职称论文百科

等离子体期刊投稿

发布时间:2024-07-04 06:43:06

等离子体期刊投稿

建国以来,等离子体所承担着国家发改委、科技部、国家基金委和中国科学院等多项重大科研项目,获得科研成果200多项,其中重要成果105项。等离子体所依靠自己的力量先后建设了常规磁体托卡马克装置HT-6B和HT-6M及中国第一个圆截面超导托卡马克装置HT-7;2006年,世界上第一个非圆截面全超导托卡马克EAST装置又在等离子体所自主建成,EAST成功建设被国际聚变界评价为:“是全世界聚变工程的非凡业绩,是全世界聚变能开发的杰出成就和重要里程碑”,该重大成果荣获2008年度国家科学技术进步奖一等奖,入选为2006“中国十大科技进展”和“中国基础研究十大新闻”。等离子体所在与高温热核聚变等离子体物理及工程研究密切相关的等离子体理论与实验、反应堆技术、大功率电源技术、计算机自动控制与数据采集处理技术、高真空技术、低温制冷技术、低温超导和高温超导技术、特种材料技术、大型微波加热及电流驱动等学科的研究成绩斐然,积聚了学科不一的综合人才队伍。已建成的多套等离子体物理诊断系统、2兆瓦波加热系统、2兆瓦波驱动电流系统、总功率达20万千瓦的交直流脉冲电源系统、110千伏变电站、中国最大的2千瓦液氦制冷系统、超高真空系统、20万高斯稳态混合磁体、先进的计算机控制和数据采集及处理系统、大型超导磁体生产和测试系统等先进设施,构建成全面系统的从事等离子体物理和聚变工程及技术研发的先进平台。离子束生物学工程是等离子体所科研人员开创的物理学与生物学交叉的新的研究领域,现已形成一门新兴的交叉学科分支——离子束生物工程学。该学科主要研究自然界低能离子辐射对进化和健康的影响,基于离子束和单离子束细胞精确定位照射平台,研究离子束、射线束与生物体相互作用机理。离子束生物工程技术己在工业生物技术、农业、环境健康等领域推广应用,获得了显著的社会效益和经济效益,多次获得国家级重要奖项,并成为这一领域的“leading team”。太阳能材料与工程研究先后承担了国家重点基础研究973计划、中科院知识创新工程等多个项目,染料敏化太阳电池及光电功能材料和高分子结晶领域的研究,取得了多项具有国际先进的科研成果,为发展具有中国特色的太阳能事业做出积极的贡献。结合建设创新型国家的发展纲要要求,等离子体所确立了低温等离子体技术在环境、新能源、化工、新材料等领域的应用研究,取得了一系列具有自主知识产权、可对国民经济产生重要作用的高新技术成果。等离子体所编辑出版的《Plasma Science and Technology》是国内等离子体专业唯一的英文版学术期刊,已被SCI、SA等国际重要数据库收录。 等离子体在催化中的应用主要集中在 : 低温等离子体催化甲烷转化 等离子体催化共同作用下CO2氧化低碳烷烃反应 低温等离子体催化处理废气,如VOCs

是物理类的一个比较权威的杂志,主要发表的内容为软物质和流体相关的,影响因子大概在2多一些

等离子体为啥可以消灭细菌病毒

发表等离子论文

等离子体纳米粒子(例如金,银和铝粒子)展现了独特的光学性质,例如局部表面等离子体共振(LSPR)。对等离子体纳米粒子进行特定的组织可以使调控等离子体相互作用成为可能,因而可以调控其光学性质。目前,已经有一些报道将等离子体纳米粒子组装为各种类型的结构,例如纳米粒子簇,链,微球以及阵列等。在各种等离子体纳米粒子类型及组合方式中,纳米粒子的二聚体簇显示出较强的光学近场耦合,并形成热点,同时电磁场集中在该热点,这些性质都依赖于纳米粒子的相互作用距离,方向以及纳米粒子的尺寸,形状和成分。这些性质也展现了等离子体纳米粒子二聚体簇在表面增强拉曼谱(SERS)检测,无掩模超高分辨率光刻,增强化学合成以及纳米像素显示等方面的巨大应用潜力。现有的使等离子体纳米粒子二聚的策略包括电磁相互作用诱导的组装,位点功能化的组装方法,DNA折叠模板指导的组装以及定量反应控制的纳米粒子键合策略等。但是这些方法组装得到的等离子体纳米粒子二聚体会被分散在溶液相中并使溶剂挥发后随机无规律的分布在基底表面。然而,很多等离子体纳米结构都需要有序的排列才能满足特定的需求。 然而,目前构建具有亚波长分辨率和任意模式的等离激元二聚体阵列仍然非常具有挑战性。 这是由于这种等离子体纳米粒子的阵列的构建高度依赖于自上而下技术,例如使用电子束蚀刻,光刻等方法,尽管这些方法具有较高的精密度,但是仍具有较大的限制。另一方面,自下而上的组装方法使用纳米级化学图案或拓扑凹槽作为模板,可以在基板上组织合成等离激元纳米粒子。但是这种方法需要额外的蚀刻步骤,并且限制了二聚体的三维定向。

