职称论文百科

玻璃制造期刊投稿邮箱格式

发布时间:2024-07-02 13:14:21

玻璃制造期刊投稿邮箱格式

玻璃的材料主要有三部分构成:基本原料、助熔剂和着色剂,另外还包括脱色剂、澄清剂和乳蚀剂。*玻璃制作的基本原料二氧化硅是玻璃制作的最主要的原料。

工艺过程:

1、原料破碎:将上述原料破碎成粉;

2、称量:按计划配料单称取一定量的各种粉料;

3、混合:将称好的粉料混合、搅拌成配合料(有色玻璃同时加入着色剂);

4、熔化:将配合料送入玻璃熔窑,在1700度下熔化成玻璃液;

5、成型:将玻璃液送入锡槽(浮法)、平拉机(格法)、压延机(压延法,加进金属丝即为夹丝玻璃),成型为平板玻璃。

3000多年前,一艘欧洲腓尼基人的商船,满载着晶体矿物“天然苏打”,航行在地中海沿岸的贝鲁斯河上。由于海水落潮,商船搁浅了。

于是船员们纷纷登上沙滩。有的船员还抬来大锅,搬来木柴,并用几块“天然苏打”作为大锅的支架,在沙滩上做起饭来。

船员们吃完饭,潮水开始上涨了。他们正准备收拾一下登船继续航行时,突然有人高喊:“大家快来看啊,锅下面的沙地上有一些晶莹明亮、闪闪发光的东西!”

船员们把这些闪烁光芒的东西,带到船上仔细研究起来。他们发现,这些亮晶晶的东西上粘有一些石英砂和融化的天然苏打。原来,这些闪光的东西,是他们做饭时用来做锅的支架的天然苏打,在火焰的作用下,与沙滩上的石英砂发生化学反应而产生的晶体,这就是最早的玻璃。后来腓尼基人把石英砂和天然苏打和在一起,然后用一种特制的炉子熔化,制成玻璃球,使腓尼基人发了一笔大财。

大约在4世纪,罗马人开始把玻璃应用在门窗上。到1291年,意大利的玻璃制造技术已经非常发达。

“我国的玻璃制造技术决不能泄漏出去,把所有的制造玻璃的工匠都集中在一起生产玻璃!”

就这样,意大利的玻璃工匠都被送到一个与世隔绝的孤岛上生产玻璃,他们在一生当中不准离开这座孤岛。

1688年,一名叫纳夫的人发明了制作大块玻璃的工艺,从此,玻璃成了普通的物品。

《装备制造技术》是省级优秀期刊,杂志周期为月刊,杂志主要是征收装备技术相关的文章及科研论文。投稿邮箱为 主管单位:广西壮族自治区工业和信息化委员会 、主办单位: 广西机械工程学会 、国际刊号:ISSN1672—545X,国内刊号:CN45—1320/TH 。杂志一般是用作评职称的发表认可度较高。

百度搜索: 投稿格式 机械设计与制造工程//....

主要包括:

2.上述原料破碎成粉后,并按比例混合、搅拌成配合料;

3.将配合料送入玻璃熔窑,在1700度下熔化成玻璃液;

4.将玻璃液用相应的成型装置制成平板玻璃、瓶罐、器皿、灯泡、玻璃管、荧光屏……

5.将成型的各种玻璃制品送入退火窑进行退火,平衡应力,防止自破自裂。

玻璃是非晶无机非金属材料,一般是用多种无机矿物(如石英砂、硼砂、硼酸、重晶石、碳酸钡、石灰石、长石、纯碱等)为主要原料,另外加入少量辅助原料制成的。它的主要成分为二氧化硅和其他氧化物。  普通玻璃的化学组成是Na2SiO3、CaSiO3、SiO2或Na2O·CaO·6SiO2等,主要成分是硅酸盐复盐,是一种无规则结构的非晶态固体。广泛应用于建筑物,用来隔风透光,属于混合物。另有混入了某些金属的氧化物或者盐类而显现出颜色的有色玻璃,和通过物理或者化学的方法制得的钢化玻璃等。有时把一些透明的塑料(如聚甲基丙烯酸甲酯)也称作有机玻璃。

参考资料:百度百科:玻璃

玻璃制造期刊投稿邮箱

玻璃的材料主要有三部分构成:基本原料、助熔剂和着色剂,另外还包括脱色剂、澄清剂和乳蚀剂。*玻璃制作的基本原料二氧化硅是玻璃制作的最主要的原料。

工艺过程:

1、原料破碎:将上述原料破碎成粉;

2、称量:按计划配料单称取一定量的各种粉料;

3、混合:将称好的粉料混合、搅拌成配合料(有色玻璃同时加入着色剂);

4、熔化:将配合料送入玻璃熔窑,在1700度下熔化成玻璃液;

5、成型:将玻璃液送入锡槽(浮法)、平拉机(格法)、压延机(压延法,加进金属丝即为夹丝玻璃),成型为平板玻璃。

3000多年前,一艘欧洲腓尼基人的商船,满载着晶体矿物“天然苏打”,航行在地中海沿岸的贝鲁斯河上。由于海水落潮,商船搁浅了。

于是船员们纷纷登上沙滩。有的船员还抬来大锅,搬来木柴,并用几块“天然苏打”作为大锅的支架,在沙滩上做起饭来。

船员们吃完饭,潮水开始上涨了。他们正准备收拾一下登船继续航行时,突然有人高喊:“大家快来看啊,锅下面的沙地上有一些晶莹明亮、闪闪发光的东西!”

船员们把这些闪烁光芒的东西,带到船上仔细研究起来。他们发现,这些亮晶晶的东西上粘有一些石英砂和融化的天然苏打。原来,这些闪光的东西,是他们做饭时用来做锅的支架的天然苏打,在火焰的作用下,与沙滩上的石英砂发生化学反应而产生的晶体,这就是最早的玻璃。后来腓尼基人把石英砂和天然苏打和在一起,然后用一种特制的炉子熔化,制成玻璃球,使腓尼基人发了一笔大财。

大约在4世纪,罗马人开始把玻璃应用在门窗上。到1291年,意大利的玻璃制造技术已经非常发达。

“我国的玻璃制造技术决不能泄漏出去,把所有的制造玻璃的工匠都集中在一起生产玻璃!”

就这样,意大利的玻璃工匠都被送到一个与世隔绝的孤岛上生产玻璃,他们在一生当中不准离开这座孤岛。

1688年,一名叫纳夫的人发明了制作大块玻璃的工艺,从此,玻璃成了普通的物品。

玻璃制成的方法如下:1、准备硅砂。2、将碳酸钠和氧化钙添加到硅砂里。3、根据玻璃预计的用途添加其它化学品。4、添加化学品使玻璃达到想要的颜色。5、把玻璃混合物放入耐热坩埚或支架里。6、将混合物熔成液态。7、使玻璃熔液均匀并去除气泡。8、将玻璃熔液塑造成型。9、通过热处理增强玻璃。

《装备制造技术》是省级优秀期刊,杂志周期为月刊,杂志主要是征收装备技术相关的文章及科研论文。投稿邮箱为 主管单位:广西壮族自治区工业和信息化委员会 、主办单位: 广西机械工程学会 、国际刊号:ISSN1672—545X,国内刊号:CN45—1320/TH 。杂志一般是用作评职称的发表认可度较高。

中国邮政可以寄玻璃。

邮件禁寄物品:

1、国家法律法规禁止流通或者寄递的物品;

2、爆炸性、易燃性、腐蚀性、放射性和毒性等危险物品;

3、反动报刊、书籍、窗口或者淫秽物品;

4、各种货币;

5、妨害公共卫生的物品;

6、容易腐烂的物品;

7、活的动物(包装能确保寄递和工作人员安全的蜜蜂、蚕、水蛭除外);

8、包装不妥,可能危害人身安全、污染或损毁其它邮件设备的物品;

9、其它不适合邮递条件的物品。

扩展资料:

中国邮政执行邮政业务着力开拓创新。通过创新经营理念、运行机制,实施项目带动策略等措施,使函件、报刊、集邮等传统业务焕发新的活力。

函件业务以直邮团队建设为抓手,以重点行业为突破,各项业务齐头并进,规模效益明显提升。全年业务收入实现122.8亿元,增长11.7%。其中数据库商函收入31.2亿元,增长11.6%,国际函件收入增长41.4%。

报刊业务不断优化业务结构,加大期刊发展力度。全年累计订销报刊192亿份,实现收入80.7亿元,增长11%。

集邮业务持续健康快速发展。全年收入完成87.6亿元,增长17.5%。集邮邮票销售10亿枚,集邮品销售6431.9万册。

分销配送业务加快体系建设和市场拓展,强化基础管理,呈现良好发展态势。全年实现收入14.2亿元,增长28.2%。

包裹业务保持稳定发展,全年收入增长4%。爱心包裹塑造了中国邮政公益服务品牌形象。

信息和代理业务持续快速发展,全年实现收入35.6亿元,增长30.1%。其中短信收入增长46.2%。

速递物流业务实现平稳较快发展。全年速递业务量6.4亿件,增长19.6%;业务收入增长15.9%。国内异地标准速递增幅两位数;国内电子商务速递增长50%以上;合同物流收入增长30%。

