职称论文百科

材料投稿投哪些期刊

发布时间:2024-07-03 05:32:29

材料投稿投哪些期刊

关于材料期刊排名有以下几个回答:

1、cta materialia 材料学报 751C0006 英国

2 、Synthetic metals 合成金属 751LD053 瑞士

3、 Scripta materialia 材料学刊 751C0009 英国

4、 Applied surface science 应用表面科学 539LB051 荷兰

5 、Metallurgical and materials transactions.A,Physical metallurgy and materials science 冶金学与材料汇刊.A辑,物理冶金学与材料科学 751B0002-1 美国

6、 Journal of alloys and compounds 合金与化合物杂志 764LD001 瑞士

7、 International materials reviews 国际材料评论 751C0011 英国

8、 Intermetallics 金属间化合物 751C0069 英国

9、 Materials transactions 日本金属学会材料汇刊 751D0055 日本

10、 JOM 矿物、金属与材料学会会刊 764B0001 美国

11、 Metallurgical and materials transactions.B,Process metallurgy and materials processing science 冶金学与材料汇刊.B辑,生产冶金学与材料处理科学 751B0002-2 美国12、 Zeitschrift fÜr Metallkunde 金属学杂志 751E0003 德国

13、 ISIJ international 日本钢铁学会杂志国际版 752D0054 日本

14、 日本金属学会志日本金属学会志 751D0053 日本

15、 International journal of refractory metals and hard materials 国际高熔点金属与硬质材料杂志 751C0019 英国

16、 Materials characterization 材料特性 751B0010 美国

17、 Hydrometallurgy 湿法冶金学 75lLB001 荷兰

18 、铁と钢 铁和钢 752D0001 日本

19、 Journal of phase equilibria and diffusion 相平衡与扩散杂志 751B0012 美国

20、 International Journal of powder metallurgy 国际粉末冶金杂志 751B0007 美国

21、 Ironmaking &steelmaking 钢铁冶炼 752C0003 英国

22、 Powder metallurgy 粉末冶金学

在知网期刊导航检索页面中的材料学科领域的期刊有5种。1、《复合材料学报》。2、《材料工程》。3、《新型炭材料》。4、《ACIMaterialsJournal》5、《WoodMaterialScienceandEngineering》。

二维材料投稿哪些期刊

相信不少搞科研(搬砖)的小伙伴们最近又双叒被大神曹原的新闻刷屏(深深刺激)了。犹记得,那是2018年的春天,彼时还没有疫情肆虐,天才少年曹原以魔角(约1.1°)双层石墨烯的工作在顶级期刊Nature上背靠背发表了两篇文章,一时惊艳了整个科研圈!

时隔两年,少年还是从前那个少年:我一篇Nature都不发,要发只发两篇…

(鼓掌动图)

2020年5月,曹原和他的导师及合作者在Nature上报道了转角双层-双层石墨烯以及利用nano-SQUID(纳米超导量子干涉仪)表征转角双层石墨烯中角度非均一性问题的两项相关工作,将转角电子学领域推向了又一个高潮。

实际上,自2018年3月魔角双层石墨烯问世以来,和转角二维材料有关的科研工作至今已经有超过13项发表在Nature和Science两大顶级期刊上了(预警提示:即将又有一大波工作,正在Nature和Science发表的路上…)。

看着这些如潮水般的顶级科研工作,笔者忍不住想说,真香!

这魔角怎么有这么大的魔力?今天,笔者就和大家闲聊一下“转角”的各种“八卦”。

他研究的东西 你也可以在家模拟?

首先,大家肯定都好奇,这些发表在顶级期刊上的工作,它们研究的究竟是神马东西?

科学上的术语,称呼为:摩尔超晶格。

摩尔超晶格本质上是两套空间分布相近的格子叠加在一起相互干涉形成的一套低频、长周期的新格子。通俗地讲,两套格子在空间堆叠上,时而密集,时而稀疏,这种疏密的周期分布形成了所谓的摩尔条纹。

摩尔条纹在我们的日常生活中常常可以见到。例如,用手机拍摄电脑屏幕时,生成的照片上常常伴随着肉眼可见的畸形条纹。这是因为电脑屏幕的发光元件阵列和手机摄像头里的CCD或CMOS感光元件组成了两套相近的格子,它们相互叠加形成了摩尔条纹。摩尔条纹的图样和格子间的转角密切相关。感兴趣的童鞋,可以在身边寻找两套相同的格子(譬如窗纱),手动旋转它们,观察摩尔条纹的变化。

