两类。原理图像平滑往往使图像中的边界、轮廓变得模糊,为了减少这图像锐化的相册(20张)类不利效果的影响,这就需要利用图像锐化技术,使图像的边缘变的清晰。图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变的清晰,经过平滑的图像变得模糊的根本原因是因为图像受到了平均或积分运算,因此可以对其进行逆运算(如微分运算)就可以使图像变的清晰。从频率域来考虑,图像模糊的实质是因为其高频分量被衰减,因此可以用高通滤波器来使图像清晰。在水下图像的增强处理中除了去噪,对比度扩展外,有时候还需要加强图像中景物的边缘和轮廓。而边缘和轮廓常常位于图像中灰度突变的地方,因而可以直观地想到用灰度的差分对边缘和轮廓进行提取。编辑本段PhotoShop图像锐化技巧时我们看到很多文章介绍的都是把清晰的照片模糊处理化,那如果拍出了比较模糊的照片,想把它变得清晰而有光彩,就不是一件容易的事了。不过,世上无难事,只怕有心人,利用PhotoShop的锐化工具就能使照片变清晰。USM滤镜处理操作步骤我们首先来看一下图1,这张人物照片看起来很模糊,照片中人物的发丝、身体上的汗水等细节都看不清楚,这样的照片很难吸引大家的注意。我们要做的是,把这样平凡的照片用PhotoShop的USM锐化滤镜处理。在PhotoShop中打开图像后,打开图层面板,选中图层面板中底层的背景图层点击右键,选择“复制副本”为照片复制一个副本图层,将图层的模式设定为“柔光”。选中副本图层,使用“滤镜”菜单下“锐化”中“USM锐化”滤镜,在滤镜设置窗口中,“数量”和“半径”参数影响图像的清晰度,数值越大清晰度越高。“阀值”参数可不用考虑,根据图像的具体情况设定好“数量”和“半径”的数值确定锐化。下面选择“图像”菜单下“模式→LAB颜色”命令,在弹出的窗口中选择“拼合”图层确定,将两个图层合并为一层。又回到图层面板,为合并后的这个图层复制一个副本图层,将面板窗口切换到“通道”界面,看到图层通道上增加了“明度”通道,选定这个通道再使用“滤镜”菜单下“锐化”中“USM锐化”滤镜,这次锐化参数的数值可以小一些,将这个通道锐化处理。最后把副本图层的模式修改为“柔光”,此时的图像不仅画面更清晰,色彩也更加绚丽,然后只要把两个图层合并为一层保存即可。不过,在修改的过程中要根据原图的质量,对各项参数的值进行仔细调整方能获得比较好的效果。控制参数锐化操作的本质是增加图像细节边缘的对比度,这有助于我们的眼睛看清楚图像细节,从而使图像显得棱角分明、画面清晰,这是所有质量好的印刷摄影作品的必需条件。而用扫描仪直接复制的图像如果没有经过修整,看起来会有些单调而模糊不清,所以我们往往需要在图像做完处理后对它作锐化处理。最专业的锐化处理方法是Photoshop中的模糊掩盖锐化处理(unsharpmasking,USM),它提供了最完善的图像细节强调的控制方法。它提供了三种控制参数:1.半径(Radius)它用来决定作边沿强调的像素点的宽度,如果半径值为1,则从亮到暗的整个宽度是两个像素,如果半径值为2,则边沿两边各有两个像素点,那么从亮到暗的整个宽度是4个象素。半径越大,细节的差别也清晰,但同时会产生光晕。合理的半径应该设置为图像扫描分辨率除以200。例如对于200spi在扫描图就使用1:0,对于300spi图像就使用1:5的设置,这样可以在每一个边缘的附近产生1/50到1/100英寸的光晕,它大得足以提供理想的锐化效果。2.数量(Amout)该参数可以理解为锐化的强度或振幅,对于一般的印前处理,设置为200%是一个良好的开始,然后根据需要再作适当调节。数量值过大图像会变得虚假。3.阀值(Threshold)它决定多大反差的相邻像素边界可以被锐化处理,而低于此反差值就不作锐化。阀值的设置是避免因锐化处理而导致的斑点和麻点等问题的关键参数,正确设置后就可以使图像既保持平滑的自然色调(例如背景中纯蓝色的天空)的完美,又可以对变化细节的反差作出强调。在一般的印前处理中我们推荐的值为3到4,超过10是不可取的,它们会降低锐化处理效果并使图像显得很难看。总之,锐化参数调节既要能够比较好的再现图像细节,又要不至于产生新的麻烦:比如斑点和麻点。如果你是一个有经验的处理人员,还可以根据图像内容进行适当的局部锐化以达到特殊的艺术效果。Smart Sharpen滤镜Smart Sharpen滤镜是PhotoShop CS2的新功能,它的智能锐化性能能够帮助我们有效将图像清晰处理,它将原有USM锐化滤镜的阀值功能变成高级锐化选项,添加了图像高光、阴影的锐化。我们对照一下图4,这张相片效果虽然不错,但笔者仍想把花朵的纹理显得更清晰一些,并且还不想改动花朵边缘的叶子和背景的图案。打开“滤镜”菜单下“锐化”中“Smart Sharpen”滤镜窗口,首先设置一下“Sharpen”的参数,选中Remove的模式为“镜头模糊(Lens Blur)”,同时选中“More Accurate(更准确)。然后一边调节Amount和半径的数值,一边预览画面的变化。要想不改变叶子和背景的图案,又要突出花朵的纹理,这需要打开锐化工具的高级设置选项。叶子和背景在画面中颜色暗淡正好符合“Shadow”阴影的要求,在“Shadow”设置界面把Fade Amount和Tonal Width设置为“100%”,半径值降低为“1”。这样前面设置的“Sharpen”锐化效果对画面上阴影暗淡部位的作用就不明显了。花朵在画面中是属于高光部分,因此把“Highlight”的参数值设置正好与“Shadow”的参数相反即可。