论文发表百科

火电厂烟气脱硫毕业论文

发布时间:2024-07-05 08:50:42

火电厂烟气脱硫毕业论文

火力发电利用可燃物在燃烧时产生的热能,通过发电动力装置转换成电能的一种发电方式。下面是我整理的火力发电技术论文,希望你能从中得到感悟!

探讨火力发电厂烟气脱硫技术

[摘要] 文章 主要阐述了脱技术的分类和比较成熟的几种脱硫工艺技术并指出了合理运用这些先进的工艺技术。

[关键词]火电厂 脱硫技术 二氧化硫 新排放标准

[中图分类号] [文献码] B [文章编号] 1000-405X(2013)-7-270-2

1国内外脱硫技术研究现状

目前燃煤脱硫有3种方式:一是锅炉燃烧前脱硫,如洁净煤技术;二是燃烧过程中(炉内)脱硫,如循环流化床燃烧技术;三是燃烧后脱硫,即烟气脱硫技术。由于燃烧前和炉内脱硫的效率较低,难以达到较高的环保要求,因此目前火电厂,特别是大型火电机组烟气脱硫,主要采用炉后烟气脱硫(FGD)工艺。就目前的技术水平和现实能力而言,烟气脱硫技术也是世界上应用最广泛、最经济、最有效的一种控制SO2排放的技术。电厂烟气脱硫技术大致可分为干法、半干法和湿法3种类型。

干法脱硫

干法烟气脱硫技术是脱硫吸收和产物处理均在无液相介入的完全干燥的状态下进行,具有流程短、无污水废酸排出、净化后烟气温度高,利于烟囱排气扩散、设备腐蚀小等优点,反应产物亦为干粉状。此种 方法 的脱硫效率为40%~70%,脱硫剂利用率较低,但投资少、设备占地面积小。

半干法脱硫

半干法烟气脱硫技术是结合了湿法和干法脱硫的部分特点,吸收剂在湿的状态下脱硫,在干燥状态下处理脱硫产物;也有在干燥状态下脱硫,在湿状态下处理脱硫产物的。半干法的工艺特点是反应在气、固、液三相中进行,利用烟气显热蒸发吸收液中的水分,使最终产物为干粉状。这种方法的脱硫效率为70%~85%,较脱硫效率比湿法低,但投资及运行费用也较低,具有较好的经济性。

湿法脱硫

湿法烟气脱硫技术是液体或浆状吸收剂在湿的状态下脱硫和处理脱硫产物,具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。湿式烟气脱硫工艺脱硫产物为膏状物,可脱除烟气中95%以上的SO2。目前,日本和欧美等国家绝大部分燃煤电厂都采用此种方法。

2几种主要脱硫工艺简介

石灰石一石膏湿法脱硫工艺

目前,世界上应用最广泛、技术最为成熟的脱除技术是石灰石—石膏湿法脱硫工艺,它能占到FGD容量的70%左右。这种技术以石灰石为脱硫吸收剂,向吸收塔内喷入吸收剂浆液,让这些物质和烟气充分接触、混合,随之对烟气进行净化、洗涤,使烟气中的SO2与浆液中的碳酸钙以及氧化空气发生化学反应,最后生成石膏,从而达到减少SO2排放的目的,是控制酸雨和SO2最有效的方法。

(1)脱硫效率高,技术成熟近年来,石灰石—石膏湿法脱硫技术发展迅速,脱硫效率能够达到95%以上,经过处理后SO2浓度和烟气含尘量都会大幅减少。从目前运行实际情况看,很多大型电厂普遍采用石灰石—石膏湿法脱硫工艺,效果较好,有利于本地区烟气污染物总量控制,改善周边环境。此项技术成熟,运行 经验 多,运行稳定,易于调整,能够取得很好的经济效益。

(2)投资高,占地面积大石灰石—石膏湿法脱硫工艺需要配置石灰石粉碎、磨制系统,石膏脱水系统、废水处理系统等,因此占地面积比较大,况且设备多,一次性建设投资就会比较大。

(3)吸收剂资源丰富,价格便宜我国有丰富的石灰石资源,并且品质也较好,价格便宜,碳酸钙含量在90%以上,优者可达95%以上,钙利用率较高。

(4)副产物的综合利用石灰石—石膏湿法脱硫工艺的脱硫副产物为二水石膏。石膏是用于生产建材产品和水泥缓凝剂,目前我国房地产市场非常大,石膏的利用率也很高,且消耗大,因此脱硫副产品基本可以达到综合利用。这样不仅可以增加电厂的经济效益,还会降低企业的运行成本,减少二次污染。

