论文发表百科

琥珀酸脱氢酶的研究与发展论文

发布时间:2024-07-05 01:09:50

琥珀酸脱氢酶的研究与发展论文

可以抑制肝脏疾病,帮助更多肝疾病患者。活性及其竞争性抑制剂的实验研究可以帮助医生诊断肝脏疾病,比如肝硬化,肝炎,肝癌等。琥珀酸脱氢酶是一种重要的肝脏酶,它参与肝脏的营养代谢和毒素代谢,其在肝细胞中的活性及其竞争性抑制剂的实验研究对于诊断肝脏疾病有重要的临床意义。

琥珀酸脱氢酶是一个重要的药物代谢酶,用于代谢许多已经在临床中使用的药物。活性实验可以用来评估和调整琥珀酸脱氢酶活性,有助于指导使用这些药物的临床剂量,并确保患者得到有效的治疗。竞争性抑制剂实验可以用来识别那些可能与琥珀酸脱氢酶发生竞争作用的药物,从而预防由于药物交互作用而出现的不良反应。临床意义非常重要,因为有了它,医生和护士可以更加准确、安全地使用药物,有助于准确地调节患者的治疗,从而提高治疗效果。

联合应用卡那霉素和速尿的豚鼠耳蜗毒性实验观察【摘要】 目的 探讨卡那霉素和速尿联合用药对豚鼠耳蜗的毒性作用。方法 实验组25只豚鼠先行肌肉注射卡那霉素500 mg/kg,2小时后静脉注射速尿50 mg/kg,对照组4只豚鼠。于药物注射后7天行听觉脑干诱发电位(ABR)仪检测试验组和对照组豚鼠耳蜗听功能,对阈值大于95 dB SPL豚鼠行耳蜗铺片免疫荧光染色和常规切片观察,并对耳蜗进行扫描电镜观察。结果 实验组25只豚鼠中有13只豚鼠ABR测试阈值高于95 dB SPL,将这些致聋豚鼠作为观察对象,发现毛细胞和神经纤维明显受损,以耳蜗第一、二回损伤明显。结论 卡那霉素和速尿联合用药可导致豚鼠毛细胞和神经纤维严重受损,是建立耳聋模型的一种快速而有效的方法。【关键词】 卡那霉素 速尿 听觉脑干诱发电位 耳蜗 组织病理学 免疫荧光【Abstract】 Objective To investigate the ototoxicity of co-administration of kanamycin(KM) with the loop diuretic furosemide to guinea pigs. Methods Guinea pigs received an intramuscular injection of KM(500 mg/kg) followed 2h later by an intravenous infusion of furosemide(50 mg/kg). Auditory brainstem responses(ABRs) were recorded to monitor the animals' hearing at the 7th day after the drug administration. Immunohistochemical and histopathological changes were observed by using light microscopy and scanning electron microscopy. Results Subsequent ABR monitoring showed that profound hearing loss was both bilateral and permanent. Histopathological examination showed an absence of all inner and outer hair cells in the basal cochlea. The extent of neurofiber lesion was also eveident at the basal cochlea and dependent on the period of survival following the deafening procedure. Conclusion The co-administration of KA and furosemide effectively produces a profound hearing loss in guinea pigs and it is an effective deafening method for acute animal experiments.【Key words】 kanamycin(KM); Furosemide; Auditory brainstem responses(ABRs);; Cochlear histopathology联合应用肌肉注射卡那霉素(kanamycin,KM)和利尿酸(ethacrynic acid,EA)进行动物耳聋造模具有单次给药诱导耳聋而不必刺激耳蜗或者圆窗的优点〔1〕。卡那霉素是氨基糖甙类抗生素,其内耳毒性临床和试验研究已有不少报道;速尿是袢利尿剂,速尿耳毒性的试验研究表明〔2〕其能使血管纹边缘细胞产生病变,我们的前期实验采用听性脑干反应(ABR)等项检测证明,在KM和EA联合用药后三天,豚鼠听功能即严重受损〔3〕。本研究利用冰冻切片、耳蜗铺片琥珀酸脱氢酶(SDH)染色法、免疫荧光染色和扫描电镜观察技术,从内耳病理形态学方面评价卡那霉素和速尿联合应用对豚鼠耳蜗的毒性作用。1 材料和方法 动物分组选用耳廓反应灵敏的健康成年白色红目豚鼠29只,雌雄不限,体重250 ~ 300 g(由解放军总医院实验动物中心提供),随机分成两组,实验组25只,空白对照组4只。 动物用药实验组豚鼠先给予硫酸卡那霉素 500 mg/kg大腿内侧肌肉注射一次,2小时后给予速尿静脉注 射:先用速眠新 ml /kg大腿内侧肌肉注射麻醉动物,手术暴露一侧颈静脉,按50 mg/kg于30秒钟内将速尿注入〔3〕。硫酸卡那霉素:25万单位/ ml,天津药业焦作有限公司生产, 批号: 06051531; 速尿:10 mg/ml,天津金耀氨基酸有限公司生产,批号:0606191。速眠新: ml,解放军军需大学畜牧研究所提供,主要成分为氟哌啶醇、新眠灵、氯胺酮。 听性脑干反应(ABR)阈值测试两组豚鼠均于用药后7天应用美国智听公司Intelligent Hearing System Smart 系统, 在隔声屏蔽室内行双侧ABR阈值测试。刺激声用短纯音(tone burst),带通滤波宽度为300 ~ 3 000 Hz,叠加次数1 024次,扫描时间10 ms。电极设置为:颅顶为记录电极,耳为参考电极,地极置入鼻尖。 短纯音2 kHz, 4 kHz, 8 kHz,16 kHz作为刺激音。 标本制备断头取出颞骨,打开听泡,在耳蜗顶部钻一小孔,同时打开椭圆窗和圆窗;再用吸管从蜗尖小孔向耳蜗内灌入4% 多聚甲醛固定液,至液体从两窗流出,然后将颞骨浸入固定液浸泡固定。取实验组ABR阈值大于95 dB SPL的8只豚鼠耳蜗和对照组3只耳蜗做常规冰冻切片,实验组ABR阈值大于95 dB SPL的14只豚鼠耳蜗和对照组3只耳蜗进行全耳蜗基底膜铺片免疫荧光染色,取试验组ABR阈值大于95 dB SPL的4只豚鼠耳蜗和对照组2只豚鼠耳蜗制备扫描电镜样品。 免疫荧光组织化学染色耳蜗铺片标本用 mol/L磷酸缓冲液(PBS)洗三遍。 Triton-PBS浸泡三分钟。10% 羊血清(稀释于 Triton-PBS)室温封闭30分钟,倾去羊血清封闭液勿洗。加入一抗兔来源MyosinVI抗体和鼠来源Neurofilament抗体(SIGMA生物技术公司), 用3% 羊血清Triton-PBS稀释, 4℃ 冰箱过夜。 Triton-PBS洗10分钟各三次。加入二抗(荧光染料Alexa Flour 488标记的羊抗兔和羊抗鼠IgG抗体), 室温下避光孵育一小时。PBS洗10分钟各三次。防淬灭剂封片。