期刊投稿百科

矩阵在生活中的实际应用论文结论

发布时间:2024-07-05 12:32:07

矩阵在生活中的实际应用论文结论

矩阵的应用是很多的。尤其是在程序处理方面。在世界上存在的,都是离散的,那些理想的才是连续的~而矩阵可以很好地诠释世界上的各种东西~例如我们经常处理的图片,我们平时的数据等等。

矩阵分析在计算机中的应用非常多,是一种方便的计算工具,可以以简单的形式表达复杂的公式,比如:数字图像处理、计算机图形学、计算机几何学、人工智能、网络通信、以及一般的算法设计和分析等。矩阵分析与应用将矩阵的分析分为梯度分析、奇异值分析、特征分析、子空间分析与投影分析五大部分。主要内容包括矩阵与线性方程组、特殊矩阵、Toeplitz矩阵、矩阵的变换与分解、梯度分析与最优化、奇异值分析、总体最小二乘方法、特征分析、子空间分析、投影分析。

LS那一长篇的,又从哪里COPY的,鄙S

应是B-应用研究类的吧! 1、论文(设计)类型有:A—理论研究;B—应用研究;C—设计等; 2、论文(设计)来源有:指来源于科研项目、生产/社会实际、

矩阵在生活中的实际应用论文

随着现代科学的发展,数学中的矩阵也有更广泛而深入的应用,下面列举几项矩阵在现实生活中的应用:(1)矩阵在经济生活中的应用‍可“活用”行列式求花费总和最少等类似的问题;可“借用”特征值和特征向量预测若干年后的污染水平等问题。(2)在人口流动问题方面的应用这是矩阵高次幂的应用,比如预测未来的人口数数、人口的发展趋势。(3)矩阵在密码学中的应用可用可逆矩阵及其逆矩阵对需发送的秘密消息加密和译密。(4)矩阵在文献管理中的应用比如现代搜索中往往包括几百万个文件和成千的关键词,但可以利用矩阵和向量的稀疏性,节省计算机的存储空间和搜索时间。

矩阵的应用是很多的。尤其是在程序处理方面。在世界上存在的,都是离散的,那些理想的才是连续的~而矩阵可以很好地诠释世界上的各种东西~例如我们经常处理的图片,我们平时的数据等等。

