期刊投稿百科

混合物的分离研究论文目录怎么写

发布时间:2024-09-03 03:21:45

混合物的分离研究论文目录怎么写

这个得看你的选题,以及写作提纲的

就是和你的通篇内容的提要差不多吧!有必要好像可以有复标题的!

你就只要目录吗?目录就是把你论文的一级标题、二级标题都列出来,最多到三级标题,一般二级标题就够了,你随便下载一篇硕士论文看格式就好了,如果你只是格式不明白可以加我,我也正在做论文,我发给你个优秀硕士论文,格式都是一样的,你要是找内容我就没法帮你了,不是一个专业的。那你就是要人给你列一级提纲呀,这个复杂了,想我当初自己写开题报告还写了几天呢,除非有人跟你写的差不多内容的,你能拿个现成的来,要不然还是自己写吧,或者在学校cnki搜索搜索有没有优秀硕博士论文借鉴一下。

论文目录主要就是论文的主要内容,还有一些重点知识!

混合物的分离研究论文目录

氢氧化钠水洗,然后水层加酸用有机溶剂萃取,抽干得苯甲酸碱水洗得有机层应该是甲苯和苯胺,两者无水硫酸钠除水,然后蒸馏

混合物的分离 在生产和生活中,接触到的很多物质大多是混合物,如石油、粗盐等。化工生产的产品也常混有少量的杂质。为了适应各种不同的需要,常常要把混合物里的几种物质分开,得到较为纯净的物质。这叫做混合物的分离。混合物常用的分离方法有过滤、结晶、重结晶、蒸馏和萃取等(参看过滤、结晶)。结晶 固体物质从溶液里析出晶体的原理,常应用于生产或科研,用以分离可溶性混合物或除去一些可溶性杂质。这种混合物的分离方法叫结晶法。结晶法又可分结晶、重结晶(或称再结晶)和分步结晶等方法。一般地说,将可溶性的粉末状物质经溶解、过滤、蒸发溶剂或冷却热饱和溶液分离出晶体状态的物质叫结晶。从混有少量可溶性杂质的晶体里用多次结晶的方法除去杂质得到纯度较高的物质叫做重结晶。如果把可溶于水的混合物利用各种物质在一种溶剂里溶解度的不同,用结晶方法把它们分离,同时得到两种或几种晶体,这种方法叫做分步结晶法。例如,苦卤的主要成分是MgCl2、NaCl,其次是MgSO4,含量较少的是KCl,工业上利用这四种物质的溶解度不同,采取去水或加水,升温或降温的方法,分别使它们结晶或溶解,从而把比较重要的KCl分离出来。过滤 过滤是把不溶于液体的固体物质跟液体相分离的一种方法。根据混合物中各成分的性质可采用常压过滤、减压过滤或热过滤等不同方法。中学常用的是常压过滤的方法,即用普通玻璃漏斗做过滤器,用滤纸做过滤介质。当将混合物进行过滤时,得到的澄清液体是滤液,留在过滤介质上面的固体颗粒是滤渣(参看漏斗的使用、过滤)。萃取 是利用溶质在互不相溶的溶剂里溶解度的不同,以一种溶剂把溶质从另一溶剂里提取出来的方法。例如用四氯化碳萃取碘水中的碘。

物理方法(1)过滤:它是利用混合物各组分在同一溶剂中溶解度的差异,使不溶固体与溶液分离开来的一种方法。如粗盐的提纯。(2)蒸发浓缩:它是用于分离溶于溶剂中的溶质的一种方法。如分离食盐溶液中的NaCl。(3)结晶、重结晶:它是利用混合物中各组分在某种溶剂中的溶解度随温度变化不同的性质来分离提纯物质的一种方法。如NaCl和KNO3混合物的分离。重结晶实际上是反复进行溶解、结晶的操作。(4)蒸馏与分馏:它是利用几种互溶的液体各自沸点差别较大的性质来分离物质的一种方法。如从石油中分离各种馏分,再如C2H5OH和H2O混合物的分离。(5)分液:它是利用两种互不相溶的液体,且密度不同的性质来分离物质的一种方法。如分离C6H6和H2O混合物的分离。(6)浮选法:它是利用物质密度的不同来分离均不溶于水溶剂的固体混合物。如用水在沙里淘金。(7)萃取:它是利用某种物质在两种互不相溶的溶剂中溶解度的不同来分离物质的一种方法。如用CCl4萃取碘水中的I2。(8)升华:它是利用混合物中某些成分在一定温度下可直接转化为气体,冷却又直接转化为固体将混合物分开的一种方法,其实就是利用升华的性质来分离混合物的。如从NaCl和I2的混合物中分离提纯I2。(9)液化:它是利用各种气体的沸点不同,先使其液化,然后再气化,从而将混合物分离开的一种方法。如从空气中分离N2和O2。(10)水洗:它是利用各组分气体在水中溶解度的不同来分离提纯物质的一种方法。如从H2和HCl气体的混合物中除去HCl气体。(11)渗析法:此法是利用半透膜,使离子或小分子从胶体溶液里分离出来的一种方法。如把KI从淀粉中分离出来。(12)盐析:它是利用某些物质在加入某些无机盐时,其溶解度降低而形成沉淀的性质将其分开的一种方法。如从皂化液中分离肥皂、甘油,再如蛋白质的盐析。(13)纸上层析:它是利用滤纸或其它具有毛细作用的物质,在展开剂的作用下,将含有微量物质的混合物进行分离和鉴别的方法。如分离含有少量Fe3+和Cu2+的混合物。化学方法(1)热分解法:它是利用混合物中各组分稳定性的不同,将其进行加热或灼热处理,从而分离物质。如除去Na2CO3中混有的NaHCO3。(2)酸、碱处理法:它是是利用混合物中各组分酸碱性质的不同,用碱或酸处理,从而将物质分离开的一种方法。如分离Al2O3和Fe2O3的混合物。(3)沉淀法:它是利用混合物中某成分与溶液反应生成沉淀来进行分离或提纯物质的一种方法。如加入适量AgNO3溶液的方法除去KNO3中少量的KCl。(4)氧化还原法:它是利用混合物中某组分能被氧化(或被还原)的性质来分离或提纯物质的一种方法。如除去苯中混有的甲苯。(5)络合法:它是利用组分中某一成分可以形成络合物的性质来分离提纯物质的一种方法。例如分离Al2O3和ZnO的混合物。(6)电解法:它是利用电解的原理来分离提纯物质的一种方法,如电解冶炼铝。(7)离子交换法:是用离子交换剂来分离提纯物质的一种方法。如硬水的软化。

