职称论文百科

冰川地貌期刊投稿邮箱

发布时间:2024-06-27 17:58:41

冰川地貌期刊投稿邮箱

第四纪冰川沉积和古气候变化始终是第四纪地质演化研究的主体。其发展历史已经历了3个阶段:

1)初期阶段。即18世纪至19世纪末。该阶段主要针对分布于基岩之上的松散沉积物进行了研究,当时称为漂积物,认为是圣经上所说大洪水带来的泥砂堆积而成的。19世纪初,极地探险工作开展后,人们开始认识到它们可能是冰流搬运和堆积的物质。19世纪下半叶正式确定所谓漂积物是冰流堆积,并将第四纪谓之“冰河期”。

2)发展阶段。20世纪初,德国A.Penck和Bruckner对阿尔卑斯山冰川沉积进行了研究,提出第四纪经历了4次冰期的概念。这一概念推动了第四纪地质学的发展,世界各地相继建立了相应的4次冰期(表8.1)。这个时期从世界各地的第四纪地层中发现了许多重要的哺乳动物化石群和古人类化石,对它们的研究不仅促进了进化论的发展,也成为划分第四纪地层的重要依据。与此同时,许多学者对河流、湖泊、海滨、洞穴、火山、黄土和沙漠等开展了广泛的研究,为第四纪冰川地质学的建立奠定了基础。

表8.1 世界各地第四纪冰期传统划分方案对比表

3)成熟阶段。第二次世界大战以后,各种测定年轻地质年龄的方法不断涌现和完善,古环境的指标得到确定,对以前很少涉足的地区,如深海、南极、北冰洋开展了大量的调查。1955年,C.埃米利亚尼根据深海沉积氧同位素测定,提出近0.30Ma以来曾发生7次冰期旋回,成为第四纪研究新的里程碑,从而建立了第四纪气候变化的新模式。研究表明,2.40Ma以来,地球至少经历了24个气候旋回。

对于中国东部冰期的划分,始于20世纪20~30年代,当时李四光对于庐山、黄山、天目山和云南点苍山地貌和沉积物进行了研究。他先后在许多文章中提出这些山地残存着U形谷、冰斗、羊背石、冰擦痕、冰碛物、条痕石等,均可以作为当地第四纪冰川活动的证据。并据此划分出4次冰期,依次命名为鄱阳冰期、大姑冰期、庐山冰期和大理冰期。他认为,在前3次冰期时中国东部山地有冰川活动;大理冰期时中国西部、西南部有冰川活动。但是许多学者如Barbour(1934)、黄焙华(1963)、周廷儒(1982)、施雅风等则认为,中国东部的这些山地处于低纬度地带,山地海拔高度低于2000m,况且处于东亚季风气候控制之下,冬季寒冷干燥、降雪较少,夏季温暖湿润,不可能有冰雪积累。至于那些所谓的冰川遗迹则可能是由流水作用、泥石流等形成,因而对于中国东部存在冰川活动持否定态度。但目前,中国东部的太白山、长白山和玉山主峰的古冰川遗迹还是得到了学术界肯定的。

冰期划分,建立冰期与间冰期演化模式对于阐明气候变化的规律具有重要意义。但是在以往冰川活动地区,先期形成的冰川遗迹往往被后期的冰川活动所破坏或改造,新构造运动的抬升、强烈的重力和流水侵蚀也会破坏、磨灭冰川活动的遗迹。加之冰碛物和冰川地貌的年龄测定比较困难,不同冰期或间冰期划分剖面往往处于不同地区,因而冰期和间冰期划分对于开展区域乃至全球气候变化规律的研究存在一定的限制性影响。

目前对于末次冰期的研究比较深入,这一时期各地冰川活动的遗迹保存完好,有14C和热释光等多种测年手段的配合,可以确定玉木冰期,亦即威赫塞尔冰期、威斯康星冰期、大理冰期、珠穆朗玛冰期发生在距今75~10ka,距今18ka冰川活动达到极盛期。

新仙女木事件(Younger Dryas)是末次冰期向全新世过渡的急剧升温过程中最后一次快速降温变冷事件,它以丹麦Allerbd冰缘沉积物中发现的北极苔原植物仙女木(Dryas Octoetala)而命名,是迄今在冰心、陆地和海洋沉积物的古气候记录最为详细的一次快速气候变冷的事件。全新世是第四纪最近一次冰川消融期,又称冰后期,也有人认为是一次新的间冰期。其时段约为距今11ka至今,其气候经历了升温期、高温期和降温期这样一个完整的间冰期气候变化过程,这个气候波动规律在河南平原也有着明显的反应。

Matthes(1939)提出全新世高温期之后的冰川活动时期,叫“小冰期”,即指气候最适宜期之后,大约从距今2ka开始的冷期。后来愈来愈多的学者把广义的冷期称为新冰期,而小冰期则专指近数百年中出现的冷期。对于小冰期的开始时间,不同学者意见不尽相同,有的认为从16世纪开始,例如1550年;也有的认为从13世纪开始,例如1250年;不过结束时间都比较认可在19世纪末(表8.2)。

冰川学glaciology早期只研究冰川,现已扩展到研究地表一切形态的自然冰体。冰川学按其研究内容,分为物理冰川学、水文气候冰川学和地质地貌冰川学3个分支学科。①物理冰川学。②水文气候冰川学。 包括冰川水文学( 又称冰雪水文学)和冰川气候学。③地质地貌冰川学。包括冰川地质学和冰川地貌学。研究冰川与地表的相互作用及其地貌过程、冰缘现象、冰川沉积、第四纪及其他地质时代的冰川问题。20世纪中期以后,许多国家的冰川研究重点从山岳冰川转向对极地冰盖的考察和研究,尤其对南极大陆冰盖(地球上最大的冷源)的研究。冰川学是研究地球表面各种自然冰体的学科。自然冰体包括山岳冰川、大陆冰盖、海冰。河冰、湖冰、地下水、季节性结冰以及积雪和运动中的雪等。早期只研究冰川,现已扩展到研究地表一切形态的自然冰体。

冰川地貌期刊投稿

分类: 理工学科 解析: 在冰川作用下形成的地貌,叫做冰川地貌。冰川地貌可以划分为冰蚀地貌、冰碛地貌和冰水地貌,它们分别是冰蚀作用、冰川堆积作用、冰融水作用形成的地貌。 冰蚀地貌主要包括:冰川侵蚀形成的平底宽谷-冰川谷,形状类似U型,故又称为U型谷。冰川源头三面陡壁环绕,面为出口的,类似围椅的积雪洼地-冰斗;冰川谷之间或冰斗之间的长条状的尖锐的山脊--刃脊。冰斗之间或冰斗与冰川谷之间形成的角状山峰-角峰。在冰川谷地或者冰川侵蚀作用的地面上形成的石质小丘,远远望去就像羊群匍匐在地面上,故称为羊背石。羊背石往往迎冰坡缓、背冰坡陡,迎冰坡光滑、背冰坡破碎(图11-6 )。 图11-6 高原冰川侵蚀地貌 冰碛地貌主要包括:由冰川搬运、堆积下来的大小混杂的碎屑物质,叫做冰碛物。冰碛物大小混杂,磨圆度较差,缺乏层理,砾石表面往往有磨光面、擦痕、压坑等冰蚀作用痕迹。冰碛物中巨大的石块,叫做漂砾。出露在冰川表面的叫表碛,夹带在冰川底部的叫底碛,夹带在冰川内部的叫内碛,位于冰川两侧边缘的叫侧碛,形成于冰川末段的叫终碛,当两条冰川汇合,两条冰川的侧碛合二为一,分布在冰川中部向下延伸,叫做中碛。分布于冰川前缘地带,由终碛组成的弧形垄状地形,叫做终碛垄;当冰川融化退缩,形成于冰川谷两侧的,由侧碛组成的长条状垄状地形,叫做侧碛堤;当冰川融化,原来随冰川运移的表碛、中碛、内碛等都坠落到底碛上,形成的高低起伏的地形,叫做冰碛丘陵;由冰碛物组成的长轴与冰流方向一致的流线型丘陵,叫做鼓丘。冰水地貌主要包括:蛇形丘--由冰下河流沉积形成的,沿冰川谷纵向延伸的蜿蜒如蛇的丘陵状地形。冰砾阜--由冰融水形成的圆形或长条形的堆积丘陵。冰砾阜阶地--由冰川边缘的河流堆积形成的分布于冰川谷两侧的阶状地形。锅穴--冰水堆积物中的埋藏冰融化后形成的圆形洼地;冰水扇--冰水河流流出冰川前端或切过终碛堤后,由于地势展宽、变缓,冰水携带的碎屑物质大量沉积形成的顶端厚、向外变薄的扇形堆积体。(图11-7)。

如今我们都知道温室效应会导致南北极冰川的融化从而导致海平面的上升,但却不知南极冰川融化还有个原因,英国南极调查局就曾有一个科研联合团队使用机载冰雷达观测了南极点冰盖底部五千平方公里区域,发现南极点冰盖底部冰层正在融化,导致南极冰盖下,好像抹了一层“润滑油”冰盖下面融化的水很有可能导致冰川“滑”入海底。科研队继续研究发现,南极冰川底部的融化现象是由异常地热引起,整个南极底部释放出来的热量,甚至已经达到了黄石公园释放热量的75%!那什么究竟是因为什么原因导致南极冰下异常大量发热呢?