一、矩阵图法的涵义 矩阵图法就是从多维问题的事件中,找出成对的因素,排列成矩阵图,然后根据矩阵图来分析问题,确定关键点的方法,它是一种通过多因素综合思考,探索问题的好方法。 在复杂的质量问题中,往往存在许多成对的质量因素.将这些成对因素找出来,分别排列成行和列,其交点就是其相互关联的程度,在此基础上再找出存在的问题及问题的形态,从而找到解决问题的思路。 短阵图的形式如图所示,A 为某一个因素群,a1、a2、a3、a4、…是属于A这个因素群的具体因素,将它们排列成行;B为另一个因素群,b1、b2、b3、b4、…为属于B这个因素群的具体因素,将它们排列成列;行和列的交点表示A和B各因素之间的关系。按照交点上行和列因素是否相关联及其关联程度的大小,可以探索问题的所在和问题的形态,也可以从中得到解决问题的启示等。 质量管理中所使用的矩阵图,其成对因素往往是要着重分析的质量问题的两个侧面,如生产过程中出现了不合格品时,着重需要分析不合格的现象和不合格的原因之间的关系,为此,需要把所有缺陷形式和造成这些缺陷的原因都罗列出来,逐一分析具体现象与具体原因之间的关系,这些具体现象和具体原因分别构成矩阵图中的行元素和列元素。 矩阵图的最大优点在于,寻找对应元素的交点很方便,而且不遗漏,显示对应元素的关系也很清楚。矩阵图法还具有以下几个点: ①可用于分析成对的影响因素; ②因素之间的关系清晰明了,便于确定重点; ③便于与系统图结合使用。 二、矩阵图法的用途 矩阵图法的用途十分广泛.在质量管理中.常用矩阵图法解决以下问题: ①把系列产品的硬件功能和软件功能相对应,并要从中找出研制新产品或改进老产品的切入点; ②明确应保证的产品质量特性及其与管理机构或保证部门的关系,使质量保证体制更可靠; ③明确产品的质量特性与试验测定项目、试验测定仪器之间的关系,力求强化质量评价体制或使之提高效率; ④当生产工序中存在多种不良现象,且它们具有若干个共同的原因时,希望搞清这些不良现象及其产生原因的相互关系,进而把这些不良现象一举消除; ⑤在进行多变量分析、研究从何处入手以及以什么方式收集数据。 三、矩阵图的类型 矩阵图法在应用上的一个重要特征,就是把应该分析的对象表示在适当的矩阵图上。因此,可以把若干种矩阵图进行分类,表示出他们的形状,按对象选择并灵活运用适当的矩阵图形。常见的矩阵图有以下几种: (1)L型矩阵图。是把一对现象用以矩阵的行和列排列的二元表的形式来表达的一种矩阵图,它适用于若干目的与手段的对应关系,或若干结果和原因之间的关系。 (2)T型矩阵图。是A、B两因素的L型矩阵和A、c两因素的L型矩阵图的组合矩阵图,这种矩阵图可以用于分析质量问题中“不良现象一原因一工序”之间的关系,也可以用于分析探索材料新用途的“材料成分一特性一用途”之间酌关系等。 (3)Y型矩阵图。是把A因素与B因素、B因素与C因素、C因素与A因素三个L型矩阵图组合在一起而形成的矩阵图。 (4) X型矩阵图。是把A因素与B因素、B因素与C因素、C因素与D因素、D因素与A因素四个L型矩阵图组合而形成的矩阵图,这种矩阵图表示A和B、D,D和 A、C,C和B、D,D和A、C这四对因素间的相互关系,如“管理机能一管理项目一输入信息一输出信息”就属于这种类型。 (5)C型矩阵图。是以A、B、C三因素为边做出的六面体,其特征是以A、B、c三因素所确定的三维空间上的点为“着眼点”。 四、制作矩阵图的步骤 制作矩阵图一般要遵循以下几个步骤: ①列出质量因素: ②把成对对因素排列成行和列,表示其对应关系; ③选择合适的矩阵图类型; ④在成对因素交点处表示其关系程度,一般凭经验进行定性判断,可分为三种:关系密切、关系较密切、关系一般(或可能有关系),并用不同符号表示; ⑤根据关系程度确定必须控制的重点因素; ⑥针对重点因素作对策表。基本运算编辑矩阵运算在科学计算中非常重要[6] ,而矩阵的基本运算包括矩阵的加法,减法,数乘,转置,共轭和共轭转置[1] [7] 。加法矩阵的加法满足下列运算律(A,B,C都是同型矩阵):应该注意的是只有同型矩阵之间才可以进行加法[5] 。减法数乘矩阵的数乘满足以下运算律:矩阵的加减法和矩阵的数乘合称矩阵的线性运算[5] 。转置把矩阵A的行和列互相交换所产生的矩阵称为A的转置矩阵[6] ,这一过程称为矩阵的转置矩阵的转置满足以下运算律:共轭矩阵的共轭定义为: 一个2×2复数矩阵的共轭如下所示:则共轭转置  矩阵的共轭转置定义为: ,也可以写为: 。一个2×2复数矩阵的共轭如下所示:则矩阵的乘法编辑两个矩阵的乘法仅当第一个矩阵A的列数和另一个矩阵B的行数相等时才能定义。如A是m×n矩阵和B是n×p矩阵,它们的乘积C是一个m×p矩阵 ,它的一个元素:并将此乘积记为: [6] 例如:矩阵的乘法满足以下运算律:结合律: 左分配律: 右分配律: 矩阵乘法不满足交换律。矩阵的行列式编辑一个n×n的正方矩阵A的行列式记为 或者 ,一个2×2矩阵的行列式可表示如下:一个n×n矩阵的行列式等于其任意行(或列)的元素与对应的余子式乘积之和,即:

随着现代科学的发展,数学中的矩阵也有更广泛而深入的应用,下面列举几项矩阵在现实生活中的应用:矩阵在经济生活中的应用 可“活用”行列式求花费总和最少等类似的问题;可“借用”特征值和特征向量预测若干年后的污染水平等问题。在人口流动问题方面的应用这是矩阵高次幂的应用,比如预测未来的人口数数、人口的发展趋势。矩阵在密码学中的应用可用可逆矩阵及其逆矩阵对需发送的秘密消息加密和译密。矩阵在文献管理中的应用比如现代搜索中往往包括几百万个文件和成千的关键词,但可以利用矩阵和向量的稀疏性,节省计算机的存储空间和搜索时间。