混合物的分离研究论文题目怎么写

鄂北膨胀土的矿物组成和化学成分分析然后利用X射线能谱(EDX)对鄂北膨胀土中的化学元素组成进行了测定和分析,最后对鄂北膨胀土的结核现象进行了分析。化学成分XRDEDX膨胀土的特殊工程性质是受其矿物组成和化学成分控制的。研究膨胀土矿物组成和化学成分不/html/Constructs/20090316/html

筷子的神力 思考:把一根筷子插入装着米的杯子中,然后将筷子上提,筷子会把米和杯子提 起吗? 材料:塑料杯一个、米一杯、竹筷子一根 操作: 1、将米倒满塑料杯。 2、用手将杯子里的米按一按。 3、用手按住米,从手指缝间插入筷子。 4、用手轻轻提起筷子,杯子和米一起被提起来了。 讲解: 由于杯内米粒之间的挤压,使杯内的空气被挤出来,杯子外面的压力大于杯内的 压力,使筷子和米粒之间紧紧地结合在一起,所以筷子就能将成米的杯子提起来。 瓶子赛跑 思考:装有沙子和装有水的两个同等重量的瓶子从一个高度滚下来,谁先到达终 点? 材料:同等大小、重量相等的瓶子两个、沙子、水、长方形木板一块、两本厚书 操作: 1、用长方形木板和两本书达成一个斜坡 2、将水倒入另一个瓶子中,将沙子倒入瓶子中 3、把两只瓶子放在木板上,在同一起始高度让两只瓶子同时向下滚动 4、装水的瓶子比装沙子的瓶子提前到达终点 讲解: 沙子对瓶子内壁的摩擦比水对瓶子内壁的摩擦要大得多,而且沙子之间还会有摩 擦,因此它的下滑速度比装水的瓶子要慢。 创造:将瓶子里的物质换一换,再让它们比比赛吧! 带电的报纸 思考:不用胶水、胶布等粘合的东西,报纸就能贴在墙上掉不下来。你知道这是 为什么吗? 材料:1支铅笔;1张报纸。 步骤: 展开报纸,把报纸平铺在墙上。 用铅笔的侧面迅速地在报纸上摩擦几下后,报纸就像粘在墙上一样掉不下来 了。 掀起报纸的一角,然后松手,被掀起的角会被墙壁吸回去。 把报纸慢慢地从墙上揭下来,注意倾听静电的声音。 说明: 摩擦铅笔,使报纸带电。 带电的报纸被吸到了墙。 当屋子里的空气干燥(尤其是在冬天),如果你把报纸从墙上揭下来,就会 听到静电的劈啪声。 创造:请试一试,还有什么物品能不用粘和剂,而用静电粘在墙上 胡椒粉与盐巴的分离 思考:不小心将厨房的佐料:胡椒粉与盐巴混在了一起,用什么方法将他们分离 开呢? 材料:胡椒粉、盐巴、塑料汤勺、小盘子 操作: 1、将盐巴与胡椒粉相混在一起。 2、用筷子搅拌均匀。 3、塑料汤勺在衣服上摩擦后放在盐巴与胡椒粉的上方。 4、胡椒粉先粘附在汤勺上。 5、将塑料汤勺稍微向下移动一下。 6、盐巴后粘附在汤勺上。 讲解: 胡椒粉比盐巴早被静电吸附的原因,是因为它的重量比盐巴轻。 创造: 你能用这种方法将其他混合的原料分离吗? 带电的气球 思考:两个气球什么情况下会相互吸引, 什么情况下会相互排斥? 材料:打好气的气球2个、线绳1根、硬纸板1张 操作: 1 将两个气球分别充气并在口上打结。 2 用线将两个气球连接起来。 3 用气球在头发(或者羊毛衫)上摩擦。 4 提起线绳的中间部位,两个气球立刻分开了。 5 将硬纸板放在两个气球之间,气球上的电使它们被吸引到纸板上。 讲解: 1 一个气球上的电排斥另一个气球上的电。 2 两个气球上的电使它们被吸引到纸板上。 创造:你能用其它小实验说明气球带电吗? 可爱的浮水印 思考:宣纸上漂亮的图案不是画出来的,是怎样制作出来的? 材料:脸盆1个、宣纸1-2张、筷子1支、棉花棒1根、墨汁1瓶、水(约半盆) 操作: 1、在脸盆里倒入半盆水,用蘸了墨汁的筷子轻轻碰触水面,即可看到墨汁在水 面上扩展成一个圆形。 2、拿棉花棒在头皮上摩擦二、三下。 3、然后轻碰墨汁圆形图案的圆心处,看看有什么现象。 4、把书法用纸轻轻覆盖在水面上,然后缓缓拿起,纸上印出什么图案呢? 讲解: 1、棉花棒碰触时,墨汁会被扩展成一个不规则的圆圈图形。 2、棉花棒在头皮上摩擦所涂上的少量油,就会影响水分子互相拉引的力量。 3、水印会呈现不规则的同心圆图形。 创造: 试试其他的方法,改变水面上墨汁的图形