激光扫描共聚焦显微镜(Zeiss, LSM 510 Meta, 德国)下观察。 扫描电镜样品制备耳蜗组织取出后,所有样品用戊二醛和四氧化锇固定,2% 单宁酸导电染色,梯度乙醇脱水。醋酸异戊酯过度,样品的干燥用日立公司生产的HCP-2型临界点干燥仪,E-102型真空离子溅射仪进行镀膜后,用S-4800型扫描电子显微镜观察并拍摄照片。2 结 果 组织形态学观察由于个体差异,豚鼠对药物敏感性不同,25只实验组豚鼠中有13只用药1周后ABR阈值大于95 dB SPL,这些严重致聋的豚鼠耳蜗扫描电镜观察可见第一、二回内外毛细胞静纤毛散乱、融合,甚至毛细胞全部被瘢痕替代(图1)。致聋豚鼠耳蜗切片光镜观察,可见耳蜗毛细胞严重受损,以外毛细胞损伤为主,第一、二回耳蜗毛细胞损伤比第三、四回严重,有的豚鼠毛细胞严重损伤,切片发现内毛细胞也广泛缺失(图2)。 免疫荧光组织学观察对用药后不同时间点的ABR阈值大于95 dB SPL的5只豚鼠10耳进行基底膜铺片免疫荧光染色,在激光扫描共聚焦显微镜下观察发现,与正常对照相比,除用药后1周的1只豚鼠双耳神经纤维大致正常外,用药后1周的1只豚鼠和用药后3周的2只豚鼠及用药后4周的1只豚鼠共8耳的神经纤维显著减少;与毛细胞损伤类似,耳蜗第一、二回神经纤维损坏较第三、四回严重(图3)。3 讨 论氨基糖甙类抗生素耳中毒与氧自由基毒性作用密切相关〔4〕,袢利尿剂可致血管纹中毒,使分泌内淋巴液功能受损〔2〕。上述两类药物联合应用时,氨基糖甙类抗生素与内耳毛细胞膜接触,增加了内耳毛细胞的通透性,而袢利尿剂以较高的浓度进入到细胞内,引起毛细胞的损伤〔5〕。1979年Russell等〔6〕最早将KM和利尿酸两种药物联合应用于豚鼠。Asakuma等〔7〕研究速尿和利尿酸对使用和未用硫酸卡那霉素豚鼠的耳蜗内直流电位的影响。Bobbin等〔8〕用高效液相色谱法(HPLC)研究豚鼠耳蜗钾诱导γ-氨基丁酸(GABA)和其他物质的释放。对豚鼠耳蜗进行正常K+ 浓度(5 mmol/L)和高K+(50 mmol/L)的人工外淋巴液灌流,包括正常动物和事先用卡那霉素和利尿酸破坏Corti氏器组,发现暴露于高钾耳蜗灌流液中者其?酌-氨基丁酸(GABA)、2-氨基乙磺酸、谷氨酸、天冬氨酸、甘氨酸等明显高于正常钾浓度组;与正常组比较,Corti氏器破坏组钾诱导的GABA、2-氨基乙磺酸、谷氨酸、天冬氨酸、甘氨酸等释放明显减少。从结果分析,认为 GABA释放与其是耳蜗的神经递质符合。Raphael等〔9〕 用组织化学和电镜技术研究使用耳毒性药物后的豚鼠耳蜗结构和分子变化,发现耳蜗毛细胞表皮板和静纤毛上的肌动蛋白丝消失,在将要死亡的毛细胞顶端区域出现富含肌动蛋白的桥样结构,两个支持细胞在原毛细胞所在部位形成瘢痕,支持细胞扩张并侵入Nuel间隙和先前毛细胞所在的区域,瘢痕区域可被细胞角蛋白标记。研究还发现最后发生变性的部位是毛细胞顶端,毛细胞变性与瘢痕形成同时发生。在本研究中,我们用扫描电镜观察,也发现在严重损伤的豚鼠耳蜗,感觉上皮区域全部被瘢痕取代(图1)。从我们先前的试验结果可以看出,KM和速尿两种药物联合应用于豚鼠,所造成的耳聋为双侧对称性,用药1周即导致试验豚鼠半数出现重度感音神经性聋〔3〕。对这些致聋豚鼠的耳蜗病理研究发现:耳蜗毛细胞严重受损,以外毛细胞损伤为主,第一、二回耳蜗毛细胞损伤比第三、四回严重;对耳蜗神经纤维染色发现致聋豚鼠的神经纤维显著减少,同样表现为第一、二回减少比第三、四回严重。探讨KM和速尿所致毛细胞损伤的上述表现的机制,可能是外毛细胞吞噬耳毒性药物的能力要比内毛细胞强,而且底回外毛细胞和顶回外毛细胞摄取耳毒性药物的能力也有所不同。至于为什么不同部位的毛细胞具有不同的药物摄取能力,推测可能与细胞膜上的药物输送结构(drug transporter)的分布和活动性有关〔4〕。董民声等的实验证明〔2〕,连续肌肉注射KM 6天后内耳的感觉细胞首先受损,支持细胞的变性明显比毛细胞的变性晚,螺旋神经节及神经纤维的变性更迟,故认为内耳感觉细胞的损伤是KM造成听力损害的根本原因。我们的实验结果在内耳感觉细胞的损伤方面与之相吻合,但是我们发现KM和速尿两种药物联合应用后,不仅内耳感觉上皮受到损害,听神经纤维也受到损害。2004年,Nourski等〔1〕报道用KM和利尿酸建立急性耳聋动物模型,观察了这种方法在急性豚鼠实验过程中的有效率,检测听觉敏感度和听神经状态。为此目的而重复检测声诱发复合动作电位(ACAP)和电诱发复合动作电位(ECAP),发现6只豚鼠中有4只ACAP幅值在利尿酸给药的4 ~ 6小时内降至0,然而剩下的2只动物在给药10小时内ACAP持续存在反应。在同一时间作者还记录了ECAP,与ACAP不同,ECAP幅值在每个试验中都相对恒定,而且证明没有出现与给药后的时间或者ACAP的作用相巧合的变化。综合ACAP和ECAP的结果,作者得出的结论是KM和利尿酸药物效应为靶向损害毛细胞功能而没有明显抑制听神经反应性,这与我们的实验似乎有部分结果相矛盾。产生这一差别的原因应为用药后观察的时间点不同:Nourski等的观测时间是用药后10小时内,而我们的观察是在用药1周以后,可能是在用药后10小时内听觉神经纤维还没有受到损伤,而1周时开始出现神经纤维损伤,用药3周后神经纤维损伤明显。【参考文献】1 Nourski KV, Miller CA, Hu N, et al. Co- administration of kanamycin and ethacrynic acid as a deafening method for acute animal experiments. Hear Res, 2004, 187(1-2): 董民声, 董明敏,娄卫华. 内耳疾病研究进展. 郑州: 河南医科大学出版社, 1999: 12 -223 张贤芬, 杨仕明, 胡吟燕,等. 卡那霉素和速尿联合用药后豚鼠耳蜗听功能研究. 中国听力语言康复科学杂志, 2008, 6(2): 丁大连, Salvi R. 氨基糖苷类抗生素耳毒性研究. 中华耳科学杂志, 2007, 5 (2): 张亚梅. 药物中毒性耳聋. 中华儿科杂志, 2000, 38(12): Russell NJ, Fox KE, Brummett RE. Ototoxic effects of the interaction between kanamycin and ethacrynic acid. Cochlear ultrastructure correlated with cochlear potentials and kanamycin levels. Acta Otolaryngol,1979, 88 (5-6): Asakuma S, Snow JB. Effects of furosemide and ethacrynic acid on the endocochlear direct current potential in normal and kanamycin sulfate-treated guinea pigs. Otolaryngol Head Neck Surg, 1980, 88(2): Bobbin RP, Ceasar G, Fallon M. Potassium induced release of GABA and other substances from the guinea pig cochlea. Hear Res, 1990, 46(1-2): Raphael Y, Altschuler RA. Scar formation after drug- induced cochlear insult. Hear Res, 1991, 51(2): 173-183.

