更全的杂志信息网

一种基于动压变化的火箭助推段弹道设计方法

更新时间:2016-07-05

0 引 言

为满足特定的技术验证目的,诸如新型热防护材料的考核验证,需要飞行器全程在大气层内高速飞行来创造需要的飞行环境。飞行器全程在大气层内高速飞行时,一方面主动段动压数值大,变化幅度大;另一方面,传统主动段一级弹道一次负攻角转弯下压的形式已不能满足飞行器全程大气层内飞行的要求。针对以上问题,根据飞行器的飞行特点,本文在弹道设计时采用基于动压变化的二次下压特殊低弹道形式,同时采用序列二次规划算法(Sequential Quadratic Programming,SQP),对基于动压变化的二次下压弹道进行优化设计,可以避免在大动压同时出现大攻角,为飞行器提供良好的飞行环境。通过与传统弹道设计方法的对比分析,验证了所提弹道设计方法在满足给定约束的情况下,减小了主动段最大动压,缩小了动压变化范围,具有较好的工程参考价值。

1 主动段弹道模型

选取变量mα,4t,cx1ϕ˙,cx2ϕ˙和射向角0A作为优化参数,因此,优化控制变量为

1.1 弹道计算模型

飞行器主动段运动过程是一个变质量飞行过程,其三自由度质心运动方程为[1]

式中 O为发射坐标系原点与发射点的连接点;x,y,z为飞行器在发射坐标系中的位置三分量;Ox轴为在发射点水平面内指向发射瞄准方向;Oy轴为垂直于发射点水平面指向上方;Oz轴与xOy面相垂直并构成右手直角坐标系; Vx, Vy, Vz 为飞行器在发射坐标系中的速度三分量; RO x, R O y, R Oz为发射点地心矢径在发射坐标系中的三分量; g x, gy, gz 为引力加速度在发射坐标系中的三分量;P为发动机推力;X,Y,Z分别为气动阻力、升力和侧向力;m为飞行器质量; m 0为飞行器初始质量;m˙为质量秒消耗量; GB为箭体坐标系至发射坐标系的转换矩阵; GV为速度坐标系至发射坐标系的转换矩阵;A为离心惯性力矩阵;B为哥氏惯性力矩阵。

1.2 飞行程序角设计

基金项目:国家自然科学基金(11372054)

飞行器全程在大气层中高速飞行时,主动段动压数值大,变化幅度大,为便于程序角设计,采用跟踪程序攻角的方式。同时在进行程序攻角设计时,为使飞行程序能反映动压及其变化情况,主要根据动压的变化情况进行设计。主动段程序攻角设计曲线见图1。

图1 主动段程序攻角与动压曲线 Fig.1 Curve of Attack Angle and Dynamic Pressure for Boost-phase Trajectory

此外,由于弹道采用低弹道形式,要求飞行高度满足:

式中 mα为第1次转弯攻角绝对值的最大值;mt为攻角达到极值mα的时间。

了解患者的基本信息,包括教育程度、家庭结构、经济状况以及既往病史,制定个性化健康宣教方案,采用通俗易懂的语言,向其介绍食管癌的病因病机、危险因素、易感人群、发病几率、临床症状、治疗方式等,在讲解时可发放相关知识卡片,嘱咐患者戒烟酒,勤洗澡,保持照射野皮肤干燥清洁,且该部位禁止使用肥皂,或用粗毛巾擦洗,局部不可粘贴脚步,不可涂抹乙醇、刺激性油膏等物质,选用宽松、吸汗、柔软的内衣。

SQP算法将有约束的优化问题通过拉格朗日函数转化为无约束的优化问题,并将原优化问题通过求解Lagrange极小值方程转化为二次规划问题,最后通过拟牛顿迭代算法与 BFGS(Broyden Fletcher Goldfarb Shanno)更新算法完成计算[15~18]。非线性规划问题可表示为

35~tt时间段,飞行器进行第2次程序负攻角转弯飞行。为有效调整飞行动压的变化情况,通过时间变量 4t将第2次程序负攻角转弯飞行分成两段,即第2次程序负攻角转弯的第1段和第2段。 5t取在动压下降段变平缓处。程序角设计为如下形式:

式中 ϕcx0,ϕcx1分别为t3时刻和t4时刻的程序角;ϕ˙cx1,ϕ˙cx2分别为二次下压第一段和第二段俯仰程序角变化率;ωz为地球自转角速度在发射坐标系z轴的分量;θ为弹道倾角。

56~tt时间段,飞行器进行攻角归零飞行,以使在分离时刻攻角为零,为分离创造良好的条件。 6t取在发动机关机前4~5 s之间。

通过时间—死亡率机率值分析法建立各菌株对马尾松毛虫幼虫的致病力回归方程,结果见表3。各回归方程的相关系数均大于0.9,P值均大于0.05,表明所建立的回归方程是可信的。根据回归方程估算出各菌株对马尾松毛虫幼虫的致死中时(LT50),白僵菌中BbAX-02、BbAX-04菌株的LT50最短,分别为7.25、7.42 d;其次是BbTA-01菌株,为13.02 d。绿僵菌中LT50最短的是Ma4556菌株,LT50为13.67 d;其他菌株LT50均大于15 d,致病力较差。从感染率上来看,也是BbAX-02、BbAX-04菌株最高,分别为95%、90%,比其他菌株高。

综上所述,时间点1t~6t、mα、二次下压第1段和第2段俯仰程序角变化率cx1ϕ˙和cx2ϕ˙决定了主动段程序角的变化规律。依据各种设计指标要求,mα、4t、1cxϕ˙和cx2ϕ˙由弹道优化得到。由于第一次下压段动压较小,第二次下压段动压较大,为避免第二次负攻角转弯出现较大的攻角,需要 ϕ˙ cx1 <ϕ˙cx2

2 优化问题建模

2.1 性能指标

为给全程大气层内高速飞行器创造较好的飞行环境,减小姿态控制系统和载荷设计难度,需要避免在大动压时出现大攻角。因此,在进行二次下压弹道优化设计时,目标函数选择为

2.2 优化控制变量

考虑地球为旋转的均质椭球体,忽略风的干扰,采用标准大气模型,在发射坐标系内建立飞行器三自由度质心运动模型。

2.3 约束条件

已有研究发现,身体活动与健康之间存在着一定的剂量效应关系[44]。然而,通过对已有研究的梳理发现,身体活动对成功老龄化(生理、心理和社会活动)有积极影响,但尚缺乏对二者的剂量效应关系的探讨。即我们不知道产生成功老化效益所需要的最低身体活动量是多少,身体活动的时间、频率及强度等要素对成功老龄化的具体影响如何。未来研究应该借鉴剂量关系研究的经典范式,探究身体活动与成功老化的剂量效应关系,为实现成功老化提供更详细、可靠的锻炼指导支持。

点火起飞后,零攻角垂直飞行至1t时刻。1t时刻后,动压Q呈现增大趋势,为避免在大动压时出现大攻角,在动压增大一定幅度后,即 2t时刻,攻角恢复到零,从而实现飞行器在出现动压最大值及其附近时的攻角数值比较小,为飞行器提供良好的飞行环境。在1t~2t时间段,进行第1次程序负攻角转弯飞行,程序攻角设计为如下形式:

式中 ch为给定的最大飞行高度。

考虑可实现性,控制变量应满足如下的约束条件:

同时落点航程偏差LΔ和落点横程偏差HΔ满足:

3 主动段弹道优化

弹道优化分为静态优化和动态优化问题。严格来讲,弹道优化是一个动态优化问题,但由于弹道优化自身的复杂性,采用动态优化求解面临较大难度。因此通常将弹道优化转化为静态优化问题,再通过数值方法求解[5,6]

弹道优化转化的数值方法主要有间接法和直接法两种。间接法根据 Pontryagin极小值原理将最优控制问题转化为两点边值问题,其求解的精度较高,且其解满足一阶最优性必要条件。但由于飞行器数学模型复杂,协态方程与横截条件推导过程较为复杂和繁琐;同时协态量初值无实际物理意义,其初值难以估计。直接法采用离散化方法将连续的弹道优化问题转化为非线性规划问题,然后采用数值方法对非线性规划问题进行求解。直接法不需求解最优解的必要条件,操作简单;同时具有较好的通用性和鲁棒性[7~10]