手机拍摄电脑屏幕产生的摩尔条纹(图片:作者自制)

旋转两层相同大小的六方格子形成周期更大的摩尔条纹(图片:作者自制)

尽管摩尔条纹给电子显示和拍摄带来不小麻烦,科学家却想到了利用二维材料中的摩尔条纹去观察新的物理现象。只需要将窗纱换成晶格接近或者相同的两层二维材料,并且小角度堆叠在一起,便可以构筑二维的微观摩尔条纹,即二维摩尔超晶格(曹原便是将窗纱换成了两层石墨烯,两层石墨烯间旋转约1.1°)。

这里,笔者顺便科普一下二维材料。

二维材料,顾名思义,它的厚度薄到可以将之视为二维极限。常见的二维材料包括石墨烯(石墨的基本组成单元,只含有一层碳原子,碳原子按照六角蜂窝状周期排列)、薄层过渡金属硫化物(如二硫化钼MoS2等,通常是良好的半导体材料)。由于二维材料太薄,两层二维材料的界面便能代表整体的性质。因此,二维材料被视为摩尔超晶格研究的最合适载体之一。

石墨烯的晶格示意图(每个小球为碳原子,图片来源:维基百科)

他是发现了高温超导机制吗?

著名科幻作家刘慈欣在他的代表作《三体》中描绘了由三个恒星体组成的世界。三个恒星靠万有引力彼此紧密关联,它们的运动波云诡谲,不可预测,给三体文明带来了巨大的灾难。

三体问题是最简单的多体问题,却足以困扰人类至今。当物体数N≥3时,体系的动力学问题无法严格求解(人们往往根据实际情况,采用各种近似的方法)。而在基础物理研究领域,由多个彼此关联的对象(包括电子、原子等)组成的多体体系,它们表现出的物理性质往往超出了既有知识的理解。

著名物理学家、诺贝尔奖得主Philip W. Anderson教授(已于2020年3月与世长辞)曾经留下著名的一句话“More is different”,便是指多体关联作用能带来新的物理。

Philip W. Anderson(1923.12.13-2020.3.29)

在现实的材料中,电子之间可以靠静电相互作用(库伦作用力)彼此关联在一起,它们的多体关联往往诱导出奇特的物理性质。譬如,在铜基的陶瓷材料中,科学家发现它的超导转变温度可以大幅提升至液氮的沸点温度以上,因此具有很高的实用价值(中国科学家在这个领域做出了突出贡献)。实现室温的超导转变,对未来的能源和交通发展将会产生革命性影响。

因此,在基础物理研究上,寻找这样的强关联体系并挖掘其中的物理奥秘,一直是一项非常重大的课题。而我们今天重点介绍的转角摩尔超晶格,便是一个很好的多体关联体系。

时间要追溯到2011年。尽管当时人们已经认识到将两层石墨烯以一定的转角堆叠起来,可以形成二维摩尔超晶格,并带来新的物理现象。但是,直到美国的理论物理学家Allan H. MacDonald教授和Rafi Bistritzer博士计算出转角为1.1°的双层石墨烯超晶格中电子的速度会大幅降低,人们才开始逐渐认识到1.1°转角双层石墨烯超晶格蕴含了丰富的多体强关联物理。

为了让大家更明白这其中的奥秘,笔者举一个简单例子。

考虑一个子弹射击年糕的情形,年糕对子弹的粘附力类比于电子间的静电相互作用力,子弹的速度类比于电子的速度。当子弹的速度极快时,子弹轻松击穿年糕,年糕几乎对子弹没有什么影响;而当子弹的速度很慢时,子弹会被年糕黏住。

电子的速度和相互作用力,便是这样的一对竞争关系。在单层石墨烯中,电子的速度可以达到光速的1/30,速度极快(相对论效应都出来了),电子间的相互作用力很多时候可以忽略不计。而在1.1°转角双层石墨烯超晶格中,电子的速度几乎接近于零,多体的相互作用便占据上风了,转角石墨烯超晶格由此成为典型的多体模型(具体的关于电子速度为啥会大幅下降,感兴趣的童鞋可以自行查阅相关文献)。

魔角双层石墨烯模型(图片来源:Nature杂志网站)