参考资料来源:百度百科-中国邮政集团公司

参考资料来源:百度百科-邮政快递

玻璃制造期刊投稿格式

是主要传播有关生产、储存、利用和节能的热过程的组件、设备、技术和系统的开发的演示的应用新研究的杂志。

详细介绍:

期刊名 :APPLIED THERMAL ENGINEERING 或者 APPL THERM ENG

参考译名:应用热力工程

国际标准刊号:ISSN: 1359-4311

期刊语言:多国语言

出版区域:英国

出版周期 : Monthly (月刊)

扩展资料:

期刊主页网址 :

通讯方式 :PERGAMON-ELSEVIER SCIENCE LTD, THE BOULEVARD, LANGFORD LANE, KIDLINGTON, OXFORD, ENGLAND, OX5 1GB

主要研究方向 :

工程与材料;工程热物理与能源利用;工程热物理相关交叉领域;传热传质学;可再生与替代能源利用中的工程热物理问题;多相流热物理学;化学科学;燃烧学;建筑环境与结构工程;信息科学;工程热力学;机械工程等。

参考资料来源:百度-Applied Thermal Engineering官网

问题一:综述和论文在格式上有什么区别? 文献综述的格式与一般研究性论文的格式有所不同。这是因为研究性的论文注重 文献综述 研究的方法和结果,而文献综述介绍与主题有关的详细资料、动态、进展、展望以及对以上方面的评述。因此文献综述的格式相对多样,但总的来说,一般都包含以下四部分:即前言、主题、总结和参考文献。撰写文献综述时可按这四部分拟写提纲,再根据提纲进行撰写工作。 前言 前言要用简明扼要的文字说明写作的目的、必要性、有关概念的定义,综述的范围,阐述有关问题的现状和动态,以及目前对主要问题争论的焦点等。前言一般200-300字为宜,不宜超过500字。 正文 正文是综述的重点,写法上没有固定的格式,只要能较好地表达综合的内容,作者可创造性采用诸多形式。正文主要包括论据和论证两个部分,通过提出问题、分析问题和解决问题,比较不同学者对同一问题的看法及其理论依据,进一步阐明问题的来龙去脉和作者自己的见解。当然,作者也可从问题发生的历史背景、目前现状、发展方向等提出文献的不同观点。正文部分可根据内容的多少可分为若干个小标题分别论述。 小结 小结是对综述正文部分作扼要的总结,作者应对各种观点进行综合评价,提出自 文献丹述 己的看法,指出存在的问题及今后发展的方向和展望。内容单纯的综述也可不写小结。 参考文献 参考文献是综述的重要组成部分。一般参考文献的多少可体现作者阅读文献的广度和深度。对综述类论文参考文献的数量不同杂志有不同的要求,一般以30条以内为宜,以最近3-5年内的最新文献为主。 论文格式 1、毕业论文格式的写作顺序是:标题、作者班级、作者姓名、指导教师姓名、中文摘要及关键词、英文摘要及英文关键词、正文、参考文献。 2、毕业论文中附表的表头应写在表的上面,居中;论文附图的图题应写在图的下面,居中。按表、图、公式在论文中出现的先后顺序分别编号。 3、毕业论文中参考文献的书写格式严格按以下顺序:序号、作者姓名、书名(或文章名)、出版社(或期刊名)、出版或发表时间。 4、论文格式的字体:各类标题(包括“参考文献”标题)用粗宋体;作者姓名、指导教师姓名、摘要、关键词、图表名、参考文献内容用楷体;正文、图表、页眉、页脚中的文字用宋体;英文用Times New Roman字体。 5、论文格式的字号:论文题目用三号字体,居中;一级标题用四号字体;二级标题、三级标题用小四号字体;页眉、页脚用小五号字体;其它用五号字体;图、表名居中。 6、格式正文打印页码,下面居中。 7、论文打印纸张规格:A4 210×297毫米。 8、在文件选项下的页面设置选项中,“字符数/行数”选使用默认字符数;页边距设为 上:3厘米;下:2.5厘米;左:2.8厘米;右:2.8厘米;装订线:0.8厘米;装订线位置:左侧;页眉:1.8厘米;页脚1.8厘米。 9、在格式选项下的段落设置选项中,“缩进”选0厘米,“间距”选0磅,“行距”选1.5倍,“特殊格式”选(无),“调整右缩进”选项为空,“根据页面设置确定行高格线”选项为空。 10、页眉用小五号字体打印“湖北工业大学管理学院2002级XX专业学年论文”字样,并左对齐。...>> 问题二:论文综述是什么东西?怎么写. 文献综述是对某一方面的专题搜集大量情报资料后经综合分析而写成的一种学术论文,它是科学文献的一种。 文献综述是反映当前某一领域中某分支学科或重要专题的最新进展、学术见解和建议的它往往能反映出有关问题的新动态、新趋势、新水平、新原理和新技术等等。 要求同学们学写综述,至少有以下好处:①通过搜集文献资料过程,可进一步熟悉医学文献的查找方法和资料的积累方法;在查找的过程中同时也扩大了知识面; ②查找文献资料、写文献综述是临床科研选题及进行临床科研的第一步,因此学习文献综述的撰写也是为今后科研活动打基础的过程;③通过综述的写作过程,能提高归纳、分析、综合能力,有利于独立工作能力和科研能力的提高;④文献综述选题范围广,题目可大可小,可难可易,可根据自己的能力和兴趣自由选题。 文献综述与“读书报告”、“文献复习”、“研究进展”等有相似的地方,它们都是从某一方面的专题研究论文或报告中归纳出来的。但是,文献综述既不象“读书报告”、“文献复习”那样,单纯把一级文献客观地归纳报告,也不象“研究进展”那样只讲科学进程,其特点是“综述”,“综”是要求对文献资料进行综合分析、归纳整理,使材料更精练明确、更有逻辑层次;“述”就是要求对综合整理后的文献进行比较专门的、全面的、深入的、系统的论述。总之,文献综述是作者对某一方面问题的历史背景、前人工作、争论焦点、研究现状和发展前景等内容进行评论的科学性论文。 写文献综述一般经过以下几个阶段:即选题,搜集阅读文献资料、拟定提纲(包括归纳、整理、分析)和成文。 一、选题和搜集阅读文献 撰写文献综述通常出于某种需要,如为某学术会议的专题、从事某项科研、为某方面积累文献资料等等,所以,文献综述的选题,作者一般是明确的,不象科研课题选题那么困难。文献综述选题范围广,题目可大可小,大到一个领域、一个学科,小到一种疾病、一个方法、一个理论,可根据自己的需要而定,初次撰写文献综述,特别是实习同学所选题目宜小些,这样查阅文献的数量相对较小,撰写时易于归纳整理,否则,题目选得过大,查阅文献花费的时间太多,影响实习,而且归纳整理困难,最后写出的综述大题小作或是文不对题。 选定题目后,则要围绕题目进行搜集与文题有关的文献。关于搜集文献的有关方法,前面的有关章节已经介绍,如看专著、年鉴法、浏览法、滚雪球法、检索法等等,在此不再重复。搜集文献要求越全越好,因而最常用的方法是用检索法。搜集好与文题有关的参考文献后,就要对这些参考文献进行阅读、归纳、整理,如何从这些文献中选出具有代表性、科学性和可靠性大的单篇研究文献十分重要,从某种意义上讲,所阅读和选择的文献的质量高低,直接影响文献综述的水平。因此在阅读文献时,要写好“读书笔记”、“读书心得”和做好“文献摘录卡片”。有自己的语言写下阅读时得到的启示、体会和想法,将文献的精髓摘录下来,不仅为撰写综述时提供有用的资料,而且对于训练自己的表达能力,阅读水平都有好处,特别是将文献整理成文献摘录卡片,对撰写综述极为有利。 二、格式与写法 文献综述的格式与一般研究性论文的格式有所不同。这是因为研究性的论文注重研究的方法和结果,特别是阳性结果,而文献综述要求向读者介绍与主题有关的详细资料、动态、进展、展望以及对以上方面的评述。因此文献综述的格式相对多样,但总的来说,一般都包含以下四部分:即前言、主题、总结和参考文献。撰写文献综述时可按这四部分拟写提纲,在根据提纲进行撰写工作。 前言部分,主要是说明写作的目的,介绍有关的概念及定义以及综述的范围,扼要说明有关主题的现状或争论焦点,使读......>> 问题三:论文的文献综述怎么写?格式是什么? 本科毕业设计(论文) 文献综述 院 (系): 专 业: 班 级: 学生姓名: 学 号: 年 月 日 本科生毕业设计(论文)文献综述评价表 毕业设计(论文)题目 综述名称注意综述名称(综述内容中不要出现本课题怎么样等等) 评阅教师姓名职称 评 价 项 目优良合格不合格 综述结构01文献综述结构完整、符合格式规范 综述内容02能准确如实地阐述参考文献作者的论点和实验结果 03文字通顺、精练、可读性和实用性强 04反映题目所在知识领域内的新动态、新趋势、新水平、新原理、新技术等 参考文献05中、英文参考文献的类型和数量符合规定要求,格式符合规范 06围绕所选毕业设计(论文)题目搜集文献 成绩 综合评语: 评阅教师(签字): 年 月 日 文献综述: 小四号宋 空一行 标题 二号黑居中 空一行 1 XXX 三号黑 XXX 小四号宋,行距20磅 1.1 XXXX 小三号黑 XXX 小四号宋,行距20磅 1.1.1 XXX 四号黑 XXX 小四号宋,行距20磅 空一行 2 XXXX 三号黑 (空1行) 参 考 文 献 (空1行) [要求按国标GB 7714―87《文后参考文献著录规则》书写,例如:] [1] 袁庆龙,候文义.Ni-P合金镀层组织形貌及显微硬度研究[J].