葡萄糖6磷酸脱氢酶研究论文

6-磷酸葡萄糖的直接代谢途径是:戊糖磷酸途径。

戊糖磷酸途径是一个葡萄糖-6-磷酸经代谢产生NADPH和核糖-5-磷酸的途径。该途径包括氧化和非氧化两个阶段,在氧化阶段,葡萄糖-6-磷酸转化为核酮糖-5-磷酸和CO2,并生成两分子的NADPH。

在非氧化阶段,核酮糖-5-磷酸异构化生成核糖-5-磷酸或转化为酵解中的两个中间代谢物果糖-6-磷酸和甘油醛-3-磷酸。

扩展资料:

6-磷酸葡萄糖代谢的意义:

1、产生大量的NADPH,为细胞的各种合成反应提供还原剂(力),比如参与脂肪酸和固醇类物质的合成。

2、在红细胞中保证谷胱甘肽的还原状态。(防止膜脂过氧化;维持血红素中的Fe2+;)(6-磷酸-葡萄糖脱氢酶缺陷症——贫血病)

3、该途径的中间产物为许多物质的合成提供原料,如:5-P-核糖、核苷酸、4-P-赤藓糖、芳香族氨基酸。

4、非氧化重排阶段的一系列中间产物及酶类与光合作用中卡尔文循环的大多数中间产物和酶相同,因而磷酸戊糖途径可与光合作用联系起来,并实现某些单糖间的互变。

5、PPP途径是由葡萄糖直接氧化起始的可单独进行氧化分解的途径,也是戊糖代谢的主要途径。因此可以和EMP、TCA相互补充、相互配合,增加机体的适应能力。

参考资料来源:百度百科-戊糖磷酸途径

百度百科-6-磷酸葡萄糖脱氢酶

阿司匹林到目前为止已应用百年,是医药史上三大经典药物之一(其他二药为青霉素、安定)。至今它仍是世界上应用最广泛的解热、镇痛和抗炎药。 阿司匹林的天然原质“水杨酸”成分,存在于柳树皮之中。相传两千多年前,古希腊无论是民间,还是名医希波克拉底都已知道用柳树皮、叶的液汁止痛与退热。19世纪时,欧洲化学家从柳树中提取到“水杨酸”。19世纪90年代,德国拜耳化学制药公司29岁的研究员费利克斯·霍夫曼为缓解父亲风湿性关节痛,在探索研制疗效明显的止痛药过程中,用化学方法合成了“乙酰水杨酸”。1899年,拜耳化学制药公司生产出品了水溶性白色阿司匹林药粉,不久又制成阿司匹林药片。德国化学家德瑞瑟将其命名为Aspirin(阿司匹林)。 阿司匹林治疗头痛、牙痛、关节痛以及感冒、退热的即时效果明显,副作用少,且价廉、服用方便,迅即被许多国家医学界采用。 1971年,英国药学家约翰·万恩在研究前列腺素过程中,获知并证实阿司匹林能拮抗机体内血栓素A2的释放,从而抑制血小板凝集,对防止血管栓塞有明显功效。这一科学研究发现,受到了全世界医学界的重视和青睐。 1982年,约翰·万恩与另两位瑞典学者伯格斯特隆、塞缪尔松,由于研究前列腺素所取得的成就,共同荣获该年度诺贝尔生理学与医学奖。 我国于1958年开始生产阿司匹林。 [家庭用药]阿司匹林是历史悠久的解热镇痛药,它诞生于1899年3月6日。早在1853年夏尔,弗雷德里克·热拉尔(Gerhardt)就用水杨酸与醋酐合成了乙酰水杨酸,但没能引起人们的重视;1898年德国化学家菲霍夫曼又进行了合成,并为他父亲治疗风湿关节炎,疗效极好;1899年由德莱塞介绍到临床,并取名为阿司匹林(Aspirin)。到目前为止,阿司匹林已应用百年,成为医药史上三大经典药物之一,至今它仍是世界上应用最广泛的解热、镇痛和抗炎药,也是作为比较和评价其他药物的标准制剂。在体内具有抗血栓的作用,它能抑制血小板的释放反应,抑制血小板的聚集,这与TXA2生成的减少有关。 临床上用于预防心脑血管疾病的发作。 根据文献记载,都说阿司匹林的发明人是德国的费利克斯·霍夫曼,但这项发明中,起着非常重要作用的还有一位犹太化学家阿图尔·艾兴格林。 阿图尔·艾兴格林的辛酸故事发生在1934年至1949年间。1934年,费利克斯·霍夫曼宣称是他本人发明了阿司匹林。当时的德国正处在纳粹统治的黑暗时期,对犹太人的迫害已经愈演愈烈。在这种情况下,狂妄的纳粹统治者更不愿意承认阿司匹林的发明者有犹太人这个事实,于是便将错就错把发明家的桂冠戴到了费利克斯·霍夫曼一个人的头上,为他们的“大日耳曼民族优越论”贴金。纳粹统治者为了堵住阿图尔·艾兴格林的嘴,还把他关进了集中营。第二次世界大战结束后,大约在1949年前后,阿图尔·艾兴格林又提出这个问题,但不久他就去世了。从此这事便石沉大海。 英国医学家、史学家瓦尔特·斯尼德几经周折获得德国拜尔公司的特许,查阅了拜e公司实验室的全部档案,终于以确凿的事实恢复了这项发明的历史真面目。他指出:在阿司匹林的发明中,阿图尔·艾兴格林功不可没。事实是在1897年,费利克斯·霍夫曼的确第一次合成了构成阿司匹林的主要物质,但他是在他的上司——知名的化学家阿图尔·艾兴格林的指导下,并且完全采用艾兴格林提出的技术路线才获得成功的。