冰盖是指覆盖着广大地区的极厚冰层的陆地面积。在探测南极冰川冰盖到底有什么,我们使用了与往常遥感探测不同的机器——冰雷达。冰雷达也叫无线电回波探测,是冰川科学家们用来探测南极冰下的主要方法。在过去的几十年中,我们在探测冰盖厚度,内部构造,冰下面貌等一系列问题都离不开这个冰雷达。人类研究冰盖研究了这么长时间,至今我们对于冰盖的理解也只是其中的一小部分,我们现在还没有足够的能力来完全的推测甚至是了解冰盖。

越来越多的科学家对于“冰盖底部还有着其他秘密”的说法也是表示赞同的,因为我们只是探测研究了冰盖的一小部分,如果我们对于冰盖底部的环境及其的探测取得突破,那么很显然对于南极冰盖科学发展会有着巨大的变化。但是由于南极大陆的冰盖体积过于庞大,每一点小小的变化都会导致全球的海平面,水循环,大气和海洋环流等造成很大影响。那么显然,对于 社会 ,环境等问题的影响也是巨大的。

据调查,在南极覆盖着平均的厚度多于2160米的冰盖的陆地占南极总面积的至少99%。这里存储着地球72%的淡水资源,因为南极气温很低,冰盖上面使冰雪融化的概率不大,影响冰盖融化的原因更多的是冰盖的底部融化。不过最新研究表明,导致冰盖融化的原因是异地热,关于异地热的来源,至今仍然没有调查出来。英国的南极调查局推测异地热导致冰盖融化有两个原因。

1、第一个原因是冰盖可能有放射性元素

调查局的地理科学家汤姆乔丹认为:“其一是因为冰盖下面具有放射性元素,例如铀,钾等”。但是如果是因为这个原因发热的话,这种发热程度应该不足以让南极冰盖如此迅速地融化,甚至在逐年的下沉。所以乔丹推测还有另外一个原因。

2、冰盖下面可能有断层

我们刚刚提到的放射性元素钾,铀等经过放射,使其融化,加热过的水越来越多,累积在一起形成像温泉水一样,在冰盖下面反复的循环,不停加热。导致形成了一个稳定的热源,然后使冰盖融化。当然,上面这些只是针对冰盖融化,南极放热等一系列情况产生的原因进行了假设,真正的原因还需要我们进行深入的探究,详细的调查。

据计算,如果南极的冰盖全部融化 那么全球的水平面将会上升大约60米。在之前,关于南极冰盖的报道有说冰盖正在不断的变薄,还有说南极冰盖正在日益变厚。那么谁的说法是对的呢?

在过去的三十年里面,我们使用遥感技术探测冰川,科学家们已经一步一步地对于冰盖有着一定的了解,卫星遥感表明,西南级冰盖作为典型的海洋性冰盖,物质损失的速度越来越快,冰川正在逐步消融这已经是无法改变的事实,所以冰盖究竟是变厚还是变薄,张通指出,“判断南极冰盖增厚还是减薄,要看具体的地理位置。”

冰川融化必然的危害就是水面上涨,并且随时可能引来海啸,很多沿海城市会有被淹没的风险,并且冰川融化会使隐藏在冰盖地下的生物暴露出来,固然还会有微生物,微生物可能会扩散到各处,威胁人们的 健康 。冰川融化也会使有毒有害物质泄露出来,污染河流的影响是巨大的。当然全球气候的波动我们人类并不是有很明显地发觉,但是对于南北极冰川来说,气温稍微上升一点,都会对冰川有明显的影响,气温上升一点,就会使高山冰川的雪线上升,海洋冰川范围缩小,这个现象是存在的。

根据科研人员调查观测并且分析,近百年因为海温变暖而造成海平面上升约为2~6厘米,其中全球海平面上升了约2.5 厘米,是因为格陵兰的冰盖已经融化了。全球冰川体积平衡的变化,对地球液态水量变化起着关键性作用。如果南极及其他地区的冰盖全部融化,地球上绝大部分人类都将失去生存的地方,这个是巨大的危害。从而一些沿海地区也面临着被淹没的风险。大一些的岛国就像日本,他们的面积将缩小到只有原来小半的山地,十分危急的。 所以保护南极北极是十分重要的,需要重视起来。

冰川的存在是十分重要的,冰川的积累和融化,可以变化着地轴倾斜角度,从而改变着全球的气温,并且冰川对地轴位置起到稳定作用和平衡效果,而且冰川具有调节气候,平衡气温作用。如果全球冰川全部融化,地轴位置定会重新被确定,到时候全球将会进入冰河时期。

1.地球的冰川参与水的循环

冰川是地球水圈的主要组成部分,冰川的蒸发消融可以使得相关河流获得补给所以它们一直在参与着水循环的过程。冰川是地球上除了海洋之外最大的天然水库,也是地球上最大的 淡水资源。多年来它长期稳定地向各条大河源头和内陆河流提供水源。冰 川和它周围的环境构成一个和谐的整体,超过自然限度开采冰川水资 源就会破坏这个系统的平衡,会导致严重的后果。

2、冰川具有调节气候功能

冰川也是地球表面下垫面的主要形式之一,也是地球表面的主要下垫面的一种,冰川多位于高寒地区蒸发量比较小,影响全球气团性质、气压带的运动等。 冰川对全球气候变化有着重要影响。地球上,冰川是固态水的 主要存在形式。而水在液态、气态和固态之间的循环对地球环境有重 要影响。冰川,特别是极地的大面积冰盖能大量反射太阳光,有助于 人类居住的地球保持温度平衡。

3、塑造地表形态

冰川作用可以形成独特的冰川地貌,比如冰斗角峰刃脊冰川谷峡湾等,有着很好看的风景。

4、影响生物迁移和土壤发育

冰川推进过程中,会破坏沿途地区的植被,使得动物被迫迁移,土壤发育过程被迫中断。

据外媒报道,科学家在欧洲地球科学联盟的期刊《Cryosphere》发表了研究报告,科学家认为可以在冰川下的海床兴建人工墙,阻止热海水流入,希望可以延缓海平面上升的速度,并且可以减缓冰川的融化,为最受海洋水位上升威胁的沿岸地区,争取更多时间来应对这个威胁。人工墙不仅可阻挡冰川崩塌,而且可防止冰川底部因接触热的海水而加速融化。科学家正以南极洲的思卫茨冰川作为测试,该冰川宽度达80至100公里,是全球最广阔的冰川之一,科学家提出两种可以兴建人工墙的方法。

其中一种比较容易,可以在冰川四周的海床上建立,预计300米左右,主要材料为沙石,估计建成后有30%机率可以阻挡冰川崩塌。至于较复杂的设计,科学家会于海底兴建一道比较小的人工墙,用于隔绝热的海水来接触冰川底部,阻挡冰川的融化。但是由于恶劣的海底环境,工程相对复杂一些,但成功机会估计达70%。不过科学家强调说,兴建人工墙只是扬汤止沸,还是告诫人类不要放过多温室气体,否则冰川融化速度只会越来越快。

