职称论文百科

石墨烯材料期刊投稿

发布时间:2024-07-08 13:09:21

石墨烯材料期刊投稿

石墨烯目前是一种热门材料,起用途也是它的特性决定的,首先石墨烯不仅是已知材料中最薄的一种,还非常牢固坚硬;其次作为单质,它在室温下传递电子的速度比已知导体都快。应用前景可做"太空电梯"缆线据科学家称,地球上很容易找到石墨原料,而石墨烯堪称是人类已知的强度最高的物质,它将拥有众多令人神往的发展前景。它不仅可以开发制造出纸片般薄的超轻型飞机材料、可以制造出超坚韧的防弹衣,甚至还为"太空电梯"缆线的制造打开了一扇"阿里巴巴"之门。美国研究人员称,"太空电梯"的最大障碍之一,就是如何制造出一根从地面连向太空卫星、长达23000英里并且足够强韧的缆线,美国科学家证实,地球上强度最高的物质"石墨烯"完全适合用来制造太空电梯缆线!人类通过"太空电梯"进入太空,所花的成本将比通过火箭升入太空便宜很多。为了激励科学家发明出制造太空电梯缆线的坚韧材料,美国NASA此前还发出了400万美元的悬赏。代替硅生产超级计算机科学家发现,石墨烯还是目前已知导电性能最出色的材料。石墨烯的这种特性尤其适合于高频电路。高频电路是现代电子工业的领头羊,一些电子设备,例如手机,由于工程师们正在设法将越来越多的信息填充在信号中,它们被要求使用越来越高的频率,然而手机的工作频率越高,热量也越高,于是,高频的提升便受到很大的限制。由于石墨烯的出现,高频提升的发展前景似乎变得无限广阔了。这使它在微电子领域也具有巨大的应用潜力。研究人员甚至将石墨烯看作是硅的替代品,能用来生产未来的超级计算机。光子传感器石墨烯还可以以光子传感器的面貌出现在更大的市场上,这种传感器是用于检测光纤中携带的信息的,现在,这个角色还在由硅担当,但硅的时代似乎就要结束。去年10月,IBM的一个研究小组首次披露了他们研制的石墨烯光电探测器,接下来人们要期待的就是基于石墨烯的太阳能电池和液晶显示屏了。因为石墨烯是透明的,用它制造的电板比其他材料具有更优良的透光性。其它应用石墨烯还可以应用于晶体管、触摸屏、基因测序等领域,同时有望帮助物理学家在量子物理学研究领域取得新突破。中国科研人员发现细菌的细胞在石墨烯上无法生长,而人类细胞却不会受损。利用这一点石墨烯可以用来做绷带,食品包装甚至抗菌T恤;用石墨烯做的光电化学电池可以取代基于金属的有机发光二极管,因石墨烯还可以取代灯具的传统金属石墨电极,使之更易于回收。这种物质不仅可以用来开发制造出纸片般薄的超轻型飞机材料、制造出超坚韧的防弹衣,甚至能让科学家梦寐以求的2.3万英里长太空电梯成为现实。石墨烯-特性电子运输石墨烯结构示意图在发现石墨烯以前,大多数(如果不是所有的话)物理学家认为,热力学涨落不允许任何二维晶体在有限温度下存在。所以,它的发现立即震撼了凝聚态物理界。虽然理论和实验界都认为完美的二维结构无法在非绝对零度稳定存在,但是单层石墨烯在实验中被制备出来。这些可能归结于石墨烯在纳米级别上的微观扭曲。石墨烯还表现出了异常的整数量子霍尔行为。其霍尔电导=2e2/h,6e2/h,10e2/h....为量子电导的奇数倍,且可以在室温下观测到。这个行为已被科学家解释为“电子在石墨烯里遵守相对论量子力学,没有静质量”。导电性石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况。