为此, 复旦大学的 聂志鸿教授 团队发展了 一种通用的基于扫描的策略来有效构筑具有可控方向的等离激源纳米粒子准3D图案排列,这种纳米粒子阵列可以用于信息加密。 该结果以题为“Laser-Scanning-Guided Assembly of Quasi-3D Patterned Arrays of Plasmonic Dimers for Information Encryption”发表在《 Advanced Materials 》上。

文章亮点:

1. 该策略结合了自下而上的方法和自上而下的方法。该方法高度灵活,可从不同大小和形状的纳米粒子形成高分辨率的等离子二聚体模式;

2. 可以精确调整Z轴方向,粒子间间距以及等离子二聚体的纳米颗粒尺寸和形状,从而能够调节二聚体阵列的耦合共振;

3. 该种策略构建的图案化的二聚体阵列可以用于信息加密中,其等离子体颜色可以通过激光照射移除和重新覆盖纳米粒子周围的高分子涂层被重复显示和擦除。

投稿模板:

单篇报道: 上海交通大学周涵、范同祥《PNAS》:薄膜一贴,从此降温不用电!

系统报道: 加拿大最年轻的两院院士陈忠伟团队能源领域成果集锦

周怀北是国际软件学院的院长。从美国留学回来,本科毕业于武汉大学无线电物理系。后来出过年博士,做过一段时间生物方面的研究。现在主要从事微电子和软件方面的研究。据说他是武大花年薪100w挖过来的特聘教授。我们宿舍一个人是他的研究生,跟着他老有钱。每个月补贴很多。

在向火星移民的伟大过程中,第一个问题就是无穷无尽的氧气供应。如果没有无止境地氧气供应,那么火星人类定居点的科学成本将从对人类火星移民的限制中大幅增加。 “嗯,你知道为什么超过96%的火星大气成分是二氧化碳吗?”一位欧洲科学家问道。 “那是因为火星已经为人类移民到火星做了重要的物质准备!”来自三所欧洲大学的火星移民研究小组最近在英国的《等离子体科学和技术》上发表了一篇论文,他们已经找到了在火星上实现氧气自给自足的最终解决方案。人类可以通过智能机器人首先到达火星,然后利用等离子技术将火星中的二氧化碳直接转化为氧气,从而彻底解决火星氧气供应的问题。 来自欧洲研究小组的专家表示,火星上的大气压力和温度是应用非热(或非平衡)等离子体辅助以有效产生氧气的理想选择。巧妙的是,火星大气中的二氧化碳含量高达96%。通过等离子体分解产生氧气是可行的,似乎火星有一天特别准备让人类移民到火星的想法,这真是太棒了。不仅如此,欧洲研究团队的专家还表示,低温等离子体是二氧化碳分解的最佳媒介。它不仅将二氧化碳分解为氧气,还分解一氧化碳。至于一氧化碳,我们知道它是火箭用于火箭复合燃料重要的组成部分。因此,该技术可为人类火星探测提供双重解决方案。 在了解了这项重要的技术突破后,美国宇航局科学家称这一突破是一项非凡的技术发明通过火星当地资源获取氧气和火箭燃料可以大大减轻星际物流的压力,从而大大降低勘探成本。似乎随着火星移民关键技术的突破,人类移民火星的日子真的越来越近了。地球上的居民一定期待着它,期待着这个美好的一天的到来。真希望在我们有生之年,能过到火星上度一次假。

这种文章少。估计收钱多,发表慢。

离子期刊投稿

近年来,限域空间纳米流体传质领域取得显著进展,特别是一维碳纳米管以及二维纳米结构组成尺寸均一的纳米及次纳米尺度离子通道,孔隙内部微观结构和表面化学特性更为可控,是制备高功率纳米流体离子导体的理想材料结构体系。受自然界独特的微观结构的启发,将二维材料通过简单的湿法纺丝重新组装成具有纳米尺度间隙的纤维结构。重组后形成的二维材料层与层之间的限域空间可以充当分子和离子运输的二维通道。Ti 3 C 2 T x 作为二维材料MXene中发展最成熟的材料之一,具有很多与氧化石墨烯结构类似的薄层二维结构,丰富的表面官能团以及极性溶剂高分散等特性,还具有氧化石墨烯不具备的高导电性,是制备高导电纳米流体纤维的理想材料。但是由于Ti 3 C 2 T x 较大的长径比以及柔性片层结构,在湿法纺丝过程中片层易褶皱、堆叠,造成结构缺陷,显著降低纤维力学、导电特性,阻碍离子在纤维结构内部传导,从而制约了Ti 3 C 2 T x 纤维在传感、储能、制动等多功能方面的应用 探索 。