求解非线性规划问题的数值方法包括以可行方向法、梯度下降法、罚函数方法、动态规划法、SQP法等为代表的精确算法和以遗传算法、进化策略、模拟退火算法、神经网络算法等为代表的现代启发式算法[11~14]。其中,SQP算法是一种有效的求解非线性规划问题的工具,是飞行器弹道优化的主流方法。

23~tt时间段,飞行器保持零攻角重力转弯飞行,3t取在接近动压最大值处。

第一个难题是敦煌服饰没有出土实物,只能纯粹参考壁画。但是经过千百年的侵蚀,不仅壁画的颜色流失,上面的人物轮廓、造型也都有所损坏。想要知道某个完整的装束是什么样的,腰间的配饰如何搭扣,甚至还有当中的文化和画中人的故事,壁画能给的参考实在太少。楚艳只能和团队多次前往敦煌,仔细考察壁画中的服饰,同时参考敦煌艺术研究专家常沙娜的临摹图,想尽办法获取更多的服饰信息。最终,她们从敦煌石窟8000多个壁画人像中,选取了最具特征的20身世俗供养人画像来还原。

非线性规划问题对应的二次规划子问题可表示为

式中 d为搜索方向; ∇ J (u k), ∇ c (uk), ∇ p (uk)分别为函数 J (u), c (u)和 p (u)在 u k 处的梯度; B k矩阵为Lagrange函数的Hessian阵的良好近似。

本文通过选择程序角中的特征参数作为优化变量,将弹道优化转化为参数优化问题,利用SQP算法求解。弹道优化流程如图2所示。

图2 弹道优化流程 Fig.2 Flow Chart of Trajectory Optimization

4 仿真分析

分别对基于动压变化的二次下压优化弹道和传统弹道设计结果进行对比分析。主要特征参数比较见图 3~6。

图3 主动段攻角随时间变化曲线 Fig.3 Curve of Attack Angle for Boost-phase Trajectory

图4 主动段动压随时间变化曲线 Fig.4 Curve of Dynamic Pressure for Boost-phase Trajectory

图5 主动段动压攻角乘积随时间变化曲线 Fig.5 Curve of Product of Dynamic Pressure and Attack Angle for Boost-phase Trajectory

图6 高度随航程变化曲线 Fig.6 Curve of Height and Range

由图3~6可以看出,采用SQP算法对基于动压变化的二次下压弹道进行优化设计,在满足最大飞行高度和落点等飞行约束的同时,第2次下压攻角绝对值最大值减小,最大动压减小5%,动压与攻角乘积绝对值的最大值减小8%,验证了所提弹道设计方法的有效性。

模型分析中使用的变量选取可能对中国乳制品进口需求价格弹性产生影响的两个变量:乳制品进口价格、国内GDP指数。

5 结 论

本文首先阐述了基于动压变化的二次下压特殊低弹道优化设计方法,然后通过仿真分析,获得以下结论:

①主干道两侧(道路宽等于或大于40m)均匀设置,设置原则为单边间距80m。②次干道(道路宽小于40m)两侧交错设置,设置原则为单边间距80m。③需符合行走规则,路引与车站出口不在同一侧时,不能直接指引穿过马路,要指向人行横道。

a)采用基于动压变化的二次下压程序攻角设计,可使飞行程序反映动压及其变化情况;

b)采用基于动压变化的二次下压弹道优化设计时,在飞行约束满足的同时,第二次下压攻角绝对值最大值、最大动压和动压与攻角乘积绝对值最大值均有所减小,验证了所提弹道设计方法的有效性,具有较好的工程应用价值。

参 考 文 献

[1] 贾沛然. 远程火箭弹道学[M]. 北京: 国防科技大学出版社, 1993.

Jia Peiran. Long range rocket ballistics[M]. Beijing: National University of Defense Technology Press, 1993.

[2] 张嵩. 固体运载火箭弹道设计与优化[J]. 固体火箭技术, 1997, 20(1):1-5.

Zhang Song. Calculation and optimization of solid launch vehicle trajectory[J]. Journal of Solid Rocket Technology, 1997, 20(1):1-5.