矩阵在生活中的实际应用论文题目

矩阵实际上是一种线性变换矩阵分解相当于原来的线性变换可以由两次(或多次)线性变换来表示例如A=[111α=(x234y123]z)则Aα=(x+y+z2x+3y+4zx+2y+3z)即矩阵实质上是一种线性变换算符A=[11[10-123*012]12]这里以及下面为了表示方便,引入符号*表示矩阵乘法,遵循矩阵乘法规则则Aα=[11[10-1(x23*012]*y12]z)=[11(x-z23*y+2z)12]=(x+y+z2x+3y+4zx+2y+3z)即矩阵分解实质上是将原来的线性变换等效为两次线性变换(或多次线性变换,如果分解后矩阵可以继续分解)

如下:1、矩阵在经济生活中的应用矩阵就是在行列式的基础上演变而来的,可活用行列式求花费总和最少等类似的问题;可借用特征值和特征向量预测若干年后的污水水平等问题;也可利用矩阵的方法求线性规划问题中的最优解,求解企业生产哪一种类型的产品,获得的利润最大。2、在人口流动问题方面的应用这是矩阵高次幂的应用,比如预测未来的人口数量、人口的发展趋势等。3、矩阵在密码学中的应用可用可逆矩阵及其逆矩阵对需发送的秘密消息加密和译密。4、矩阵在文献管理中的应用在现代搜索中往往包括几百个文件和成千的关键词,但可以利用矩阵和向量的稀疏性,节省计算机的存储空间和搜索时间。矩阵图法具有以下几个特点:①可用于分析成对的影响因素。②因素之间的关系清晰明了,便于确定重点。③便于与系统图结合使用。

随着现代科学的发展,数学中的矩阵也有更广泛而深入的应用,下面列举几项矩阵在现实生活中的应用:矩阵在经济生活中的应用 可“活用”行列式求花费总和最少等类似的问题;可“借用”特征值和特征向量预测若干年后的污染水平等问题。在人口流动问题方面的应用这是矩阵高次幂的应用,比如预测未来的人口数数、人口的发展趋势。矩阵在密码学中的应用可用可逆矩阵及其逆矩阵对需发送的秘密消息加密和译密。矩阵在文献管理中的应用比如现代搜索中往往包括几百万个文件和成千的关键词,但可以利用矩阵和向量的稀疏性,节省计算机的存储空间和搜索时间。

随着现代科学的发展,数学中的矩阵也有更广泛而深入的应用,下面列举几项矩阵在现实生活中的应用:矩阵在经济生活中的应用‍可“活用”行列式求花费总和最少等类似的问题;可“借用”特征值和特征向量预测若干年后的污染水平等问题。在人口流动问题方面的应用这是矩阵高次幂的应用,比如预测未来的人口数数、人口的发展趋势。矩阵在密码学中的应用可用可逆矩阵及其逆矩阵对需发送的秘密消息加密和译密。矩阵在文献管理中的应用比如现代搜索中往往包括几百万个文件和成千的关键词,但可以利用矩阵和向量的稀疏性,节省计算机的存储空间和搜索时间。

矩阵在生活中的实际应用论文摘要

矩阵的应用是很多的。尤其是在程序处理方面。在世界上存在的,都是离散的,那些理想的才是连续的~而矩阵可以很好地诠释世界上的各种东西~例如我们经常处理的图片,我们平时的数据等等。

矩阵在许多领域都应用广泛。有些时候用到矩阵是因为其表达方式紧凑,例如在博弈论和经济学中,会用收益矩阵来表示两个博弈对象在各种决策方式下的收益。文本挖掘和索引典汇编的时候,比如在TF-IDF方法中,也会用到文件项矩阵来追踪特定词汇在多个文件中的出现频率。早期的密码技术如希尔密码也用到矩阵。然而,矩阵的线性性质使这类密码相对容易破解。计算机图像处理也会用到矩阵来表示处理对象,并且用放射旋转矩阵来计算对象的变换,实现三维对象在特定二维屏幕上的投影。多项式环上的矩阵在控制论中有重要作用。化学中也有矩阵的应用,特别在使用量子理论讨论分子键和光谱的时候。具体例子有解罗特汉方程时用重叠矩阵和福柯矩阵来得到哈特里-福克方法中的分子轨道。