太原理工大学学报,2001,32(1):51-53 .(宋体五号,行距固定值20磅) [2] 刘国钧,王连成.图书馆史研究[M].北京:高等教育出版社,1979:15-18,31. 下面的是我的文献综述 文献综述: FTO透明导电薄膜的溅射法制备 1 前言 为了更好的开展毕业论文及毕业实验工作,在查找和阅读与《DSSC用FTO透明导电玻璃的溅射法制备》相关的文献和资料,完成撰写了本文献综述。随着科技的日趋成熟,导电玻璃的制备方法也越来越成熟,种类也衍生得越来越多。 本文章将对国内外的制备方法,种类,发展现状及趋势,工艺性能,退火处理对性能的影响等方面做一简要介绍。 2透明导电玻璃的种类及制备方法简介 2.1透明导电玻璃的种类 2.1 .1 TCO导电玻璃 TCO(Transparent Conductive Oxide)玻璃,即透明导电氧化物镀膜玻璃,是指在平板玻璃表面通过物理或化学镀膜方法均匀的镀上一层透明的导电氧化物薄膜而形成的组件.主要包括铟、锡、锌、铬的氧化物及其复合多元氧化物薄膜材料。 2.1.2 ITO透明导电玻璃 ITO透明导电玻璃全称为氧化铟锡(Indium-Tin Oxide)透明导电膜玻璃,多通过ITO导电膜玻璃生产线,在高度净化的厂房环境中,利用平面磁控技术,在超薄玻璃上溅射氧化铟锡导电薄膜镀层并经高温退火处理得到的高技术产品。 ITO玻璃产品广泛地用于液晶显示器(LCD)、太阳能电池、微电子ITO导电膜玻璃、光电子和各种光学领域。 2.1.3FTO透明导电玻璃 FTO透明导电玻璃为掺杂氟的SnO2导电玻璃(SnO2:F),简称为FTO。FTO玻璃可以做为ITO导电玻璃的替换用品,广泛用于液晶显示屏,光催化,薄膜太阳能电池基底等方面,市场需求极大. FTO玻璃因其特殊性,......>> 问题四:文献综述里的参考文献的格式? 字体为小五号或六号字体。 下面是几中常用参考格式:你可以参考一下。 1.专著: [序号]作者.书名[M].版本(第1版不著录).出版地:出版者,出版年.起止页码. 2.期刊: [序号]作者.题名[J].刊名,年,卷(期):起止页码. 3.会议论文集(或汇编): [序号]作者.题名[A].编者.论文集名[C].出版地:出版者,出版年.起止页码. 4.学位论文: [序号]作者. 题名[D]. 学位授予地址:学位授予单位,年份. 5.专利: [序号]专利申请者. 专利题名[P].专利国别(或地区):专利号, 出版日期. 6.科技报告: [序号]著者. 报告题名[R].编号,出版地:出版者,出版年.起止页码. 7.标准: [序号] 标准编号,标准名称[S].颁布日期. 8.报纸文章 : [序号] 作者. 题名[N]. 报纸名,年-月-日(版次). 9.电子文献: [序号] 主要责任者.电子文献题名[电子文献及载体类型标识].电子文献的出处或可获得地址,发表或更新日期/引用日期(任选). 10.各种未定义类型的文献: [序号]主要责任者.文献题名[Z]. 出版地:出版者,出版年. 有问题留言。 问题五:什么是论文的综述? 文献综述是对某一方面的专题搜集大量情报资料后经综合分析而写成的一种学术论文, 它是科学文献的一种。 格式与写法 文献综述的格式与一般研究性论文的格式有所不同。这是因为研究性的论文注重研究的方法和结果,特别是阳性结果,而文献综述要求向读者介绍与主题有关的详细资料、动态、进展、展望以及对以上方面的评述。因此文献综述的格式相对多样,但总的来说,一般都包含以下四部分:即前言、主题、总结和参考文献。撰写文献综述时可按这四部分拟写提纲,在根据提纲进行撰写工。 前言部分,主要是说明写作的目的,介绍有关的概念及定义以及综述的范围,扼要说明有关主题的现状或争论焦点,使读者对全文要叙述的问题有一个初步的轮廓。 主题部分,是综述的主体,其写法多样,没有固定的格式。可按年代顺序综述,也可按不同的问题进行综述,还可按不同的观点进行比较综述,不管用那一种格式综述,都要将所搜集到的文献资料归纳、整理及分析比较,阐明有关主题的历史背景、现状和发展方向,以及对这些问题的评述,主题部分应特别注意代表性强、具有科学性和创造性的文献引用和评述。 总结部分,与研究性论文的小结有些类似,将全文主题进行扼要总结,对所综述的主题有研究的作者,最好能提出自己的见解。 参考文献虽然放在文末,但却是文献综述的重要组成部分。因为它不仅表示对被引用文献作者的尊重及引用文献的依据,而且为读者深入探讨有关问题提供了文献查找线索。因此,应认真对待。参考文献的编排应条目清楚,查找方便,内容准确无误。关于参考文献的使用方法,录著项目及格式与研究论文相同,不再重复。 问题六:毕业论文文献综述跟研究综述都要写吗 两个什么区别啊 不一样文献综述大概是你结合收集的文献对你要研究的问题进行一个阐述(只是结合自己发现的问题研究)研究综述大概是你对你要研究的问题进行一个阐述(你有研究的问题、方向和结论)文献耽述比研究综述简单一些 问题七:论文的文献综述应该怎样写? 应该如何撰写文献综述 一,什么是文献综述 文献综述的概念 文献综述是对某一学科,专业或专题的大量文献进行整理筛选,分析研究和综合提炼而成的一种学术论文, 是高度浓缩的文献产品.根据其涉及的内容范围不同,综述可分为综合性综述和专题性综述两种类型.所谓综合性综述是以一个学科或专业为对象,而专题性综述则是以一个论题为对象的. 文献综述反映当前某一领域中某分支学科或重要专题的历史现状,最新进展,学术见解和建议,它往往能反映出有关问题的新动态,新趋势,新水平,新原理和新技术等等.文献综述是针对某一研究领域分析和描述前人已经做了哪些工作,进展到何程度,要求对国内外相关研究的动态,前沿性问题做出较详细的综述,并提供参考文献.作者一般不在其中发表个人见解和建议,也不做任何评论,只是客观概括地反映事实. 文献综述的作用 文献综述在于高度浓缩了几十篇甚至上百篇散乱无序的同类文献之成果与存在问题或争论焦点,对其进行了归纳整理,使之达到了条理化和系统化的程度.它不仅为科研工作者完成科研工作的前期劳动节省了用于查阅分折文献的大量宝贵时间,而且还非常有助于科研人员借鉴他人成果,把握主攻方向以及领导者进行科学决策. 要求同学们学写综述的意义 通过搜集文献资料过程,可进一步熟悉文献的查找方法和资料的积累方法,在查找的过程中同时也扩大了知识面; 查找文献资料,写文献综述是科研选题的第一步,因此学习文献综述的撰写也是为今后科研活动打基础的过程; 通过综述的写作过程,能提高归纳,分析,综合能力,有利于独立工作能力和科研能力的提高. 二,文献综述的选题与文献资料的搜集 选题原则 1.结合所学知识选自己专长的或有基础的题目,否则难以写出水平较高的综述. 2.根据所占有文献资料的质和量选题. 3.选题一定要能反映出新的学科矛盾的焦点,新成果,新动向. 4.题目不宜过大,范围不宜过宽.这样查阅文献的数量相对较小,撰写时易于归纳整理,否则,题目选得过大,查阅文献花费的时间太多,影响实习,而且归纳整理困难,最后写出的综述大题小作或是文不对题. (二)文献资料的搜集 1,文献资料的搜集途径 (1)利用有关的检索工具(包括目录,文摘和索引等)搜集文献资料. (2)利用国际联机检索系统搜集文献资料. (3)利用原始文献(包括专业期刊,科技报告,专利文献,学位论文,会议文献,专著和标准等)搜集文献资料. (4)利用三次文献(包括综述,述评,百科全书,年鉴和手册等)搜集文献资料. (5)通过Interent网和光盘数据库搜集文献资料. 2,文献资料的搜集方法 将文献资料储存在大脑中或其他载体上形成不时取用的资料库的过程称作文献资料搜集法.它包括阅读法,剪报法,笔记法和现代化技术存贮法(如复印,电脑存贮,光盘存贮等). 三,格式与写法 文献综述的格式与一般研究性论文的格式有所不同.这是因为研究性的论文注重研究的方法和结果,而文献综述要求向读者介绍与主题有关的详细资料,动态,进展,展望以及对以上方面的评述.因此文献综述的格式相对多样,但总的来说,一般都包含以下部分具体格式:①综述题目;②作者单位;③摘要;④关键词;⑤前言;⑥主题;⑦总结;⑧参考文献.下面着重介绍前言,主题部分,总结部分及参考文献.撰写文献综述时可按这四部分拟写提纲,再根据提纲进行撰写工. (一) 前言部分 前言部分,主要是说明写作的目的,介绍有关的概念及定义以及综述的范围,扼要说明有关主题的现状或争论焦点,使读者对全文要叙述的问题有一个初步的轮廓.前言部分要写清: (1)首先要说明写作的目的. (2)有关概念......>>