冰川地貌期刊官网投稿

冰川是塑造地表形态的一种外力作用,在高山和高纬地区,这种作用尤为显著。我国虽地处中、低纬,但是在西部(大致东经102°线以西)却有巨大的高山和高原, 由于特殊的地势条件和气候条件,所以广泛发育了现代高山冰川。 据粗略计算,那里现代冰川总面积约为44000km2。北起阿尔泰山(雪线高度3000~3400m),南至喜马拉雅山(北坡雪线高度6000~6200 m,南坡为5000 m),西自帕米尔高原(雪线高度约5000 m),东到川滇横断山系(雪线高度4600~4700 m),分布着各种类型的现代高山冰川及其塑造的地貌。现代冰川是第四纪冰期古雪线较现代雪线要低数百米甚至千余米,那时 冰川规模超过现代冰川许多倍,冰川侵蚀和堆积地貌不仅遍及我国西部山区,甚至东部一 些山地也有第四纪冰川作用的遗迹。我国西部高山区发育的现代冰川,按其活动情况可分为两种:大陆性冰川(或称冷冰川)、海洋性冰川(或称暖冰川)。大陆性冰川受干燥大陆性气候影响 ,冰温很低,冰舌表面以下的活动层温度为-1℃到-10℃,冰内与冰下消融较弱,融水量小,冰流速度低,冰川剥蚀和搬运能力较差。海洋性冰川发育地区降水丰富,冰舌处冰温接近0℃,冰内和冰下消融强烈,冰川流动速度大,冰川剥蚀和搬运能力强。根据冰川的形态则可分为:冰斗冰川、悬冰川、山谷冰川(包括土耳其斯坦型冰川、复式山谷冰川、树枝状山谷冰川、宽尾冰川)、平顶冰川和高原冰川等。 冰斗冰川是分布在高山上部洼地中的冰川。储存冰雪的洼地称为冰斗。在冰川发育前,大部分洼地是集水盆地或地势平缓的地形。当气候转冷开始发育冰川时,这里首先积累了大量的冰雪,达到一定厚度后,在自身的压力和重力作用下发生运动成冰川。图示为我国珠穆朗玛峰地区典型的冰斗冰川。冰斗冰川的轮廓近似卵圆形或三角形,表面微凹,向粒雪盆(雪线以上积累冰雪的洼地)出口方向缓缓倾斜,而其它三个方向都由陡峭山坡环绕。冰斗冰川没有或仅有短小的冰川舌,冰舌面积小于粒雪盆面积。有长大的冰舌沿谷地延伸的冰川,称为山谷冰种。介于冰斗冰川和山谷冰川之间的类型,称为冰斗-山谷冰斗。冰斗冰川可分为两种:一种是发育在谷地两侧山坡盆地中的,称谷坡冰斗冰川;一种是发育在主谷的源头,称谷源冰斗冰川。相邻的三个以上谷源冰斗冰川包围着一个尖锐的角锥头山峰,称为角峰,平面图形呈放射状。 冰蚀地貌是指第四纪冰川作用所遗留下来的地貌。第四纪冰种形成的地貌分为侵蚀地貌和堆积地貌。这些地貌主要有冰斗、角峰、刃脊,冰川谷等。