炉内喷钙加尾部增湿活化脱硫(LIFAC)

LIFAC技术是在炉内喷钙脱硫技术的基础上在锅炉尾部增设了增湿活化塔,以提高脱硫效率。石灰石粉作为吸收剂,由气力喷入炉膛950~1150℃的温度区,使石灰石受热分解为CaO和CO2,CaO再与烟气中的SO2反应生成CaSO3。此方法的脱硫效率较低,约为25%~35%。在尾部增湿活化反应器内,增湿水以雾状喷入,与未反应的CaO接触生成Ca(OH)2随后与烟气中的SO2反应,可以将系统脱硫效率提高到75%。增湿水由于烟气加热而迅速蒸发,未反应的吸收剂、反应产物被干燥,一部分从增湿活化器底部分离出来,其余的随烟气排出,被除尘器收集下来。为了提高吸收剂的利用率,部分飞灰返回增湿活化反应器入口实现再循环。

该技术具有以下特点:系统简单、占地面积少,投资及运行费用低,特别是可以分步实施,适应环保标准逐渐提高的要求,特别适用于中小机组改造,但可能会引起原锅炉结焦及受热面磨损;主要适用于燃煤含硫量低于的中、低硫煤种;脱硫效率在60%~85%之间,钙的利用率低,一般Ca/S为~;脱硫副产品呈干粉状,无废水排放,副产品的利用有一定困难,锅炉效率下降约。

循环流化床干法

烟气循环流化床脱硫技术(CFB)是20世纪80年代后期发展起来的一种新的烟气脱硫技术,该技术是利用循环流化床强烈的传热和传质特性,在吸收塔内加入消石灰等脱硫剂,用高速烟气使脱硫剂流态化从而与烟气强烈混合接触,烟气中的酸性污染物与脱硫剂中和、固化,从而达到净化烟气的目的。增湿(或制浆)后的吸收剂注入到吸收塔入口,使之均匀地分布在热态烟气中。此时,吸收剂得到干燥,烟气得到冷却、增湿,烟气中的SO2在吸收塔中被吸收,最终生成CaSO3和CaSO4。除尘器后的洁净烟气经引风机(或增压风机)升压后通过烟囱排放,被除尘器捕集下来的含硫产物和未反应的吸收剂,部分注入吸收塔进行再循环,以达到提高吸收剂利用率的目的。

旋转喷雾半干法烟气脱硫

喷雾干燥法脱硫工艺脱硫吸收剂是石灰,石灰经消化后加水形成消石灰乳,通过泵将其打入吸收塔内的雾化装置。在吸收塔内,被雾化后的吸收剂与烟气混合接触,并和烟气中的SO2发生化学反应,生成CaSO3和CaSO4,从而脱去烟气中的SO2。脱硫反应产物及未被利用的吸收剂以干燥的颗粒物形态随烟气带出吸收塔,进入除尘器被收集下来。为提高脱硫吸收剂的利用率,将部分脱硫灰渣返回制浆系统进行循环利用,其余的可综合利用。

该技术具有以下特点:技术成熟,流程简单,系统可靠性高;单塔处理能力大小(约200MW);中等脱硫效率70%~85%,钙的利用率较低,一般Ca/S=~,对生石灰品质要求不高;脱硫副产品呈干粉状,无废水排放,不过副产品利用有一定困难。此技术适应于中小规模机组,燃煤含硫量一般不超过,脱硫效率均低于90%。此技术在西欧的德国、奥地利、意大利、丹麦、瑞典、芬兰等国家应用比较多,主要应用于小型电厂或垃圾焚烧装置,美国也有15套装置(总容量500MW)正在运行,其中最大单机容量为520MW。1993年,我国山东黄岛电厂4号机组(210MW)引进了三菱旋转喷雾干燥脱硫工艺装置,处理烟气量为3×106m3/h,设计脱硫效率为70%。运行初期出现过吸收塔塔壁积灰、喷嘴结垢堵塞、R/A圆盘磨损等问题,但经过改进后基本运行正常。

3结语

脱硫技术目前相对比较成熟,应用较广泛,对于降低我国火电厂的环境污染有着十分重要的意义。通过脱硫技术的不断发展,必能达到新标准二氧化硫的排放要求。

参考文献

[1]周海滨,张东明,常燕.深度脱氮技术在电厂中水回用中的应用[J].工业水处理,2011,31(3):81-84.