玻璃是非晶无机非金属材料,一般是用多种无机矿物(如石英砂、硼砂、硼酸、重晶石、碳酸钡、石灰石、长石、纯碱等)为主要原料,另外加入少量辅助原料制成的。

主要包括:

①原料预加工。将块状原料(石英砂、纯碱等)粉碎,使潮湿原料干燥,将含铁原料进行除铁处理,以保证玻璃质量。

②配合料制备。

③熔制。玻璃配合料在池窑或坩埚窑内进行高温(1550~1600度)加热,使之形成均匀、无气泡,并符合成型要求的液态玻璃。

④成型。将液态玻璃加工成所要求形状的制品。

⑤热处理。通过退火、淬火等工艺,消除或产生玻璃内部的应力、分相或晶化,改变玻璃的结构状态。

扩展资料:

生产玻璃原料:

玻璃生产的主要原料有玻璃形成体、玻璃调整物和玻璃中间体,其余为辅助原料。主要原料指引入玻璃形成网络的氧化物、中间体氧化物和网络外氧化物;辅助原料包括澄清剂、助熔剂、乳浊剂、着色剂、脱色剂、氧化剂和还原剂等。

应用:

有石英玻璃、硅酸盐玻璃、钠钙玻璃、氟化物玻璃、高温玻璃、耐高压玻璃、防紫外线玻璃、防爆玻璃等。通常指硅酸盐玻璃,以石英砂、纯碱、长石及石灰石等为原料,经混和、高温熔融、匀化后,加工成形,再经退火而得。广泛用于建筑、日用、艺术、医疗、化学、电子、仪表、核工程等领域