课题是什么?论文题目是什么?氢能源一.氢能源简介作为现有主要燃料的汽油和柴油,生产它们几乎完全依靠化石燃料。随着化石燃料耗量的日益增加,其储量日益减少,终有一天这些资源将要枯竭,这就迫切需要寻找一种不依赖化石燃料的、储量丰富的新的含能体能源。氢能正是一种在常规能源危机的出现、在开发新的能源的同时人们期待的新的能源。氢位于元素周期表之首,它的原子序数为1,在常温常压下为气态,在超低温高压下又可成为液态。作为能源,氢有以下特点: 所有元素中,氢重量最轻。在标准状态下,它的密度为0899g/L;在-7℃时,可成为液体,若将压力增大到数百个大气压,液氢就可变为固态氢。 所有气体中,氢气的导热性最好,比大多数气体的导热系数高出10倍,因此在能源工业中氢是极好的传热载体。 氢是自然界存在最普遍的元素,据估计它构成了宇宙质量的75%,除空气中含有氢气外,它主要以化合物的形态贮存于水中,而水是地球上最广泛的物质。据推算,如把海水中的氢全部提取出来,它所产生的总热量比地球上所有化石燃料放出的热量还大90O0倍。 除核燃料外氢的发热值是所有化石燃料、化工燃料和生物燃料中最高的,为351kJ/kg,是汽油发热值的3倍。 氢燃烧性能好,点燃快,与空气混合时有广泛的可燃范围,而且燃点高,燃烧速度快。 氢本身无毒,与其他燃料相比氢燃烧时最清洁,除生成水和少量氮化氢外不会产生诸如一氧化碳、二氧化碳、碳氢化合物、铅化物和粉尘颗粒等对环境有害的污染物质,少量的氮化氢经过适当处理也不会污染环境,而且燃烧生成的水还可继续制氢,反复循环使用。 氢能利用形式多,既可以通过燃烧产生热能,在热力发动机中产生机械功,又可以作为能源材料用于燃料电池,或转换成固态氢用作结构材料。用氢代替煤和石油,不需对现有的技术装备作重大的改造,现在的内燃机稍加改装即可使用。 氢可以以气态、液态或固态的金属氢化物出现,能适应贮运及各种应用环境的不同要求。由以上特点可以看出氢是一种理想的新的能源。目前液氢已广泛用作航天动力的燃料,但氢能的大规模的商业应用还有待解决以下关键问题: 廉价的制氢技术。因为氢是一种二次能源,它的制取不但需要消耗大量的能量,而且目前制氢效率很低,因此寻求大规模的廉价的制氢技术是各国科学家共同关心的问题。 安全可靠的贮氢和输氢方法。由于氢易气化、着火、爆炸,因此如何妥善解决氢能的贮存和运输问题也就成为开发氢能的关键。许多科学家认为,氢能在二十一世纪有可能在世界能源舞台上成为一种举足轻重的能源。氢能是一种二次能源,因为它是通过一定的方法利用其它能源制取的,而不象煤、石油和天然气等可以直接从地下开采。在自然界中,氢已和氧结合成水,必须用热分解或电分解的方法把氢从水中分离出来。如果用煤、石油和天然气等燃烧所产生的热或所转换成的电分解水制氢,那显然是划不来的。现在看来,高效率的制氢的基本途径,是利用太阳能。如果能用太阳能来制氢,那就等于把无穷无尽的、分散的太阳能转变成了高度集中的干净能源了,其意义十分重大。目前利用太阳能分解水制氢的方法有太阳能热分解水制氢、太阳能发电电解水制氢、阳光催化光解水制氢、太阳能生物制氢等等。利用太阳能制氢有重大的现实意义,但这却是一个十分困难的研究课题,有大量的理论问题和工程技术问题要解决,然而世界各国都十分重视,投入不少的人力、财力、物力,并且业已取得了多方面的进展。因此在以后,以太阳能制得的氢能,将成为人类普遍使用的一种优质、干净的燃料。二氢的应用及展望早在第二次世界大战期间,氢即用作A—2火箭发动机的液体推进剂。196O年液氢首次用作航天动力燃料。1970年美国发射的“阿波罗”登月飞船使用的起飞火箭也是用液氢作燃料。现在氢已是火箭领域的常用燃料了。对现代航天飞机而言,减轻燃料自重,增加有效载荷变得更为重要。氢的能量密度很高,是普通汽油的3倍,这意味着燃料的自重可减轻2/3,这对航天飞机无疑是极为有利的。今天的航天飞机以氢作为发动机的推进剂,以纯氧作为氧化剂,液氢就装在外部推进剂桶内,构成燃料电池。每次发射需用H21450 m3,重约100t。反应方程式如下:(以氢氧化钠为电解质)负极:2H2-2e-+2OH-=2H2O正极:O2+4e-+2H2O=4OH-总反应方程式:2H2+O2=2H2O现在科学家们正在研究一种“固态氢”的宇宙飞船。固态氢既作为飞船的结构材料,又作为飞船的动力燃料。在飞行期间,飞船上所有的非重要零件都可以转作能源而“消耗掉”。这样飞船在宇宙中就能飞行更长的时间。戴姆勒·奔驰公司的燃氢汽车在超声速飞机和远程洲际客机上以氢作动力燃料的研究已进行多年,目前已进入样机试飞阶段。在交通运输方面,美、德、法、日等汽车大国早已推出以氢作燃料的示范汽车,并进行了几十万公里的道路试验。其中美、德、法等国是采用氢化金属贮氢,而日本则采用液氢。试验证明,以氢作燃料的汽车在经济性、适应性和安全性三方面均有良好的前景,但目前仍存在贮氢密度小和成本高两大障碍。前者使汽车连续行驶的路程受限制,后者主要是由于液氢供应系统费用过高造成的。美国和加拿大已联手合作拟在铁路机车上采用液氢作燃料。在进一步取得研究成果后,从加拿大西部到东部的大陆铁路上将奔驰着燃用液氢和液氧的机车。氢不但是一种优质燃料,还是石油、化工、化肥和冶金工业中的重要原料和物料。石油和其他化石燃料的精炼需要氢,如烃的增氢、煤的气化、重油的精炼等;化工中制氨、制甲醇也需要氢。氢还用来还原铁矿石。用氢制成燃料电池可直接发电。采用燃料电池和氢气-蒸汽联合循环发电,其能量转换效率将远高于现有的火电厂。随着制氢技术的进步和贮氢手段的完善,氢能将在21世纪的能源舞台上大展风采。白色污染变燃油城市周围堆积如山的塑料垃圾和交通沿线满地飘飞的塑料食品袋完全可以被回收冶炼为汽油、柴油,北京市梦蓝固体废弃物再生利用公司经过八年多的研究和中试,成功解决了废弃塑料油化技术中焦化、排渣、温控等关键问题,开发出自已的工艺系统和成套设备。