[2]韩买良,马学武,吴志勇.火电厂水处理岛优化设计研究[J].华电技术,2010,32(6):12-16.

[3]徐庆东,张海燕.中水腐蚀特性试验与分析[J].华电技术,2008,30(3):29-32.

[4]韩买良,马学武,吴志勇.火电厂水处理岛优化设计研究[J].华电技术,2010,32(6):12-16.

点击下页还有更多>>>火力发电技术论文

偷懒是没用的 的

针对日益严格火力发电厂烟气污染物排放标准不断提高,火力发电厂烟气污染物排放标准已经向燃机排放标准(烟尘≤5mg/Nm3,SO2≤35mg/Nm3,NOX≤50mg/Nm3,Hg≤)要求看齐。针对火力发电厂极低排放要求,就必须有高效、环保、节能的辅机设备与之相适应。通过对我国燃煤电站烟气污染物控制环保设备使用情况及经济性和对国际上已经出现的和正在研究中多种烟气中污染物协同处理技术应用情况介绍,有针对性的提出了我国应采用的技术方案及路线控制火电领域全社会关注污染物控制技术。随着国家对大气污染物排放控制要求的提高,新的《火电厂大气污染物排放标准》(GB13223-2011)于2012年1月1日正式实施。新排放标准对烟尘、二氧化硫、氮氧化及重金属排放控制要求都有了很大的提高,新标准中规定新建火力发电厂烟尘颗粒物≤20mg/Nm3,SO2≤100mg/Nm3,NOX≤100mg/Nm3,Hg≤。然而目前国内环保形势仍十分严峻,一些担负国计民生民族企业仍有责任将烟尘、SO2、NOX等污染物排放标准做社会责任裕量考虑,将烟尘、SO2、NOX、Hg等污染物排放标准向燃机排放标准看齐,力争达到或超过燃机电厂排放标准(烟尘颗粒物≤5mg/Nm3,SO2≤50mg/Nm3,NOX≤50mg/Nm3,Hg≤)。近年来我国雾霾现象严重,环保要求也越来越高,导致我国火力发电领域环保设备升级,针对火电项目环保设备要求日趋严格。近一段时间国内又要求新建火电项目烟气烟尘、SO2、NOX、Hg等要达到燃机标准,这就要求新建火力发电厂环保设备具有更高的烟尘、SO2、NOX、Hg等主动脱除及环保设备间的协同处理能力。在燃煤电站建设过程中,应从整体角度考虑燃煤所带来的运行和环境问题,充分掌握燃煤电站烟气中各种污染物之间相互影响、相互关联物理和化学过程,充分利用现有燃煤电厂烟气中烟尘、SO2、NOX、Hg等污染物脱除设备之间可能存在协同脱除能力,来实现污染物的集成治理,大幅降低燃煤电站环境污染治理成本。从国际技术发展来看,开发高效、经济型多种污染物联合脱除技术并进行系统集成已成为一个热点。1火力发电厂污染物排放控制技术方案目前针对火力发电厂达到燃机排放标准主要考虑采用高效静电除尘器、布袋(电袋)除尘器、移动极板静电除尘器、低低温静电除尘器以及石灰石-石膏湿法脱硫技术对烟尘的脱除技术等。另外采用湿式静电除尘器精细化处理脱硫后饱和烟气中细微烟尘,从而达到较高控制水平。针对SO2的脱除工艺技术方案主要采用采用高效石灰石-石膏湿法脱硫工艺、烟气循环流化床半干法脱硫工艺等。目前火力发电厂脱硝方法主要采用低NOx燃烧技术与烟气脱硝相结合的方法脱除NOx能达到效果最优。针对重金属Hg的脱除工艺技术方案主采用加入添加氧化剂(一般为卤族元素,主要是CaBr2、改性活性炭),再配合SCR、ESP和FGD环保设备协同作用,可以达到较好汞控制效果。火力发电厂烟尘污染物排放控制技术方案火力发电厂烟尘污染物排放控制方案目前针对火力发电厂达到燃机排放标准主要考虑采用高效静电除尘器、布袋(电袋)除尘器、移动极板静电除尘器、低低温静电除尘器等。高效静电除尘器主要采用包括高频电及数模流场优化等措施,根据目前国内除尘器制造技术发展水平,选择双室五电场静电除尘器,当入口除尘器入口粉尘浓度45g/Nm3时,能使除尘器粉尘排放浓度控制在<30mg/Nm3以下;国内布袋(电袋)除尘器制造技术发展水平,选择布袋除尘器除尘效率可达,控制除尘器出口粉尘排放浓度在£5~20mg/Nm3之间。电袋除尘器在合理选择新型过滤材料(如选择PTFE基布保证过滤材料基本结构及尺寸稳定性)条件下,能够充分满足电袋除尘器后侧布袋的保证使用寿命及较恶劣的运行工况。移动极板静电除尘器能够利用旋转刷和移动的收尘极板去除捕集粉尘,从而防止电晕,移动极板系统能有效地收集高电阻率粉尘。