Ti 3 C 2 T x 分散液在外界剪切力作用下,可形成定向液晶结构,可借助湿法纺丝过程形成二维片层的取向排布结构。 苏州大学 邵元龙教授团队 借助这一原理,控制湿法纺丝过程的喷丝口断面结构以及牵伸速率,诱导Ti 3 C 2 T x 片层形成取向结构,并通过Mg 2+ 离子交联作用,最终制备得到具有高取向度结构的Ti 3 C 2 T x 纤维,实现力学性能,导电性能,离子传导性能以及电化学性能的提升。相关工作以“Assembly of Nanofluidic MXene Fibers with Enhanced Ionic Transport and Capacitive Charge Storage by Flake Orientation”发表在《 ACS Nano 》上。

这项研究工作中Ti 3 C 2 T x 纤维取向度大幅度的提高主要依赖于 喷丝口的设计以及牵伸过程 。 受 流体定向 纺丝过程的启发 ,作者设计不同的喷丝口来探究Ti 3 C 2 T x 片层在流动过程中的排列情况。当处于液晶态的Ti 3 C 2 T x 纤维经过 高度纵横比的扁平状流体通道时,受到的剪切力在横向上显著增强;在水平剪切力引导下, Ti 3 C 2 T x 片层沿着纤维轴向定向排列。与圆状通道相比,扁平状流体通道有效解决了了剪切力梯度变化问题,减少了纤维中片层褶皱,孔洞等缺陷。为了提升纤维的取向度,作者对所制备的Ti 3 C 2 T x 初生凝胶纤维进行 牵伸处理 ,经过 牵伸后的纤维内部片层排列更加紧密,消除了片层间不规则的孔隙 ,这种取向结构将加速电子传输,减少电荷转移电阻和电能损失,经过WAXS测试纤维的 取向度高达0.86 。与此同时,作者采用 离子交联 进一步提升Ti 3 C 2 T x 纤维的力学性能。镁离子进入层间后与Ti 3 C 2 T x 片层 表面含氧官能团产生静电相互作用,减弱片层间双电层的厚度,增强层与层之间相互作用力 。经过交联之后的纤维力学强度高达 118MPa ,电导率提升到7200 S cm –1 ,实现优异的电子传导。通过红外热成像仪对纤维导热性能进行测试,发现 Ti 3 C 2 T x 纤维在低功率下能够快速升温到108 。

Ti 3 C 2 T x 取向纤维的离子传导及电化学特性

高定向的Ti 3 C 2 T x 纤维在保持高机械性能和电子传导的同时,还能够实现优异的离子传导。与无序片层组装成的纤维相比, 定向纤维内部片层能够互相连接构成连续的层状通道 ,离子在其中的传输路径更短,传输速率更高 。当电解质被限制在纳米通道中时,电解质会表现出截然不同的性质。在比德拜长度更窄的纳米流体通道中,内壁上的表面电荷排斥单极离子并吸引反离子。这种单极离子传输可以使离子电导率提高几个数量级在1mM盐浓度下,高度定向的Ti 3 C 2 T x 纤维表现出9.7 10 4 S cm 1 高离子电导率。有效的离子输运电导率还可以促进离子在Ti 3 C 2 T x 薄片表面的快速输运,形成电双层,提高功率密度和速率能力。定向Ti 3 C 2 T x 薄片可以与密集填充的薄片形成受限的纳米流态离子传输通道,在这种电解质离子约束场景下,局部库仑有序排列被打破,层状受限孔可以有效地用于电荷存储。对Ti 3 C 2 T x 片层进行定向,同时使层状孔适应电解质离子的大小,这是一种很有前途的策略,可以最大限度地提高比电容,高达1360 F cm 3 。

小结

作者通过微流体通道控制二维片层材料取向排列,构筑快速离子传输通道;采用离子交联进一步提升纤维各项性能,从而制备出优异的Ti 3 C 2 T x 纳米流体取向纤维,有望在人工纤维组织、生物传感器分析和神经电子学中得到广泛的应用。