国家石油产品质量监督检验中心对该公司送审的样品进行了严格检测并认定其符合国家对车用燃油的标准和环境排放标准。有关专家建议尽快组织推广应用,以缓解白色污染给人类带来的环境危机。目前,废弃塑料的治理渠道,国内外多年普遍采取填埋和焚烧方式。但研究表明,废弃塑料在填埋后200多年才能分解完毕,且分解过程中会溶出有毒物质,易产生对土质的破坏;焚烧方式会使有害气体释放到空中,影响大气环境及周边环境。北京市梦蓝固体废弃物再生利用技术有限公司认为把废弃塑料经催化裂解制为燃料,才是物质重新循环同时也能避免二次污染的重要途径,代表着废弃塑料的处理方向。实践证明,采用该项技术设备在连续生产的情况下,日处理废弃塑料能力强、汽柴油转化率高,符合车用燃油的标准和环境排放标准。可燃冰——人类能源的新希望可燃冰的学名为“天然气水合物”,是天然气在0℃和30个大气压的作用下结晶而成的“冰块”。“冰块”里甲烷占80% 9%�未来能源”。1立方米可燃冰可转化为164立方米的天然气和8立方米的水。科学家估计,海底可燃冰分布的范围约4000万平方公里,占海洋总面积的10%,海底可燃冰的储量够人类使用1000年。随着研究和勘测调查的深入,世界海洋中发现的可燃冰逐渐增加,1993年海底发现57处,2001年增加到88处。据探查估算,美国东南海岸外的布莱克海岭,可燃冰资源量多达180亿吨,可满足美国105年的天然气消耗;日本海及其周围可燃冰资源可供日本使用100年以上。据专家估计,全世界石油总储量在2700亿吨到6500亿吨之间。按照目前的消耗速度,再有50-60年,全世界的石油资源将消耗殆尽。可燃冰的发现,让陷入能源危机的人类看到新希望。重大战略意义下的联手勘测今年6月2日,26名中德科学家从香港登上德国科学考察船“太阳号”,开始了对南海42天的综合地质考察。通过海底电视观测和海底电视监测抓斗取样,首次发现了面积约430平方公里的巨型碳酸盐岩。中德科学家一致建议,将该自生碳酸盐岩区中最典型的一个构造体命名为“九龙甲烷礁”。其中“龙”字代表了中国,“九”代表了多个研究团体的合作。同位素测年分析表明,“九龙甲烷礁”区域的碳酸盐结壳最早形成于大约5万年前,至今仍在释放甲烷气体。中方首席科学家、广州海洋地质调查局总工程师黄永样对此极为兴奋,他说,探测证据表明:仅南海北部的可燃冰储量,就已达到我国陆上石油总量的一半左右;此外,在西沙海槽已初步圈出可燃冰分布面积5242平方公里,其资源估算达1万亿立方米。我国从1993年起成为纯石油进口国,预计到2010年,石油净进口量将增至约1亿吨,2020年将增至2亿吨左右。因此,查清可燃冰家底及开发可燃冰资源,对我国的后续能源供应和经济的可持续发展,战略意义重大。黄永样介绍,在未来十年,我国将投入1亿元对这项新能源的资源量进行勘测,有望到2008年前后摸清可燃冰家底,2015年进行可燃冰试开采。战略性与危险性共同打造的“双刃剑”迄今,世界上至少有30多个国家和地区在进行可燃冰的研究与调查勘探。1960年,前苏联在西伯利亚发现了第一个可燃冰气藏,并于1969年投入开发,采气14年,总采气17亿立方米。美国于1969年开始实施可燃冰调查。1998年,把可燃冰作为国家发展的战略能源列入国家级长远计划,计划到2015年进行商业性试开采。日本关注可燃冰是在1992年,目前,已基本完成周边海域的可燃冰调查与评价,钻探了7口探井,圈定了12块矿集区,并成功取得可燃冰样本。它的目标是在2010年进行商业性试开采。但人类要开采埋藏于深海的可燃冰,尚面临着许多新问题。有学者认为,在导致全球气候变暖方面,甲烷所起的作用比二氧化碳要大10 20倍。而可燃冰矿藏哪怕受到最小的破坏,都足以导致甲烷气体的大量泄漏。另外,陆缘海边的可燃冰开采起来十分困难,一旦出了井喷事故,就会造成海啸、海底滑坡、海水毒化等灾害。由此可见,可燃冰在作为未来新能源的同时,也是一种危险的能源。可燃冰的开发利用就像一柄“双刃剑”,需要小心对待。新闻背景羌塘盆地可能富藏可燃冰我国冻土专家在对青藏高原进行多年研究后认为,青藏高原羌塘盆地多年冻土区具备形成天然气水合物的温度和压力条件,可能蕴藏着大量可燃冰。据中国科学院寒区旱区环境与工程研究所研究员吴青柏介绍,青藏高原是中纬度最年轻、最高大的高原冻土区,石炭、二叠和第三、第四系沉积深厚,河湖海相沉积中有机质含量高。第四系伴随高原强烈隆升,遭受广泛的冰川——冰缘作用,冰盖压力使下伏沉积物中天然气水合物稳定性增强,尤其是羌塘盆地和甜水海盆地,完全有可能具备可燃冰稳定存在的条件。可燃冰又称天然气水合物,是固态的天然气,广泛存在于地球上,其储量预计是常规储量的6倍。它还是一种清洁的能源,燃烧几乎不会产生有害的污染物质。这使得这种有望成为新世纪能源新贵的物质的开采利用正紧锣密鼓地展开。我国是世界上多年冻土分布面积第三大国,约占世界多年冻土面积的10%,其中青藏高原多年冻土区面积占世界多年冻土面积的7%。中国科学院兰州冰川冻土研究所在20世纪60年代和70年代,分别在祁连山海拔4000米的多年冻土区和青藏高原海拔4700米的五道梁多年冻土区钻探发现类似天然气水合物显示的大量征兆和现象。中国地质大学 武汉 和中南石油局第五物探大队在藏北高原羌塘盆地开展的大规模地球物理勘探成果表明 继塔里木盆地后,西藏地区很有可能成为我国21世纪第二个石油资源战略接替区。吴青柏说,目前,他们正在开展寻找可燃冰的计划,大量在实验室内做的前期工作已经开始。此后,他们将分三步研究 在羌塘盆地寻找天然气水合物,如确实存在,则研究其分布规律和基本性质;估算储量和研究开发前景;研究开采工艺和环境保护问题。“但这是一个非常长的阶段,至少要10多年时间。”“一旦找到这些可燃冰,将对我国宏观能源战略决策、开拓新学科领域和保持人类社会可持续发展均有重要理论意义和广阔的应用前景。”