收尘极板通过顶部驱动轮的旋转,以极慢速度进行上下移动,带电粉尘在集尘区域内被收集;附着在极板上粉尘在非集尘区域内,被夹住收尘极板的两把旋转钢丝刷刮落至灰斗中。低低温静电除尘器技术优势就在于炉后增设烟气换热器设备对锅炉尾部排烟温度进一步降低,整个机组经济型得到较大提高;烟温降低后使烟尘的比电阻降低,提高静电除尘器收尘能力;同时使烟气体积流量减小,使低低温静电除尘器及其后端烟气通流设备出力都有明显减小,降低整个工程投资。目前在日本新建500MW~1050MW火电机组基本全部采用低温电除尘器工艺,将MGGH的降温换热器安装在电除尘器(ESP)之前,主要工艺流程见工艺流程图。图低低温烟气处理系统流程图近几年我国低低温电除尘器技术也有较大发展,低低温静电除尘器与电厂热力系统及脱硫系统结合,具有综合节能、节水、环保的效果,并能满足燃中、低灰分煤条件下国家环保排放标准的粉尘控制要求。以内蒙某中等硫分、灰分已开展施工图设计2′660MW国产化机组,对采用低低温静电除尘器与采用传统五电场电除尘器主要环保排放指标、经济指标比较见下表:表低低温与传统静电除尘器环保排放指标、经济指标比较表序号项目低低温静电除尘器传统静电除尘器1设计煤质内蒙白音华褐煤2静电除尘器五电场3脱硫入口实际烟气流量/(m3˙h-1)391953244054244烟气温度/℃901355入口粉尘质量浓度/(mg˙m-3)36316粉尘质量浓度/(mg˙Nm-3)20307除尘效率/%电耗烟气换热器/kW600基准值引风机(引增合一风机)轴功率/kW-2300基准值总功率/kW-1700基准值低低温静电除尘器与传统静电除尘器相比,综合能耗有较大降低。低低温高效烟气处理系统烟气换热器需要热媒水循环泵等设备,故电耗高于回转式烟气加热器。但电除尘器前设置了降温换热器,使进入电除尘器、吸风机和增压风机的烟气温度降低,尽管降温换热器增加了烟气系统的阻力损失,但较少的烟气体积流量,使吸风机的电耗略微提高;烟气脱硫系统不仅烟气体积流量小,因为降温换热器设置在除尘器前,烟气阻力损失也减少了,引风机电耗大幅度降低,轴功率降低低低温高效烟气处理系统与传统的除尘相比,环保性能有较大提高,粉尘排放质量浓度控制在20mg/m3以下。按年利用小时5500计算,采用低低温静电除尘器,每年可节电˙h,由此可见采用低低温高效烟气处理系统有较好运行经济性。目前低低温静电除尘技术以其经济性高、技术可靠性好、投资水平合理占据国内锅炉主烟气除尘设备主流地位,其他除尘器设备为辅助的技术匹配形式。高效石灰石-湿法脱硫装置对烟尘的脱除作用国内脱硫公司认为采用高效石灰石-石膏湿法烟气脱硫装置对烟尘的脱除效率可达70%左右,但是考虑到各工程采用燃煤性质的偏差建议石灰石-石膏湿法烟气脱硫装置对锅炉烟尘脱除作用应按不大于50%考虑,而且近期国内火电发电项目环评审批意见也按此数据进行。湿式静电除尘器精细化处理脱硫后烟气中细微烟尘湿式静电除尘器(WESP)是静电除尘器(ESP)的一种,湿式静电除尘器与通常说干式静电除尘器最关键差别就是清灰方式不同,WESP采用液体(水)冲刷集尘极表面来进行清灰,液体(水)从集尘板顶端流下,在集尘板上形成一层均匀稳定的水膜,将板上的颗粒带走。因此,WESP与干式ESP的工作原理都要经历荷电、收集和清灰三个阶段。其集灰工作原理和清灰工作原理如图如图、。湿式静电除尘器可有效收集微细颗粒物(粉尘、SO3酸雾、气溶胶)、重金属(Hg、As、Se、Pb、Cr)、有机污染物(多环芳烃、二恶英)等,没有二次扬尘,烟尘排放可达5mg/m3以下。WESP收尘性能与粉尘特性关系不大,对黏性大或高比电阻粉尘也能有效收集,同时也适用于处理高温、高湿的烟气;需要设置废水处理设备及采用很好的防腐措施。湿式静电除尘效率可达到80%左右。目前国内也有采用高效石灰石-石膏湿法除尘脱硫一体化超净排放技术的工程,如单塔一体化脱硫除尘深度净化技术(SPC-3D)技术、多层喷淋层配合双托盘或持液层,脱硫塔顶部配合高效除尘雾器技术,单塔(双塔)双循环配合高效除尘雾器技术等,这些技术形式是我国引进湿法脱硫技术后经过近一段时间技术积累后改进和研发的,不但可实现高效脱除SO2,同时也能实现脱硫后超细粉尘精细化排放控制。