团队介绍:

邵元龙 ,苏州大学能源学院特聘教授,博导,北京石墨烯研究院石墨烯生物质纤维课题组组长。2016年获得东华大学材料加工工程专业博士学位,博士导师为李耀刚教授和王宏志教授,期间于2013-2015年于美国加州大学洛杉矶分校Richard B. Kaner教授课题组博士联合培养。2016-2018年剑桥大学石墨烯中心从事博士后研究,合作导师为Andrea C. Ferrari教授和Clare P. Grey教授。2018-2019年于沙特阿卜杜拉国王 科技 大学任职研究科学家,合作导师为Vincent C. Tung教授。2019年9月,加入苏州大学能源学院,任特聘教授。迄今以第一作者、通讯作者在 Nat. Rev. Mater. , Nat. Commun. (2篇), Adv. Mater., Energy Environ. Sci., Adv. Energy Mater., ACS Nano (2篇) ,Adv. Funct. Mater., Mater. Horiz. (2篇)等国际知名学术期刊发表SCI论文26篇,他引4300余次,7篇被ESI收录为高被引论文(Top 1%),2篇被ESI收录为热点论文(Top 0.1%)主持国家自然科学基金,江苏省自然科学基金青年基金,国家重点实验室开放课题等多项科研项目。担任国际期刊《Frontiers in Chemistry》(影响因子3.782,中科院SCI化学2区)“Advanced Materials for Supercapacitors”专刊客座编辑。

李硕 ,2019年9月至今为苏州大学能源学院与材料创新研究院硕士研究生,导师为邵元龙教授。主要从事功能纤维器件相关研究。入学以来以第一作者在ACS Nano杂志上发表论文;荣获苏州大学研究生学业奖学金二、三等奖。

【课题组招聘】

招聘石墨烯及复合纤维方向博士后2-3名

招聘需求

1. 年龄原则上不超过 35 岁, 身心 健康 ,具有较高的思想道德素养、良好的团队合作精神和奉献精神;具有一定材料、化学领域的研究基础;有较强的英文阅读和写作能力;

2. 博士后要求具有国内外高校或者科研院所的材料、化学、物理等专业博士;

3. 具有纤维纺丝、柔性可穿戴器件、理论计算等相关研究背景人员,优先录取。

应聘材料:

1. 个人简历,包括基本信息、学习和科研经历、已有成果;

2. 代表论文电子版;

工作待遇

按照苏州大学统招博士后发放相关待遇,具体如下:

(一) 统招博士后人员聘期内的总薪酬由基本年薪和奖补金两部分构成。绩效评估优秀者的总薪酬为 100 万元,绩效评估良好者的总薪酬为 80 万元,绩效评估合格者的总薪酬为 60 万元。

1.基本年薪:20 万元(去除学校承担的 社会 保险和公积金之后的税前收入),按月发放。

2.奖补金:根据绩效评估结果按年度发放。

(二)对表现优异的博士后,合作导师将追加基本年薪,相关追加部分不计入 聘期内总薪酬,额外发放。

(三)提供 0.1 万元/月的租房补贴(不计入总薪酬)。

(四)在站期间获得国家博士后创新人才支持计划、博士后国际交流计划引进项目、博士后国际交流计划派出项目、香江学者计划、澳门青年学者计划、中德博士后交流项目等项目资助的,所获得的资助补贴不计入学校的总薪酬,另外叠加发放。

(五)在站期间获得的科研成果可按照学校规定享受学校科研成果奖励。

(六)在站期间可根据学校专业技术职务评聘相关规定参加专业技术职务任职资格评审。

(七)绩效评估优秀者,可优先推荐应聘校内教学科研岗位。

有意向者请将个人简历,以及代表作等相关信息发送到邮箱: 。

投稿模板:

单篇报道: 上海交通大学周涵、范同祥《PNAS》:薄膜一贴,从此降温不用电!

系统报道: 加拿大最年轻的两院院士陈忠伟团队能源领域成果集锦

首先,可以通过百度、谷歌、360、搜狗等搜索引擎来检索目标期刊杂志。

最常用的方式,莫过于使用“期刊名”+“投稿方式”或者“联系电话”等方式来查找相关期刊的联系信息。这种方式的最大的好处就是可以查询到海量的目标期刊信息,我们可以经过筛选和不断的确认来最终定位我们的目标期刊。但这种方式的缺点是比较耗时费劲。

其次,中国知网、万方、维普等三大数据库平台不仅收录了大量的期刊杂志的全文,同时,也对收录期刊进行了整理和归类,部分期刊的联系方式可以在这些平台上找到。有的期刊如果找不到联系方式,可以在检索这类数据库时,使用组合查询。