石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。这种稳定的晶格结构使碳原子具有优秀的导电性。石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。石墨烯最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。这使得石墨烯中的电子,或更准确地,应称为“载荷子”(electricchargecarrier),的性质和相对论性的中微子非常相似。石墨烯有相当的不透明度:可以吸收大约2.3%的可见光。而这也是石墨烯中载荷子相对论性的体现。机械特性石墨烯是人类已知强度最高的物质,比钻石还坚硬,强度比世界上最好的钢铁还要高上100倍。哥伦比亚大学的物理学家对石墨烯的机械特性进行了全面的研究。在试验过程中,他们选取了一些之间在10—20微米的石墨烯微粒作为研究对象。研究人员先是将这些石墨烯样品放在了一个表面被钻有小孔的晶体薄板上,这些孔的直径在1—1.5微米之间。之后,他们用金刚石制成的探针对这些放置在小孔上的石墨烯施加压力,以测试它们的承受能力。研究人员发现,在石墨烯样品微粒开始碎裂前,它们每100纳米距离上可承受的最大压力居然达到了大约2.9微牛。据科学家们测算,这一结果相当于要施加55牛顿的压力才能使1米长的石墨烯断裂。如果物理学家们能制取出厚度相当于普通食品塑料包装袋的(厚度约100纳米)石墨烯,那么需要施加差不多两万牛的压力才能将其扯断。换句话说,如果用石墨烯制成包装袋,那么它将能承受大约两吨重的物品。电子的相互作用利用世界上最强大的人造辐射源,美国加州大学、哥伦比亚大学和劳伦斯·伯克利国家实验室的物理学家发现了石墨烯特性新秘密:石墨烯中电子间以及电子与蜂窝状栅格间均存在着强烈的相互作用。科学家借助了美国劳伦斯伯克利国家实验室的“先进光源(ALS)”电子同步加速器。这个加速器产生的光辐射亮度相当于医学上X射线强度的1亿倍。科学家利用这一强光源观测发现,石墨烯中的电子不仅与蜂巢晶格之间相互作用强烈,而且电子和电子之间也有很强的相互作用。[1]石墨烯-研究成果中国石墨烯薄膜在国家自然科学基金委员会、科技部和中国科学院的资助下,中国科学院金属研究所沈阳材料科学国家(联合)实验室先进炭材料研究部研究员成会明、任文才研究小组在石墨烯的控制制备、结构表征与物性的研究方面取得了一系列新的进展,相关的研究成果发表在国际期刊上。该论文被美国化学会的ACSNano杂志选为该期“亮点”进行了重点介绍;同时也被《自然—中国》选为来自中国大陆和香港的突出科研成果,《自然—中国》化学领域的评论员VickiCleave博士撰文写道:“来自中国科学院的任文才、成会明及其合作者提出了一种快速、无损、可进行大面积石墨烯表征的光学方法,该工作有助于确定和制备适于应用的理想石墨烯样品。”韩国韩国研究人员09年7月发现了一种制备大尺寸石墨烯薄膜的方法。由韩国成均馆大学和三星先进技术研究院的研究人员制备出的这种最新石墨烯薄膜有1厘米厚,透光率达80%;在弯曲或延展过程中,它不仅不会断裂,其电学特性也不会有任何改变。他们的这一成果已于1月14日发表在英国《自然》杂志网络版上。[1]石墨烯-应用石墨烯的应用范围很广,从电子产品到防弹衣和造纸,甚至未来的太空电梯都可以以石墨烯为原料。1.