冰川地貌期刊投稿格式

冰川 glacier冰川概述冰川是一种巨大的流动固体,是在高寒地区由雪再结晶聚积成巨大的冰川冰,因重力这主要因素使冰川冰流动,成为冰川。冰川作用包括侵蚀、搬运、堆积等作用,这些作用造成许多地形,使得经过冰川作用的地区形成多样的冰川地貌。此外,若将冰川的体积换成水量,则除海水之外,占地球上所有的水量的97.8%。在极地和高山地区,气候严寒,常年积雪,当雪积聚在地面上后,如果温度降低到零下,可以受到它本身的压力作用或经再度结晶而造成雪粒,称为粒雪(firn)。当雪层增加,将粒雪往更深处埋,冰的结晶越变越粗,而粒雪的密度则因存在于粒雪颗粒间的空气体积不断减少而增加,使粒雪变得更为密实而形成蓝色的冰川冰,冰川冰形成后,因受自身很大的重力作用形成塑性体,沿斜坡缓慢运动或在冰层压力下缓缓流动形成冰川。冰川是个开放的系统,冰川在重力的作用之下流动。雪以堆积的方式进入到冰川系统,而且转变形成冰,冰在其本身重量的压力之下由堆积带向外流动,而冰在消融带以蒸发和溶融方式离开系统。在堆积速度与消融速度之间的平衡决定了冰川系统的规模。冰川前后可以分为两部份,在后者或上游部份称为冰川堆积带(zone of accumulation);在前者或下游部份称为冰川消融带(zone of ablation)其分界线是雪线,在雪线处雪的累积量与消融量处于平衡状态。1980年以来,世界冰川的平均厚度减少了约11.5米,这主要归咎于人类滥用煤炭、石油等燃料引起的气候变暖。联合国环境规划署3月16日发表声明说,全世界冰川融化速度创下历史最快纪录,其中欧洲冰川损失最为严重,导致这一结果的主要原因是全球气候变暖。研究人员指出,由于冰川是重要淡水资源之一,因此冰川融化速度过快会给一些地区带来淡水危机,甚至在水源稀缺的地区酝酿争水冲突。联合国环境规划署在声明中说,从安第斯山脉到北极,冰川消融速度加快。数据显示,2006年,世界冰川的平均厚度减少了1.5米,而2005年该数字仅为0.5米。联合国环境规划署说,这是有研究人员监测以来冰川消融速度最快的时期。世界冰川监测中心工作人员说,与其他地区相比,欧洲山区冰川损失最为严重,其中包括阿尔卑斯山脉、比利牛斯山脉和北欧山区。联合国环境规划署负责人斯坦纳说,冰川消融是全球气候变暖最重要的指标之一。路透社也说,1980年以来,世界冰川的平均厚度减少了约11.5米,这主要归咎于人类滥用煤炭、石油等燃料引起的气候变暖。对此,联合国环境规划署催促各成员国在2009年签订继承《京都议定书》义务的减排国际框架条约,应对全球气候变暖。斯坦纳说,来自190多个国家的代表和科学家已在去年举行的联合国气候变化大会上讨论了气候变暖和温室气体减排等问题,争取在2009年前达成一项新的国际协议,以作为《京都议定书》的延续。不少气候专家认为,由于世界上数十亿人口饮用冰川融水、依靠冰川水灌溉、发电,因此冰川过度消融会给这些人口带来淡水危机。 冰川是地表上长期存在并能自行运动的天然冰体。由大气固体降水经多年积累而成,是地表重要的淡水资源。冰川一词来自拉丁文 glacies(意为冰)。《世界冰川目录资料编辑指南》把冰川面积超过 0.1平方千米者作为统计对象。以平衡线(又称雪线)为界把冰川分为两部分,上部为粒雪盆(又称积累区),下部为冰舌区(又称消融区),它们构成一个完整的冰川系统。冰川自两极到赤道带的高山都有分布,总面积约达16227500平方千米,即覆盖了地球陆地面积的11%,约占地球上淡水总量的69%。现代冰川面积的97%、冰量的99%为南极大陆和格陵兰两大冰盖所占有,特别是南极大陆冰盖面积达到1398万平方千米(包括冰架),最大冰厚度超过4000米,冰从冰盖中央向四周流动,最后流到海洋中崩解。冰川是由多年积累起来的大气固体降水在重力作用下,经过一系列变质成冰过程形成的,主要经历粒雪化和冰川冰两个阶段。它不同于冬季河湖冻结的水冻冰,构成冰川的主要物质是冰川冰。新雪降落到地面后,经过一个消融季节未融化的雪叫粒雪。新雪的水分子从雪片的尖端和边缘向凹处迁移,使晶体变圆的过程叫粒雪化。在这个过程中,雪逐步密实,经融化、再冻结、碰撞、压实 ,使晶体合并 ,数量减少而体积增大,冰晶间的孔隙减少,发展成颈状连接,称为密实化。粒雪化和密实化过程在接近融点的温度下,进行很快;在负低温下,进行缓慢。当粒雪密度达到0.5~0.6克/厘米3时,粒雪化过程变得缓慢。在自重的作用下,粒雪进一步密实或由融水渗浸再冻结,晶粒改变其大小和形态,出现定向增长。当其密度达到0.84克/厘米3时,晶粒间失去透气性和透水性,便成为冰川冰。粒雪转化成冰川冰的时间从数年至数千年。冰川的分布现代冰川在世界各地几乎所有纬度上都有分布。地球上的冰川,大约有2900多万平方公里,覆盖着大陆11%的面积。冰川冰储水量虽然占地球总水量的2%,储藏着全球淡水量的3/4左右,但可以直接利用的很少。我国的西部,高原雄踞,高山耸峙,孕育了许多山岳冰川,是世界上山岳冰川最发达的国家之一。据1999年最新的统计资料,我国总共有46298条冰川,总面积为59406平方公里。我国的冰川面积位于加拿大、俄罗斯和美国之后,居世界第4位。我国的冰川最西到帕米尔高原,最东到贡嘎山,最北到阿尔泰山,最南到云南丽江的玉龙雪山。中国山岳冰川按成因分为大陆性冰川和海洋性冰川两大类。总储量约51300亿立方米。前者占冰川总面积的80%,后者主要分布在念青唐古拉山东段。按山脉统计,昆仑山、喜马拉雅山、天山和念青唐古拉山的冰川面积都超过7000平方千米,四条山脉的冰川面积共计40300平方千米,约占全国冰川总面积的70%,其余30%的冰川面积分布与喀喇昆仑山、羌塘高原、帕米尔、唐古拉山、祁连山、冈底斯山、横段山及阿尔泰山。 冰川的形成冰川是水的一种存在形式,是雪经过一系列变化转变而来的。要形成冰川首先要有一定数量的固态降水,其中包括雪、雾、雹等。没有足够的固态降水作“原料”,就等于“无米之炊”,根本形不成冰川。冰川存在于极寒之地。地球上南极和北极是终年严寒的,在其它地区只有高海拔的山上才能形成冰川。我们知道越往高处温度越低,当海拔超过一定高度,温度就会降到0℃以下,降落的固态降水才能常年存在。这一海拔高度冰川学家称之为雪线。在南极和北极圈内的格陵兰岛上,冰川是发育在一片大陆上的,所以称之为大陆冰川。而在其它地区冰川只能发育在高山上,所以称这种冰川为山岳冰川。在高山上,冰川能够发育,除了要求有一定的海拔外,还要求高山不要过于陡峭。如果山峰过于陡峭,降落的雪就会顺坡而下,形不成积雪。雪花一落到地上就会发生变化,随着外界条件和时间的变化,雪花会变成完全丧失晶体特征的圆球状雪,称之为粒雪,积雪变成粒雪后,随着时间的推移,粒雪的硬度和它们之间的紧密度不断增加,大大小小的粒雪相互挤压,紧密地镶嵌在一起,其间的孔隙不断缩小,以致消失,雪层的亮度和透明度逐渐减弱,一些空气也被封闭在里面,这样就形成了冰川冰。冰川冰最初形成时是乳白色的,经过漫长的岁月,冰川冰变得更加致密坚硬,里面的气泡也逐渐减少,慢慢地变成晶莹透彻,带有蓝色的水晶一样的老冰川冰。冰川冰在重力作用下,沿着山坡慢慢流下(当然流的速度很慢),就形成了冰川。冰川的分类按照冰川的规模和形态, 冰川分为大陆冰盖 ( 简称冰盖)和山岳冰川(又称山地冰川或高山冰川)。山岳冰川主要分布在地球的高纬和中纬山地区。其类型多样,主要有悬冰川、冰斗冰川、山谷冰川、平顶冰川。大陆冰盖主要分布在南极和格陵兰岛。山岳冰川则分布在中纬、低纬的一些高山上。全世界冰川面积共有l500多万平方公里,其中南极和格陵兰的大陆冰盖就占去1465万平方公里。因此,山岳冰川与大陆冰盖相比,规模极为悬殊。巨大的大陆冰盖上,漫无边际的冰流把高山、深谷都掩盖起来,只有极少数高峰在冰面上冒了一个尖,辽阔的南极冰盖,过去一直是个谜,深厚的冰层掩盖了南极大陆的真面目。科学家们用地球物理勘探的方法发现,茫茫南极冰盖下面有许多小湖泊,而且这些湖泊里还有生命存在。我国的冰川都属于山岳冰川。就是在第四纪冰川最盛的冰河时代,冰川规模大大扩大,也没有发育为大陆冰盖。以前有很多专家认为,青藏高原在第四纪的时候曾经被一个大的冰盖所覆盖,即使现在国外有些专家仍持这种观点。但是经过考察和论证,我国的冰川学者基本上否定了这种观点。按照冰川的物理性质(如温度状况等)分为:①极地冰川,整个冰层全年温度均低于融点;②亚极地冰川,表面可以在夏季融化外,冰层大部分低于融点;③温冰川,除表层冬季冰结外,整个冰层处于压力融点。极地冰川和亚极地冰川又合称冷冰川,多分布南极和格陵兰。温冰川主要发育在欧洲的阿尔卑斯山、斯堪的纳维亚半岛、冰岛,阿拉斯加和新西兰等降水丰富的海洋性气候地区。除了冰体内部的力学、热学相互作用外,冰川作用还表现在它对地表的塑造过程,即冰川的侵蚀、搬运与堆积作用。

上面的已经全说了

冰川是极地或高山地区地表上多年存在并具有沿地面运动状态的天然冰体。冰川多年积雪,经过压实、重新结晶、再冻结等成冰作用而形成的。它具有一定的形态和层次,并有可塑性,在重力和压力下,产生塑性流动和块状滑动,是地表重要的淡水资源。

冰川是水的一种存在形式,是雪经过一系列变化转变而来的。要形成冰川首先要有一定数量的固态降水,中包括雪、雾、雹等。没有足够的固态降水作“原料”,就等于“无米之炊”,根本形不成冰川。

冰川有很强的侵蚀力,大部分为机械的侵蚀作用,冰川地貌,就是是由冰川作用塑造的地貌。下面由我为你详细介绍冰川侵蚀作用的相关知识。

侵蚀作用

冰川有很强的侵蚀力,大部分为机械的侵蚀作用,其侵蚀方式可分为几种:

(1)拔蚀作用:当冰床底部或冰斗后背的基岩,沿节理反复冻融而松动,若这些松动的岩石和冰川冻结在一起,则当冰川运动时就把岩块拔起带走,这称为拔蚀作用。经拔蚀作用后的冰川河谷其坡度曲线是崎岖不平的,形成了梯形的坡度剖面曲线。

(2)磨蚀作用:当冰川运动时,冻结在冰川或冰层底部的岩石碎片,因受上面冰川的压力,对冰川底床进行削磨和刻蚀,称为磨蚀作用。磨蚀作用可在基岩上形成带有擦痕的磨光面,而擦痕或刻槽是冰川作用的一种良好证据,其方向可以用来指示冰川行进的方向。

(3)冰楔作用:在岩石裂缝内所含的冰融水,经反复冻融作用,体积时涨时缩,而造成岩层破碎,成为碎块,或从两侧山坡坠落到冰川中向前移动。

(4)其他:当融冰之水进入河流,其常夹有大体积之冰块,会产生强大撞击力破坏下游的两岸岩石。

冰川侵蚀力的强弱受到下列因素的影响:

(1)冰层的厚度和重量。重厚者侵蚀力强。

(2)冰层移动的速度。速度大者侵蚀力强。

(3)携带石块的数量。携带数量越多越重者,侵蚀力越强。

(4)地面岩石之粗糙或光滑。粗糙地面较易受冰川之侵蚀。

(5)底岩的性质,底岩松软者较易受侵蚀。

(6)岩层之倾斜方向与冰川移动方向一致者,易遭侵蚀。

(1)冰斗:为山谷冰川重要冰蚀地貌之一,形成于雪线附近,在平缓的山地或低洼处积雪最多,由于积雪的反复冻融,造成岩石的崩解,在重力和融雪水的共同作用下,将岩石侵蚀成半碗状或马蹄形的洼地,典型的冰斗于是形成。冰斗的三面是陡峭岩壁,向下坡有一口,若冰川消退后,洼地水成湖,即冰斗湖。