例如“中国远程教育”+ "投稿"的形式,获取能查到期刊发布的投稿通知。此外,如果学校购买过知网的数据库,可以通过浏览目录页面的形式,找到相关期刊杂志的杂志封面、封底及目录页。具体请参见百度经验篇:投核心期刊的投稿指南。

这种方式的优点就是查到的信息准确,一般不要筛选,查到了就没有什么问题。

注意事项:

无论通过哪种方式查到了期刊的联系方式和投稿方式,当我们有幸被录用的时候,切不可掉以轻心。特别是投出后没有多久就收到录用通知,并且让我们几天之内就要汇款的时候,千万长个心眼,一定要找杂志社官方电话进行确认。

锂离子电池投稿期刊

成果简介

高容量硅 (Si) 被公认为高性能锂离子电池 (LIB) 的潜在负极材料。但是,放电/充电过程中的大体积膨胀阻碍了其面积容量。 本文,上海交通大学微纳米科学技术研究院张亚非教授课题组在《ACS Appl. Mater. Interfaces》期刊 发表名为“Binder-Free, Flexible, and Self-Standing Non-Woven Fabric Anodes Based on Graphene/Si Hybrid Fibers for High-Performance Li-Ion Batteries”的论文, 研究设计了一个柔性石墨烯纤维织物(GFF)为基础的三维导电网络,形成无粘合剂且自支撑的高性能锂离子电池的硅负极。

Si 颗粒被牢固地包裹在石墨烯纤维。起皱引起的大量空隙石墨烯在纤维中能够有效地适应锂化/脱锂过程中硅的体积变化。GFF/Si-37.5% 电极在 100 次循环后在0.4 mA cm –2的电流密度下表现出优异的循环性能,比容量为 920 mA hg –1。此外,GFF/Si-29.1% 电极在 400 次循环后在0.4 mA cm –2的电流密度下表现出 580 mA hg –1的优异可逆容量。GFF/Si-29.1% 电极的容量保持率高达 96.5%。更重要的是,质量负载为 13.75 mg cm –2的 GFF/Si-37.5% 电极实现了 14.3 mA h cm –2的高面积容量,其性能优于报道的自支撑 Si 阳极。这项工作为实现用于高能 LIB 的无粘合剂、柔性和自立式 Si 阳极提供了机会。

图文导读

图 1. (a) 自立式 GFF/Si - X电极制造过程示意图。(b)醋酸溶剂中的 GOF/Si、(c)GOFF/Si 和(d)GFF/Si- X 的数码照片,揭示了其柔韧性。(e) GFF/Si-37.5% 电极冲压成面积为 1.12 cm 2 的小圆盘。

图 2. (a) GFF/Si-37.5% 低倍率的 SEM 图像和 (b) 部分放大的 SEM 图像,揭示了两个独立的纤维在两者相遇的点合并为一个。(c,d) GFF/Si-37.5% 表面和横截面的 SEM 图像。

图 3. GFF/Si- X电极在 0.4 mA cm –2电流密度下的电化学特性;所有比容量均以自立式电极的总质量为基础计算。(a) 第一次循环充电/放电电压曲线。(b) ICE 的比较分析。(c) 循环性能比较。(d) GFF/Si-37.5% 电极在 0.2 mV s –1扫描速率下的CV 测量值。(e) GFF/Si-37.5% 的倍率性能。(f) 具有不同阳极重量的 GFF/Si-37.5% 电极的面积容量

图 4. GFF/Si-HI、GFF/Si-37.5% 和 GFF/Si-800 C 电极的循环性能比较

图 5. GFF/Si-HI、GFF/Si-37.5% 和 GFF/Si-800 C 的成分分析:(a) XRD 图,(b) 拉曼光谱,(c) GFF/Si-的 TGA 曲线N 2气氛中的HI ,和 (d) FT-IR 光谱。

图 6. (a,b) GFF/Si-37.5% 电极在循环前后的拉曼光谱和 XRD 图案。GFF/Si-37.5% 电极在 100 次放电/充电循环后的形态研究:(c,d) 锂化/脱锂后低倍和高倍率的 SEM 图像;插图是循环后 GFF/Si-37.5% 电极的数码照片;(e,f) TEM 和 HRTEM 图像;插图是低倍放大的 SAED 图像;(g) 元素映射。

小结

在这项研究中,基于 GFF 的 3D 导电网络被设计用于无粘合剂和自立式 Si 阳极。GFF 结构在放电/充电循环期间成功地抑制了 Si 的体积膨胀。提出了一种新策略,用于制造用于高性能 LIB 的无粘合剂、柔性和自立式 Si 阳极。