目前这些技术都是在我国火电机组环保标准提高后,特别是在国内绝大多数火电机组排放标准向燃机标准看齐后经过技术转化突破技术瓶颈后出现的,上述这些技术在工程上也有应用,并且绝大多数取得了较好效果,但上述技术还需要时间进一步检验。火力发电厂SO2污染物排放控制方案针对SO2的脱除工艺技术方案主要采用采用高效石灰石-石膏湿法脱硫工艺、烟气循环流化床半干法脱硫工艺等。烟气循环流化床半干法脱硫工艺烟气循环流化床半干法烟气脱硫工艺RCFB是一种气—液—固反应烟气脱硫工艺。在脱硫塔内,一方面进行气相向液相的传质过程,烟气中的气态污染物不断进入溶液中,同时与脱硫吸收剂中的钙离子发生反应,另外一方面进行蒸发干燥的传热过程,颗粒上液相水分受烟气加热影响不断在塔内蒸发干燥,再生成固体干态脱硫灰渣。烟气循环流化床脱硫工艺业绩较多,技术相对成熟,且已经在大中型机组上得到商业运行。基本可满足国家新的国家环保排放标准《火电厂大气污染物排放标准》(GB13223-2011)。在采用低温烟气循环流化床脱硫工艺后,以2x660MW褐煤机组为例,烟气脱硫装置入口烟气温度由150℃下降到120℃,在保证相同的运行状况和脱硫效率条件下,与目前使用的烟气循环流化床脱硫工艺相比,水量由180t/h降低到102t/h,实现节约用水78t/h,节水率达到,节水效果明显。因此在特别缺水地区机组上建议采用此种脱硫机组,以实现较好的节水效果。石灰石-石膏湿法烟气脱硫工艺石灰石-石膏湿法烟气脱硫工艺是目前世界上应用最广泛,技术最成熟烟气脱硫技术。该工艺采用价廉石灰石浆液洗涤烟气,通过船只换热脱除烟气中SO2,反应产物为石膏,脱硫后烟气经除雾器除去液滴后排入烟囱。这种工艺煤种适应性广,脱硫效率高,能够适应大容量机组要求,对SO2浓度变化适应范围广。石灰石-石膏湿法烟气脱硫装置引进技术后已在我国投运多年,工艺系统的可靠性、安全性得到用户认可。经过工艺系统创新优化后脱硫装置工艺系统较传统的脱硫装置更为先进,脱硫效率更高。如:多层喷淋技术+高效除雾器方案、多层喷淋技术+双托盘+高效除雾器方案、单塔双循环及双塔双循环技术方案、旋回耦合技术+离心管束式除尘除雾技术等石灰石-石膏湿法烟气脱硫装置脱硫装置有了较为明显的提高,保证脱硫效率均可达到~99%左右,更适合提高火力发电厂提高SO2排放标准使用。上述提及脱硫技术均可保证达到极高的SO2脱除率,可见国内经过近一段时间的技术吸收和消化,已经完全具备了高效率、低排放的脱硫技术。火力发电厂NOX污染物排放控制方案火力发电厂中锅炉脱硝是指控制燃烧过程中生成氮氧化物以及去除燃烧烟气中氮氧化物的过程。目前火力发电厂脱硝方法主要有以下两类:一类是从源头上治理,控制燃烧过程中生成NOx。主要技术措施有:采用低氮燃烧器;分级燃烧,控制燃烧温度;改变配料方案等。另一类是从末端治理,控制烟气中排放的NOx,主要技术措施有:选择性非催化还原法(SNCR);选择性催化还原法(SCR);SNCR/SCR联合脱硝技术等。对于燃煤锅炉虽然采用低NOx燃烧技术和设备的方法来控制NOx的生成,能达到一定的效果,但对火焰的稳定性、燃烧效率、过热蒸汽温度的控制、受热面的结渣和腐蚀等可能带来影响,NOx脱除率也有限,NOx脱除率最多不超过60%,难以满足不断提高的环境排放标准要求。采用低NOx燃烧技术与尾部烟气脱硝相结合全负荷脱除NOx技术路线。2火力发电厂Hg等重金属污染物排放控制技术气体元素汞的性质不活泼,既不易吸附也不溶于水,较难被现有污染物控制设备脱除。因此火力发电厂脱汞技术的思路都是促进元素汞向氧化态或颗粒态转化,走复合式污染控制之路。目前脱除Hg等重金属污染物主要方法有燃烧前脱汞、燃烧中脱汞、燃烧后脱汞等。我国原煤洗选率还较低,尚无法燃烧前起到脱汞;燃烧中脱汞主要是改进燃烧方式促进汞向氧化态转化;燃烧后脱汞是目前燃煤火电机组使用较广泛方法。(1)促进元素汞转化为颗粒吸附态,再利用除尘器回收脱除;(2)促进元素汞转化为氧化态,利用氧化汞水溶性,在湿法烟气脱硫装置中脱除。除上述直接脱汞方法外,一些在燃烧前和燃烧中加入添加剂(如CaBr2等)的方法,可以有效提高燃烧后烟气中汞的脱除效率。在工程应用中,常采用的是在输煤皮带和煤粉管道上喷射卤素(一般为CaBr2)。