在以后的拍摄中,再碰到模糊的照片就不必非要将其拉进回收站,利用上面的技巧,一样能将其变的清晰和光亮^_^。编辑本段PS Lightroom技巧Photoshop Lightroom提供一些简单的控制用于锐化照片和消除杂色。我说它简单,是因为它们并不复杂,但说实话它们完成这两项任务并不出色。我建议在Photoshop CS2或CS3内完成所有锐化,并在那里完成所有杂色消除(或使用Photoshop 插件),而不是使用Lightroom 内的基本控制。然而,如果没有Photoshop,则可以使用这些基本工具(但我会购买Photoshop CS3)。锐化处理步骤第一步Photoshop Lightroom摄影师专业技法(9张)在Develop模块的右侧面板区域内,向下滚动到Detail面板,就会看到SharpeningAmount(锐化的数量)滑块(图5-9 中圆圈所示)。它只有这一个滑块,用于控制应用到照片的锐化量。其默认设置是25%,但这样的锐化很细微,因此要看到变化,必须大大提升它。现在,在增加它之前,我建议执行以下两步操作:(1)为了能够看到锐化效果,请转到Navigator 面板(位于左侧面板区域的顶部),并单击1:1 缩放视图;(2)单击工具栏内的Before/After 视图按钮,以便可以看到锐化效果以及原始效果。第二步要增加图像锐化,只要把SharpeningAmount 滑块向右拖动即可(图5-10 中所示的这个例子中, 我把它一直拖放到100%,这样在图中所示的照片的After 版本中可以看到锐化效果)。重申一遍,我自己不在Photoshop Lightroom 内做任何锐化,而是在Photoshop CS2或CS3内做锐化,把锐化作为保存文件前的最后一步操作,因为(如我在本节介绍中所提到的)它提供更多控制,更好的锐化效果。第三步如果使用高ISO,或者在低照度下拍摄照片,照片中则可能出现杂色(可见颗粒或一些恼人的红、绿、蓝斑点,或二者都有)。在Sharpening 滑块下方(在Detail面板内),可以看到两个Noise Reduction(杂色消除)滑块。这些滑块的效果如何?我只能说:“它们并不好”,只能这样说。重申一遍,我尽量在Photoshop CS2 或CS3 内消除杂色,但是,如果您只是想在Lightroom 内试一试,则可以在这里试试。首先缩放到1:1视图,这样可以看到杂色是否真正减少(低于此放大倍率很难真正看清其效果)。图中所示的照片是我的好友Matt Kloskowski在东京教学时拍摄的,它带有两种杂色。第四步在开始降低杂色之前,我们先分屏显示Before/After视图,这是又一个值得使这种视图的地方。要减少颗粒, 请把Luminance滑块向右拖(如图5-12 所示),直到杂色减少,或者再看不到为止(理想情况)。如果发现红、绿、蓝斑点,则请试试向右拖动Color 滑块。在这个例子中,要把杂色减少到不可见的程度,我必须把这些滑块拖动多一点(如图5-12 所示)。用这些滑块降低杂色时,必须注意观察两点:(1)虽然在很多情况下它们确实能够减少杂色,但同时它们也会模糊照片内的细节,因此要密切注意这一点;(2)它们也会使色彩变得不够饱和,因此要引起注意。Photoshop Lightroom 校正色差(也就是彩色镶边)我们迟早会遇到这种情况,主体周围反差强烈的边缘出现红、绿或者更可能是紫色的色晕或杂边(这些被称作“色差”)。如果使用的是廉价的数码相机(或者是用廉价广角镜头的好相机),迟早会发现这种情况(可能就在今天),但即使是好相机(和好镜头)也会不时出现这种问题。幸运的是,这在Photoshop Lightroom 内很容易校正。校色处理步骤第一步图中的照片是用廉价傻瓜相机拍摄的。仔细观察就会发现白色建筑的屋顶周围有彩色镶边或色晕。这种情况有时出现在反差强烈的边缘周围,就像这个建筑物上的白色屋顶与其后的绿色树木和草地的交汇处一样。如果发现像这样的情况,请直接转到Develop模块右侧面板区域内的Lens Corrections(镜头校正)面板。第二步单击照片放大白色屋顶。放大(这里看到的是1:1 视图)后更容易确定边缘镶边的颜色,这是解决问题的第一步(下一步需要知道镶边的颜色)。屋顶已经放大,我们可以看到沿着屋顶边缘存在红色线,就像有人用细细的红色记号笔沿着屋顶绘制过一样,这条红线就是色差。第三步一旦确定了镶边的元素(这个例子中是红色),请转到Lens Corrections 面板的Chromatic Aberration(色差)部分,在这里会看到两个滑块:一个是Red/Cyan(红色/青色),另一个是Blue/Yellow(蓝色/ 黄色)。在这个例子中,因为我们的问题是红色,因此请向左朝红色方向拖动Red/Cyan 滑块(如图5-15 所示)。正如我们所看到的,这会大大减少屋顶轮廓线周围的红边。当然,如果照片中的镶边是蓝色或黄色,则要使用下一个滑块,把它朝存在问题的颜色的方向拖动。这样就可以降低色差。第四步这里我们回到缩小的Fit 视图,可以看到现在屋顶效果变好很多,因为我们大大降低了红色镶边。提示:这个提示实际上和校正色差没有任何关系,但是,因为这里有一些空的篇幅,所以给出这个提示。要更好控制Develop模块面板内的滑块,另一种方法是增加面板的宽度,之后这些滑块变得更长,拖动它们时,滑块控制就不会那么宽。要使面板变宽,请直接在面板区域的边缘内单击,把它向Preview 区域拖动。现在请试试拖动任意一个Develop 滑块,您就会明白我的意思。