1、看题目要求是写人还是写事,如果是要求写人的文章,叙述的重点就是通过具体的事情来表现人物;如果是写事的文章,人只是其中的主角,主要是通过整个完整的事件来突出主题。2、看题目限定的范围。在题目中也许已经限定了写什么人,什么时间、什么地点的人。如《我的辅导员》就限定了必须使用第一人称;有的在材料中要求写你身边的人;有的材料要求写在学校和在家里,一个人的不同表现;有的题目是《爸爸变了》就要求你写以前和现在爸爸的不同样貌。3、看题目有没有题眼。所谓题眼,就是指题目中的关键字词,比如说一篇文章叫做《我最喜欢的一个人》,题眼是“喜欢”,你不可以大量笔墨来写我多么崇拜这个人,喜欢和崇拜是不同的情感。《奶奶的微笑》题眼在于微笑。2记叙文的写作技巧有哪些写人的记叙文,主要通过描述人物的外貌、行动、心理、语言和人物所处的环境来刻画人物性格,塑造形象,突出主题。要写好人物,最重要的笔法技巧是细节描写,这是通过对人物细微的神态动作、细微小事的描写来活画人物,使之血肉丰满的方法。没有细节,就写不好人。这是人物描写的第一方法,要好好揣摩。要写好人物,我们还要琢磨漫画勾勒以形传神的笔法。这种笔法有些像人物速写,三两笔一勾勒,使有特征的地方加以突出,人物形象就鲜明了。而且,关键是显示出内在气质而使人物形象丰满起来。为了使文章产生曲折委婉的趣味,有时可以用一种特殊的笔法来写人,如先抑后扬、明贬暗褒、正话反说、反话正说等。这样构思处理,文章自然会幽默、风趣、委婉、含蓄。我们还应该研究一下用幽默调的笔调来写人,因为它的效果特别好。就像画漫画。用略显夸张的笔法将人物勾出来,一下子就产生了喜剧效果。只是,这既要在选材上下功夫,又要在语言锤炼上下功夫,“炼”出一种幽默、风趣的语言来。