[3] 洪蓓, 梁欣欣, 辛万青. 固体运载火箭多约束弹道优化[J]. 导弹与航天运载技术, 2012(3): 1-5.

Hong Bei, Liang Xinxin, Xin Wanqing. Multi-constraint trajectory optimization for solid launch vehicle[J]. Missiles and Space Vehicles,2012(3):1-5.

[4] 万松. 可重复使用运载器上升段轨道优化方法研究[D]. 西安: 西北工业大学, 2007.

Wan Song. Study of reusable launch vehicle ascent trajectory optimization methods[D]. Xi’an: Northwestern Polytechnical University, 2007.

[5] Betts J T. Survey of numerical methods for trajectory optimization[J].Journal of Guidance, Control and Dynamics, 1998, 21(2): 193-207.

[6] 雍恩米, 陈磊, 唐国金. 飞行器轨道优化数值方法综述[J]. 宇航学报,2008, 29(2): 397-406.

Yong Enmi, Chen Lei, Tang Guojin. A survey of numerical methods for trajectory optimization of spacecraft[J]. Journal of Astronautics, 2008,29(2): 397-406.

[7] Ross I M. A fast approach to multi-Stage launch vehicle trajectory optimization[C]. Austin Texas: AIAA Guidance,Navigation, and Control Conference and Exhibit , 2003.

[8] Gath P F, Calise A J. Optimization of launch vehicle ascent trajectories with path constraints and coast arcs[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(2): 296-304.

[9] David G H . Conversion of optimal control problems into parameter optimization problems[J]. Journal of Guidance Control and Dynamics,1997, 20(1):57-60.

[10] Hull D G. Application of parameter optimization methods to trajectory optimization[C]. Anaheim: AIAA Mechanics and Control of Flight Conference, 1974.

[11] Frabien B C. Some tools for the direct solution of optimal control problems[J]. Advances in Engineering Software, 1998, 29(1): 45-61.

[12] 薛毅. 数值分析与实验[M]. 北京: 北京工业大学出版社, 2005.

Xue Yi. Numerical analysis and experiment[M]. Beijing: Beijing Industrial University Press, 2005.

[13] Powell M J. Fast algorithms for nonlinear constrained optimization calculations[J]. Numerical Analysis, 1977:144-157.

[14] Brusch R G, Schappelle R H. Solution of highly constrained optimal control problems using nonlinear programming[C]. Santa Barbara: AIAA Guidance, Control and Flight Mechanics Conference, 1970.

[15] 郑总准, 吴浩, 王永骥. 基于序列二次规划算法的再入轨迹优化研究[J].航天控制, 2009, 27(6): 8-13.

Zheng Zongzhun, Wu Hao, Wang Yongji. Reentry trajectory optimization using sequential quadratic programming[J]. Aerospace Control, 2009, 27(6):8-13.

[16] 石国春. 关于序列二次规划(SQP)算法求解非线性规划问题的研究[D].兰州: 兰州大学, 2009.

Shi Guochun. Research on algorithm of sequential quadratic programming(SQP) for nonlinear programming problems[D]. Lanzhou:Lanzhou University, 2009.

[17] Brinda V, Dasgupta S, Madan L. Trajectory optimization and guidance of an air breathing hypersonic vehicle[R]. AIAA-2006-7997, 2006.

[18] Betts J T, Huffman W P. Path-constrained trajectory optimization using sparse sequential quadratic programming[J]. Journal of Guidance, Control and Dynamics, 1993, 16(1): 59-68.

王智,马保海,张婕,熊伟,宋剑爽
《导弹与航天运载技术》2018年第02期文献

服务严谨可靠 7×14小时在线支持 支持宝特邀商家 不满意退款

本站非杂志社官网,上千家国家级期刊、省级期刊、北大核心、南大核心、专业的职称论文发表网站。
职称论文发表、杂志论文发表、期刊征稿、期刊投稿,论文发表指导正规机构。是您首选最可靠,最快速的期刊论文发表网站。
免责声明:本网站部分资源、信息来源于网络,完全免费共享,仅供学习和研究使用,版权和著作权归原作者所有
如有不愿意被转载的情况,请通知我们删除已转载的信息 粤ICP备2023046998号