G6PDH(G6PD)来源于红细胞,催化葡萄糖6磷酸,生成的NADPH是谷胱甘肽还原酶的辅酶,还原型谷胱甘肽(GSH)是保持血红蛋白稳定性及红细胞膜完整性的必要条件。红细胞G6PD缺乏者,在服用某些药物(如抗疟药伯氨喹啉、磺胺药等)及食用蚕豆后,代谢产生的自由基,或与氧合血红蛋白作用形成的H2O2,使GSH氧化成GSSG。由于GSH降低,Hb巯基失去GSH的保护,被氧化变性形成Heinz小体。红细胞膜失去巯基保护而功能受损,终致溶血。G6PD缺乏(陷)基因在X染色体上,通过女性遗传,男性患者居多。

葡萄糖6磷酸脱氢酶

G6PDH

血液生化检查 > 酶类测定

血液

红细胞G6PD催化葡萄糖6磷酸(G6P)氧化成6磷酸葡萄糖δ内酯,后者很快氧化成6磷酸葡萄糖酸(6PGA),同时氧化型辅酶Ⅱ(NADP+)被还原成NADPH。在340nm处测定NADPH的生成量,计算G6PD的活力。

红细胞中还含有6磷酸葡萄糖酸脱氢酶(6PGD),氧化成6PGA脱羟,生成核酮糖5磷酸(R5P),可同时使NADP+还原成NADPH。因此,由(6PGA+G6P)组成的底物系统测得的活力,减去单独6PGA底物测得的活力,代表真正的G6PD活力。

(1)TrisHClEDTA缓冲液(,TrisHCl 1mol/L,EDTA5mmol/L):称取

Tris,EDTA·Na2 (或EDTANa2·2H2O ),加约200ml蒸馏水溶解,以5mol/L盐酸调pH至(25℃),用水稀释至250ml。

(2)氯化镁溶液:称取 MgCl2·6H2O,溶于蒸馏水中,稀释至250ml。

(3)2mmol/L在NADP:称取NADP(Sigma)10mg,加蒸馏水,溶解。

(4)6mmol/L葡萄糖6磷酸二钠:称取G6PNa2 ,加蒸馏水10ml,溶解。

(5)6mmol/L 6磷酸葡萄糖酸:称取6PGANa2 ,加蒸馏水10ml,溶解。

上述各试剂在-20℃存放,可稳定数月。

按表1进行。

混匀,37℃在340nm波长处每隔1min读取1次吸光度,共读6次(由5min吸光度的变化,求每分钟吸光度增加的平均值(△A/min)。以B管调零,读U管吸光度。

G6PD活力± Hb(37℃)。

临床上检查红细胞G6PD主要用于诊断有关的溶血性贫血。如:

(1)先天性:先天性G6PD缺乏性溶血性贫血、蚕豆病。

(2)药物性溶血性贫血:如伯氨喹啉、对氨水杨杨杨酸杨酸钠、磺胺、阿斯匹林等。

(3)非药物性溶血性贫血:如病毒或细菌感染、新生儿黄疸等。

溶血液制备:新鲜抗凝血离心去上清液及白细胞层,用生理盐水洗涤2次,再加盐水,使压积细胞为30%。将此红细胞悬液置冰水备用。用时以蒸馏水作25倍稀释,即为溶血液。用氰化血红蛋白法测定溶血液中血红蛋白浓度(gh)。