美国PleasantPrairie燃煤电厂(600MW,燃PRB次烟煤,安装有SCR、ESP和WFGD)测试结果:向煤中添加25mg/kg的添加剂后,汞脱除率持续维持在92%-97%。另外一种新提出技术是在布袋除尘器膜上添加氧化剂,目前还在探索研究中。烟道活性炭喷射技术(ACI)是目前最为成熟的主动脱汞技术,在垃圾焚烧炉汞排放控制中取得了较好的效果。该技术是在除尘器之前的烟道中喷入活性炭,使活性炭在伴随流动过程中不断吸附烟气中的汞,将气态汞转化为固定在吸附剂上的颗粒汞,然后利用颗粒物排放控制装置将其脱除。目前在美国,一些ACI设备已投入运营。有些电厂使用的是未处理的活性炭;有些电厂为减少活性炭用量,提高脱汞效率,使用的是特殊处理改性活性炭。底特律爱迪生电厂(安装ESP,燃次烟煤)以每分钟48mg/Nm3的速率喷射活性炭后,其30天平均脱汞效率达到94%;针对燃煤电厂汞污染控制,尽管已开发出了许多种方法,不过多数尚处于研究测试阶段。目前较为成熟且投入商业化应用主动脱汞工艺主要有三种:1、活性炭喷射;2、添加氧化剂(一般为卤族元素,主要是CaBr2);3、添加氧化剂辅以微量活性炭喷射。这几种工艺再配合SCR、ESP和FGD的使用,可以达到较好的汞控制效果。除此之外,混煤燃烧也是一种可行的工艺。将卤素含量(特别是溴含量)较高的煤种,与卤素含量较低的煤种混合燃烧,这种方法可以提高汞脱除效率,并且无副产物的处理问题,具有很好的经济性。3我国超净排放采用技术路线研究我国燃煤火电机组环保技术发展已经形成高效烟气处理工艺的体系:1、烟气低NOX燃烧器及SCR烟气脱硝工艺;2、高效电除尘器、电袋除尘器或布袋除尘器、低低温电除尘器、移动极板电除尘器;3、高效湿法烟气脱硫工艺、烟气循环流化床半干法烟气脱硫技术和活性焦干法烟气脱硫技术。针对我国不同地区,结合燃煤火电机组高效烟气处理技术特点,采用不同设备、技术组合。发达地区综合环保标准要求高,地区环保排放控制标准高于目前国家环保标准,燃煤为优质烟煤,煤质具有高热值、中灰、低硫等特点,建议:1)采用低NOX燃烧器+SCR+高效静电除尘器、布袋(电袋)除尘器、低低温电除尘器或移动极板电除尘器+湿法烟气脱硫配套湿式静电除尘器工艺、高效石灰石-石膏湿法脱硫除尘一体化工艺;2)采用低NOX燃烧器+SCR+高效电除尘器、低低温静电除尘器、布袋(电袋)除尘器或移动极板电除尘器+高效石灰石-石膏湿法烟气脱硫、脱重金属工艺+湿式静电除尘器工艺。内陆、边远地区综合环保标准要求相对宽松,机组排放需满足国家环保排放控制标准要求,煤质具有低热值、高灰、低硫或中等热值、高硫等特点,建议:1)采用低NOX燃烧器+SCR+高效电除尘器、布袋(电袋)除尘器、移动极板电除尘器+石灰石-石膏湿法烟气脱硫(配高效除雾器)工艺,根据需要配置湿式静电除尘器工艺;2)烟气循环流化床锅炉(或燃低硫煤锅炉)+烟气循环流化床半干法脱硫工艺+布袋(电袋)除尘器或高效电除尘器。缺水地区特点富煤缺水,机组排放需满足国家环保排放控制标准要求,煤质具有低热值、高灰、低硫或高热值、高灰、中低硫特点,建议:需要采取节水型高效烟气处理工艺,1)采用低NOX燃烧器+SCR+低低温静电除尘器、布袋(电袋)除尘器+移动极板电除尘器+石灰石石膏-湿法脱硫装置,根据需要配置湿式静电除尘器工艺;2)循环流化床锅炉(或燃低硫煤锅炉)+低温烟气循环流化床脱硫工艺+布袋(电袋)除尘器或高效电除尘器。通过上述技术路线研究,目前国内已经形成了多种有针对性控制污染物排放技术路线,通过煤质分析、区域位置、设备投资、排放要求等多种技术路线控制污染物超净排放,使我国火力发电厂综合污染物排放标准达到燃机排放标准是完全具备条件的。4结论通过上述介绍和分析,可知目前国内外火力发电厂烟气超净排放技术是复杂多样的,根据地域不同通过各种环保设备组合优化,进一步提高火力发电厂烟尘、SO2、NOX、Hg等重金属脱除。随着时间的推移和技术的进步,低低温静电除尘器系统和高效湿法除尘脱硫一体化系统、高效石灰石-石膏湿法脱硫装置配合湿式静电除尘器等工艺技术的积淀,实现火力发电厂综合污染物脱除到超净水平在技术上使完全可行的。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