可做“太空电梯”缆线据科学家称,地球上很容易找到石墨原料,而石墨烯堪称是人类已知的强度最高的物质,它将拥有众多令人神往太空电梯的发展前景。它不仅可以开发制造出纸片般薄的超轻型飞机材料、可以制造出超坚韧的防弹衣,甚至还为“太空电梯”缆线的制造打开了一扇“阿里巴巴”之门。美国研究人员称,“太空电梯”的最大障碍之一,就是如何制造出一根从地面连向太空卫星、长达23000英里并且足够强韧的缆线,美国科学家证实,地球上强度最高的物质“石墨烯”完全适合用来制造太空电梯缆线。人类通过“太空电梯”进入太空,所花的成本将比通过火箭升入太空便宜很多。为了激励科学家发明出制造太空电梯缆线的坚韧材料,美国NASA此前还发出了400万美元的悬赏。2.代替硅生产超级计算机据科学家称,石墨烯除了异常牢固外,还具有一系列独一无二的特性,石墨烯还是目前已知导电性能最出色的材料,这使它在微电子领域也具有巨大的应用潜力。研究人员甚至将石墨烯看作是硅的替代品,能用来生产未来的超级计算机。IBM宣布研发出号称全世界速度最快的石墨烯(graphene)场效晶体管(FET),可在26GHz频率下运作。该公司ThomasJ.Watson研究中心的研究人员并预测,碳元素更高的电子迁移率,可望使该种材料超越硅的极限,达到100GHz以上的速度跨入兆赫(terahertz)领域。石墨烯-荣获诺贝尔奖2010年10月5日,英国曼彻斯特大学的两位科学家康斯坦丁·诺沃肖洛夫和安德烈·海姆因在石墨烯方面的研究荣获2010年诺贝尔物理学奖。[2]石墨烯-部分石墨烯研究成果2009年12月1日在美国召开的材料科学国际会议上,日本富士通研究所宣布,他们用石墨烯制作出了几千个晶体管。富士通研究所的研究人员将原料气体吹向事先涂有用做催化剂的铁的衬底,在这种衬底上制成大面积石墨烯薄膜。大面积的石墨烯制备一直是个难题。富士通用上述方法制成了高质量的7.5厘米直径的石墨烯膜。在此基础上,再配置电极和绝缘层,制成了石墨烯晶体管。由于石墨烯面积较大,富士通在上面制成了几千个晶体管。石墨烯晶体管比硅晶体管功耗低和运行速度快,可制作出性能优良的半导体器件。如果改进技术后有望进一步扩大石墨烯面积,这样能够制作出更多的晶体管和石墨烯集成电路,为生产高档电子产品创造了条件。2009年11月日本东北大学与会津大学通过合作研究发现,石墨烯可产生太赫兹光的电磁波。研究人员在硅衬底上制作了石墨烯薄膜,将红外线照射到石墨烯薄膜上,只需很短时间就能放射出太赫兹光。如果今后能够继续改进技术,使光源强度进一步增大,将开发出高性能的激光器。研究团队在硅衬底上使用有机气体制作一层碳硅化合物。然后,进行热处理,使其生长出石墨烯的薄膜。该石墨烯薄膜只需极短暂的时间照射红外线,就能从石墨烯上发送出太赫兹光。目前,该团队正致力于开发能将光粒封闭在内部,使光源强度增加的器件,期望能够开发出在接近室温条件下可工作的太赫兹激光器。2010年,美国莱斯大学利用该石墨烯量子点,制作单分子传感器。莱斯大学将石墨烯薄片与单层氦键合,形成石墨烷。石墨烷是绝缘体。氦使石墨烯由导体变换成为绝缘体。研究人员移除石墨烯薄片两面的氦原子岛,就形成了被石墨烷绝缘体包围的、微小的导电的石墨烯阱。该导电的石墨烯阱就可作为量子阱。量子点的半导体特性要优于体硅材料器件。这一技术可用来制作化学传感器、太阳能电池、医疗成像装置或是纳米级电路等。如果看了以上介绍还有不明白的地方,请详询平顶山市信瑞达石墨制造有限公司