文献:

那这个就多了。目前锂离子电池的文章主要发表在电化学、材料、化学领域的期刊,关于计算的会发表在物理、物理化学方面的期刊上面。做产品的也会发表在一些工程类的期刊上。锂电池文章比较多的期刊有:Elsevier旗下的,Journal of Power Sources,Electrochimica Acta,Electrochemistry Communications,Nano Energy,Solid State IonicsJournal of The Electrochemical SocietyWiley旗下的 Advanced Energy MaterialsRSC的 Energy & Environmental ScienceNature 子刊 Nature Energy这些期刊里面都会有大量锂电池的文章。其他化学、材料、纳米类的期刊,比如 JACS,Angewandte Chemie,Nature Materials,Nature Chemistry, Advanced Materials, Nano letters, ACS Nano 等也会有锂电池方面的杂质,所占比例要比电化学类的期刊要少。建议少看低水平文章,误国误民。

钠离子电池投稿期刊

导读: 据外媒消息,锂硫电池是一种二次电池,也就是可充电电池。和现在广泛使用钴、镍和其他高价稀土元素(如正极材料)的锂离子电池不同,锂硫电池使用硫这一最丰富的元素,锂的低原子量和硫中等的原子量意味着锂硫电池相对较轻(大约是水的密度),这使得他的能量密度可以轻松达到550Wh/kg。

一般来说,锂离子电池的能量密度可以达到150-260Wh/kg。而最近刷屏的福建猛狮花两年时间研发的圆柱18650-3800mAh可以达到290Wh/kg。锂硫电池可以达到锂离子电池的两倍。

锂硫电池因为不用贵重金属,其制造成本更低,被认为是取代锂离子电池的有希望的候选者。

但是, 当锂在充电或放电过程中与硫接触时,就会产生所谓的“多硫化锂”作为中间产物。多硫化锂在用于锂硫电池的常用电解质中具有很高的溶解性,发生穿梭现象,从而导致正极材料在反复充电或放电后损失。多硫化物穿梭被认为是阻碍锂硫电池商业化的最大障碍,因为这个问题与电池的寿命和安全性退化直接相关。

在2017年位于英国牛津郡的OXIS Energy向公众展示了具有高达 1,500 次充电和放电循环的锂硫电池。但到现在为止,还没有一个是商业可用的报道。

公众号 “康桥电池能源CamCellLab”的消息,近日,韩国电子技术研究院 (Korea Electrotechnology Research Institute,KERI) 为了解决上述难题,采用活性炭和磷。活性炭纤维由于其高吸收性能广泛用于多种类型的过滤器和漂白剂。研究小组将活性炭作为涂层材料涂覆在隔膜上,用来捕获在充电或放电循环时产生的多硫化锂。

此外, 研究人员在碳材料中使用了高吸收性磷进行化学捕获。这种双重捕获方法有助于避免由于多硫化锂的穿梭效应而导致锂硫电池的性能下降。该团队在硫阴极上使用高强度、高导电性和柔韧性的碳纳米管材料来代替现有的集流体(以增加能量密度)。而这些都是在确保耐久性和弯曲性的条件下进行的。

通过这种工艺开发,韩国电子技术研究院的锂硫电池具有400 Wh/kg的能量密度。最引人注目的是这种锂硫电池的产业化机会很高,因为它结合了高能量密度、性能安全(寿命)、灵活性(持续时间)以及轻质和低成本等现有优势。

在需要轻量化、长续航的领域,锂硫电池的优势很突出,预计将广泛应用于航天、飞行 汽车 、无人机等。

作为对其出色工作的认可,世界知名科学期刊small将这一研究成果进行了封面报道。知名科学期刊small在2005年创立,一开始是月刊,在2009年改为双周刊,2015年改为周刊。他涵盖先进材料包括先进功能材料和先进工程材料等的最新研究。2020年该期刊的影响因子为13.28。

领导这一研究成果的韩国电子技术研究院朴俊宇(Jun-Woo Park) 博士对这一成果被认可非常满意,他说道:“像韩国这样的对稀土元素和其他资源稀缺国家而言,锂硫电池是一项重要技术,因为他使用丰富且廉价的硫和碳材料。

我们计划 将这一研究成果与韩国电子技术研究院开发并拥有的“大规模合成固体电解质”技术相结合,以确保下一代固态锂硫电池的原始技术。”