(2)刃脊、角峰、冰哑:若冰斗因为挖蚀和冻裂的侵蚀作用而不断的扩大,冰斗壁后退,相邻冰斗间的山脊逐渐被削薄而形成刀刃状,称为刃脊。而几个冰斗所交汇的山峰,形状很尖,则称为角峰。在刃脊之间的低下鞍部处,则为冰哑。

(3)削断山嘴、U型谷、石洼地:当山谷冰川自高地向低处移动,山嘴被削平成三角形,称为削断山嘴。又因为冰川谷的横剖面形状如U字形,故称U型谷。U型谷两侧有明显的谷肩,谷肩以下的谷壁较平直,底部宽而平,若是在冰川谷的底部,因冰川的挖蚀,而造成向下低凹的水坑,石地。

(4)峡湾:在高纬度地区,冰川常能伸入海洋,在岸边侵蚀成一些很深的U型谷,当冰退以后,海水可以沿谷进入很远,原来的冰谷便成峡湾。

(5)悬谷:悬谷的形成是来自于冰川侵蚀力的差异,主冰川因冰层厚、下蚀力强,故U型谷较深;而支冰川因为冰层薄、下蚀力弱,故U型谷较浅。因为在支冰川和主冰川的交汇之处,常有冰川底高低的悬殊,当支冰川的冰进入主冰川时必为悬挂下坠成瀑布状,称之为悬谷。

(6)羊背石:为冰川基床上的一种侵蚀地形,是由基岩组成的小丘,常成群分布,远望如匍匐的羊群,故称为羊背石。其平面为椭园型,长轴方向与冰流动方向一致,向冰川上游方向的一坡由于冰川的磨蚀作用,坡面较平,坡度较缓,并有许多擦痕;而在另一侧,受冰川的挖蚀作用,坡面坎坷不平,坡度也较陡。羊背石的形成,是由于岩层是软硬相间的排列,当侵蚀、风化的作用查行时,软的岩层会被侵蚀的较多较深;而硬的岩石抵抗侵蚀、风化的能力较强,所以在侵蚀、风化后,硬的岩层会较软的岩层高,形隆起的椭园地形,一面受磨蚀、一面受挖蚀。

(7)冰川磨光面、冰川擦痕:在羊背石上或U型谷谷壁及在大漂砾上,常因冰川的作用而形成磨光面,当冰川搬运物是砂和粉砂时,在较致密的岩石上,磨光面更为发达;若冰川搬运物为砾石,则在谷壁上刻蚀成条痕或刻槽,称之为冰川擦痕,擦痕的一端粗,另一端细,粗的一端指向上游。

搬运作用

由于冰川的侵运作用所产生的大量松散岩屑和从山坡崩落得碎屑,会进入冰川系统,随冰川一起运动,这些被搬运的岩屑称为冰碛物,依据其在冰川内的不同位置,可分为不同的搬运类型:

(1)表碛:出露在冰川表面的冰碛物。

(2)内碛:夹在冰川内的冰碛物

(3)底碛:堆积在冰川谷底的冰碛物。

(4)侧碛:在冰川两侧堆积的冰碛物。

(5)中碛:两条冰川汇合后,其相邻的侧碛即合而为一,位于会合后冰川的中间称为中碛。

(6)终碛(尾碛):随冰川前进,而在冰川末端围绕的冰碛物,称为终碛。

(7)后退碛:由于冰川在后退的过程中,会发生局部的短暂停留,而每一次的停留就会造成一个后退碛。

(8)漂石:冰川的搬运作用,不仅能将冰碛物搬到很远的地方,也能将巨大的岩石搬到很高的部分,这些被搬运的巨大岩块即称为漂石,其岩性和该地附近基岩完全不同。冰川的搬运能力很强,但相对地,冰川的淘选能力很差。

堆积作用

冰川携带的砂石,常沿途抛出,故在冰川消融以后,不同形式搬运的物质,堆积下来便形成相应的各种冰碛物。所谓冰碛物,是指由冰川直接造成的不成层冰积物。而冰积物,就是指直接由冰川沉积的物质,或由于冰水作用的沉积物,及因为冰川作用而沉积在河流湖泊海洋中的物质。冰积物可分为不成层的冰积物和成层的冰积物两者:

(1)不成层的冰积物:此种冰积物是由冰川后退时所遗留的石砾所造成,因为冰融化而遗留于地面的堆积物大小不一,石块为少带有稜角、表面为被磨光或带有擦痕,堆积后为不现层理,此种杂乱无层理的冰积物,常称为冰砾土而由冰碛物所形成的冰碛地形有:

冰碛丘陵(基碛丘陵):冰川消融后,原有的表碛内碛中碛都沈到冰川谷底,和底碛合称为基碛,这些冰碛物受到冰川谷底地形的影响,堆积成坡状起伏的丘陵,称为冰碛丘陵。大陆冰川区的冰碛丘陵规模较大,而山谷冰川所形成的冰碛丘陵,规模要小的多。

侧碛堤:是由侧碛和表碛在冰川后退处共同堆积而成的,位于冰川谷两侧,成堤状向冰川上游可一直延伸至雪线附近,而向下游常可和终碛堤相连。

终碛堤:终碛堤所反应出的是冰川后退时的暂时停顿阶段,若冰川的补给和消融处于平衡状态,则冰川的末端可略作停留于某一位置,这时由冰川搬运来的物质,将可在冰川尾端堆积成弧状的堤,称为终碛堤。大陆冰川的终碛堤高度较小,长度可达几百公里,弧形曲率较小;反之,山谷冰川的终碛堤高度可达数百米,长度较小,弧形曲率较大。

鼓丘:鼓丘是由冰积物所组成的一种丘陵,约成椭圆形,长轴与水流方向一致,迎冰面是陡坡,背冰面是一缓坡,其纵剖面为不对称的上凸形。一般认为鼓丘是由于冰川的搬运能力减弱,底碛遇到阻碍所堆积而成的。其主要分布在大陆冰川终碛堤以内的几公里到几十公里,常成群出现,造成鼓丘田;山谷冰川的鼓丘数量较少。

(2)成层的冰积物:此为冰川与融冰之水共同沉积的结果,冰川所携带的物质受到融化后的冰水冲刷及淘洗,会依照颗粒的大小,堆积成层,形成冰水堆积物,而在冰川边缘由冰水堆积物所组成的各种地貌,称为冰水堆积地貌。有下列几种类型:

冰水沉积、冰水扇、外冲平原:在冰川末端的冰融水所携带的大量砂砾,堆积在冰川前面的山谷或平原中,就形成冰水沉积;若是在大陆冰川的末端,这类的沉积物可绵延数公里,在终碛堤的外围堆积成扇形地,就叫冰水扇;数个冰水扇相连,就形成广大的冰水冲积平原,又名外冲平原。在这些地形上,沉积物呈缓坡倾向下游,颗粒度亦向下游变小。

冰水湖、季候泥:冰水湖是由冰融水形成的,因为冰川后退时,前面的冰积物会阻塞冰川的通路,常可以积水成湖。冰水湖有明显的季节变化,夏季的冰融水较多,大量物质进入湖泊,一些较粗的颗粒就快速沉积,而细的颗粒还悬浮在水中,颜色较淡;而冬季的冰融水减少,一些长期悬浮的细颗粒黏土才开始沉积,颜色较深。这样一来,在湖泊中就造成了一粗一细很容易辨认的两层沉积物,叫做季候泥。

冰砾埠:冰砾埠为有层理并经分选的细粉砂所组成的,形状为圆形或不规则的小丘。冰砾埠上部通常有一层冰碛层,冰砾埠是由于冰面上的小湖小河或停滞冰川的穴隙中的沉积物,在冰川消融后沈落到底床堆积而成,其与鼓丘不同之处,在于冰埠的形状很不规则,且为成层状。在大陆冰川和山谷冰川都有发育冰砾埠。

冰砾埠阶地:在冰川两侧,由于岩壁和侧碛吸热较多,且冰川两侧的冰面要比中间来的低,所以冰融水就汇集在这,形成冰侧河流,并带来冰水物质,等到冰水消后,这些物质就堆积在冰川谷两侧,形成冰砾埠阶地,它只发育在山谷冰川中。