混合物的分离研究论文题目

分离是将两种物体分开来,量不能变。提纯是将一种物体提取出来,可以直接提纯,也可以间接提纯,对提取的物质,量不能减少,可以是增加。对另一种杂质无要求,除掉即可。这是高中的定义

ML28-1 杯芳烃化合物的合成及其在氟化反应中的相转移催化作用ML28-2 高效液相色谱分离硝基甲苯同分异构体ML28-3 甲烷部分氧化反应的密度泛函研究ML28-4 硝基吡啶衍生物的结构及其光化学的研究ML28-5 酰胺衍生的P,O配体参与的Suzuki偶联反应及其在有机合成中的应用ML28-6 磺酰亚胺的新型加成反应的研究ML28-7 纯水相Reformatsky反应的研究ML28-8 一个合成邻位氨基醇化合物的绿色新反应ML28-9 恶二唑类双偶氮化合物的合成与光电性能研究ML28-10 CO气相催化偶联制草酸二乙酯的宏观动力学研究ML28-11 三芳胺类空穴传输材料及其中间体的合成研究ML28-12 光敏磷脂探针的合成、表征和光化学性质研究ML28-13 脱氢丙氨酸衍生物的合成及其Michael加成反应研究ML28-14 5-(4-硝基苯基)-10,15,20-三苯基卟啉的亲核反应研究ML28-15 醇烯法合成异丙醚的研究ML28-16 手性螺硼酸酯催化的前手性亚胺的不对称硼烷还原反应研究ML28-17 甾类及相关化合物的结构与生物活性关系研究ML28-18 金属酞菁衍生物的合成与其非线性光学性能的研究ML28-19 新型手性氨基烷基酚的合成及其不对称诱导ML28-20 水滑石类化合物催化尿素醇解法合成有机碳酸酯研究ML28-21 膜催化氧化正丁烷制顺酐ML28-22 甲醇选择性催化氧化制早酸甲酯催化剂的研制与反应机理研究ML28-23 甲酸甲酯水解制甲酸及其动力学的研究ML28-24 催化甲苯与甲醇侧链烷基化反应制取苯乙烯和乙苯的研究ML28-25 烯胺与芳基重氮乙酸酯的新反应研究 ML28-26 核酸、蛋白质相互作用研究及毛细管电泳电化学发光的应用ML28-27 H-磷酸酯在合成苄基膦酸和肽衍生物中的应用ML28-28 微波辐射下三价锰离子促进的2-取代苯并噻唑的合成研究ML28-29 铜酞菁—苝二酰亚胺分子体系的光电转换特性研究ML28-30 新型膦配体的合成及烯烃氢甲酰化反应研究ML28-31 肼与羰基化合物的反应及其机理研究ML28-32 离子液体条件下杂环化合物的合成研究ML28-33 超声波辐射、离子液体以及无溶剂合成技术在有机化学反应中的应用研究ML28-34 有机含氮小分子催化剂的设计、合成及在不对称反应中的应用ML28-35 金属参与的不对称有机化学反应研究ML28-36 黄酮及噻唑类衍生物的合成研究ML28-37 钐试剂产生卡宾的新方法及其在有机合成中的应用ML28-38 琥珀酸酯类内给电子体化合物的合成与性能研究ML28-39 3-甲基-4-芳基-5-(2-吡啶基)-1,2,4-三唑铜(II)配合物的合成、晶体结构及表征ML28-40 直接法合成二甲基二氯硅烷的实验研究ML28-41 中性条件下傅氏烷基化反应的初步探索IIβ-溴代醚新合成方法的初步探索ML28-42 几种氧化苦参jian类似物的合成ML28-43 环丙烷和环丙烯类化合物的合成研究ML28-44 基于甜菜碱的超分子设计与研究ML28-45 新型C2轴对称缩醛化合物合成研究ML28-46 环状酰亚胺光化学性质研究及消毒剂溴氯甘脲的制备ML28-47 蛋白质吸附的分子动力学模拟ML28-48 富硫功能化合物的分子设计与合成ML28-49 ABEEM-σπ模型在Diels-Alder反应中的应用ML28-50 快速确定丙氨酸-α-多肽构象稳定性的新方法ML28-51 SmI2催化合成含氮杂环化合物的研究及负载化稀土催化剂的探索ML28-52 新型金属卟啉化合物的合成及用作NO供体研究ML28-53 磁性微球载体的合成及其对酶的固定化研究ML28-54 甾体—核苷缀合物的合成及其性质研究ML28-55 非键作用和库仑模型预测甘氨酸-α-多肽构象稳定性ML28-56 多酸基有机-无机杂化材料的合成和结构表征ML28-57 5-芳基-2-呋喃甲醛-N-芳氧乙酰腙类化合物的合成、表征及生物活性研究ML28-58 氟喹诺酮类化合物的合成、表征及其生物活性研究ML28-59 手性有机小分子催化剂催化的Baylis-Hillman反应和直接不对称Aldol反应ML28-60 多核铁配合物通过水解途径识别蛋白质a螺旋ML28-61 一种简洁地获取结构参数的方法及应用ML28-62 水杨酸甲酯与硝酸钇的反应性研究及其应用ML28-63 脯氨酸及其衍生物催化丙酮与醛的不对称直接羟醛缩合反应的量子化学研究ML28-64 新型荧光分子材料的合成及其发光性能研究ML28-65 枸橼酸西地那非中间体1-甲基-3-丙基-4-硝基吡唑-5-羧酸的合成研究ML28-66 具有生物活性的含硅混合二烃基锡化合物的研究ML28-67 直接法合成三乙氧基硅烷的研究ML28-68 具有生物活性的含硅混合三烃基锡化合物的研究ML28-69 过氧钒有机配合物的合成及其对水中有机污染物氧化降解的催化性能研究ML28-70 查耳酮化合物的合成与晶体化学研究ML28-71 二唑衍生物的合成研究ML28-72 2-噻吩甲酸-2,2’-联吡啶二元、三元稀土配合物的合成、表征及光致发光ML28-73 3’,5’-二硫代脱氧核苷的合成及其聚合性质的研究ML28-74 β-烷硫基丁醇和丁硫醇类化合物及其衍生物的合成研究ML28-75 新型功能性单体丙烯酰氧乙基三甲基氯化铵合成与研究ML28-76 5-取代吲哚衍生物结构和性能的量子化学研究ML28-77 新型水溶性手性胺膦配体的合成和在芳香酮不对称转移氢化中的应用ML28-78 大豆分离蛋白的接枝改性及其溶液行为研究ML28-79 N-(4-乙烯基苄基)-1-氮杂苯并-34-冠-11的合成和其自由基聚合反应的研究ML28-80 稀土固体超强酸催化合成酰基二茂铁ML28-81 硒(硫)杂环化合物与金属离子的合成与表征ML28-82 新型二阶非线性光学发色团分子的设计、合成与性能研究ML28-83 对△~4-烯-3-酮结构的甾体选择性脱氢生成△~(4,6)-二烯-3-酮结构的研究ML28-84 对苯基苯甲酸稀土二元、三元配合物的合成、表征及荧光性能研究ML28-85 D-π-A共轭结构有机分子的设计合成及理论研究ML28-86 羧酸酯一步法嵌入式烷氧基化反应研究ML28-87 分子内电荷转移化合物溶液及超微粒分散体系的光学性质研究ML28-88 手性氨基烷基酚的合成ML28-89 酪氨酸酶的模拟及酚的选择性邻羟化反应研究ML28-90 单分子膜自组装结构与性质的研究ML28-91 氯苯三价阳离子离解势能面的理论研究ML28-92 香豆素类化合物的合成与晶体化学研究ML28-93 离子液体的合成及离子液体中的不对称直接羟醛缩合反应研究ML28-94 五元含氮杂环化合物的合成研究ML28-95 ONOO~-对胰岛素的硝化和一些因素对硝化影响的体外研究ML28-96 酶解多肽一级序列分析与反应过程建模及结构变化初探ML28-97 一系列二茂铁二取代物的合成和表征ML28-98 N2O4-N2O5-HNO3分析和相平衡及硝化环氧丙烷研究ML28-99 光催化甲烷和二氧化碳直接合成乙酸的研究ML28-100 N-取代-4-哌啶酮衍生物的合成研究ML28-101 电子自旋标记方法对天青蛋白特征分析ML28-102 材料中蛋白质含量测定及蛋白质模体分析ML28-103 具有不同取代基的偶氮芳烃化合物的合成及其性能研究ML28-104 非光气法合成六亚甲基二异氰酸酯(HDI)ML28-105 邻苯二甲酸的溶解度测定及其神经网络模拟ML28-106 