(中--日)卒业の说: 诘められたベッドを非常に热い石炭で霞の脱硫の実験调査を使用するために回転させる 重力の技术を- ボイラー霞诘められたベッドを石炭を脱硫の尘取り外しを続けていくために燃やすことを来るように回転させるのに超使用する。设计を诘められたベッド装置で回転するために开発しで(评価される力は 自発的にであり、だった気违い占められるである500m3/ 処理する空き様々な面の点検装置の动きを通したh) は、経済的な技术的な比较を、通ったり、従って诘められたベッドの脱硫の尘取り外しの技术および変数を回転させるために得る最适化のセットを考虑する。 要约する: 大学院生の段阶は大きい化学化学企业の知识を集めた。科学の研究活动および社会的な练习によって、焼迹の石炭を支配するためによく知られてを、特に使用された大気汚染の政府を、回転させる诘められたベッドを霞の技术は理解した。同时に、水処理の面で形态に私を引き起こされる具体的なプロジェクトの练习によって水処理- 汚水処理- を中心の水処理完全な知识フレーム与えた。(中-英)Graduation thesis: Revolves the packed bed to use in burning coal the haze desulphurization experimental study Uses the ultra gravity technology - to revolve the packed bed to come to burn coal the boiler haze to carry on the desulphurization dust removal. In develops the design to revolve in the packed bed equipment (the rated power is voluntarily, processing was mad the amount of space occupied is 500m3/H), through the inspection equipment movement in various aspects factor, passes through the economical technical comparison, thus obtains set of optimization to revolve the packed bed desulphurization dust removal craft and the parameter. Summarizes: The graduate student stage accumulated the massive chemistries chemical industry knowledge. Through the scientific research activity and the social practice, were familiar with and had understood the air pollution government, specially used revolves the packed bed to govern burns coal the haze technology. At the same time, through the concrete project practice, caused me to form in the water treatment aspect has given the water treatment - sewage treatment - center water treatment the complete knowledge frame.