锅穴(冰穴):冰水平原上常有一种圆形洼地,称为锅穴。其形成是由于冰川耗损时,有些残冰被孤立而埋入冰水沉积物中,等到冰融化后引起塌陷,而造成锅穴。

蛇形丘:蛇形丘是一种狭长曲折的地形,呈蛇形湾曲,两壁陡直,丘顶狭窄,其延伸的方向大致与冰川的流向一致,主要分布在大陆冰川区。蛇形丘的成因主要为:

1.在冰川消融时,冰融水沿冰川裂隙渗入冰川下,在冰川底部流动,形成冰下隧道,待冰完全融解后,隧道中的砂砾就沉积而形成蛇形丘。

2.在夏季,冰融水增多,冰积物在冰川末端形成冰水三角洲,等到下一个夏季,冰川再次后退,再形成一个冰水三角洲,如此反复不断,一个个冰水三角洲连起来,便形成串珠状的蛇形丘了。

冰川地貌按成因分为侵蚀地貌和堆积地貌两类。

现代冰川作用区的冰体部分按形态分为:

①大陆冰盖。面积>50000公里的陆地冰体,如南极冰盖和格陵兰冰盖;

②冰帽。数千公里至50000公里的陆地冰体,规模巨大的山麓冰川和平顶冰川都可发育为冰帽;

③山地冰川。又分为冰斗冰川、悬冰川、谷冰川、平顶冰川和山麓冰川等。

冰川(包括冰水)沉积地貌分布于冰川下游,形态类型包括终碛垅、侧碛垅、冰碛丘陵、冰碛台地、底碛丘陵和底碛平原、鼓丘与漂砾扇,以及由冰水沉积物组成的冰砾阜、蛇形丘、冰水阶地台地和冰水扇等。

大陆冰盖和山地冰川的地貌组合有较大差异。前者冰体从中心向四周流动,以冰盖前缘广泛发育冰碛(尤其是终碛)、冰水堆积地貌和大面积的冰蚀凹地为特征,没有侧碛垅,只有在孤立的冰原岛山地区才出现冰蚀地貌。

山地冰川受地形限制,与周围基岩接触面大,造成的冰蚀地貌类型众多。

此外,山地冰川地貌的分带性也比大陆冰盖和冰帽的地貌分带性强,有明显的垂直分带和水平分带。

冰川谷是冰川作用区最明显的冰蚀地貌类型之一。典型的形状是槽谷,故亦称冰川槽谷或U形谷。

近来大量实测资料表明,大多数冰川谷的横剖面是抛物线型,U形的出现主要与谷底被冰碛和冰水沉积充填有关。槽谷在山岳冰川地区分布在雪线之下,源头和两侧被冰斗包围,主、支冰川汇合处易形成悬谷。槽谷两侧一般具有明显的槽谷肩和冰蚀三角面。槽谷底部常见冰阶(岩槛)与岩盆,两者交替出现,积水成为串珠状湖泊。大的冰阶形成冰瀑布,如贡嘎山海螺沟冰川有高达千米的冰瀑布。

大陆冰盖或高原冰帽之下也有槽谷,这种槽谷上源没有粒雪盆,曾被称为冰岛型槽谷。中国川西高原也有这种槽谷。峡湾是一种特殊形式的槽谷,为海侵后被淹没的冰川槽谷。大陆冰盖或岛屿冰帽入海处常形成很深的峡湾,如挪威西海岸的峡湾十分发育,以风光漪丽闻名于世。

冰川地貌期刊投稿经验

冰川(glacier)是一巨大的流动固体,是在高寒地区由雪再结晶聚积成巨大的冰川冰,因重力这主要因素使冰川冰流动,成为冰川。冰川作用包括侵蚀、搬运、堆积等作用,这些作用造成许多地形,使得经过冰川作用的地区形成多样的地貌。此外,若将冰川的体积换成水量,则除海水之外,占地球上所有的水量的 97.8%。 在极地和高山地区,气候严寒,常年积雪,当雪积聚在地面上后,如果温度降低到零下,可以受到它本身的压力作用或经再度结晶而造成雪粒,称为粒雪(firn)。当雪层增加,将粒雪往更深处埋,冰的结晶越变越粗,而粒雪的密度则因存在於粒雪颗粒间的空气体积不断减少而增加,使粒雪变得更为密实而形成蓝色的冰川冰,冰川冰形成后,因受自身很大的重力作用形成塑性体,沿斜坡缓慢运动或在冰层压力下缓缓流动形成冰川。