子弹被年糕黏住的结果,反映在魔角石墨烯超晶格中,就是原本的电子金属态可以转变为绝缘态。

在理论预测之后,实验科学家开始尝试利用各种方法去制备这样的转角石墨烯超晶格样品,并观测其中的多体物理现象。

2018年,曹原和他的导师Pablo Jarillo-Herrero教授率先实现了魔角双层石墨烯样品的制备,并在低温下(约零下270℃)观测到金属态到绝缘态的转变。令人震惊的是,他们意外地发现,如果向转变后的绝缘态添加一定量的电子,居然能诱导出超导现象!这种行为和我们上文介绍的铜基超导体很像。

因此,魔角双层石墨烯对于认识高温超导机制具有重要作用(并不是说曹原的工作发现了高温超导机制甚至实现了室温超导,此处严肃批判某些媒体对此的错误报道)。

曹原和他发现的魔角双层石墨烯超导现象(图片来源:Nature杂志网站)

由于转角石墨烯的突破性进展,Pablo Jarillo-Herrero教授获得了2020年巴克利奖(凝聚态物理最高奖);Pablo Jarillo-Herrero,Allan H. MacDonald和Rafi Bistritzer共同获得2020年沃尔夫奖。

从左至右依次为:Pablo Jarillo-Herrero,Allan H. MacDonald和Rafi Bistritzer(图片来源:Wolf Prize官网)

转角,为什么在科研界爆红?

转角石墨烯中电子的多体相互作用带来的有趣物理现象迅速吸引了人们大量的关注。在2019年,物理学家发现了该体系里还存在着丰富的量子物态。对基础物理稍微关注的童鞋,可能听说过清华大学薛其坤院士发现量子反常霍尔效应的工作(被杨振宁先生称为“诺奖级的成果”)。在魔角双层石墨烯中,同样可以实现量子反常霍尔效应。

魔角双层石墨烯中的量子反常霍尔效应(图片来源:Science杂志网站)

基于这些重大成果,一个新的研究领域——转角电子学,应运而生了。该领域可以大致分为两个方向(纵向和横向):纵向上,深入挖掘和理解该体系里的新奇物理现象,包括我们上文提到的超导和量子反常霍尔效应;横向上,寻找更多的转角多体关联体系。

文章开头提到的曹原今年的两篇Nature之一,在转角双层-双层石墨烯超晶格中发现金属-绝缘态转变的工作,就属于后者(值得注意的是,中科院的团队也做出了同样的工作)。除了将两个单层或者两个双层石墨烯堆叠在一起,科学家后来发现,几乎绝大部分的二维材料以某种角度堆叠形成合适的摩尔超晶格后,都可以演变为电子的多体强关联体系(已经有多个相关工作发表在Nature和Science杂志上)。

兼顾“深”与“广”,这可能是“转角”为什么在科研界爆红的原因吧!

Nature三连:2020年发表在Nature期刊上关于其他二维材料转角超晶格的三篇文章(发表时间分别为2020年3月,2020年3月,2020年5月)

澳大利亚国立大学(ANU)的一项新研究发现,许多二维材料不仅能够承受被送入太空的压力,而且在恶劣的条件下也能茁壮成长。它可能会影响用于制造从卫星电子到太阳能电池和电池的各种材料类型,从而使未来的太空任务更容易实现,发射成本更低。博士候选人兼主要作者Tobias Vogl对二维材料是否能承受强辐射特别感兴趣。太空环境显然与我们在地球上的环境非常不同。因此将各种二维材料暴露在与我们在太空中预期水平相当的辐射水平下。博科园-科学科普:发现这些设备中的大多数都能很好地应对,研究了它们的电学和光学特性,基本上没有发现任何区别。在卫星环绕地球的轨道上,它会受到加热、冷却和辐射的影响。虽然已经有大量的研究证明了二维材料在温度波动时的鲁棒性,但辐射的影响在很大程度上是未知的。直到现在,澳大利亚国立大学研究小组对潜在轨道的空间环境进行了一系列模拟。这是用来将二维材料暴露在预期的辐射水平。发现,有一种材料在受到强伽马射线照射后实际上得到了改善。沃格尔说:一种经过伽玛射线辐照后变得更强的物质——它让我想起了绿巨人。辐射水平高于在太空中看到的水平,但我们实际上看到这种材料变得更好,或者更亮。这种特殊材料可能被用于检测其他恶劣环境中的辐射水平,比如核反应堆附近的环境。这些二维材料的应用将非常广泛,从石墨烯加固的卫星结构(石墨烯硬度是钢的5倍)到更轻、更高效的太阳能电池,这将有助于实际将实验送入太空。在测试设备中有原子厚度的晶体管。晶体管是每一个电子电路的关键部件。这项研究还测试了量子光源,可以用来形成Vogl先生所描述未来量子互联网的“骨干”。可以用于基于卫星的远程量子加密网络。这个量子互联网将成为黑客攻击的证据,在这个网络攻击和数据泄露日益增多的时代,这一点比以往任何时候都重要。资深作者林平高教授说:澳大利亚已经是量子技术领域的世界领导者。鉴于最近澳大利亚航天局和澳大利亚国立大学自己的空间研究所的成立,这项研究表明,也可以在利用量子技术增强空间仪器方面进行国际竞争,其研究发表在《自然通讯》上。博科园-科学科普|研究/来自: 澳大利亚国立大学/Jessica Fagan 参考期刊文献:《Nature Communications》 DOI: 10.1038/s41467-019-09219-5 博科园-传递宇宙科学之美