《Carbon》是SCI收录期刊收录的刊物,影响因子是7.41。

《Carbon》杂志是一个国际多学科论坛,旨在交流碳材料和碳纳米材料领域的科学进展。期刊报道了与碳的形成、结构、性质、行为和技术应用相关的重要新发现,碳是一类主要由元素碳组成的有序或无序固相。

这些材料可以是合成材料,也可以是天然材料,包括但不限于氧化石墨烯和氧化石墨烯、碳纳米管、碳纤维和丝、石墨、多孔碳、热解碳、玻璃碳、炭黑、金刚石和类金刚石碳、富勒烯和炭。如果碳成分是论文科学内容的一个主要焦点,则将考虑有关复合材料的论文。

如果有机物质是此类碳材料的前体,则可考虑使用有关有机物质的论文。碳材料的相关应用领域包括但不限于电子和光子器件、结构和热应用、智能材料和系统、储能和转换、催化、环境保护以及生物和医学。 碳出版综合研究文章、致编辑的信函,并邀请该领域的主要专家进行评论。

选择具有较高科学价值、传授重要新知识、对国际碳材料界具有高度兴趣的论文。该杂志欢迎大量和纳米级碳材料的手稿,特别对帮助定义和发展适用于所有碳的基础科学的手稿感兴趣,包括现有和新兴材料。

CARBON简介

CARBON杂志属于工程技术行业,“材料科学:综合”子行业的优秀级杂志。 投稿难度评价:中等偏上杂志,要求也较高,此区杂志很多,但是投中,并不容易 审稿速度:一般,3-6周级别/热度:暗红评语:杂志级别不错,但是比较冷门,关注人数偏少。

说明:指数是根据中国科研工作者(含医学临床,基础,生物,化学等学科)对SCI杂志的认知度,熟悉程度,以及投稿的量等众多指标综合评定而成。当然,具体的,您还可以结合“投稿经验分享系统”,进行综合判断,这更是大家的实战经验,更值得分享和参考。

注意,上述热门指数采用专利技术,由计算机系统自动计算,并给出建议,存在不准确的可能,仅供您投稿选择杂志时参考。

以上内容参考:Carbon(SCI收录期刊) - 百度百科

石墨烯投稿期刊

《Carbon》是SCI收录期刊收录的刊物,影响因子是7.41。

《Carbon》杂志是一个国际多学科论坛,旨在交流碳材料和碳纳米材料领域的科学进展。期刊报道了与碳的形成、结构、性质、行为和技术应用相关的重要新发现,碳是一类主要由元素碳组成的有序或无序固相。

这些材料可以是合成材料,也可以是天然材料,包括但不限于氧化石墨烯和氧化石墨烯、碳纳米管、碳纤维和丝、石墨、多孔碳、热解碳、玻璃碳、炭黑、金刚石和类金刚石碳、富勒烯和炭。如果碳成分是论文科学内容的一个主要焦点,则将考虑有关复合材料的论文。

如果有机物质是此类碳材料的前体,则可考虑使用有关有机物质的论文。碳材料的相关应用领域包括但不限于电子和光子器件、结构和热应用、智能材料和系统、储能和转换、催化、环境保护以及生物和医学。 碳出版综合研究文章、致编辑的信函,并邀请该领域的主要专家进行评论。

选择具有较高科学价值、传授重要新知识、对国际碳材料界具有高度兴趣的论文。该杂志欢迎大量和纳米级碳材料的手稿,特别对帮助定义和发展适用于所有碳的基础科学的手稿感兴趣,包括现有和新兴材料。

CARBON简介

CARBON杂志属于工程技术行业,“材料科学:综合”子行业的优秀级杂志。 投稿难度评价:中等偏上杂志,要求也较高,此区杂志很多,但是投中,并不容易 审稿速度:一般,3-6周级别/热度:暗红评语:杂志级别不错,但是比较冷门,关注人数偏少。

说明:指数是根据中国科研工作者(含医学临床,基础,生物,化学等学科)对SCI杂志的认知度,熟悉程度,以及投稿的量等众多指标综合评定而成。当然,具体的,您还可以结合“投稿经验分享系统”,进行综合判断,这更是大家的实战经验,更值得分享和参考。