论文研究方法中的图像分析法

数字图像处理主要研究的内容有以下几个方面:1) 图像变换由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。2) 图像编码压缩图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。3) 图像增强和复原图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立"降质模型",再采用某种滤波方法,恢复或重建原来的图像。4) 图像分割图像分割是数字图像处理中的关键技术之一。图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。虽然目前已研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。因此,对图像分割的研究还在不断深入之中,是目前图像处理中研究的热点之一。5) 图像描述是图像识别和理解的必要前提。作为最简单的二值图像可采用其几何特性描述物体的特性,一般图像的描述方法采用二维形状描述,它有边界描述和区域描述两类方法。对于特殊的纹理图像可采用二维纹理特征描述。随着图像处理研究的深入发展,已经开始进行三维物体描述的研究,提出了体积描述、表面描述、广义圆柱体描述等方法。6) 图像分类(识别)图像分类(识别)属于模式识别的范畴,其主要内容是图像经过某些预处理(增强、复原、压缩)后,进行图像分割和特征提取,从而进行判决分类。图像分类常采用经典的模式识别方法,有统计模式分类和句法(结构)模式分类,近年来新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中也越来越受到重视。

有。根据查询论文研究方法表明,图标分析法是论文研究方法最常用的方法之一,可以更加直观的进行数据分析,解释说明。

调查法:该方法是有目的、有系统的搜集有关研究对象的具体信息。观察法:用自己的感官和辅助工具直接观察研究对象从而得到有关信息。实验法:通过主支变革、控制研究对象来发现与确认事物间的因果关系。文献研究法:通过调查文献来获得资料,从而全面的、正确的了解掌握研究方法。实证研究法:依据现有的科学理论和实践的需要提出设计。定量分析法:通过具体的数字,使人们对研究对象的认识进一步精确化。定性分析法:对研究对象进行“质”的方面的研究,这个方法需要计算的数据较少。跨学科研究法:运用多学科的理论、方法和成果从整体上对某一课题进行研究。功能分析法:这是社会科学用来分析社会现象的一种方法,从某一功能出发研究多个方面的影响。模拟法:通过创设一个与原型相似的模型来间接研究原型某种特性的一种形容方法。

相关百科
热门百科
首页
发表服务