冰川 glacier冰川概述冰川是一种巨大的流动固体,是在高寒地区由雪再结晶聚积成巨大的冰川冰,因重力这主要因素使冰川冰流动,成为冰川。冰川作用包括侵蚀、搬运、堆积等作用,这些作用造成许多地形,使得经过冰川作用的地区形成多样的冰川地貌。此外,若将冰川的体积换成水量,则除海水之外,占地球上所有的水量的97.8%。在极地和高山地区,气候严寒,常年积雪,当雪积聚在地面上后,如果温度降低到零下,可以受到它本身的压力作用或经再度结晶而造成雪粒,称为粒雪(firn)。当雪层增加,将粒雪往更深处埋,冰的结晶越变越粗,而粒雪的密度则因存在于粒雪颗粒间的空气体积不断减少而增加,使粒雪变得更为密实而形成蓝色的冰川冰,冰川冰形成后,因受自身很大的重力作用形成塑性体,沿斜坡缓慢运动或在冰层压力下缓缓流动形成冰川。冰川是个开放的系统,冰川在重力的作用之下流动。雪以堆积的方式进入到冰川系统,而且转变形成冰,冰在其本身重量的压力之下由堆积带向外流动,而冰在消融带以蒸发和溶融方式离开系统。在堆积速度与消融速度之间的平衡决定了冰川系统的规模。冰川前后可以分为两部份,在后者或上游部份称为冰川堆积带(zone of accumulation);在前者或下游部份称为冰川消融带(zone of ablation)其分界线是雪线,在雪线处雪的累积量与消融量处于平衡状态。1980年以来,世界冰川的平均厚度减少了约11.5米,这主要归咎于人类滥用煤炭、石油等燃料引起的气候变暖。联合国环境规划署3月16日发表声明说,全世界冰川融化速度创下历史最快纪录,其中欧洲冰川损失最为严重,导致这一结果的主要原因是全球气候变暖。研究人员指出,由于冰川是重要淡水资源之一,因此冰川融化速度过快会给一些地区带来淡水危机,甚至在水源稀缺的地区酝酿争水冲突。联合国环境规划署在声明中说,从安第斯山脉到北极,冰川消融速度加快。数据显示,2006年,世界冰川的平均厚度减少了1.5米,而2005年该数字仅为0.5米。联合国环境规划署说,这是有研究人员监测以来冰川消融速度最快的时期。世界冰川监测中心工作人员说,与其他地区相比,欧洲山区冰川损失最为严重,其中包括阿尔卑斯山脉、比利牛斯山脉和北欧山区。联合国环境规划署负责人斯坦纳说,冰川消融是全球气候变暖最重要的指标之一。路透社也说,1980年以来,世界冰川的平均厚度减少了约11.5米,这主要归咎于人类滥用煤炭、石油等燃料引起的气候变暖。对此,联合国环境规划署催促各成员国在2009年签订继承《京都议定书》义务的减排国际框架条约,应对全球气候变暖。斯坦纳说,来自190多个国家的代表和科学家已在去年举行的联合国气候变化大会上讨论了气候变暖和温室气体减排等问题,争取在2009年前达成一项新的国际协议,以作为《京都议定书》的延续。不少气候专家认为,由于世界上数十亿人口饮用冰川融水、依靠冰川水灌溉、发电,因此冰川过度消融会给这些人口带来淡水危机。 冰川是地表上长期存在并能自行运动的天然冰体。由大气固体降水经多年积累而成,是地表重要的淡水资源。冰川一词来自拉丁文 glacies(意为冰)。《世界冰川目录资料编辑指南》把冰川面积超过 0.1平方千米者作为统计对象。以平衡线(又称雪线)为界把冰川分为两部分,上部为粒雪盆(又称积累区),下部为冰舌区(又称消融区),它们构成一个完整的冰川系统。冰川自两极到赤道带的高山都有分布,总面积约达16227500平方千米,即覆盖了地球陆地面积的11%,约占地球上淡水总量的69%。现代冰川面积的97%、冰量的99%为南极大陆和格陵兰两大冰盖所占有,特别是南极大陆冰盖面积达到1398万平方千米(包括冰架),最大冰厚度超过4000米,冰从冰盖中央向四周流动,最后流到海洋中崩解。冰川是由多年积累起来的大气固体降水在重力作用下,经过一系列变质成冰过程形成的,主要经历粒雪化和冰川冰两个阶段。它不同于冬季河湖冻结的水冻冰,构成冰川的主要物质是冰川冰。新雪降落到地面后,经过一个消融季节未融化的雪叫粒雪。新雪的水分子从雪片的尖端和边缘向凹处迁移,使晶体变圆的过程叫粒雪化。在这个过程中,雪逐步密实,经融化、再冻结、碰撞、压实 ,使晶体合并 ,数量减少而体积增大,冰晶间的孔隙减少,发展成颈状连接,称为密实化。粒雪化和密实化过程在接近融点的温度下,进行很快;在负低温下,进行缓慢。当粒雪密度达到0.5~0.6克/厘米3时,粒雪化过程变得缓慢。在自重的作用下,粒雪进一步密实或由融水渗浸再冻结,晶粒改变其大小和形态,出现定向增长。当其密度达到0.84克/厘米3时,晶粒间失去透气性和透水性,便成为冰川冰。粒雪转化成冰川冰的时间从数年至数千年。冰川的分布现代冰川在世界各地几乎所有纬度上都有分布。地球上的冰川,大约有2900多万平方公里,覆盖着大陆11%的面积。冰川冰储水量虽然占地球总水量的2%,储藏着全球淡水量的3/4左右,但可以直接利用的很少。我国的西部,高原雄踞,高山耸峙,孕育了许多山岳冰川,是世界上山岳冰川最发达的国家之一。据1999年最新的统计资料,我国总共有46298条冰川,总面积为59406平方公里。我国的冰川面积位于加拿大、俄罗斯和美国之后,居世界第4位。我国的冰川最西到帕米尔高原,最东到贡嘎山,最北到阿尔泰山,最南到云南丽江的玉龙雪山。中国山岳冰川按成因分为大陆性冰川和海洋性冰川两大类。总储量约51300亿立方米。前者占冰川总面积的80%,后者主要分布在念青唐古拉山东段。按山脉统计,昆仑山、喜马拉雅山、天山和念青唐古拉山的冰川面积都超过7000平方千米,四条山脉的冰川面积共计40300平方千米,约占全国冰川总面积的70%,其余30%的冰川面积分布与喀喇昆仑山、羌塘高原、帕米尔、唐古拉山、祁连山、冈底斯山、横段山及阿尔泰山。 冰川的形成冰川是水的一种存在形式,是雪经过一系列变化转变而来的。要形成冰川首先要有一定数量的固态降水,其中包括雪、雾、雹等。没有足够的固态降水作“原料”,就等于“无米之炊”,根本形不成冰川。冰川存在于极寒之地。地球上南极和北极是终年严寒的,在其它地区只有高海拔的山上才能形成冰川。我们知道越往高处温度越低,当海拔超过一定高度,温度就会降到0℃以下,降落的固态降水才能常年存在。这一海拔高度冰川学家称之为雪线。在南极和北极圈内的格陵兰岛上,冰川是发育在一片大陆上的,所以称之为大陆冰川。而在其它地区冰川只能发育在高山上,所以称这种冰川为山岳冰川。在高山上,冰川能够发育,除了要求有一定的海拔外,还要求高山不要过于陡峭。如果山峰过于陡峭,降落的雪就会顺坡而下,形不成积雪。雪花一落到地上就会发生变化,随着外界条件和时间的变化,雪花会变成完全丧失晶体特征的圆球状雪,称之为粒雪,积雪变成粒雪后,随着时间的推移,粒雪的硬度和它们之间的紧密度不断增加,大大小小的粒雪相互挤压,紧密地镶嵌在一起,其间的孔隙不断缩小,以致消失,雪层的亮度和透明度逐渐减弱,一些空气也被封闭在里面,这样就形成了冰川冰。冰川冰最初形成时是乳白色的,经过漫长的岁月,冰川冰变得更加致密坚硬,里面的气泡也逐渐减少,慢慢地变成晶莹透彻,带有蓝色的水晶一样的老冰川冰。冰川冰在重力作用下,沿着山坡慢慢流下(当然流的速度很慢),就形成了冰川。冰川的分类按照冰川的规模和形态, 冰川分为大陆冰盖 ( 简称冰盖)和山岳冰川(又称山地冰川或高山冰川)。山岳冰川主要分布在地球的高纬和中纬山地区。其类型多样,主要有悬冰川、冰斗冰川、山谷冰川、平顶冰川。大陆冰盖主要分布在南极和格陵兰岛。山岳冰川则分布在中纬、低纬的一些高山上。全世界冰川面积共有l500多万平方公里,其中南极和格陵兰的大陆冰盖就占去1465万平方公里。因此,山岳冰川与大陆冰盖相比,规模极为悬殊。巨大的大陆冰盖上,漫无边际的冰流把高山、深谷都掩盖起来,只有极少数高峰在冰面上冒了一个尖,辽阔的南极冰盖,过去一直是个谜,深厚的冰层掩盖了南极大陆的真面目。科学家们用地球物理勘探的方法发现,茫茫南极冰盖下面有许多小湖泊,而且这些湖泊里还有生命存在。我国的冰川都属于山岳冰川。就是在第四纪冰川最盛的冰河时代,冰川规模大大扩大,也没有发育为大陆冰盖。以前有很多专家认为,青藏高原在第四纪的时候曾经被一个大的冰盖所覆盖,即使现在国外有些专家仍持这种观点。但是经过考察和论证,我国的冰川学者基本上否定了这种观点。按照冰川的物理性质(如温度状况等)分为:①极地冰川,整个冰层全年温度均低于融点;②亚极地冰川,表面可以在夏季融化外,冰层大部分低于融点;③温冰川,除表层冬季冰结外,整个冰层处于压力融点。极地冰川和亚极地冰川又合称冷冰川,多分布南极和格陵兰。温冰川主要发育在欧洲的阿尔卑斯山、斯堪的纳维亚半岛、冰岛,阿拉斯加和新西兰等降水丰富的海洋性气候地区。除了冰体内部的力学、热学相互作用外,冰川作用还表现在它对地表的塑造过程,即冰川的侵蚀、搬运与堆积作用。