注意,上述热门指数采用专利技术,由计算机系统自动计算,并给出建议,存在不准确的可能,仅供您投稿选择杂志时参考。

以上内容参考:Carbon(SCI收录期刊) - 百度百科

这是因为Nature上面要求的专业性比较高,而且一旦在上面发表过文章之后,就说明自己非常的有成就,同时这个专栏主要针对的就是一些西方的国家。

因为这样的平台是非常严格的,对于发布的文章会进行非常详细的鉴定,所以才说是非常难的。

因为Nature是非常顶尖的科研期刊,只有学术成就非常高的人才有机会在上面发表自己的文章。

石墨烯期刊投稿

相信不少搞科研(搬砖)的小伙伴们最近又双叒被大神曹原的新闻刷屏(深深刺激)了。犹记得,那是2018年的春天,彼时还没有疫情肆虐,天才少年曹原以魔角(约1.1°)双层石墨烯的工作在顶级期刊Nature上背靠背发表了两篇文章,一时惊艳了整个科研圈!

时隔两年,少年还是从前那个少年:我一篇Nature都不发,要发只发两篇…

(鼓掌动图)

2020年5月,曹原和他的导师及合作者在Nature上报道了转角双层-双层石墨烯以及利用nano-SQUID(纳米超导量子干涉仪)表征转角双层石墨烯中角度非均一性问题的两项相关工作,将转角电子学领域推向了又一个高潮。

实际上,自2018年3月魔角双层石墨烯问世以来,和转角二维材料有关的科研工作至今已经有超过13项发表在Nature和Science两大顶级期刊上了(预警提示:即将又有一大波工作,正在Nature和Science发表的路上…)。

看着这些如潮水般的顶级科研工作,笔者忍不住想说,真香!

这魔角怎么有这么大的魔力?今天,笔者就和大家闲聊一下“转角”的各种“八卦”。

他研究的东西 你也可以在家模拟?

首先,大家肯定都好奇,这些发表在顶级期刊上的工作,它们研究的究竟是神马东西?

科学上的术语,称呼为:摩尔超晶格。

摩尔超晶格本质上是两套空间分布相近的格子叠加在一起相互干涉形成的一套低频、长周期的新格子。通俗地讲,两套格子在空间堆叠上,时而密集,时而稀疏,这种疏密的周期分布形成了所谓的摩尔条纹。

摩尔条纹在我们的日常生活中常常可以见到。例如,用手机拍摄电脑屏幕时,生成的照片上常常伴随着肉眼可见的畸形条纹。这是因为电脑屏幕的发光元件阵列和手机摄像头里的CCD或CMOS感光元件组成了两套相近的格子,它们相互叠加形成了摩尔条纹。摩尔条纹的图样和格子间的转角密切相关。感兴趣的童鞋,可以在身边寻找两套相同的格子(譬如窗纱),手动旋转它们,观察摩尔条纹的变化。

手机拍摄电脑屏幕产生的摩尔条纹(图片:作者自制)

旋转两层相同大小的六方格子形成周期更大的摩尔条纹(图片:作者自制)

尽管摩尔条纹给电子显示和拍摄带来不小麻烦,科学家却想到了利用二维材料中的摩尔条纹去观察新的物理现象。只需要将窗纱换成晶格接近或者相同的两层二维材料,并且小角度堆叠在一起,便可以构筑二维的微观摩尔条纹,即二维摩尔超晶格(曹原便是将窗纱换成了两层石墨烯,两层石墨烯间旋转约1.1°)。

这里,笔者顺便科普一下二维材料。

二维材料,顾名思义,它的厚度薄到可以将之视为二维极限。常见的二维材料包括石墨烯(石墨的基本组成单元,只含有一层碳原子,碳原子按照六角蜂窝状周期排列)、薄层过渡金属硫化物(如二硫化钼MoS2等,通常是良好的半导体材料)。由于二维材料太薄,两层二维材料的界面便能代表整体的性质。因此,二维材料被视为摩尔超晶格研究的最合适载体之一。

石墨烯的晶格示意图(每个小球为碳原子,图片来源:维基百科)

他是发现了高温超导机制吗?