公众号 “康桥电池能源CamCellLab”认为,锂硫电池的产业化进程是夹在一些先进电池中间的。例如采用硅碳的锂离子电池和钠离子电池,他们的产业化进度明显很快。而下一代电池的明珠固态电池面临的问题更多,产业化进程还需要5-10年时间。

而锂硫电池夹在这些之中。固态电池的一种路线是采用硫化物作为固态电解质,他也和锂硫电池有循环问题。正如朴俊宇博士所说,把固态电解质和锂硫电池技术相结合,会对现有锂离子电池独霸市场的局面有最大的冲击。

在国外的特斯拉安全事故频发,国内的电动车市场百花齐放的环境下,5月21日,国内电动车电池企业第一梯队,宁德时代忽然宣布,将于7月前后发布钠电池,据称可以解决纯电动车的所有传统缺陷。

新闻一经发布,旋即引发讨论浪潮, 什么是钠电池?

自从40年前,锂电池被约翰 古迪纳夫发明以来,它的地位就变得越来越重要,它是智能手机与电动 汽车 的标配,国内也涌现了很多与锂相关的明星企业,比如做锂电池的宁德时代,提供锂矿资源的赣锋锂业等等。

但是,在企业盛宴之下,暗藏着危机,锂资源在地球上十分稀少,而且还在不断涨价。

最近的数据显示,碳酸锂现货均价89000元/吨左右,较年初上涨约67%,氢氧化锂现货均价为89500元/吨左右,较年初上涨达80%,相关方解释说,涨价原因主要是由于电动 汽车 和储能电池,这两大块市场都在迅猛增长。

而且,中国本土并没有大规模锂矿,全球70%左右锂资源集中在南美洲,我国80%的锂资源依靠进口。在未来,锂资源也面临着像石油资源一样枯竭、开采难、被卡脖子的危险。

提取锂的工艺也比较复杂,从盐湖里提取锂,需要用到萃取、电渗析膜分离等技术,工艺繁琐而且成本很高,科学家们一直想要改变这一缺点。

但从1980年出现钴酸锂电池技术,到1982年出现锰酸锂技术,到1991年索尼推出第一款商用锂电池,再到1997年提出磷酸铁锂技术之后至今,20年的时间过去了,再没有新的锂电技术出现。

锂电池使用寿命与能量密度的提高,正在变得越来越困难,所以寻找新的替代技术有了天然的需求。

有的,它就是本期主角钠离子电池,钠是地球上仅次于锂的第二轻的金属元素,从元素周期表中来看,钠与锂属于同一族元素,它们的化学性质相似。

因此理论上,把钠像锂一样加工后,用来做电池的难度较小,但是,钠的原子半径比锂要大很多,钠原子比锂原子要多8个电子,长得很胖,一旦长胖,就会有很多麻烦。

比如它不能像锂那样嵌入到石墨中,身材的“胖”,让它比锂要重很多,使得同一单位质量的电池,储能就要比锂少,钠也有一个决定性的优点便宜。

我们吃的食盐里就有大量的钠,海水中也有非常多的钠,提取钠的成本比锂少多了,在市场上,作为锂电池原料的碳酸锂价格,每吨需要几万元,而作为钠离子电池原料的氯化钠的价格,每吨只要几千元。

这对于产业化来说是一个非常核心的优势,除开产业界最关心的成本,在钠离子电池相关研究方面,我国还是一个领跑者。

我们概念中的电池,分为 正极材料、负极材料、电解液 三个基本的组成部分。

而这些对钠电池来说都没有原则性的困难,它的原理和锂电池差不多,利用的是钠离子在正负极之间的嵌脱,在钠电池充电的时候,钠离子被通电了,就从正极跑出去,经过电解质嵌入负极,同时电子补偿电荷,经外电路供给到负极,保证正负极电荷平衡,放电时则相反,钠离子从负极逃出去,又跑回正极去了。

之前的研究重点,就集中在正负极的材料上,以钠离子电池的负极材料为例,可以做负极的材料有很多种,这方面一度是新电池技术最头疼的问题。

直到科学家们像碳芯电池一样,采用碳作为驱动介质,这一创举使得钠离子电池的能效,直接跃升到了锂离子电池的7倍。

此外,钠离子的液态记忆这项难题,也被我国科学家攻克,在卧虎藏龙的中科院物理所,胡勇胜研究员带着他的团队,开发出了当时最先进的低成本铜基正极材料,煤基碳负极材料和低盐浓度电解液。