甲壳多糖衍生物的合成及其应用研究ML28-107 吲哚类化合物色谱容量因子构致关系ab initio方法研究ML28-108 全氯代富勒烯碎片的亲核取代反应初探ML28-109 自催化重组藻胆蛋白结构与功能的关系ML28-110 二茂铁衍生的硫膦配体的合成及在喹啉不对称氢化中的应用ML28-111 离子交换电色谱纯化蛋白质的研究ML28-112 氨基酸五配位磷化合物的合成、反应机理及其性质研究ML28-113 手性二茂铁配体的合成及其在碳—碳键形成反应中的应用研究ML28-114 水溶性氨基卟啉和磺酸卟啉的合成研究ML28-115 金属卟啉催化空气氧化对二甲苯制备对甲基苯甲酸和对苯二甲酸ML28-116 简单金属卟啉催化空气氧化环己烷和环己酮制备己二酸的选择性研究ML28-117 四苯基卟啉锌掺杂8-羟基喹啉铝与四苯基联苯二胺的电致发光性能研究ML28-118 可降解聚乳酸/羟基磷灰石有机无机杂化材料的制备及性能研究ML28-119 大豆分离蛋白接枝改性及应用研究ML28-120 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-121 常压非热平衡等离子体用于甲烷转化的研究ML28-122 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-123 蛋白质在晶体界面上吸附的分子动力学模拟ML28-124 微乳条件下氨肟化反应的探索性研究ML28-125 微波辅助串联Wittig和Diels-Alder反应的研究ML28-126 谷氨酸和丙氨酸在Al2O3上的吸附和热缩合机理的研究ML28-127 3-乙基-4-苯基-5-(2-吡啶基)-1,2,4-三唑配合物的合成、晶体结构及表征ML28-128 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-129 具有生物活性的1,2,4-恶二唑类衍生物的合成研究ML28-130 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-131 PhSeCF2TMS的合成及转化ML28-132 离子液体中脂肪酶催化(±)-薄荷醇拆分的研究ML28-133 脂肪胺取代蒽醌衍生物及其前体化合物合成ML28-134 萘酰亚胺类一氧化氮荧光探针的设计、合成及光谱研究ML28-135 微波条件下哌啶催化合成取代的2-氨基-2-苯并吡喃的研究ML28-136 镍催化的有机硼酸与α,β-不饱和羰基化合物的共轭加成反应研究ML28-137 茚满二酮类光致变色化合物的制备与表征ML28-138 新型手性螺环缩醛(酮)化合物的合成ML28-139 芳醛的合成及凝胶因子的设计及合成ML28-140 固定化酶柱与固定化菌体柱耦联—高效拆分乙酰-DL-蛋氨酸ML28-141 苯酚和草酸二甲酯酯交换反应产品的减压歧化反应研究ML28-142 有机物临界性质的定量构性研究ML28-143 3-噻吩丙二酸的合成及卤代芳烃亲核取代反应ML28-144 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-145 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-146 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-147 功能性离子液的合成及在有机反应中的应用ML28-148 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-149 气相色谱研究β-二酮酯化合物的互变异构ML28-150 二元烃的混合物过热极限的测定与研究ML28-151 芳杂环取代咪唑化合物的合成及洛汾碱类过氧化物化学发光性能测定ML28-152 卤代苯基取代的咪唑衍生物的合成及其荧光性能的研究ML28-153 取代并四苯衍生物的合成及其应用ML28-154 苯乙炔基取代的杂环及稠环化合物的合成ML28-155 吸收光谱在有机发光材料研发材料中的应用ML28-156 水相中‘一锅法’Wittig反应的研究和手性P,O-配体的合成及其在不对称烯丙基烷基化反应中的应用ML28-157 苯并噻吩-3-甲醛的合成研究ML28-158 微波辅助串联Wittig和Diels-Alder反应的研究ML28-159 超声辐射下过渡金属参与的药物合成反应研究ML28-160 呋喃酮关键中间体—3,4-二羟基-2,5-己二酮的合成研究ML28-161 树枝状分子复合二氧化硅载体的合成及其脂肪酶的固定化研究ML28-162 吡咯双希夫碱及其配合物的制备与表征ML28-163 负载型Lewis酸催化剂的制备及催化合成2,6-二甲基萘的研究ML28-164 PhSeCF2TMS的合成及转化ML28-165 纳米管/纳米粒子杂化海藻酸凝胶固定化醇脱氢酶ML28-166 多取代β-CD衍生物的合成及其对苯环类客体分子识别ML28-167 多取代_CD衍生物的合成及其对苯环类客体分子识别ML28-168 柿子皮中类胡萝卜素化合物的分离鉴定及稳定性研究ML28-169 毛细管电泳研究致癌物3-氯-1,2-丙二醇ML28-170 超临界水氧化苯酚体系的分子动力学模拟ML28-171 甲烷和丙烷无氧芳构化反应研究ML28-172 2-取代咪唑配合物的合成、晶体结构及表征ML28-173 气相色谱研究β-二酮酯化合物的互变异构ML28-174 DMSO催化三聚氯氰转化苄醇为苄氯的新反应的初步研究ML28-175 二元烃的混合物过热极限的测定与研究ML28-176 氨基酸在多羟基化合物溶液中的热力学研究ML28-177 分子印迹膜分离水溶液中苯丙氨酸异构体研究ML28-178 杯[4]芳烃酯的合成及中性条件下对醇的酯化反应研究ML28-179 亚砜为催化剂和酰亚胺氯为氯化剂的醇的氯代反应的初步研究ML28-180 双氨基甲酸酯化合物的合成及分子自组装研究ML28-181 由芳基甲基酮合成对应的半缩水合物的新方法ML28-182 取代芳烃的选择性卤代反应研究ML28-183 吡啶脲基化合物的合成、分子识别及配位化学研究ML28-184 丙烯(氨)氧化原位漫反射红外光谱研究ML28-185 嘧啶苄胺二苯醚类先导结构的发现和氢化铝锂驱动下邻位嘧啶参与的苯甲酰胺还原重排反应的机理研究ML28-186 酰化酶催化的Markovnikov加成与氮杂环衍生物的合成ML28-187 多组分反应合成嗪及噻嗪类化合物的研究ML28-188 脂肪酶构象刻录及催化能力考察ML28-189 L-乳醛参与的Wittig及Wittig-Horner反应立体选择性的研究ML28-190 烯基铟化合物与高碘盐偶联反应的研究及其在有机合成中的应用ML28-191 α,β-二芳基丙烯腈类发光材料的合成及发光性质的研究ML28-192 邻甲苯胺的电子转移机理及组分协同效应研究ML28-193 负载型非晶态Ni-B及Ni-B-Mo合金催化剂催化糠醛液相加氢制糠醇的研究ML28-194 含吡啶环套索冠醚及配合物的合成与性能研究ML28-195 芳烃侧链分子氧选择性氧化反应研究ML28-196 多组分复合氧化物对异丁烯制甲基丙烯醛氧化反应的催化性能研究ML28-197 多孔甲酸盐[M3(HCOO)6]及其客体包合物的合成、结构和性质ML28-198 纳米修饰电极的制备及其应用于蛋白质电化学的研究ML28-199 对于几种蛋白质模型分子的焓相互作用的研究ML28-200 氨基酸、酰胺、多羟基醇化合物相互作用的热力学研究