参考资料:百度百科——玻璃

里面含有玻璃制造的内容。GlassI INTRODUCTION Glass, an amorphous substance made primarily of silica fused at high temperatures with borates or phosphates. Glass is also found in nature, as the volcanic material obsidian and as the enigmatic objects known as tektites (see Tektite). It is neither a solid nor a liquid but exists in a vitreous, or glassy, state in which molecular units have disordered arrangement but sufficient cohesion to produce mechanical rigidity. Glass is cooled to a rigid state without the occurrence of crystallization; heat can reconvert glass to a liquid form. Usually transparent, glass can also be translucent or opaque. Color varies with the ingredients of the batch.Molten glass is plastic and can be shaped by means of several techniques. When cold, glass can be carved. At low temperatures glass is brittle and breaks with a shell-like fracture on the broken face. Such natural materials as obsidian and tektites (from meteors) have compositions and properties similar to those of synthetic glass.Glass was first made before 2000 bc and has since served humans in many ways. It has been used to make useful vessels as well as decorative and ornamental objects, including jewelry. Glass also has architectural and industrial applications.II MATERIALS AND TECHNIQUES The basic ingredient of glass compositions is silica, derived from sand, flint, or quartz.A Composition and Properties Silica can be melted at very high temperatures to form fused silica glass. Because this glass has a high melting point and does not shrink or expand greatly with changing temperatures, it is suitable for laboratory apparatus and for such objects subject to heat shock as telescope mirrors. Glass is a poor conductor of both heat and electricity and therefore useful for electrical and thermal insulation. For most glass, silica is combined with other raw materials in various proportions. Alkali fluxes, commonly the carbonates of sodium or potassium, lower the fusion temperature and viscosity of silica. Limestone or dolomite (calcium and magnesium carbonates) act as stabilizers for the batch. Other ingredients such as lead and borax give to glass certain physical properties.A1 Water Glass and Soda-Lime Glass Glass of high soda content can be dissolved in water as a syrupy fluid. Known as water glass, it is used commercially for fireproofing and as a sealant. Most manufactured glass is a soda-lime composition used to make bottles, tableware, lamp bulbs, and window and plate glass.A2 Lead Glass The fine-quality table glass known as crystal is made from potassium-silicate formulas that include lead oxide. Lead glass is heavy and has an enhanced capacity to refract light, which makes it suitable for lenses and prisms, as well as for imitation jewels. Because lead absorbs high-energy radiation, lead glasses are used in shields to protect personnel in nuclear installations.A3 Borosilicate Glass Borosilicate glass contains borax as a major ingredient, along with silica and alkali. Noted for its durability and resistance to chemical attack and high temperatures, borosilicate glass is widely employed for cooking utensils, laboratory glassware, and chemical process equipment.A4 Color Impurities in the raw materials affect the color of glass. For a clear, colorless substance, glassmakers add manganese to counteract the effects of iron traces that produce greens and browns. Glass can be colored by dissolving in it metallic oxides, sulfides, or selenides. Other colorants may be dispersed as microscopic particles.A5 Miscellaneous Ingredients Typical glass formulas include broken waste glass of related composition (cullet), which promotes melting and homogenization of the batch. Fining agents such as arsenic or antimony are often added to cause the release of small bubbles during the melting.A6 Physical Properties Depending on the composition, some glass will melt at temperatures as low as 500° C (900° F); others melt only at 1650° C (3180° F). Tensile strength, normally between 280 and 560 kg per sq cm (4000 and 8000 lb per sq in), can exceed 7000 kg per sq cm (100,000 lb per sq in) if the glass is specially treated. Specific gravity ranges from 2 to 8, or from less than that of aluminum to more than that of steel. Similarly wide variations occur in optical and electrical properties.B Mixing and Melting After careful preparation and measurement, the raw materials are mixed and undergo initial fusion before being subjected to the full heat needed for vitrification. In the past, melting was done in clay pots heated in wood- or coal-burning furnaces. Pots of fireclay, holding from 0.5 to 1.5 metric tons of glass, are still used when relatively small amounts of glass are needed for handworking. In modern glass plants, most glass is melted in large tank furnaces, first introduced in 1872, that can hold more than 1000 metric tons of glass and are heated by gas, oil, or electricity. The glass batch is fed continuously into an opening (doghouse) at one end of the tank, and the melted, refined, and conditioned glass is drawn out the other end. In long forehearths, or holding chambers, the molten glass is brought to the correct working temperature, and the vitreous mass is then delivered to the forming machines.C Shaping When working glass in its plastic state, five basic methods are employed to produce an almost limitless variety of shapes: casting, blowing, pressing, drawing, and rolling.C1 Casting In this process, known to the ancients, molten glass is simply poured into a mold and allowed to cool and solidify. In modern times centrifugal casting processes have been developed in which the glass is forced against the sides of a rapidly rotating mold. Capable of forming precise, lightweight shapes, centrifugal casting is used for the production of television-tube funnels.C2 Glassblowing The revolutionary discovery that glass could be insufflated and expanded to any shape was made in the third quarter of the 1st century bc, in the Middle East along the Phoenician coast. Glassblowing soon spread and became the standard way of shaping glass vessels until the 19th century. The necessary tool is a hollow iron pipe about 1.2 m (about 4 ft) long with a mouthpiece at one end. The glassblower, or gaffer, collects a small amount of molten glass, called a gather, on the end of the blowpipe and rolls it against a paddle or metal plate to shape its exterior (marvering) and to cool it slightly. The gaffer then blows into the pipe, expanding the gather into a bubble, or parison. By constantly reheating at the furnace opening, by blowing and marvering, the gaffer controls the form and thickness. Simple hand tools such as shears, tongs (pucellas), and paddles are used to refine the form, often while the glassblower sits in the special “glassmaker's chair,” one with extended arms to support the blowpipe. Blown glass can also be shaped with molds: Part-size molds pattern the gather, which is then removed and blown to the desired size. Full-size molds into which the gather is entirely blown impart size, shape, and decoration. Additional gathers may be applied and manipulated to form stems, handles, and feet, or they may be trailed on and tooled for decoration. A shaped bubble can be “flashed” with color by dipping it into molten glass of contrasting color. To make cased glass, a gather is placed within, and fused to, one or more layers of differently colored glass. For finish work and fire polishing at the mouth of the furnace, the gather is transferred to a solid iron rod called a pontil, applied opposite the blowpipe, which is then removed. When the pontil is cracked off it leaves a “pontil mark” that may be later ground or polished away.In 1903 a fully automatic blowing machine was perfected, thereby making mechanical glassblowing possible.C3 Pressing Some pressing was involved in the production of ancient cast wares to ensure that the glass had full contact with the mold. Islamic artisans used simple handpresses to form glass weights and seals. European manufacturers rediscovered the technique in the late 18th century, using it to make decanter stoppers and the bases of stemmed tableware. In the 1820s patents were taken out, particularly in the U.S., that led to the development of fully mechanical pressing. In this process, a gather of glass is dropped into a mold, and a plunger then squeezes the glass between itself and the outer mold and forms the final shape. Both the mold and the plunger may be patterned to impart decorative design to the object being made.C4 Drawing Molten glass can be drawn directly from the furnace to make tubing, sheets, fibers, and rods of glass that must have a uniform cross section. Tubing is made by drawing out a cylindrical mass of semifluid glass while a jet of air is blown down the center of the cylinder.C5 Rolling Sheet glass, and plate glass in particular, was originally produced by pouring molten glass on a flat surface and, with a roller, smoothing it out prior to polishing both its surfaces. Later it came to be made by continuous rolling between double rollers.D Lampworking Lampworking consists of the reworking of preformed and annealed glass, generally to produce scientific laboratory equipment and decorative toys and figures. Rods and cylinders are reheated by air-gas or oxygen-gas flames and refashioned by hand or machine.E Annealing After being formed, glass objects are annealed to relieve stresses built up within the glass as it cools (see Annealing). In an oven called a lehr, the glass is reheated to a temperature high enough to relieve internal stresses and then slowly cooled to avoid introducing new stresses. Stresses can be added intentionally to impart strength to a glass article. Because glass breaks as a result of tensile stresses that originate across an infinitesimal surface scratch, compressing the surface increases the amount of tensile stress that can be endured before breakage occurs. A method called thermal tempering introduces surface compression by heating the glass almost to the softening point and then cooling it rapidly with an air blast or by plunging it into a liquid bath. The surface hardens quickly; the subsequent contraction of the slower-cooling interior portions of the glass pulls the surface into compression. Surface compressions approaching 2460 kg per sq cm (35,000 lb per sq in) can be obtained in thick pieces by this method. Chemical strengthening methods also have been developed in which, through an ion-exchange process, the composition or structure of the glass surface is altered and surface compression introduced. Strengths exceeding 7000 kg per sq cm (100,000 lb per sq in) can be attained by chemical strengthening.F Decoration After annealing, a glass object may be embellished in a number of ways. Some of them are as follows:In cutting, to produce cut glass, facets, grooves, and depressions are ground into the surface with rotating disks of various materials, sizes, and shapes and a stream of water with an abrasive. The steps are marking the pattern, rough cutting, smoothing, and polishing.Designs are engraved by means of a diamond point or a metal needle, or with rotating wheels, generally of copper.In the etching process intaglio decoration is achieved with acid, the results varying from a rough to mat finish.In sandblasting, fine grains of sand, crushed flint, or powdered iron are projected at high speed onto the glass surface, leaving a design in mat finish.In cold painting, lacquer colors or oil paints are applied to glass but are not affixed by firing.In enamel painting, enamel colors are painted and then fused onto the surface in a low-temperature firing.In gilding, gold leaf, gold paint, or gold dust is applied to glassware and sometimes left unfired; low-temperature firing, however, is necessary for permanency.III GLASS AS AN ART FORM Archaeological evidence indicates that glass was first made in the Middle East, sometime in the 3rd millennium bc.A Ancient Glass The earliest glass objects were beads; hollow vessels do not occur before about 1500 bc. Asian artisans may have established the glass industry in Egypt, where the first vessels date from the reign (1479-1425 bc) of Thutmose III. Glass production flourished in Egypt and Mesopotamia until about 1200 bc, then virtually ceased for several hundred years. In the 9th century bc, Syria and Mesopotamia emerged as glassmaking centers, and the industry spread throughout the Mediterranean region. In the Hellenistic era, Egypt, because of the glassworks at Alexandria, assumed a leading role in supplying royal courts with luxury glass. It was on the Phoenician coast, however, that the important discovery of glassblowing occurred in the 1st century bc. In the Roman period glassmaking was undertaken in many areas of the empire, from Rome to Cologne.A1 Early Techniques Before the invention of the blowpipe, several methods existed for shaping and embellishing objects of colored glass, both translucent and opaque. Some articles were carved from solid blocks of glass. From potters and metalworkers glassmakers adapted casting processes, pouring molten glass into molds to produce inlays, statuettes, and open vessels such as jars and bowls. Preformed rods of glass could be heated and fused together in a mold for a “ribbon” glass. Patterns of great complexity were achieved by a mosaic technique, in which elements, fused in a rod, together made a design in cross section. Slices of such rods could be arranged in a mold to shape a vessel or plaque and then heated to fusion. “Gold band” glasses featured irregular bands of different colored glass, with gold leaf embedded in one translucent band.The majority of pre-Roman glasswares were fashioned by the core technique. A mixture of clay and dung was fixed to a metal rod and given the internal shape of the desired vessel. It was dipped into a crucible of molten glass or was wound with threads of glass. The object was constantly reheated and smoothed on a flat stone. Threads of different colored glass were trailed on and combed, creating striking feather patterns, as seen on Egyptian glass of the 18th and 19th dynasties. Handles, feet, and the neck were added and the object cooled. The rod was withdrawn and the core material picked out. Only vessels of limited size, such as cosmetic containers and small vases, could be made this way. Later core-formed articles from the 6th century bc closely followed the forms of Greek pottery (see Pottery).A2 Roman Glass Glassblowing, a less expensive and time-consuming method of manufacture, spread from Syria to Italy and other parts of the Roman Empire, gradually superseding the old techniques. A new taste in glass styles developed: The earlier manufacturing processes emphasized color and pattern; blowing enhanced the thin, translucent qualities of the material. Also, by the end of the 1st century ad, colorless glass supplanted colored glass as the most fashionable sort. Glassblowing made large-scale production possible and changed the status of glassware to an everyday material, used for windows, drinking vessels, and containers of all kinds.The structure of the empire doubtless fostered the extraordinary developments in glassmaking that occurred in this period. Most of the known decorative techniques were invented by artisans of the Roman era. Blown glasswares were patterned in part and full-size molds. Such molds enabled novelty items such as head-shaped flasks to be produced in quantity. A delicately patterned ewer (1st century ad) in the Corning Museum of Glass, Corning, New York, is one of a remarkable group of mold-blown objects that bear the names of their makers. Some Roman glass has elaborately threaded and tooled decoration. Glasswares could be painted with religious and historical scenes, or could feature designs in gold leaf pressed between two layers of clear glass. Ancient glassmakers adapted lapidary skills to make lathe-cut, carved, and engraved glass of considerable beauty. In cameo glass, layers of different colored glass were fused together and then carved so as to leave contrasting motifs in relief. Best known of Roman cameo glass is the Portland Vase (1st century ad, British Museum, London), which depicts the myth of Peleus and Thetis. Delicate effects were achieved in the diatreta, or caged cups, in which great portions of the outer surface were cut away, leaving an intricate openwork frame that appears to stand almost free of the vessel within. The famous Lycurgus Cup (4th century ad, British Museum) epitomizes this practice.B Western Glass The manufacture of household glass suffered a general decline in the West with the fall of the Roman Empire.B1 Medieval Glass Under Frankish influence glassmakers in northern Europe and Britain continued to produce utilitarian vessels, some of new, robust forms. The decoration of these objects was limited to simple molded patterns, threading, and applied ornaments such as prunts (blobs of glass). Mostly green in color, the glass was at first a soda-glass composition made with ashes of marine plants imported from the Mediterranean, as they had been during Roman times. By the late Middle Ages, however, soda was no longer available, and northern glassmakers turned to the wood ash from their own wood-fired furnaces as a flux, for a potash-lime glass. Because the glasshouses were situated in the forests that provided fuel and ash, the glass made was called forest glass, waldglas. Common glass in the waldglas style continued to be made in the lesser European factories until modern times.The glory of Western glassmaking in the medieval period, through patronage of the church, was mosaic glass in Mediterranean Europe and stained-glass windows in the north (see Mosaics; Stained Glass). Mosaics were made of small glass cubes, or tesserae, embedded in cement. The tesserae, cut from solid cakes of glass, could be extremely elaborate, with gold and silver lead inlaid. Little is known of the production of mosaic glass before the 14th century.Glass windows in churches are mentioned in documents as early as the 6th century, but the earliest extant examples date from the 11th century. The finest windows are considered those from the 13th and 14th centuries, primarily in France and England. Glasshouses in Lorraine and Normandy (Normandie) may have provided much of the flat glass for medieval cathedral windows. The glass was colored, or flashed with color, and then cut into the shapes required by the design. Details were painted into the glass, often with a brownish enamel. The pieces were fitted into lead strips and set in an iron framework. The art declined in the late Renaissance but was revived in the 19th century.B2 Renaissance to the 18th Century Although glassmaking was practiced in Venice from the 10th century on, the earliest known Venetian glassware dates from the 15th century. Concentrated on the island of Murano, the Venetian industry dominated the European market until 1700. The major contribution of the Venetians was the development of a highly refined, hard-soda glass of great ductility. Colorless and highly transparent, the glass resembled rock crystal and was known as cristallo.The first cristallo wares were simple forms, often embellished with jewel-like enamel designs. Objects were also blown of colored and opaque glass. By the late 16th century, forms became lighter and more delicate. The blowers exploited the workable nature of their material to produce fanciful tours de force. A type of filigree glass was developed in Venice and widely imitated. With lacelike effect, opaque white threads were incorporat