著名科幻作家刘慈欣在他的代表作《三体》中描绘了由三个恒星体组成的世界。三个恒星靠万有引力彼此紧密关联,它们的运动波云诡谲,不可预测,给三体文明带来了巨大的灾难。

三体问题是最简单的多体问题,却足以困扰人类至今。当物体数N≥3时,体系的动力学问题无法严格求解(人们往往根据实际情况,采用各种近似的方法)。而在基础物理研究领域,由多个彼此关联的对象(包括电子、原子等)组成的多体体系,它们表现出的物理性质往往超出了既有知识的理解。

著名物理学家、诺贝尔奖得主Philip W. Anderson教授(已于2020年3月与世长辞)曾经留下著名的一句话“More is different”,便是指多体关联作用能带来新的物理。

Philip W. Anderson(1923.12.13-2020.3.29)

在现实的材料中,电子之间可以靠静电相互作用(库伦作用力)彼此关联在一起,它们的多体关联往往诱导出奇特的物理性质。譬如,在铜基的陶瓷材料中,科学家发现它的超导转变温度可以大幅提升至液氮的沸点温度以上,因此具有很高的实用价值(中国科学家在这个领域做出了突出贡献)。实现室温的超导转变,对未来的能源和交通发展将会产生革命性影响。

因此,在基础物理研究上,寻找这样的强关联体系并挖掘其中的物理奥秘,一直是一项非常重大的课题。而我们今天重点介绍的转角摩尔超晶格,便是一个很好的多体关联体系。

时间要追溯到2011年。尽管当时人们已经认识到将两层石墨烯以一定的转角堆叠起来,可以形成二维摩尔超晶格,并带来新的物理现象。但是,直到美国的理论物理学家Allan H. MacDonald教授和Rafi Bistritzer博士计算出转角为1.1°的双层石墨烯超晶格中电子的速度会大幅降低,人们才开始逐渐认识到1.1°转角双层石墨烯超晶格蕴含了丰富的多体强关联物理。

为了让大家更明白这其中的奥秘,笔者举一个简单例子。

考虑一个子弹射击年糕的情形,年糕对子弹的粘附力类比于电子间的静电相互作用力,子弹的速度类比于电子的速度。当子弹的速度极快时,子弹轻松击穿年糕,年糕几乎对子弹没有什么影响;而当子弹的速度很慢时,子弹会被年糕黏住。

电子的速度和相互作用力,便是这样的一对竞争关系。在单层石墨烯中,电子的速度可以达到光速的1/30,速度极快(相对论效应都出来了),电子间的相互作用力很多时候可以忽略不计。而在1.1°转角双层石墨烯超晶格中,电子的速度几乎接近于零,多体的相互作用便占据上风了,转角石墨烯超晶格由此成为典型的多体模型(具体的关于电子速度为啥会大幅下降,感兴趣的童鞋可以自行查阅相关文献)。

魔角双层石墨烯模型(图片来源:Nature杂志网站)

子弹被年糕黏住的结果,反映在魔角石墨烯超晶格中,就是原本的电子金属态可以转变为绝缘态。

在理论预测之后,实验科学家开始尝试利用各种方法去制备这样的转角石墨烯超晶格样品,并观测其中的多体物理现象。

2018年,曹原和他的导师Pablo Jarillo-Herrero教授率先实现了魔角双层石墨烯样品的制备,并在低温下(约零下270℃)观测到金属态到绝缘态的转变。令人震惊的是,他们意外地发现,如果向转变后的绝缘态添加一定量的电子,居然能诱导出超导现象!这种行为和我们上文介绍的铜基超导体很像。

因此,魔角双层石墨烯对于认识高温超导机制具有重要作用(并不是说曹原的工作发现了高温超导机制甚至实现了室温超导,此处严肃批判某些媒体对此的错误报道)。

曹原和他发现的魔角双层石墨烯超导现象(图片来源:Nature杂志网站)

由于转角石墨烯的突破性进展,Pablo Jarillo-Herrero教授获得了2020年巴克利奖(凝聚态物理最高奖);Pablo Jarillo-Herrero,Allan H. MacDonald和Rafi Bistritzer共同获得2020年沃尔夫奖。

从左至右依次为:Pablo Jarillo-Herrero,Allan H. MacDonald和Rafi Bistritzer(图片来源:Wolf Prize官网)

转角,为什么在科研界爆红?