手机和平板电脑可以像报纸一样卷起来,隐形眼镜中集成的屏幕能够直接读取信息......这些听起来非常科幻的场景,在新型二维材料的推动下,正不断趋于现实。

二维材料 是一种具有单个或几个原子层厚度的新型晶体材料,目前已经发展成为一个完整的材料体系,涵盖了从导体、半导体、超导体到绝缘体,铁电、铁磁、反铁磁等各种类型。高质量的二维材料在 探索 新的物理现象及进一步扩展其在微电子和光电子领域的应用方面发挥着重要作用。

松山湖材料实验室副主任张广宇研究员所带领的二维材料团队围绕二维材料的研究、制备及应用开展了一系列工作,并取得了国际领先的研究成果。

如今,“石墨烯”已成为大众所熟知的“明星材料”,石墨烯电池等产品也已逐步在商业领域有所应用。早在2004年,英国曼彻斯特大学Andre Geim教授课题组成功分离出单原子层的石墨材料——石墨烯,从而引发了二维材料研究的热潮,相关研究者因此获得了2010年的诺贝尔物理学奖。

近年来,在半导体器件发展微型化和柔性化的驱动下,二维材料由于其优异的光、电、机械性能(例如高灵敏度、超高透明度以及半导体特性等),表现出了独特的优势。

“二维材料的特殊性质赋予了它们广泛的应用前景。首先在物理属性上, 二维材料只有一个原子层厚度,这就使得该类材料具有超高的透明度以及良好的柔韧性。 ”张广宇介绍,未来,二维材料一个重要的应用方向就是柔性透明电子器件。

“二维材料表面没有悬键,外延生长制备的过程中对晶格匹配度要求不高,属于范德瓦尔斯外延,对材料和工艺基本没有限制要求。”张广宇表示。

二维材料的出现,为突破传统半导体器件在性能上的各种限制提供了新的途径,为实现各种功能应用提供了新的思路。

在不到一个指甲盖大小的面积上,可以集成超过1500个柔性二硫化钼场效应晶体管器件。2020年9月,张广宇所带领的团队在电子学期刊《Nature electronics》上发表了论文《基于单层二硫化钼场效应晶体管的大面积柔性透明电子器件》。

该团队利用外延生长得到的四英寸高质量、高定向单层二硫化钼薄膜,结合传统的微加工工艺,通过优化绝缘层与接触电阻,制备出了大面积柔性透明的二硫化钼场效应晶体管及各种逻辑器件。器件表现出了优异的特性: 晶体管器件密度可达1518个/平方厘米,成品率高达97%,是目前已报道结果中最高指标,处于国际领先水平 ;单个器件也表现出较好的电学性能和柔韧性。

张广宇指出,“目前,成熟的半导体工艺多采用8寸或者12寸硅材料晶圆,尺寸越大,集成芯片就越多,成本也越低。所以要实现大尺寸二硫化钼晶圆的制备也是一样的思路,但是越大的尺寸,也意味着更高的技术要求。”

大面积高质量的二硫化钼薄膜的制备,还存在晶粒尺寸较小、晶界多、取向随机等问题。 为解决这一难题,张广宇团队利用自主设计搭建的多源化学气相沉积系统,采用立式生长和多点形核的方法,在蓝宝石衬底上外延制备出了四英寸高质量连续的单层二硫化钼晶圆。