其核心专利使得整个世界眼前一亮,征服了欧盟、美国乃至最严苛的日本,也有相关资料宣称,钠离子电池寿命超过10年,而锂离子电池的寿命只有3到4年。

另外,钠离子电池虽然沉,但反而更安全了,它很沉,意味着每克存储的能量更少,换言之,万一发生了爆炸,造成的杀伤比锂电池更小,很适合用在一些安全要求高的领域。

我国的专家还指出,由于钠离子电池和锂离子电池,在原理上并没有明显的差异,把锂离子电池的生产线设备和人员沿用下来,小规模改装一下,就能用于生产钠电池,这对于厂家也是件好事。

而钠电池的速度可谓超乎想象,仅用十分钟,剩余电量就能从20%飙到90%,不能漏夸的一点是,在使用钠电池的新能源 汽车 上,“暖气耗电50%”,“两个充电桩即可续航百公里”,等冬季里程缩水问题完全不会出现。

因为钠电池由于其优越的电解液稳定性,零下四十度依旧可以正常工作,即使是东北漠河老铁,也无需担心电动车忽然罢工。

最后,锂电池还有一个“杀手”,令无数开发人员闻之色变的过度放电,一旦锂电池过度放电,负极的碳极片结构就会变成危房,乃至出现坍塌,坍塌之后,无“家”可归的锂离子,就无法插入到负极。

而钠电池却允许彻底放电到0伏,对于需要储能的场景,简直是打瞌睡遇上枕头。

所以说,尽管有能量密度偏低这块短板,钠电池的价值仍然值得期待,而决定了它未来潜力的最重要原因,正是之前提了一嘴的 便宜 。

新能源 汽车 的一大卖点就是新

但实际上,主流锂电池所需要的锂,在地壳中含量仅为仅为0.0065%,就算这点锂元素全部被集中起来,没有一丝一毫浪费的全部生产电动车电池,也只够生产15亿个。

在能源争夺和分配中,大部分集中在南美洲的锂,显然不够“公平”,别的不说,光是玻利维亚几次摩擦,碳酸锂价格就成了过山车,而我国国内的锂提取技术,目前也没有规模化,80%的锂得靠澳大利亚提供,把定价权交给别人,总归没有握在自己手中安心。

而钠则完全可以打消这些顾虑,我们用数据说话,钠资源在地壳中元素储量约为2.64%,是锂元素的四百多倍,吃一碗倒一碗都绰绰有余。

当然,我们不提倡浪费,至于钠元素怎么买,那都不在我国考虑范围内,因为光是已经探明的钠盐储量,就有足足1.4万亿吨,当今世界的金属钠产能,也正在向我国转移。

爱开玩笑的观众可能会问,你是不是自己买了钠电池股票?

其实,不仅仅是电池老大宁德时代,深圳的华创电新,辽宁的星空钠电等多家企业,早就放出过要做钠电池的风声,说它会一举改弦更张,取代锂电池在新能源 汽车 界的地位,肯定还是夸张了。

但如果把它作为技术储备和补充,那是相当的可圈可点,而且,市面上也不仅仅是 汽车 。比如说,走性价比路线的磷酸铁锂电池,它的地位就岌岌可危了。

因为钠电池在充电速度上碾压全场,低温和安全方面也是大出风头,什么用户最在意这几点?

开“买菜车”的朋友

想想看,冬季的清晨,仅需几分钟充电,就能在菜市场成为速度最快的那位大侠,叫人如何不心动?

2017年,依旧是前文提到的胡勇胜研究员和他的团队,率先建成百吨级正、负极材料中试线,研制出能量密度为150 Wh/kg,循环寿命达3000周的钠离子电池,在他的实验室里,走出了全球首辆钠离子电池低速电动车,首座100kWh钠离子电池储能电站,且适合应用于可再生能源接入电网,及分布式储能等大规模储能领域。

这种大BOSS级别的研究,已是相当震撼人心!

令所有人都没想到的是,在中国制造方面没有最强,只有更强!

2018年12月,南京理工大学夏晖教授与团队合作,首创结构设计和调控方法,并在锰基正极材料研究方面取得重要进展,消息一出,学术界鼎鼎大名的nature communications,主动抛来橄榄枝。

我还是用一组数据来说明夏晖教授成果的含金量,这种正极材料制成的电极比容量,达到211.9毫安时每克,是市面上流通的锂电池正极材料的1.5倍,在充放电过程中,这种正极材料结构稳定无相变,体积变化仅为2%,循环充放电1000次后,比容量保持率高达94.6%,比电池行业公认标准80%的比容量保持率,足足高出14.6%,是当之无愧的领跑世界!

由此,一项项的科研成果,让几大券商的分析师也和我得出了相同的结论,几乎克服了纯电动车所有传统缺陷的, 钠离子电池,前途无量!

相关百科
热门百科
首页
发表服务