琥珀酸论文文献

给楼主参考:水产品在有机废弃物利用摘要:综述了当前水条件下有机废物水解产气和有氧制酸两方面的资源化研究前沿,并分析了目前水氧化法在有机废弃物资源化应用中存在的主要问题,展望了该方法的应用与理论研究前景。关键词:水产品氧化 有机废物 资源化利用伴随着经济发展与工业进步,资源短缺与环境污染的瓶颈性问题日益突现。人们的关注目光已经从环境污染控制的“末端治理”转向了兼顾污染控制和预防,以及循环经济的实现途径上来。有机废弃物的资源化研究已经成为环境领域的新热点。在水(Supercritical Water,简称SCW)存在条件下实现有机废弃物资源化更是引起学者的广泛关注。它主要是利用状态下水与溶解的氧和有机物发生反应,将各种有机废物和废水彻底处理,最终得到CO2、N2、纯净的水,以及少量的无机盐。SCWO技术以其独特的优势受到广泛的关注[2,3]。氧化技术首先应用于废水中有机物特别是难降解有机污染物质的去除,已经在含酚污水、印染废水和污泥等处理方面取得了一定的成果[4,5]。同时许多学者[6~24]在水的条件下,针对有机废物与水互溶的特点,通过水解反应来降解有机废物以制得H2等气体。水存在的条件下有机废物资源化的研究刚刚起步,主要集中在水存在条件下有机废物水解气化及氧化生成有机酸等方面。本文主要对近年来的相关研究进展进行综述。1 水条件下有机废物的气化在SCW条件下,通过控制反应条件和加入催化剂等能够实现有机废物的气化,以制得H2、CO及CH4等气体。许多学者[6~11]对以纤维素为代表的有机废物的SCW气化进行研究认为,体系的温度、压力、有机废物的组成和反应器的类型对产气量及气体组成具有一定影响。SWC有机废物气化的过程如图1所示。图 1 条件下有机废物气化示意图(以纤维素为例)在条件下,以纤维素为主体的有机废物首先水解生成葡萄糖和果糖等,然后发生水解反应,解聚和降解生成短链的有机酸和醛类,以制得气体。同时也有糠醛和苯酚类化合物生成,它们一部分降解生成有机酸和醛类,另一部分生成焦炭等高分子产物成为反应的沉渣。Kruse[6]等在330~410℃,30~50 MPa,15 min的条件下,通过测定葡萄糖和纤维素降解的主要中间产物如苯酚类、糠醛和酸类等考察了有机废物降解过程中的化学反应,利用产物中总有机碳和气相的成分组成来反映氧化进程。研究证明在下水不仅作为溶剂而且是反应物,与传统气化反应相比,有机废物的降解速度更快,H2产量增加,同时CO产量降低。有机废物复杂的组成对其在条件下的气化过程影响很大。Takuya等[7]在623 K、25 MPa和20 min条件下对纤维素、木聚糖和木质素的混合物进行气化,试验证明木质素的含量对产气量有明显影响,纤维素和木聚糖为木质素供氢,反应生成的中间产物导致H2量的减少。文献[8]在480~750 °C、28 MPa 和10~50 s的条件下研究葡萄糖的气化,试验证明在温度高于660°C时,H2的产量会随着温度的升高明显升高,而CO的产量反而下降,在700℃时C的转化效率能够达到100%。SWCO反应有连续式和间歇式两种类型,主要有管式、罐式和蒸发壁式反应器。反应器类型的不同会导致气化效果差异很大。Hao[9]采用连续式管状水气化体系来对葡萄糖进行气化反应,在 K、25 MPa和 min的条件下能够使得葡萄糖完全气化,并且无焦碳产生,改变反应温度和压力能生成不同比例的H2、CO和CO2及少量的C2H4和C2H6,反应的气化率能够达到95%以上。Kruse等[10]利用连续搅拌反应器(CSTR)对干物质质量分数在 %的有机废物进行气化反应,试验证明干物质量的提高,能够增加产气量和苯酚量,同时影响气体组成和有机碳含量,而间歇反应器不存在这样的情况。Ayhan[11]在条件下对果皮进行气化产H2试验,结果表明H2产量随着压力和温度的增加而升高,后者影响更为明显。与热解和蒸汽气化方法相比,该法具有无需干燥和气化率高等优点。Yukihiko[12]以水葫芦为例,对甲烷化和水气化在能量、环保和经济方面进行了比较,试验证明水气化较甲烷化有一定优势,但其产气的消耗较大,通过增强热交换器的效率能够提高水的气化效果。水条件下有机废物气化需要高的温度压力,无催化剂条件下H2产量一般较低,副产物增多。因此引入适当的催化剂以缓和反应条件,提高反应速率和H2产量,优化反应途径成为研究热点。水作为一个特殊的环境,需要稳定性和催化活性兼备的催化剂,研究发现,Mn、Ni等重金属的氧化物、碱性化合物如KOH、K2CO3以及碳等能够表现出很好的催化活性。Calzavara等[13]评价了条件下有机废物气化制H2,认为焦碳的生成是反应过程的主要问题,选择合适的催化剂能够增加H2的产量和减少焦碳的生成。Ali等[14]研究了不同的催化剂条件下葡萄糖的气化。试验证明对于质量分数为5 %的葡萄糖水溶液,催化剂的存在影响葡萄糖气化中间产物的生成。采用重金属及其氧化物作为催化剂已经成为水条件下有机废物气化普遍采用的方法,并取得很好的效果。同时SWC装置普遍采用的镍基材料等耐腐蚀性材料本身对有机废物气化具有一定的催化作用。Takafumi等[15]在条件下以不同的金属催化剂对烷基酚进行催化气化,试验发现气化产物主要是CH4、CO2和H2。研究可知在钌/ç-氧化铝催化剂存在的条件下能够产生丙烷酚异构体,并发现不同的异构体产量各异。Takuya [16]在673 K、25 MPa的条件下对木质素和纤维素及其混合物进行镍催化气化,试验证明纤维素和软木木质素反应生成的中间产物降低了催化剂活性,但随着催化剂用量的增加,气化效果变好。Takuya [17]采用高温分解、氧化和催化组合的流化反应体系来气化葡萄糖和葡萄糖-木质素的混合物。在673 K、 MPa和1 min的条件下,生成物主要是H2和CO2,气化效率为96%。Boukis等[18]在镍合金Inconel625的连续管状反应器中来气化甲醇,主要生成产物是H2,还有少量的CO、CO2和CH4,气化率达到了99%,试验表明在反应器内壁的重金属对反应过程起催化作用,反应器内壁的氧化能够提高反应产率和降低CO的生成。研究表明,K2CO3和KOH等碱性化合物的加入能够增加H2产量,提高C的转化率和缓和反应条件。Jayant [19]在Inconel 600管状反应器中,通过重整甲醇来制H2。试验表明随着压力的增加,反应时间的增长和气碳比的降低,CO和CO2发生甲烷化,从而导致H2的损失。通过增加K2CO3和KOH能够降低甲烷化率和提高H2的产量。Schmieder[20]在管状连续反应器研究有机废物的气化过程,试验发现在600°C、250 bar和KOH或K2CO3存在的条件下,有机废物气化完全,同时生成大量的H2、CO2及少量的CO、CH4和C2–C4化合物,碳的转化率能够达到96%。Andrea[21]利用间歇反应器和管状反应器来研究芳香族化合物和木质素制H2过程,试验表明随着KOH的加入,增加了H2和CO2的产量,同时CO的产量降低。Wang[22]采用Ca(OH)2为催化剂对低品质煤在条件下进行气化。Ca(OH)2在中间产物降解和残碳的的气化过程中起到很大的作用,同时它可以作为CO2的扑收剂。在混和物的Ca/C为、690℃和30MPa时,反应生成H2、CH4及少量的CO2。研究采用碳作为水条件下有机废物气化的催化剂,通过优化反应条件增加了催化剂的使用寿命,取得了很好的效果。文献[23]利用管状连续式反应器在650 ℃、22 MPa的条件下,采用碳作为催化剂来气化玉米、马铃薯和木屑,气相产物主要包括H2、CO2、CO、CH4和少量C2H6。在最高温度条件下得到的气量大于2 L/g,氢气含量是57 %。Xu等[24]研究了碳催化剂对有机废物气化的影响,试验证明,在600℃、 MPa和22 h-1时,葡萄糖(质量分数为22%)能够气化生成富含H2的气体,碳的气化效率能够达到100%,碳的比表面积并没有对其催化效率产生很大影响。试验中通过反应器入口处安装漩涡生成器以增加催化剂的使用寿命。2 水氧化有机废物制酸水氧化有机废物过程中可产生醋酸、乳酸等中间产物。近年来,研究者通过控制反应条件来使反应停留在有机酸中间产物生成的环节上,而不是将其彻底的氧化为CO2气体和水排放出来,这样既可获得有价值的有机酸原料,同时能够降低反应的能耗。试验一般采用H2O2或O2为氧化剂,同时试验研究可知,在碱性存在的条件下能够增加有机酸等中间产物的生成。