他这样形容其中的原理,“就像拿一个喷壶往墙上喷水,第一代设备只有一个喷头,这时喷的区域比较小;第二代设备是用三个喷头一起喷,这样喷出的面积就能扩大三倍;第三代设备是用六个源一起喷,这种情况下喷出的区域更大,更均匀。”

“二维半导体材料具 有很多优异的特性,可以弥补硅以及其它半导体材料在应用方面的不足,发挥材料自身的优势,实现一些新的、更加契合的应用场景。比如柔性可穿戴器件,超灵敏探测器等。 ”他表示,二维材料不是万能的,而是有适合自身的特殊应用场景,应该利用这些特点来开发它相对应的产品。

2019年初,松山湖材料实验室二维材料团队开始起步建设。他表示,二维材料团队主要聚焦有应用前景的材料研究。二维材料要真正应用到实际生活中,还要经历一段必不可少的过程,包括验证二维材料在原理和技术上的可行性,优化各种工艺参数、提高器件各方面性能等。

二维材料团队作为一个新团队,团队搭建是最重要的工作之一。目前团队固定成员不到十人,均具有不同的研究背景。“既有做材料的,也有做器件的;既有做加工和器件制备的,也有做表征和测量的......”张广宇表示,团队工作需要成员相互配合,这样才能更加高质量、高效率开展研究工作。

随着松山湖材料实验室建设步入正轨,越来越多优秀的海外研究人才选择加入实验室,在此开展自己的科研工作。团队中两位骨干青年科研人才,就是张广宇到欧洲宣讲时招聘引进的。在他看来,这是一个不错的兆头。“松山湖材料实验室作为广东省布局建设的新型科研机构,各方面资源相对充足,具备较强的吸引力。同时东莞也为科研人才提供了一个能够安心做事、专心科研的舞台。”

发光材料投稿哪些期刊

传统的荧光防伪材料通常在固定的激发模式下显示单色发光,这大大降低了防伪应用的效率。近年来,开发一种具有可调光致发光的多级防伪材料成为先进防伪研究领域的一个热点。

这里,来自东北大学的研究人员已通过高温固相反应成功合成ZnGa2 x(Mg/Ge)xO4: 0.001Mn (x = 0 1.2)这种材料。在该固溶体中,Mn2+和Mn4+离子分别取代四面体位(Zn位)和八面体位(Ga位),位于505 nm的绿光处有余辉发射,在668nm左右的红光无余辉。掺杂Mg2+/Ge4+有助于Mn4+离子在室温下的红光发射大大增强,Mn2+离子的绿色发射减弱。相关论文以题目为“Regulating Mn2+/Mn4+ Activators in ZnGa2O4 via Mg2+/Ge4+ Doping to Generate Multimode Luminescence for Advanced Anti-Counterfeiting”发表在ACS Applied Electronic Materials期刊上。

论文链接:

假冒是一个长期存在的全球性问题,对全世界消费者的安全和 健康 构成了无法估量的风险。近几十年来,许多安全技术已经被开发出来,以防止反欺诈。其中,发光印刷因其生产成本低、设计简单、环保、不易仿制等特点,在防伪领域应用最为广泛,在打击假冒方面具有显著的优势和应用前景。然而, 用于光致发光印刷的传统防伪荧光材料通常在固定激发模式下发射单色光,这很容易伪造。 然而,简单地混合不同的荧光材料可能导致材料的不均匀分散,从而导致较差的性能。因此,有必要在单一基质材料中开发具有多种发光特性的多级防伪材料,其难以复制且具有更高水平的防伪安全性。

图1.(a)ZnGa2O4晶体结构和Mg 2+/Ge 4+离子取代的示意图(b) TEM图像和相应的(c)HR-TEM图像(d)在1450 C下煅烧的ZGMGM(x=1个样品)的SAED模式。

图2:ZGMGM的两个典型样品的PL发射光谱。(a) 在不同的激发波长下,x=0和(b)x=1。(c)x=0样品的持续发光衰减曲线(254nm紫外光照射5min后在505nm处监测),插图显示了随时间变化的持续发光光谱。(d) 668 nm发射x=0样品和x=1样品的衰减曲线。