玻璃制造期刊官网投稿邮箱

玻璃是非晶无机非金属材料,一般是用多种无机矿物(如石英砂、硼砂、硼酸、重晶石、碳酸钡、石灰石、长石、纯碱等)为主要原料,另外加入少量辅助原料制成的。

主要包括:

①原料预加工。将块状原料(石英砂、纯碱等)粉碎,使潮湿原料干燥,将含铁原料进行除铁处理,以保证玻璃质量。

②配合料制备。

③熔制。玻璃配合料在池窑或坩埚窑内进行高温(1550~1600度)加热,使之形成均匀、无气泡,并符合成型要求的液态玻璃。

④成型。将液态玻璃加工成所要求形状的制品。

⑤热处理。通过退火、淬火等工艺,消除或产生玻璃内部的应力、分相或晶化,改变玻璃的结构状态。

扩展资料:

生产玻璃原料:

玻璃生产的主要原料有玻璃形成体、玻璃调整物和玻璃中间体,其余为辅助原料。主要原料指引入玻璃形成网络的氧化物、中间体氧化物和网络外氧化物;辅助原料包括澄清剂、助熔剂、乳浊剂、着色剂、脱色剂、氧化剂和还原剂等。

应用:

有石英玻璃、硅酸盐玻璃、钠钙玻璃、氟化物玻璃、高温玻璃、耐高压玻璃、防紫外线玻璃、防爆玻璃等。通常指硅酸盐玻璃,以石英砂、纯碱、长石及石灰石等为原料,经混和、高温熔融、匀化后,加工成形,再经退火而得。广泛用于建筑、日用、艺术、医疗、化学、电子、仪表、核工程等领域

参考资料:百度百科——玻璃

来晚了。。。

玻璃制成的方法如下:1、准备硅砂。2、将碳酸钠和氧化钙添加到硅砂里。3、根据玻璃预计的用途添加其它化学品。4、添加化学品使玻璃达到想要的颜色。5、把玻璃混合物放入耐热坩埚或支架里。6、将混合物熔成液态。7、使玻璃熔液均匀并去除气泡。8、将玻璃熔液塑造成型。9、通过热处理增强玻璃。

​导读

背景

从罗马时代起,将空气吹到热玻璃中形成气泡的方法,一直被用于制造玻璃物体。

创新

在新的工作中,研究人员们在微观尺度采用同样的玻璃吹制原理,制造专用的微型圆锥形透镜,它也称为“轴棱锥(axicon)”。

轴棱锥可用于将激光塑造得有利于光学钻孔、成像以及为操控微粒或者细胞创造光学陷阱。这些透镜已经有超过60年的 历史 ,但是它们的制造工艺(特别是在微观尺度上)并不简单。

来自法国 FEMTO-ST 研究所的研究团队成员 Nicolas Passilly 表示:“我们的技术有望低成本地制造结实的小型玻璃轴棱锥,它可以在生物医学成像应用例如光学相干层析成像(OCT)所需的小型化成像系统中使用。”

研究人员们在美国光学学会(OSA)期刊《光学快报(Optics Letters)》上描述了这种新型制造方法。该方法所基于的工艺,与在半导体晶圆上并行制造大量的光子与电子电路所用的工艺一样。研究人员们采用他们的方法创造出直径为0.9毫米和1.8毫米的玻璃轴棱锥,并成功地生成贝塞尔光束。

技术

当与激光一起使用时,轴棱锥创造出一束光线,这束光线开始是类贝塞尔光束(一种在其轴上具有最大强度的非衍射光束),然后转变成空心光束,离轴棱锥越来越远。类贝塞尔光束的景深,比由直径相似的传统圆形透镜聚焦的光束的景深大几个数量级。光束的大景深,使得光学钻可以达到更深处,并创造出更高质量OCT图像。对于光学镊子来说,类贝塞尔光束和空心部分的光束可用于囚禁粒子或者细胞。

传统意义上,这些用于制造玻璃轴棱锥的技术一次只能制造一个透镜。尽管较便宜的轴棱锥可以用聚合物制造,但是这些轴棱锥无法承受住诸如晶圆级制造的高温工艺,或者无法应用于需要高水平光功率的应用。

Passilly 表示:“聚合物轴棱锥无法应用于光学钻孔,例如,因为这些瞬间的光功率可以比得上核电站的功率,但是持续时间极短。”

之前,微观的玻璃吹制技术已经用于制造微透镜,但是它通常需要来自单个储气室的膨胀气体。研究人员们开发出了一种轴棱锥制造技术,它将来自多个储气室的膨胀气体结合起来,制造出光学元件的圆锥形状。这项技术从底部塑造表面,留下一个高质量的光学表面。它不同于那些普遍采用的技术例如蚀刻,转移自三维掩膜(从上面蚀刻晶圆)。

为了实施这种微型玻璃吹制新技术,研究人员将硅腔沉积到同心环中。然后,这些同心环在大气压下用玻璃密封起来。将硅和玻璃叠层放置到熔炉中,使囚禁在腔体中的气体膨胀,创造出环形气泡。这些气泡推开玻璃表面形成圆锥形,然后对面被抛光,只留下成形的透镜。

价值

Passilly 表示:“晶圆级的微制造技术使得轴棱锥可以集成到更复杂的微系统(也是晶圆级制造)中,从而通向一种由晶圆叠层组成的微系统。这种集成带来了更好的光学校准、高性能真空包装以及更低成本的最终系统(因为可大批量同时处理)。”

Passilly 还表示:“虽然我们采用的所有工艺对于微制造来说都是标准的,但是我们以非标准的方法采用这些技术来制造微型玻璃轴棱锥。这项技术可用于创造其他形状,甚至是那些不是柱对称的形状。”

研究人员计划将这些光学元件集成到他们正在为癌症检测和其他医疗应用开发的OCT设备中。

参考资料

【1】

玻璃制造期刊官网投稿格式

​导读

背景

从罗马时代起,将空气吹到热玻璃中形成气泡的方法,一直被用于制造玻璃物体。

创新

在新的工作中,研究人员们在微观尺度采用同样的玻璃吹制原理,制造专用的微型圆锥形透镜,它也称为“轴棱锥(axicon)”。

轴棱锥可用于将激光塑造得有利于光学钻孔、成像以及为操控微粒或者细胞创造光学陷阱。这些透镜已经有超过60年的 历史 ,但是它们的制造工艺(特别是在微观尺度上)并不简单。

来自法国 FEMTO-ST 研究所的研究团队成员 Nicolas Passilly 表示:“我们的技术有望低成本地制造结实的小型玻璃轴棱锥,它可以在生物医学成像应用例如光学相干层析成像(OCT)所需的小型化成像系统中使用。”

研究人员们在美国光学学会(OSA)期刊《光学快报(Optics Letters)》上描述了这种新型制造方法。该方法所基于的工艺,与在半导体晶圆上并行制造大量的光子与电子电路所用的工艺一样。研究人员们采用他们的方法创造出直径为0.9毫米和1.8毫米的玻璃轴棱锥,并成功地生成贝塞尔光束。