金放鸣[25]利用H2O2为氧化剂对胡萝卜和牛油的SCWO氧化,初始阶段反应迅速并能够生成稳定的醋酸,以后反应趋于平稳,而反应速率取决与此。对于胡萝卜来说,多聚糖首先水解成葡萄糖,葡萄糖迅速发生氧化。对于牛油来说,首先是甘油脂水解成甘油和羧酸,然后发生氧化反应。从TOC降解可以看出,在前3 min反应速度很快,而在以后的7 min反应速度趋于平缓。两者的TOC降解率能够达到。Anikeev[26]利用连续反应器在对硝基甲烷、硝基乙烷和1-硝基丙烷进行SCWO试验,试验表明随着碳原子数的增加,脂肪族硝基化合物降解速度降低,但氧化速度升高。温度恒定时,反应速率常数随着压力成指数增加。Lourdes[27]利用H2O2为氧化剂,对纤维素、椰子油和酿酒厂和牛奶厂的排除废液进行制酸研究,试验证明在400 ℃, MPa和5 min的条件下有稳定的醋酸产生,同时生成蚁酸、乙二醇和乳酸。当H2O2 过量时,95%的碳转化到气相之中,只有15%的相应的酸类产生,加入催化剂TiO2及H2SO4不能够增加有机酸的产量。但在250℃、 MPa和NaOH存在条件下,却有77%的葡萄糖转化为醋酸(17%),乙醇酸(22%)和蚁酸(38%)。Motonobu[28] 利用间歇式和半连续反应器对垃圾中兔肉进行水氧化处理,反应产物中的可溶性部分主要是有机酸和葡萄糖。间歇反应器中可溶性产物最大能够达到50%,有机酸主要是醋酸()和乳酸(),在523 K时葡萄糖的最高产量为33%,而在473 K时半连续反应器葡萄糖的最高产量仅为。Jomaa[29]对污泥、木屑和生活垃圾进行水氧化处理,试验表明木质垃圾的处理较其他两种困难,通过改变试验条件来平衡降解和氧化,从而在祛除COD的同时实现可溶性有机物的积累。Armando[30]在状态下将有机废物氧化生成低分子羧酸,试验获得的有机酸包括醋酸、蚁酸、乳酸和琥珀酸等。随H2O2的增加,从每克干鱼内脏获得的醋酸量从26 mg上升到42 mg,从每克葡萄糖中获取29 mg的醋酸。结果还表明,温度对主要中间产物醋酸的稳定性有一定的影响。Selhan[31]在碱性条件下催化处理木质有机物,催化效果依次为K2CO3 >KOH>Na2CO3 > NaOH,催化作用下固态剩余物大为降低。非催化条件下有机废物的主要产物是呋喃衍生物,而在催化条件下主要产物是酚类化合物。Jin等[32]通过控制反应条件来提高醋酸产量,实验采用两段法,第一步反应是加速生成HMF、2-FA和LA,在第二步反应中,通过加入H2O2氧化第一步产生的呋喃和乳酸以生成醋酸,通过两段法来生成醋酸产率大约是85%~90%,而呋喃和乳酸生成醋酸的比例大约是2:1。利用该法产生的醋酸与工业废物Ca、Mg来生成无腐蚀的CMA融雪剂,CMA的转化率能够达到99%。3 水氧化处理有机废物存在问题及发展前景SCWO技术存在的问题限制了其在有机废物处理过程中的大规模的工业化应用,现在研究还基本处于实验室阶段。首先,影响SCWO反应进行的影响因素众多,原料的浓度、成分、密度、pH等的监测和目的产物实时快速控制难以实现,从而直接影响整个氧化反应速率和目的产物的生成。其次,在状态下,反应过程中产生的活性自由基及强酸或盐类的加入对反应器设备的腐蚀很严重,高分子有机物降解过程中和处理含有卤素及S、P等元素的有机物时产生的酸类物质时更加剧了腐蚀作用[33]。再者,因金属离子及无机盐在水中的溶解度低,由此而产生的无机盐和金属氧化物的沉积问题,极易造成设备堵塞。此外,氧化反应器的密封问题也是困扰反应正常进行的重要因素。水氧化处理有机废物在现实应用中除了存在高投入、腐蚀和反应器堵塞等问题,尚存在以下急待解决的问题。首先是SCWO动力学的研究问题。有机物的氧化需要在不同的压力、温度条件下进行,在设备中的停留时间也不相同。现行的研究主要集中在典型污染物在氧化条件下的动力学模型的建立上,主要研究有机物的去除率和反应产物的生成,仅以此建立的反应动力学是不全面的,不能够反映复杂有机物在状态下反应过程,所以有必要建立TOC及COD的消失动力学等来全面反映氧化进程。同时SCWO反应机理也成为研究者关注的对象[34]。在SCWO状态下水的特殊性质,有机化合物的复杂性,使得降解的机理会存在一定的变化,而且随着反应条件的不同,分析手段的各异,对反应机理的认识存在差距。再者,在状态下的处理有机污染物质成为CO2和H2O及其他产物,需要高温高压的反应条件,因此引入催化剂来缓和反应条件,加速反应速率和提高目标产物的产率目前已经成为新的研究热点。综上所述,水条件下有机废物资源化研究已经在水解产气和氧化制酸等方面取得了一定的成果,但作为一种新兴的资源化技术,水及其氧化反应技术还尚未成熟,加强动力学、反应机理、催化剂和腐蚀堵塞等问题的研究,必将为其带来广阔的资源化应用前景。参考文献1. Modell. Processing methods for the oxidation of organics in supercritical water. US Pto 4,338,. Peter K, Eckhard D. An assessment of supercritical water oxidation (SCWO) Existing problems, possible solutions and new reactor concepts. Chemical Engineering Journal. 2001, 83: 207~2143. Marc H, Philip A M, Glenn T H, et al. Salt precipitation and scale control in supercritical water oxidation—part A: fundamentals and research. Journal of Supercritical Fluids. 2004, 29: 265~2884. Chien Y C, Wang H P, Lin K S, et al. Oxidation of Printed Circuit Board Wastes In Supercritical Water. Wat. Res. 2000, 34(17): 4279~42835. Jeffrey T H, Phillip E S. Potential explanations for the inhibition and acceleration of phenol SCWO by water. Ind. Eng. Chem. Res. 2004, 43: 4841~48476. Kruse A, Gawlik A. Biomass Conversion in Water at 330~410 °C and 30~50 MPa. Identification of key compounds for indicating different chemical reaction pathways. Ind. Eng. Chem. Res. 2003, 42:267~2797. Takuya Y, Yoshito O, Yukihiko M. Gasification of biomass model compounds and real biomass in supercritical water. Biomass and Bioenergy. 2004, 26:71~ 788. Lee I G, Kim M S, Ihm S K. Gasification of glucose in supercritical water. Ind. Eng. Chem. Res. 2002, 41:1182~11889. Hao X H, Guo L J,Mao X et al. Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water. International Journal of Hydrogen Energy,2003, 28:55~6410. Kruse A, Henningsen T. Biomass Gasification in supercritical water: influence of the dry matter content and the formation of phenols. Ind. Eng. Chem. Res. 2003, 42:3711~3717