图3.基于激发波长响应的防伪应用动态多色设计(a)日光下的图像。(b) 手持紫外线灯在254 nm辐射下的图像(c)去除254 nm紫外灯后的图像(d)手持紫外线灯在365 nm辐射下的图像(e) 去除365 nm辐射后的图像。

本研究制备的发光材料具有动态、多色变化和较高的防伪安全性,表明其在先进的发光防伪材料中具有潜在的应用前景。这项工作的研究结果为多模发光材料在防伪应用中的发展提供了指导。(文:爱新觉罗星)

1.电化学

《电化学》是国内外公开发行的电化学学术性刊物,综合因子为:0.423,被北大核心期刊、CSCD核心期刊、统计源期刊收录。电化学及时反映我国电化学领域的最新科研成果和动态,促进国内、国际的学术交流.设有综述、研...

2.分析测试学报

因子为:1.089,被北大核心期刊、CSCD核心期刊、统计源期刊收录。分析测试学报主要报道质谱学、光谱学、色谱学、波谱学、电子显微学及电化学等方面的分析测试新理论、新方法、新技术及其在各领域中的应用研究成果。

3.武汉大学学报(理学版)

设有研究论文、研究简报、综合评述、自然科学史等栏目,在基础数学、凝聚态物理学、电波传波与空间物理学、电化学、高分子化学、分析化学、遗传学、有机化学、植物发育生物学、病毒学、环境科学等方面有其特点。

4.影像科学与光化学

光/电化学及光电子技术,包括光/电转换及储存材料、电光材料、非线性光学材料、纳米材料、电致发光材料及器件研究以及化学和物理发光等领域;光生物,光医学及生命科学与环境科学中的有关问题的新理论、新概念、新...

材料类哪些期刊好投稿

sci材料类杂志推荐:

1、JOURNALOFVACUUMSCIENCE&TECHNOLOGYA

issn:0734-2101

2018-2019最新影响因子:1.833

出版地:UNITEDSTATES

出版周期:Bimonthly

审稿速度:一般,3-6周

平均录用比例:容易

2、MATERIALSSCIENCEANDTECHNOLOGY

issn:0267-0836

2018-2019最新影响因子:1.938

出版地:ENGLAND

出版周期:Monthly

审稿速度:约2.6个月

平均录用比例:容易

3、MATERIALSTRANSACTIONS

issn:1345-9678

2018-2019最新影响因子:0.764

出版地:JAPAN

出版周期:Monthly

审稿速度:约3.5个月

平均录用比例:容易

4、METALLURGICALANDMATERIALSTRANSACTIONSA-PHYSICALMETALLURGYANDMATERIALSSCIENCE

issn:1073-5623

2018-2019最新影响因子:1.985

出版地:UNITEDSTATES

出版周期:Monthly

审稿速度:约3.8个月

平均录用比例:较易

5、JournalofAlloysandCompounds《合金与化合物杂志》

投稿比例:5445

4.455%

6、MaterialsLetters《材料快报》

投稿比例:4917

4.023%

7、AppliedSurfaceScience《应用表面科学》

投稿比例:3878

3.173%

8、JournalofPhysicalChemistryC《物理化学杂志,C辑》

投稿比例:3459

2.830%

9、MaterialsScienceandEngineeringAStructuralMaterialsPropertiesMicrostructureandProcessing《材料科学与工程,A辑:结构材料》

投稿比例:3304

2.703%

10、JournalofInorganicMaterials《无机材料学报》

投稿比例:2628

2.150%

国内很多高校都比较认可sci期刊,不管是提升科研能力或者是研究生论文,选择sci论文发表的人员比较多。sci对论文的要求是比较高的,不是什么论文都能发表sci论文的,所以要提前做好准备。

可以投的期刊有《热科学与技术》。材料类的科学期刊很多的,包括:玻璃钢/复合材料杂志,材料保护,材料导报,材料工程,材料科学与工艺材料,科学与工程学报,材料开发与应用,新材料新装饰,稀有金属材料与工程,材料研究学报。