转角石墨烯中电子的多体相互作用带来的有趣物理现象迅速吸引了人们大量的关注。在2019年,物理学家发现了该体系里还存在着丰富的量子物态。对基础物理稍微关注的童鞋,可能听说过清华大学薛其坤院士发现量子反常霍尔效应的工作(被杨振宁先生称为“诺奖级的成果”)。在魔角双层石墨烯中,同样可以实现量子反常霍尔效应。

魔角双层石墨烯中的量子反常霍尔效应(图片来源:Science杂志网站)

基于这些重大成果,一个新的研究领域——转角电子学,应运而生了。该领域可以大致分为两个方向(纵向和横向):纵向上,深入挖掘和理解该体系里的新奇物理现象,包括我们上文提到的超导和量子反常霍尔效应;横向上,寻找更多的转角多体关联体系。

文章开头提到的曹原今年的两篇Nature之一,在转角双层-双层石墨烯超晶格中发现金属-绝缘态转变的工作,就属于后者(值得注意的是,中科院的团队也做出了同样的工作)。除了将两个单层或者两个双层石墨烯堆叠在一起,科学家后来发现,几乎绝大部分的二维材料以某种角度堆叠形成合适的摩尔超晶格后,都可以演变为电子的多体强关联体系(已经有多个相关工作发表在Nature和Science杂志上)。

兼顾“深”与“广”,这可能是“转角”为什么在科研界爆红的原因吧!

Nature三连:2020年发表在Nature期刊上关于其他二维材料转角超晶格的三篇文章(发表时间分别为2020年3月,2020年3月,2020年5月)

可以试试RSC advances、jmc,如果文章有新意,建议投carbon

曾长淦实验室以实验物理研究为主,但曹原在曾长淦的指导下,进行石墨烯超晶格等离激元的理论研究,曹原尝试自己从头开始编程,展现了超强的理论功底和计算机能力。

应该说是特别难的吧,因为这上面对于文章的审核是非常严格的,很少有论文能够通过。

石墨烯制备期刊投稿

可以试试RSC advances、jmc,如果文章有新意,建议投carbon

最近,苏州大学材料与化学化工学部的汪胜研究团队在Advanced Materials和Biomaterials Science上分别发表了两篇论文。这些论文的主题集中在新型纳米材料在生物医学领域的应用。在Advanced Materials上发表的论文中,研究团队设计了一种基于层状双氧水钙钛矿纳米晶体的纳米药物载体。他们发现,这种载体可以有效地抑制癌细胞的增殖和扩散,并对正常细胞没有毒性。在Biomaterials Science上发表的论文中,研究团队探索了一种基于羟基磷灰石的生物活性材料,并将其应用于骨修复。他们发现,这种材料可以促进骨细胞的增殖和分化,从而加速骨的再生和修复。这些研究成果有望为生物医学领域提供新的治疗方法和技术,具有重要的应用价值。

最近,苏州大学材料与化学化工学部的汪胜教授团队在高水平期刊《Nature Communications》上发表了题为“Hybrid nanogenerator for simultaneously harvesting sun and rain energy”的一篇论文。该研究团队成功地设计并制备了一种新型的混合纳米发电机,可以同时从太阳和雨水中收集能量。该混合纳米发电机采用了多层结构,包括由半导体纳米线、珍珠岩和碳纤维布组成的柔性基板和由钛酸锶、银、氧化锌和聚丙烯腈等复合材料制成的光电极。在实验中,该混合纳米发电机可以同时输出太阳能和雨能电能,达到了不错的能量转换效率。这项研究的成果具有重要的应用价值,可以在实现清洁能源方面发挥重要作用。该研究还证明了科学家们通过将不同技术结合在一起,可以开发出更加高效的能源转换装置。