技术

当与激光一起使用时,轴棱锥创造出一束光线,这束光线开始是类贝塞尔光束(一种在其轴上具有最大强度的非衍射光束),然后转变成空心光束,离轴棱锥越来越远。类贝塞尔光束的景深,比由直径相似的传统圆形透镜聚焦的光束的景深大几个数量级。光束的大景深,使得光学钻可以达到更深处,并创造出更高质量OCT图像。对于光学镊子来说,类贝塞尔光束和空心部分的光束可用于囚禁粒子或者细胞。

传统意义上,这些用于制造玻璃轴棱锥的技术一次只能制造一个透镜。尽管较便宜的轴棱锥可以用聚合物制造,但是这些轴棱锥无法承受住诸如晶圆级制造的高温工艺,或者无法应用于需要高水平光功率的应用。

Passilly 表示:“聚合物轴棱锥无法应用于光学钻孔,例如,因为这些瞬间的光功率可以比得上核电站的功率,但是持续时间极短。”

之前,微观的玻璃吹制技术已经用于制造微透镜,但是它通常需要来自单个储气室的膨胀气体。研究人员们开发出了一种轴棱锥制造技术,它将来自多个储气室的膨胀气体结合起来,制造出光学元件的圆锥形状。这项技术从底部塑造表面,留下一个高质量的光学表面。它不同于那些普遍采用的技术例如蚀刻,转移自三维掩膜(从上面蚀刻晶圆)。

为了实施这种微型玻璃吹制新技术,研究人员将硅腔沉积到同心环中。然后,这些同心环在大气压下用玻璃密封起来。将硅和玻璃叠层放置到熔炉中,使囚禁在腔体中的气体膨胀,创造出环形气泡。这些气泡推开玻璃表面形成圆锥形,然后对面被抛光,只留下成形的透镜。

价值

Passilly 表示:“晶圆级的微制造技术使得轴棱锥可以集成到更复杂的微系统(也是晶圆级制造)中,从而通向一种由晶圆叠层组成的微系统。这种集成带来了更好的光学校准、高性能真空包装以及更低成本的最终系统(因为可大批量同时处理)。”

Passilly 还表示:“虽然我们采用的所有工艺对于微制造来说都是标准的,但是我们以非标准的方法采用这些技术来制造微型玻璃轴棱锥。这项技术可用于创造其他形状,甚至是那些不是柱对称的形状。”

研究人员计划将这些光学元件集成到他们正在为癌症检测和其他医疗应用开发的OCT设备中。

参考资料

【1】

您可以给《机械设计与制造》杂志投稿,给您推荐一个自助投稿网站——万维书刊,上面的刊物非常全,包括《机械设计与制造》的投稿方式,其他类似的期刊基本也都有电子邮箱,并且大多还能连接登录他们的官方网站。用着很方便,过去看看吧! 此投稿网的特点:自助投稿、非中介、高校教师创办、免费、直接投稿编辑部、可以收藏期刊、保存投稿记录、期刊点评、连接期刊官网等,功能齐全。每个刊物的电子邮箱都来自官网或者知网、万方等权威网站。 请收藏并且介绍给朋友们吧,让他们投稿时也省一份心!祝投稿顺利!心情愉快! 您在百度、谷歌键入“万维书刊”,首页便是!