高熵合金新材料投《自然》期刊又快又容易。高熵合金具有N个元素和组成{Cν=1,N}的竞争性晶体结构,为独特的化学和力学性能提供了巨大的设计空间。来自美国艾奥瓦州立大学美国能源部艾姆斯实验室的DuaneD.Johnson等研究者,为了实现计算设计,使用了一种元启发式杂化布谷鸟搜索(CS)来动态构建合金构型模型,该模型具有目标原子位置和任意晶格上的配对概率,由超胞随机近似(SCRAPs)与S位给出。而《Nature》杂志1869年创刊于英国,是世界上最早的国际性科技期刊,涵盖生命科学、自然科学、临床医学、物理化学等领域。自成立以来,始终如一地报道和评论全球科技领域里最重要的突破,影响因子40.137(17年数据)。其办刊宗旨是将科学发现的重要结果介绍给公众,让公众尽早知道全世界自然知识的每一分支中取得的所有进展。故高熵合金新材料投《自然》期刊又快又容易。

期刊投稿需要哪些材料

如下:

1、根据学术论文内容选择合适的期刊

文不对题的卷子肯定是没分的。投稿也一样,你的东西和杂志社要的东西风马牛不相及,分分钟就给你拒稿了。因此投稿前务必要结合自己的论文内容,选择合适对口的期刊。

举个简单的例子,如果你研究的是肠道,而你把论文投稿到了一个心血管领域的杂志,不用多说,一投过去,就会被人家拒绝。

因此,投稿前,建议多查找google, 梅斯医学等网站,确定我们自己所在领域的相关期刊,挑选几个合适的,放在自己的备选投稿杂志中,再做斟酌。

2、按期刊要求准备相应的投稿材料

投稿材料的构成多种多样,主体上包括一封给主编的信件(cover letter), 论文的所有文件(包括文字稿,相关图片视频表格等任何支持我们文章的东西),资助的基金信息等。

细节上,每个杂志社会有一些区别,建议大家投稿前多阅读杂志官网投稿界面上的作者须知(author guidelines),细致地了解杂志社对你的稿件包括总体框架,文字格式,图片清晰度,文件大小等的要求,这些都会有细致的描述。

3、上传所有投稿材料文件

在根据期刊要求准备好所有材料之后,我们就可以到投稿网站注册一个个人账户,登录(submission site),开始提交稿件(submit new manuscript)。

投稿系统会要求你依次上传相关文件,填些所有作者信息,填些基金信息等,最后生成一个pdf格式的预览件,这时候我们可以查看整个pdf文件上有没有漏填了一些东西或者一些填些错误,如果存在,可以返回重新编辑。

当检查无误后,就可以确认提交(approve)。此时投稿就结束了,这时候的稿件状态就会显示(Manuscript Submitted)。

4、等待审稿结果及相关处理

投稿之后,会有以下流程,当然不同期刊,不完全相同。

过了三到四天,稿件会先到主编手里,这时候显示With Editor,如果主编认可你的文章,那么就会分配给副编辑(associate editor),状态就会显示Under Review。

审稿的时间根据不同杂志有2周到几个月不等,这时候associate editor就会把文章另外发送至两到三个审稿人,这就叫送外审。

过了漫长的等待期,状态变为Required Review Completed,这时候表明审稿已经结束了,associate editor已经整理审稿人的意见并给出自己的意见发送回editor了。

最后,你的稿件又重新回到了editor手中,这时候状态就会显示Decision in Process,editor会根据返回的审稿意见,召集编辑们讨论,最终确定结果。

返回的可能结果:

Accept 直接返回接收的可能性一般很小,往往都会有一些意见。

minor revision 传说中的小修。

major revision 传说中的大修。

这两种情况,需要根据返回的修稿意见逐条核对,该补实验的补实验,该改文章的改文章,从而达到审稿人的要求。返回杂志社时,会重新送到审稿人手中,再进行一轮审稿。

reject 拒稿。原因包括东西不符合我们的要求,稿件的质量欠佳等等。这时候你就要退而求其次,选择备选杂志中的其他要求降低的杂志进行再次投稿。

1 办刊宗旨、编辑方针、专业范围 2符合资格的主办单位及上级主管部门 3 符合资格的编辑部成员 4 办刊固定资金证明、固定场所证明、承印单位 5 办刊申请书 (刊物名称、开本、页码、刊期、篇幅、发行范围) 《中文核心期刊要目总览》已于1992、1996、2000、2004年、2008年、2011年、2014年、2017年出版过八版,最新的2017版即第八版已于2018年12月由北京大学出版社出版,正在接收征订中 。主要是为图书情报部门对中文学术期刊的评估与订购、为读者导读提供参考依据。

相关百科
热门百科
首页
发表服务