材料科学啊,一本开源类的刊物

石墨烯投稿期刊推荐

成果简介

基于石墨烯的光电探测器由于其带宽大、占地面积小以及与硅基光子学平台的兼容性而在高速光通信中引起了极大的关注。大带宽硅基光相干接收器是具有先进调制格式的大容量光通信网络的关键元件。 本文,华中 科技 大学张新亮教授团队等研究人员在《Nat Commun》期刊 发表名“Ultrahigh-speed graphene-based optical coherent receiver”的论文, 研究通过实验证明一种基于90度光学混合和石墨烯上等离子体槽波导光电探测器的集成光学相干接收器,具有紧凑的占地面积和远超过67GHz的大带宽 。结合平衡检测,接收 90 Gbit/s 二进制相移键控信号并提高信噪比。此外,实现了在单极化载波上接收 200 Gbit/s 正交相移键控和 240 Gbit/s 16 正交调幅信号,附加功耗低于 14 fJ/bit。这种基于石墨烯的光相干接收器将有望在 400千兆以太网和800千兆以太网技术中应用,为未来高速相干光通信网络铺平另一条路线。

图文导读

图1:在PSW上使用石墨烯的 OCR。

图2:90度光学混合性能。

图3:石墨烯-PSW PD 的性能。

图4:平衡检测测试。

图5:相干检测的实验演示。

小结

综上所述,结果表明,我们提出的基于石墨烯的 OCR 对高级调制格式具有超高速和高质量的接收能力,这些格式对光的幅度和相位信息进行编码。 经过验证的基于石墨烯的器件为超紧凑和高性能 OCR 提供了一条不同的材料路线,在数据中心和下一代高速光互连中具有竞争力。

文献:

《Carbon》是SCI收录期刊收录的刊物,影响因子是7.41。

《Carbon》杂志是一个国际多学科论坛,旨在交流碳材料和碳纳米材料领域的科学进展。期刊报道了与碳的形成、结构、性质、行为和技术应用相关的重要新发现,碳是一类主要由元素碳组成的有序或无序固相。

这些材料可以是合成材料,也可以是天然材料,包括但不限于氧化石墨烯和氧化石墨烯、碳纳米管、碳纤维和丝、石墨、多孔碳、热解碳、玻璃碳、炭黑、金刚石和类金刚石碳、富勒烯和炭。如果碳成分是论文科学内容的一个主要焦点,则将考虑有关复合材料的论文。

如果有机物质是此类碳材料的前体,则可考虑使用有关有机物质的论文。碳材料的相关应用领域包括但不限于电子和光子器件、结构和热应用、智能材料和系统、储能和转换、催化、环境保护以及生物和医学。 碳出版综合研究文章、致编辑的信函,并邀请该领域的主要专家进行评论。

选择具有较高科学价值、传授重要新知识、对国际碳材料界具有高度兴趣的论文。该杂志欢迎大量和纳米级碳材料的手稿,特别对帮助定义和发展适用于所有碳的基础科学的手稿感兴趣,包括现有和新兴材料。

CARBON简介

CARBON杂志属于工程技术行业,“材料科学:综合”子行业的优秀级杂志。 投稿难度评价:中等偏上杂志,要求也较高,此区杂志很多,但是投中,并不容易 审稿速度:一般,3-6周级别/热度:暗红评语:杂志级别不错,但是比较冷门,关注人数偏少。

说明:指数是根据中国科研工作者(含医学临床,基础,生物,化学等学科)对SCI杂志的认知度,熟悉程度,以及投稿的量等众多指标综合评定而成。当然,具体的,您还可以结合“投稿经验分享系统”,进行综合判断,这更是大家的实战经验,更值得分享和参考。

注意,上述热门指数采用专利技术,由计算机系统自动计算,并给出建议,存在不准确的可能,仅供您投稿选择杂志时参考。

以上内容参考:Carbon(SCI收录期刊) - 百度百科

相关百科
热门百科
首页
发表服务