玻璃制作中国古代是否自行制作过玻璃,人们曾有过不同看法。过去,科技、考古、历史界曾流行一种“玻璃外来说”。后来,随着考古发掘的展开,战国时期的玻璃制品大量出土,科技工作者对这些制品用现代检测手段作了分析,为我们进一步探讨我国古代玻璃的源流及制作工艺等提供了重要依据。从化验结果来看,我国古代玻璃是铅钡玻璃,这与西方钠钙玻璃有明显区别。从出土的玻璃器形制来看,它们富有中国特色。尤其是在湖南省一些古墓中出土的大量战国、西汉时的玻璃器,在质料上大都属于铅钡玻璃,在形制上则主要是一些具有中国民族特色的礼器、印章和器皿等,并且上面有中国民族装饰特点的纹饰及图案,这令人信服地证明这种玻璃品种是我国先民独创并自行发展起来的。我们知道,铅基玻璃的基本助熔剂是PbO,PbO与石英一起熔炼,在900℃左右便可以生成玻璃。PbO可以通过焙烧铅矿石得到。我国的铅矿石主要是方铅矿(PbS),这种方铅矿常与重晶石共生。重晶石的主要成分是BaSO4。由此,将这种共生矿进行氧化焙烧,所得到的煅矿灰中除PbO外,自然也含有BaO,以它们为原料与石英一起熔炼,得到的就是铅钡玻璃。那么,这种铅钡玻璃究竟是怎么起源的呢?可以设想,这与古人冶铅的实践分不开。铅在古人生活中占有一定地位。用铅做成的胡粉在古代是一种化妆品,炼丹术也叫铅汞之术,这表明铅对于炼丹家们也至为重要。由此,古人必然很早就重视铅的冶炼。在春秋战国时期,人们是用陶质的坩埚、土釜或平敞的粘土炉子来氧化焙烧方铅矿以制取铅的,这样,当氧化铅生成后,一旦与陶质埚、釜内壁的粘土成分接触,只要器壁温度达到900℃左右,就会在埚、釜壁上生成一层铅釉。有学者曾就此做过模拟实验,结果完全证实了这一点(赵匡华,“试探中国传统玻璃的源流及炼丹术在其间的贡献”,《自然科学史研究》,1991年第2期)。由于这种釉润滑光亮,敲击脱落后很像玉石,这就给古人以启示,使他们有意识地尝试用这种铅矿煅灰与粘土或石英砂一起熔炼。摸索的结果,他们会发现,用石英砂炼制得到的成品质地润泽,光洁晶亮,这就得到了正式的原始玻璃配方。不过,用这种方法得到的玻璃因为烧制气温低,有大量气泡,且含有钡,因而透明度是比较差的。传统玻璃的进一步发展,是无钡玻璃的出现。从古人的角度来看,既然铅矿煅灰可以烧制玻璃,他们自然也会尝试用提纯后的金属铅去烧炼,这就断绝了钡的来路。这种方法炼制出的玻璃由于原料中不再含有铅矿中附有的众多杂质,因而更加光洁晶莹,更像玉石,而且熔炼温度也有所降低。传统玻璃的起源与古人的冶铅实践有关,但其发展演变则与炼丹家们的活动分不开。早在战国时期,中国的方士们就流行着“食金饮玉”可以长生的说法,所以炼丹术兴起后试炼珠玉(即玻璃)也就成为炼丹家们的活动之一。东汉王充《论衡·率性篇》说:“道人消烁五石,作五色之玉,比之真玉,光不殊别。”又说:“随侯以药作珠,精耀如真,道士之教至,知巧之意加也。”曾有人怀疑这里的烧炼五石是否意指烧炼玻璃,因为五石是否是指适于炼制玻璃的五种矿石,还不能肯定。但这些记述反映了道士们烧炼珠玉的活动,则是无疑的,而烧炼珠玉正是导致玻璃出现的直接来源,这是可以肯定的。我国古代玻璃虽然起源时间很早(考古发掘中已有西周玻璃器出土),但发展缓慢,而且长期保持自己固有的特点,这就是:表面光泽晶润,“比之真玉,光不殊别”,但透明度差,并且质地“虚脆不贞”(《汉书·西域传》颜师古注语)。这主要是由于化学成分、烧成温度这两个方面的因素决定了我国古玻璃自始至终属于低温铅钡玻璃的缘故。从主观方面来讲,古玻璃出现以后,成为炼丹术的副产品,被道士们从人工冶炼珠玉的角度出发去总结和实践,没有走上独立发展道路,更谈不上发展出一套成熟的玻璃制作技术来。由于受制作目的和技术的影响,传统玻璃制品在古代社会生活中的应用范围受到很大限制,主要局限在礼器、装饰品以及冒充珍珠、宝石的珠子、戒指等。质地的轻脆易碎以及不耐高温,使得它很少被用作饮食器。透明度差,当然也就更谈不上制作光学玻璃了。由于传统玻璃的这些局限,西方玻璃传入我国后,引起人们极大惊异,学者们视其为奇物异宝而加以记载。《汉书·西域传》记载说:“罽宾国……出珠、珊瑚、虎魄、璧流离。”罽宾国位于今阿富汗一带,璧流离指的就是玻璃。李志超认为该词对应于拉丁语vitrum,是音译加上了意译的结果。李志超并且指出:古籍中对于vitrum的译法很多,例如《梵书》中的“吠琉璃”、《酉阳杂俎》的“毗琉璃”、《一切经音义》的“髀头梨”、“颇黎”等,都是vitrum及其派生字的音译。译名的多样化,正说明这类外来品与中国土产玻璃在性状上差异很大,以致中国人不知道它们是同一类物质,因而对之赋予了多种多样的名称。因为传统玻璃制作技术的不成熟,提示我们对待古书上有关记载,要持谨慎态度。例如东晋王嘉的《拾遗记》说吴主孙亮用“琉璃”作屏,“甚薄而莹澈,使四人坐屏风内而外望之,如无隔,惟香气不通于外。”《西京杂记》说汉武帝造神物,“扉悉以白琉璃作之,光明洞澈。”这些记载,如果不是夸张之辞,那么文中的“琉璃”必然是从域外传入的玻璃,否则不会有那样好的透明效果。文献中对于西方玻璃的传入,也常有反映。《艺文类聚》卷八十四“琉璃”条,对之有多处描写。史书中对域外“火齐珠”(玻璃透镜)的记载,更是屡见不鲜。古书《梁四公记》则记述了玻璃由海路传入的具体例子:“扶南大舶从西天竺国来,卖碧颇黎镜。面广一尺五寸,重四十斤,内外皎洁。置五色物于其上,向明视之,不见其质。问其价,约钱百万贯。文帝令有司算之,倾府库当之不足。”《梁四公记》一书,著者不明,有说为沈约,也有说为张说,总之它反映的是南北朝时期的事情。不但玻璃成品,而且玻璃制作技术也传了进来。《北史·大月氏传》记载:“太武时,其国人商贩京师,自云能铸石为五色琉璃。于是采矿山中,于京师铸之,既成,光泽乃美于西方来者。乃诏为行殿,容百余人,光色映彻。观者见之,莫不惊骇,以为神明所作。自此,国中琉璃遂贱,人不复珍之。”这是说,玻璃制作技术传入以后,在中国的国土上也能造出令人叹为观止的玻璃来,从此人们对玻璃就不以为奇了。《北史》这段记载,也见于《魏书》,说的是北魏太武帝拓跋焘时代的事,大约发生于5世纪中叶。此外,两宋时的大食诸国、清代早中期的西欧传教士都曾将玻璃制作技术传入我国,对我国的玻璃制造产生了一定影响。由于国外技术的传入及工匠的努力,我国人民最终还是掌握并发展出了一套成熟的玻璃生产技术,这是毫无疑问的。热熔玻璃是经过高温熔制而成,具有立体感强,质感光亮透丽,装饰效果好,很受人们喜爱!现在各大城市正在火爆流行,给玻璃行业又注入了一线生机!热熔玻璃主要有下列产品:热熔艺术镜、热熔台盆、叠纹、果盆、烟灰缸、马赛克、熔弯等各种艺术造型、图案的产品。生产热熔立体玻璃必须要有热熔炉才能生产,还要有约40kW的电。热熔炉可自行制作或向有关设备厂商购买。自行制作的炉子比较实用,成本也低,但应有比较成熟的生产技术,否则得不偿失。各厂生产的炉子价格、质量和性能都有比较大的差别。希望大家货比三家,认真考察再决定。用石英砂制作热熔立体玻璃用石英砂烧制各种热熔玻璃图案是最简便和节约成本的方法。其制作方法如下:先根据图案效果的要求确定用砂的厚度和砂数目的大小。用砂的厚度一般为1.5cm厚。只要把砂铺平整就可以在上面画各种图形了。图案画好后洒上脱模粉就可以把玻璃放进炉内烧制。烧制的时间和温度视各厂家的炉子而定,一般炉子约用2.5小时,温度控制在785℃左右,在高温时能看到玻璃边有所变圆,玻璃图形已凹下去即可成型。如果玻璃要求留平边则应把平边的位置留好。玻璃必须擦干净,锡面必须朝下。有些砂模图案需用高温纸等材料辅助完成。利用高温泥、耐火板、石膏、高温棉、耐火砖等耐火材料均可制作各种形状的图案和模具。烧好的玻璃出炉后需冷却后才能冲洗,否则容易炸裂。玻璃未冷却时是不能几块放在一起的,否则也易炸裂。砂模制作实例水波纹:如图2、图4、图5所示(水波纹、太阳花、卷曲图、浪头请购买《玻璃艺术》期刊就能欣赏到实物图)。用约60目的的纯净石英砂在炉子里铺平(1.5cm厚),然后按图片上的纹理开始作画。注意起笔、收笔都要轻,不要太突然,行笔要均匀,水波浪要自然顺畅,不要出现像三角形的尖角形状。然后用铅笔作画就可以了。太阳花、卷曲图和浪头的作法与水波纹的作法相似,但应注意图案用笔的粗细,卷曲中也应有大小的变化,浪头上一点点的亮处可用几个手指头轻轻在砂上压出一个个的小窝就行了。乱石的做法(见图6)用耐火砖敲成约2cm大的碎砖,然后摆成如图状的乱石图形。弯卷的图案用高温棉卷好按比例摆好即成。注意四周的平边位置留好,平边用双面胶把高温纸按要求贴在玻璃边上,然后再放到炉子里进行烧制。冰峰与叠纹的制作(见图1、图3和图7)叠纹与冰峰的做法基本一样,只是冰峰顶头像山峰一样。叠纹烧制的方法:叠纹玻璃的波浪一般高约2.6cm(以5mm玻璃为例,厚玻璃适当加大)低处与平条一样,高处与高处的距离视整块叠纹的大小来决定。尺寸长则波浪长一些。平边一般在1.3cm左右,排放玻璃应在两边多放一条或两条平条,中间一条平条(或两条)与一条波浪(或两条)相间隔地放。放玻璃前应先把炉底找平,在上面铺上一层高温纸或普通的纸。注意玻璃尽量挤紧,以防烧不牢,四周或两边用模具条拦住,以防条子倒下和烧后尺寸变大。烧冰峰和叠纹对玻璃和温度的控制比较严格,玻璃要求用较好的,温度控制视不同的炉子而定。如果玻璃的质量不过关或温度控制不好都有可能使烧出的产品炸裂。所以要不断积累经验,才能烧出更好的产品。烧叠纹和冰峰不能强行降温,需降到常温时才能出炉以防炸裂。热熔台盆的生产(见图8)连体台盆的模具可用高温硬板(硅酸铝纤维板或其它材料)制作,按玻璃尺寸要求在模具上挖所需盆形的孔(如椭圆、圆形、方形、心形等各种形状,大约40cm),在孔的四周边用砂纸打磨光滑即可,用不锈钢焊一个支架支撑模具,要求支架平整,支架高约20cm,大小与模具差不多。对一般盆来说,烧制约16cm深即可。不同形状的模具不要放在一起烧,以免盆的深浅不好掌握。如一炉同时烧几个盆则要求炉体温度比较均匀,否则烧出的盆不一样深。烧盆的温度比热熔玻璃的温度低。盆烧好后还应打孔和磨边,有的还要加上喷漆包装。盆是否成型可在观察孔观察,一般刚降温时盆还会往下沉1~3cm,具体要视模具口径的大小而定。热熔炉不能烧全透明连体光盆。果盆、餐盆、烟灰缸的模具制作方法是一样的,只是深浅和形状不同而已。以圆形果盆为例,先在1~5cm厚的硅酸铝板或其它材料中间挖一圆孔,打磨圆滑,然后在四周雕出所要求的图案,或用高温纸剪出各样图案,然后放在已挖好孔的模具上,用大头针固定,把玻璃放在上面就可以进炉烧制了。也可以在玻璃上放一些彩色玻璃烧制,或用发泡粉制作一些气泡效果的产品。热熔镜的生产(见图9)各种热熔镜的制作方法大体是一样的,只是模具形状和大小变化而已。如椭圆镜(一般玻璃尺寸约为950mm×65mm,用8mm厚的玻璃),先用厚约10mm,长1000mm,宽700mm左右的板或纸(也可用其它材料)在中间切去长790mm,宽490mm的椭圆,然后在椭圆周围摆上各种形状图案的模块,就可以把玻璃放在上面进行烧制了,也可直接把玻璃放在模具上然后在玻璃周围放上各种形状的玻璃(也可放彩色玻璃)进行烧制。镜底烧好后按要求在上面贴上镜片,在背后贴上挂片就可以了。熔弯就是在热熔的基础上做热弯产品,有两种做法:一是在热熔时一次成型,即用高温材料做成热弯模具,然后在上面雕出各种图案后,把玻璃直接放在上面烧成。这种做法适合弯度较浅的产品,弯度较大较深的产品应先热熔好后再做热弯。马赛克产品是把大小不一的玻璃的边缘烧圆,然后再喷上各种颜色,按要求排列好贴在网上即可。现在生产马赛克一般都用自动生产线生产的,这样可以提高生产效率。================================

相关百科
热门百科
首页
发表服务