随着现代科学的发展,数学中的矩阵也有更广泛而深入的应用,下面列举几项矩阵在现实生活中的应用:(1)矩阵在经济生活中的应用‍可“活用”行列式求花费总和最少等类似的问题;可“借用”特征值和特征向量预测若干年后的污染水平等问题。(2)在人口流动问题方面的应用这是矩阵高次幂的应用,比如预测未来的人口数数、人口的发展趋势。(3)矩阵在密码学中的应用可用可逆矩阵及其逆矩阵对需发送的秘密消息加密和译密。(4)矩阵在文献管理中的应用比如现代搜索中往往包括几百万个文件和成千的关键词,但可以利用矩阵和向量的稀疏性,节省计算机的存储空间和搜索时间。

矩阵在实际生活中的应用论文摘要

随着现代科学的发展,数学中的矩阵也有更广泛而深入的应用,下面列举几项矩阵在现实生活中的应用:(1)矩阵在经济生活中的应用? 可“活用”行列式求花费总和最少等类似的问题;可“借用”特征值和特征向量预测若干年后的污染水平等问题。(2)在人口流动问题方面的应用这是矩阵高次幂的应用,比如预测未来的人口数数、人口的发展趋势。(3)矩阵在密码学中的应用可用可逆矩阵及其逆矩阵对需发送的秘密消息加密和译密。(4)矩阵在文献管理中的应用比如现代搜索中往往包括几百万个文件和成千的关键词,但可以利用矩阵和向量的稀疏性,节省计算机的存储空间和搜索时间。

如下:1、矩阵在经济生活中的应用矩阵就是在行列式的基础上演变而来的,可活用行列式求花费总和最少等类似的问题;可借用特征值和特征向量预测若干年后的污水水平等问题;也可利用矩阵的方法求线性规划问题中的最优解,求解企业生产哪一种类型的产品,获得的利润最大。2、在人口流动问题方面的应用这是矩阵高次幂的应用,比如预测未来的人口数量、人口的发展趋势等。3、矩阵在密码学中的应用可用可逆矩阵及其逆矩阵对需发送的秘密消息加密和译密。4、矩阵在文献管理中的应用在现代搜索中往往包括几百个文件和成千的关键词,但可以利用矩阵和向量的稀疏性,节省计算机的存储空间和搜索时间。矩阵图法具有以下几个特点:①可用于分析成对的影响因素。②因素之间的关系清晰明了,便于确定重点。③便于与系统图结合使用。

随着现代科学的发展,数学中的矩阵也有更广泛而深入的应用,下面列举几项矩阵在现实生活中的应用:(1)矩阵在经济生活中的应用‍可“活用”行列式求花费总和最少等类似的问题;可“借用”特征值和特征向量预测若干年后的污染水平等问题。(2)在人口流动问题方面的应用这是矩阵高次幂的应用,比如预测未来的人口数数、人口的发展趋势。(3)矩阵在密码学中的应用可用可逆矩阵及其逆矩阵对需发送的秘密消息加密和译密。(4)矩阵在文献管理中的应用比如现代搜索中往往包括几百万个文件和成千的关键词,但可以利用矩阵和向量的稀疏性,节省计算机的存储空间和搜索时间。

随着现代科学的发展,数学中的矩阵也有更广泛而深入的应用,下面列举几项矩阵在现实生活中的应用:矩阵在经济生活中的应用‍可“活用”行列式求花费总和最少等类似的问题;可“借用”特征值和特征向量预测若干年后的污染水平等问题。在人口流动问题方面的应用这是矩阵高次幂的应用,比如预测未来的人口数数、人口的发展趋势。矩阵在密码学中的应用可用可逆矩阵及其逆矩阵对需发送的秘密消息加密和译密。矩阵在文献管理中的应用比如现代搜索中往往包括几百万个文件和成千的关键词,但可以利用矩阵和向量的稀疏性,节省计算机的存储空间和搜索时间。

相关百科
热门百科
首页
发表服务