结晶和重结晶:利用物质在溶液中溶解度随温度变化较大,如NaCl,KNO3。 蒸馏冷却法:在沸点上差值大。乙醇中(水):加入新制的CaO吸收大部分水再蒸馏。 过滤法:溶与不溶。 升华法:SiO2(I2)。 萃取法:如用CCl4来萃取I2水中的I2。 溶解法:Fe粉(A1粉):溶解在过量的NaOH溶液里过滤分离。 增加法:把杂质转化成所需要的物质:CO2(CO):通过热的CuO;CO2(SO2):通过NaHCO3溶液。 吸收法:用做除去混合气体中的气体杂质,气体杂质必须被药品吸收:N2(O2):将混合气体通过铜网吸收O2。 转化法:两种物质难以直接分离,加药品变得容易分离,然后再还原回去:Al(OH)3,Fe(OH)3:先加NaOH溶液把Al(OH)3溶解,过滤,除去Fe(OH)3,再加酸让NaAlO2转化成A1(OH)3

混合物的分离研究论文选题

倾析:从液体中分离密度较大且不溶的固体分离沙和水过滤:从液体中分离不溶的固体净化食用水溶解和过滤:分离两种固体,一种能溶于某溶剂,另一种则不溶分离盐和沙离心分离法:从液体中分离不溶的固体分离泥和水结晶法:从溶液中分离已溶解的溶质从海水中提取食盐分液:分离两种不互溶的液体分离油和水萃取:加入适当溶剂把混合物中某成分溶解及分离用庚烷提取水溶液中的碘蒸馏:从溶液中分离溶剂和非挥发性溶质从海水中取得纯水分馏:分离两种互溶而沸点差别较大的液体从液态空气中分离氧和氮;石油的精炼升华:分离两种固体,其中只有一种可以升华分离碘和沙吸附:除去混合物中的气态或固态杂质用活性炭除去黄糖中的有色杂质色层分析法:分离溶液中的溶质分离黑色墨水中不同颜色的物质

宗老师:陕西省首届省级高中化学骨干教师和第三届教学能手,全国化学竞赛优秀辅导员,中学化学高级教师,上世纪90年代左右就已经在省级以上报刊杂志公开发表化学教学论文60多篇,曾任教于西安市一中,西电科大附中。

分离的实例: 例如,农村把稻谷加工成大米时,常用筛子分离大米与糠;农村做豆腐常用纱布袋将豆腐渣与豆浆分离;在淘米时,常用倾倒法将洗米水与大米分离;当水中混有较多油而分层时,用吸管可逐渐吸出上层的油;当铁屑和铜屑混在一起时,可用磁铁分离等。 提纯的实例: 提取海带中的碘、从海水中提取食盐、从海水中提取溴、淡化海水、还有各种化学物质的精制:粗盐制精盐、无水酒精的生产等_LS2jHnGtdR4pMY2WGEsHRlbpcGnBQKC0v7Z4GpZyqN5lvsi2Ych1V-EQXkR5U_

按物理化学原理,工业常用的传质分离操作可分为平衡分离过程和速率分离过程两大类: 1、平衡分离过程借助分离媒介(如热能、溶剂和吸附剂),使均相混合物系统变成两相系统,再以混合物中各组分在处于相平衡的两相中不等同的分配为依据而实现分离。根据两相的状态可分为:①气(汽)液传质过程,如蒸馏、吸收等;②液液传质过程,如萃取;③气(汽)固传质过程,如吸附、色层分离、参数泵分离等;④液固传质过程,如浸取、吸附、离子交换、色层分离、参数泵分离等。 平衡时组分在两相中的浓度关系,可以用相平衡比(或分配系数)Ki表示: 式中yi和xi分别表示组分i在两相中的浓度。对于x和y相的命名,按习惯把吸收、蒸馏中的气相或汽相称为y相,把萃取中的萃取液作为y相。一般说,相平衡比取决于两相的特性以及物系的温度和压力。i和j两个组分的相平衡比Ki和Kj之比值称为分离因子αij: 在某些传质分离过程中,分离因子往往又有专门名称。例如:在蒸馏中称为相对挥发度;在萃取中称为选择性系数。一般将数值大的相平衡比Ki作分子,故αij大于1。只要两组分的相平衡比不相等(即αij≠1),便可采用平衡分离过程加以分离,αij越大就越容易分离。大多数系统的相平衡比和分离因子都不大,一次接触平衡所能达到的分离效果很有限,需要采取多级逆流操作来提高分离效果。为适应各种不同的系统以及操作条件和分离要求,要相应地使用多种不同类型的传质设备。 2、速率分离过程在某种推动力(浓度差、压力差、温度差、电位差等)的作用下,有时在选择性透过膜的配合下,利用各组分扩散速度的差异实现组分的分离。这类过程所处理的原料和产品通常属于同一相态,仅有组成上的差别。速率分离方法可分为:①膜分离,如超过滤、反渗透、渗析和电渗析等。②场分离,如电泳、热扩散、超速离心分离等。 膜分离与场分离的区别是:前者用膜分隔两股流体,后者则是不分流的。不同类型的速率分离过程,分别应用不同的设备,并采用不同的方法进行设计计算和操作控制。编辑本段技术展望传质分离过程中的蒸馏、吸收、萃取等一些具有较长历史的单元操作已经应用很广,并进行过大量的研究,积累了丰富的操作经验和资料。但在进一步深入研究这些过程的机理和传质规律,开发高效的传质设备,研究和掌握它们的放大规律,改进设备的设计计算方法等方面,仍有许多工作要做。传质分离过程的能量消耗,常构成单位产品能耗的主要部分。

相关百科
热门百科
首页
发表服务