长期的运动训练是体内琥珀酸脱氧氢酶的含量增加。查阅文献《运动对血液中肌酸激酶、乳酸脱氢酶、琥珀酸脱氢酶的影响》陈扬简坤林刘晓光李新宁等,解放军体育学院,副教授。测定细胞内线粒体中SDH的活性。Huertas等人对14名长跑运动员实施4周长跑训幼后,活检腓肠肌中SDH的活性,发现SDH的活性比常人明显增高,说明运动训练川使肌组织有氧氧化酶产生适应性反应。Takekure等人对大鼠在跑台上进行14周训练后,采用组织学,免疫电镜,微电泳的方法分析鼠比目鱼肌,趾长伸肌中SDH的变化,发现训练后SDH在两类肌纤维中明显增高。琥珀酸脱氢酶(SDH)是三羧酸循环的标志酶之一,它在细胞的线粒体中发挥其催化作用。

根据国外文献报道:本品口服后能迅速吸收,但吸收不完全,因首过效应绝对生物利用度约为15%。口服本品25mg、100mg平均最大血药浓度分别为18ng/ml(7-47ng/ml) 和51ng/ml(28-100ng/ml)。偏头痛发作期和间歇期Cmax无明显差异,发作期t1/2为,间歇期t1/2为 h。单剂量口服25-100 mg,其吸收程度(AUC)呈剂量依赖性,但是在大于100mg剂量后,AUC比期望值(以25mg剂量为基础)约少25%。食物对其生物利用度无明显影响,但可稍延长达峰时间约。本品的血浆蛋白结合率较低(14~21%)。表观分布容积为。本品的消除半衰期(t1/2)大约为小时。口服[sup]14[/sup]C标记物后测得,大部分(约60%)是以代谢物形式通过肾排泄,40%在粪便中发现。尿中排出的标记物大多数是舒马普坦的主要代谢产物-非活性的吲哚乙酸(IAA)或IAA的葡糖醛酸酯,而原形药只有约3%。本品主要同单胺氧化酶-A(MAO-A)代谢,因此,该酶的抑制剂对可改变舒马普坦的药动学,降低吸收率。未见MAO-B抑制剂对本品药代动力学的影响。

碱性磷酸酶的研究发展论文

磷酸酶(phosphatase)是一种能够将对应底物去磷酸化的酶,即通过水解磷酸单酯将底物分子上的磷酸基团除去,并生成磷酸根离子和自由的羟基。磷酸酶的作用与激酶的作用正相反,激酶是磷酸化酶,可以利用能量分子,如ATP,将磷酸基团加到对应底物分子上。在许多生物体中都普遍存在的一种磷酸酶是碱性磷酸酶。

碱性磷酸酶;碱性磷酸酶偏高的原因;碱性磷酸酶偏低;碱性磷酸酶正常值, description:碱性磷酸酶是一种同功酶,是肝功能检查的一个指标,广泛分布于人体各脏器器官中,其中以肝脏为最多,其次为肾脏,骨骼、肠、和胎盘等组织。所以碱性磷酸酶偏高或者偏低,都会说明肝脏或者骨骼有一定的问题。儿童也应...

碱性磷酸酶正常值

碱性磷酸酶是肝功能检查的一个指标,广泛分布于人体各脏器器官中,其中以肝脏为最多,其次为肾脏,骨骼、肠、和胎盘等组织。当肝脏受到损伤或者障碍时经淋巴道和肝窦进入血液,同时由于肝内胆道胆汁排泄障碍,反流入血而引起血清碱性磷酸酶明显升高。

碱性磷酸酶不是单一的酶,而是一组同功酶。目前已发现有 AKP1 、AKP2 、AKP3 、AKP4 、AKP5 与 AKP6 六种同功酶。其中第 1 、 2 、 6 种均来自肝脏,第 3 种来自骨细胞,第 4 种产生于胎盘及癌细胞,而第 5 种则来自小肠绒毛上皮与成纤维细胞。 血清中的ALP主要来自肝脏和骨骼。生长期儿童血清内的大多数来自成骨细胞和生长中的骨软骨细胞,少量来自肝。

碱性磷酸酶偏高的原因

专家指出,碱性磷酸酶偏高的原因可以分为生理性原因和病理性原因,病理性原因常见于肝胆系统疾病和骨骼疾病。

碱性磷酸酶偏高的原因具体有如下5种:

1、生理性原因:儿童骨骼发育期、孕妇,这些情况下骨组织中的碱性磷酸酶很活跃,所以检测时值会偏高。

2、肝胆疾病:由于肝脏细胞中碱性磷酸酶最多,因此如果肝胆出现问题,就会导致碱性磷酸酶偏高。当人体患有阻塞性黄疸、原发性肝癌、继发性肝癌、胆汁淤积性肝炎等时,肝细胞过度制造碱性磷酸酶,经淋巴道和肝窦进入血液,同时由于胆汁排泄障碍,反流入血,引起血清中的碱性磷酸酶偏高。

3、骨骼疾病:由于骨组织中碱性磷酸酶也很活跃,因此有骨骼疾病的患者会出现碱性磷酸酶偏高。例如骨折愈合期、佝偻病、骨质疏松、软骨病、骨恶性肿瘤等。

4、其他不是很常见的疾病,例如肾病、严重性贫血、甲状腺机能亢进、白血病等。

5、某些药物导致。临床患者采用抗生素(红霉素、氯霉素、庆大霉素、卡那霉素、氨苄青霉素等)、巴比妥类药物进行治疗时,会导致碱性磷酸酶偏高。像这种药物导致的碱性磷酸酶偏高,一般不需要进行特殊的治疗,停药后即恢复正常。

碱性磷酸酶偏低

碱性磷酸酶广泛分布于人体的各种器官中,其中以肝脏最多。碱性磷酸酶偏低更多出现于儿童和孕妇身上,如:儿童甲状腺性能不全、贫血等。一般来说,碱性磷酸酶偏低的原因有以下几点:

1、贫血引起的碱性磷酸酶偏低。

2、儿童甲状腺性能不全引起的碱性磷酸酶偏低。

3、重症慢性肾炎引起的碱性磷酸酶偏低。

4、病毒性感染时其活性在正常范围或略低引起的碱性磷酸酶偏低。

5、营养不良、呆小症、维生素C缺乏症坏血病、乳糜泻、恶病质、遗传性低磷酸酶血症引起的碱性磷酸酶偏低。

骨碱性磷酸酶

骨型碱性磷酸酶是成骨细胞的一种细胞外酶,为糖蛋白,分子量约为12000道尔顿。该酶在细胞内合成时新生的酶蛋白先在内质网糖基化,再通过高尔基体转运到细胞膜表面,通过多糖链与磷酯酰肌醇相连嵌合到细胞膜的外浆膜。在多糖-肌醇磷酸特异水解酶的作用下,骨型碱性磷酸酶能被释放到血循环中。骨型碱性磷酸酶在机体的生理功用主要是在成骨过程中水解磷酸酯,为羟磷灰石的沉积提供必须的磷酸;同时,水解焦磷酸盐,解除其对骨盐形成的抑制作用,有利于成骨过程。

随着骨型碱性磷酸酶检测方法的灵敏度、特异性提高,骨型碱性磷酸酶作为骨代谢异常的标志物越来越受到临床重视。临床研究表明,血清骨型碱性磷酸酶活力的定量测定可作为监测骨形成变化的有效参数。与大多数代谢性骨骼疾病相似,骨质疏松症是一种骨容量不足的疾病,常见于绝经期妇女。骨容量的生成不足发生于溶骨速率大于成骨速率,有效的治疗需要纠正或者骨密度的测量,但骨密度的改变太慢(在多数情况下,能被测出改变需要一年或更多的时间)以致不能作为临床监测治疗效果的早期反应。作为成骨细胞的一种成分,骨型碱性磷酸酶参与成骨过程并且其活性在血清中稳定没有昼夜变化,因此血清骨型碱性磷酸酶活力的定量测定可作为观察骨形成变化率,为临床提供有效治疗的监测手段。

儿童碱性磷酸酶偏高

碱性磷酸酶是主要存在于肝脏中的一种酶,而血清中的碱性磷酸酶多来自于骨骼和肝脏,且儿童血清内的碱性磷酸酶只有少量少量来自肝,大多数来自生长中的骨软骨细胞和成骨细胞。

儿童碱性磷酸酶偏高的原因的因素有很多,可以分为生理原因和病理原因。

1、生理原因:正处于生长发育期的儿童,骨组织中的碱性磷酸酶很活跃,含量较多,会出现碱性磷酸酶偏高的情况。

2、病理原因:骨骼疾病、严重性贫血、胆汁淤积性肝炎、梗阻性黄疸、原发性肝癌等都会造成碱性磷酸酶偏高的现象。

丙烷氧化脱氢进展研究论文

脱氢反应:C3H8→C3H6+H2 催化剂上的丙烷脱氢动力学 上述的Pt系和Cr系催化剂大都是以A12O3为载体的,而近年来以ZSM-5分子筛为丙烷脱氢催化剂新型载体的研究日趋活跃.Wang等基于对不同酸性载体负载的单铂催化剂的对比研究,认为丙烷脱氢在Pt/HZSM-5上按如下机理(式21)和(式22)进行. C3.+LA—→i·C3H7+·A—+H—·L (21) i·C3H7+·A—+ H—→C3—+H2 (22) 式中,A—为载体表面碱中心,L为Lewis酸中心.L酸中心用于活化丙烷分子中的氢,同时在碱中心土生成C+离子,随后C+离子从碱中心上脱除,H通过反溢流从PI中心上形成H2离去. Sara等研究了在Co/HZSM-5催化剂上的丙烷脱氢和芳构化反应动力学和反应路径.从丙烷中13C同位素含量的分布和产物收率得出,丙烷经历了以下的反应过程:脱氢生成丙烯和氢气;裂解生产甲烷和乙烯;然后丙烯和乙烯通过齐聚裂解反应生成芳烃;丙烯和乙烯还能与解离吸附出来的氢气加成生成乙烷和丙烷.反应路径与HZSM-5催化剂类似,不同之处在于Co阳离子给吸附中间体的氢原子转移提供了另一条路径.增大Co/A1原子比,可以加快丙烷脱氢(k1)、乙烯加成(k3)和烯烃脱氢环化(k4)的反应速率,对裂解(k2)没有影响,因为裂解反应是发生在B酸性位上的,而且它的反应不需要氢气的参加.

丙烷脱氢制丙烯工艺是以丙烷为原料,在高温、低压的条件下,经催化脱氢反应制取丙烯的工艺。

丙烷脱氢制丙烯技术问世迄今已有20多年历史,经过不断完善,工业应用日趋成熟。

开发丙烷催化脱氢工艺成功的有:UOP公司的Oleflex工艺、Lummus公司的Catofin工艺、Snamprogetti公司的流化床(FBD)工艺、Uhde的蒸汽活化重整(STAR)工艺、林德公司的PDH工艺。采用较多的是美国UOP公司的Oleflex工艺和Lummus的Catofin工艺。两种丙烷脱氢制丙烯工艺大体相同,所不同的只是脱氢和催化剂再生部分。

UOP公司的Oleflex工艺是20世纪80年代开发的,1990年首先在泰国实现了工业化,1997年4月韩国投产250 kt/a丙烯的联合装置采用第2代Oleflex技术。目前,全世界Oleflex丙烷脱氢制丙烯总生产能力达2500 kt/a。在国内烟台万华建成最大的750 kt/a PDH装置。

Lummus公司的Catofin工艺是ABB Lummus公司开发的C3~C5烷烃脱氢生产单烯烃技术。目前,全世界有10家采用Catofin工艺生产烯烃,生产量超过3200 kt/a。

Snamprogetti公司的FBD工艺是在俄罗斯开发的硫化床脱氢制异丁烯基础上发展起来的,其技术核心是反应器-再生系统,反应和再生是在硫化床中完成的。

德国Linde(林德)、BASF与挪威国家石油公司合作开发的PDH工艺,主要生产丙烯和异丁烯。

STAR工艺是由Philips石油公司开发,2000年被Uhde收购并进行了改进。

新型丙烷/丁烷脱氢(ADHO)技术,是重质油国家重点实验室的又一项催化剂和反应器配套研发的重要成果。

相关百科
热门百科
首页
发表服务