冰川是一种巨大的流动固体,是在高寒地区由雪再结晶聚积成巨大的冰川冰,因重力这主要因素使冰川冰流动,成为冰川.冰川作用包括侵蚀、搬运、堆积等作用,这些作用造成许多地形,使得经过冰川作用的地区形成多样的冰川地貌.此外,冰川所含的水量,占地球上除海水之外所有的水量的97.8%.据认为,全世界存在有多达70,000至200,000个冰川. [编辑本段]冰川的地貌 雪线:一个地方的雪线位置不是固定不变的.季节变化就能引起雪线的升降,这种临时现象叫做季节雪线.只有夏天雪线位置比较稳定,每年都回复到比较固定的高度,由于这个缘故,测定雪线高度都在夏天最热月进行.就世界范围来说,雪线是由赤道向两极降低的.珠穆朗玛峰北坡雪线高度在6000米左右,而在南北极,雪线就降低在海平面上.雪线是冰川学上一个重要的标志,它控制着冰川的发育和分布.只有山体高度超过该地的雪线,每年才会有多余的雪积累起来.年深日久,才能成为永久积雪和冰川发育的地区. 粒雪盆:雪线以上的区域,从天空降落的雪和从山坡上滑下的雪,容易在地形低洼的地方聚集起来.由于低洼的地形一般都是状如盆地,所以在冰川学上称其为粒雪盆.粒雪盆是冰川的摇篮.聚积在粒雪盆里的雪,究竟是怎样变成冰川冰的呢?雪花经过一系列变质作用,逐渐变成颗粒状的粒雪.粒雪之间有很多气道,这些气道彼此相通,因此粒雪层仿佛海绵似的疏松.有些地方的冰川粒雪盆里的粒雪很厚,底部的粒雪在上层的重压下发生缓慢的沉降压实和重结晶作用,粒雪相互联结合并,减少空隙.同时表面的融水下渗,部份冻结起来,使粒雪的气道逐渐封闭.被包围在冰中的空气就此成为气泡.这种冰由于含气泡较多,颜色发白,容重约为0.82~0.84克/立方厘米,也有人把它专门叫做粒雪冰.粒雪冰进一步受压,排出气泡,就变成浅蓝色的冰川冰.巨厚的冰川冰在本身压力和重力的联合作用下发生塑性流动,越过粒雪盆出口,蜿蜒而下,形成长短不一的冰舌.长大的冰舌可以延伸到山谷低处以至谷口外.发育成熟的冰川一般都有粒雪盆和冰舌,雪线以上的粒雪盆是冰川的积累区,雪线以下的冰舌是冰川的消融区.二者好像天平的二端,共同控制着冰川的物质平衡,决定着冰川的活动.雪线正好相当于天平的支点. 冰斗:在河谷上源接近山顶和分水岭的地方,总是形成一个集水漏斗的地形.当气候变冷开始发育冰川的时候,这种靠近山顶的集水漏斗,首先为冰雪所占据.冰雪在集水漏斗中积累到一定程度,发生流动而成冰川.冰川对谷底及其边缘有巨大的刨蚀作用,它象木匠的刨子和锉刀那样不断地工作,原来的集水漏斗逐渐被刨蚀成三面环山、宛如一张藤椅似的盆地形伏.这种地形叫做冰斗.冰斗大多发育在雪线附近的高程上. 一般山谷冰川,往往爬上冰坎,才能看到白雪茫茫的粒雪盆.当冰川消失之后,这样的盆底就是一个冰斗湖泊.高山上常常可以见到冰斗湖,它们有规则地分布在某个高度上,代表着古冰川时代的雪线高度. 冰碛:水冻结成冰,体积要增加9%左右.当融化的冰雪水在晚上重新在岩石裂缝里冻结时,对周围岩体施展着强大的侧压力,压力最大可达2吨/平方厘米.在这样强大的冻胀力面前不少岩石都破裂了.寒冻风化作用不仅在山坡裸露的地方进行,在冰川底床也能进行.这是因为冰川底床有暂时的压力融水,融水渗入谷底岩石裂缝里,冻结时也产生强大的冻胀力.寒冻风化作用不停地在山坡上和冰川底床制造松散的岩块碎屑,山坡上的碎屑在重力作用下滚落到冰川上,底床里的碎屑更容易被冰川挟带着一起流动.冰川挟带的碎石岩块通称为冰碛.冰川表面的岩石碎块称为表碛,冰川内部的叫内碛,冰川底部的叫底碛,冰川两侧的是侧碛.侧碛靠近山坡,碎石岩块的来源丰富,因而侧碛又高又大,象左右二道夹峙着冰川的巍巍城墙.到冰舌前端,二条侧碛大多交汇在一起,连成环形的终碛.终碛象高大的城堡,拱卫着冰川,攀登冰川的人,必须首先登临终碛,才能接近冰川.我国西部不少终碛高达二百余米.并不是所有冰川都有终碛的,前进迅速和后退迅速的冰川都没有终碛,只有冰川在一个地方长期停顿时,才能造成高大的终碛.两条冰川汇合时,相邻的两条侧碛合为一条中碛.树枝状山谷冰川表面中碛很多,整个冰川呈现黑白相间的条带状.冰碛是冰川搬运和堆积的主要物质,也是冰川改变地球面貌的证据之一. 冰川年轮:粒雪盆中的粒雪和冰层大致保持平整,层层迭置.每一年积累下来的冰层,在冰川学上叫做年层.冬季积雪经夏季消融后,形成一个消融面,消融面上污化物较多,所以也叫做污化面.污化面是划分年层的天然标志.有了年层,冰层就能像树轮一样被测出年龄来.由于冰川在形成的时候封存了一些空气和尘埃,冰川学家能够从中提取气泡和尘埃分析当时的气候. 冰面湖:冰面湖的形成主要有三种形式.一种是冰川上的冰下河道融蚀冰川,产生巨大的洞穴或隧道,洞穴顶部塌陷,便形成较深较大的长条形湖泊.一种是冰川低陷处积水,在夏季产生强烈的融蚀作用而形成的.另外,冰川周围嶙峋的角峰,经常不断地崩落下岩屑碎块.如果较大体积的岩块覆盖在冰川上,引起差别消融,就能生长成大小不等的冰蘑菇.如果崩落的岩块较小,在阳光下受热增温就会促进融化,结果岩块陷人冰中,形成圆筒状的冰杯.冰杯形成速度很快,在冰面上形成大大小小的积水潭,在夏天消融期间,冰面积水温度较高,有时竟达到5℃.因此积水的融蚀作用强烈,能把蜂窝状的冰杯逐渐融合一起,形成宽浅的冰面湖泊.冰面湖给冰川景色增添了更为绚丽多彩的风光.夏天,每当朝日初升或夕阳西下的时候,碧瓤瓤的湖面上霞光万道,灿烂夺目. 冰洞:夏季,冰川经常处于消融状态中.冰川的消融分为冰下消融、冰内消融和冰面消融三种.地壳经常不断向冰川底部输送热量,从而引起冰下消融.不过冰下消融对于巨大的冰川体来说,是微不足道的. 当冰面融水沿着冰川裂缝流入冰川内部,就会产生冰内消融.冰内消融的结果,孕育出许多独特的冰川岩溶现象,如冰漏斗、冰井、冰隧道和冰洞等(我们知道云南的石林是由喀斯特地貌形成的,由冰内消融引起的冰川地貌很像喀斯特地貌,冰川学家称这种冰川形态为喀斯特冰川). 冰钟乳:冰川上的融水,在流动过程中,往往形成树枝状的小河网,时而曲折蜿流,时而潜人冰内.在一些融水多面积大的冰川上,冰内河流特别发育.当冰内河流从冰舌末端流出时,往往冲蚀成幽深的冰洞.洞口好像一个或低或高的古城拱门.从冰洞里流出来的水,因为带有悬浮的泥距沙,象乳汁一样浊白,冰川学上叫冰川乳.当冰川断流的时候,走进冰洞,犹如进入一个水晶宫殿.有些冰川,通过冰洞里的隧道,一直可以走到冰川底部去.冰洞有单式的,有树枝状的,洞内有洞.洞中冰柱林立,冰钟乳悬连,洞璧的花纹十分美丽.有的冰洞出口高悬在冰崖上,形成十分壮观的冰水瀑布. 冰塔:冰面差别消融产生许多壮丽的自然景象,如冰桥、冰芽、冰墙和冰塔等.尤其是冰塔林,吸引了不少人的注意.珠穆朗玛峰和希夏邦马峰地区的很多大冰川上,发育了世界上罕见的冰塔林.一座又一座数十米高的冰塔,仿佛用汉白玉雕塑出来似的,它们朝天耸立在冰川,千姿万态.有的像西安的大雁塔、小雁塔的塔尖,有的像埃及尼罗河畔的金字塔,有的像僵卧的骆驼,有的又像伸向苍穹的利剑. 冰蘑菇:冰川周围嶙峋的角峰,经常不断地崩落下岩屑碎块.如果崩落的岩块较小,在阳光下受热增温就会促进融化,结果岩块陷人冰中,形成圆筒状的冰杯,进而形成冰面湖.如果较大体积的岩块覆盖在冰川上,引起差别消融,当周围的冰全部融化了,而大石块因为遮住了太阳辐射,其下的冰没有融化,就能生长成大小不等的冰蘑菇.

冰川谷的横剖面呈U形,那是因为冰川展宽的结果. 冰川谷是冰川地貌的一种,冰川地貌的形成是冰川运动的原因,冰川运动和流水相似,和流水地貌联系起来,就好理解了.只是冰川运动速度要比流水慢的多.

相关百科
热门百科
首页
发表服务