烟气脱硫毕业论文

456465

现在网络发达就是好!以前我毕业论文花三千块请别人帮我写的。你两百分换三千块,更有才!

火力发电利用可燃物在燃烧时产生的热能,通过发电动力装置转换成电能的一种发电方式。下面是我整理的火力发电技术论文,希望你能从中得到感悟!

探讨火力发电厂烟气脱硫技术

[摘要] 文章 主要阐述了脱技术的分类和比较成熟的几种脱硫工艺技术并指出了合理运用这些先进的工艺技术。

[关键词]火电厂 脱硫技术 二氧化硫 新排放标准

[中图分类号] [文献码] B [文章编号] 1000-405X(2013)-7-270-2

1国内外脱硫技术研究现状

目前燃煤脱硫有3种方式:一是锅炉燃烧前脱硫,如洁净煤技术;二是燃烧过程中(炉内)脱硫,如循环流化床燃烧技术;三是燃烧后脱硫,即烟气脱硫技术。由于燃烧前和炉内脱硫的效率较低,难以达到较高的环保要求,因此目前火电厂,特别是大型火电机组烟气脱硫,主要采用炉后烟气脱硫(FGD)工艺。就目前的技术水平和现实能力而言,烟气脱硫技术也是世界上应用最广泛、最经济、最有效的一种控制SO2排放的技术。电厂烟气脱硫技术大致可分为干法、半干法和湿法3种类型。

干法脱硫

干法烟气脱硫技术是脱硫吸收和产物处理均在无液相介入的完全干燥的状态下进行,具有流程短、无污水废酸排出、净化后烟气温度高,利于烟囱排气扩散、设备腐蚀小等优点,反应产物亦为干粉状。此种 方法 的脱硫效率为40%~70%,脱硫剂利用率较低,但投资少、设备占地面积小。

半干法脱硫

半干法烟气脱硫技术是结合了湿法和干法脱硫的部分特点,吸收剂在湿的状态下脱硫,在干燥状态下处理脱硫产物;也有在干燥状态下脱硫,在湿状态下处理脱硫产物的。半干法的工艺特点是反应在气、固、液三相中进行,利用烟气显热蒸发吸收液中的水分,使最终产物为干粉状。这种方法的脱硫效率为70%~85%,较脱硫效率比湿法低,但投资及运行费用也较低,具有较好的经济性。

湿法脱硫

湿法烟气脱硫技术是液体或浆状吸收剂在湿的状态下脱硫和处理脱硫产物,具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。湿式烟气脱硫工艺脱硫产物为膏状物,可脱除烟气中95%以上的SO2。目前,日本和欧美等国家绝大部分燃煤电厂都采用此种方法。

2几种主要脱硫工艺简介

石灰石一石膏湿法脱硫工艺

目前,世界上应用最广泛、技术最为成熟的脱除技术是石灰石—石膏湿法脱硫工艺,它能占到FGD容量的70%左右。这种技术以石灰石为脱硫吸收剂,向吸收塔内喷入吸收剂浆液,让这些物质和烟气充分接触、混合,随之对烟气进行净化、洗涤,使烟气中的SO2与浆液中的碳酸钙以及氧化空气发生化学反应,最后生成石膏,从而达到减少SO2排放的目的,是控制酸雨和SO2最有效的方法。

(1)脱硫效率高,技术成熟近年来,石灰石—石膏湿法脱硫技术发展迅速,脱硫效率能够达到95%以上,经过处理后SO2浓度和烟气含尘量都会大幅减少。从目前运行实际情况看,很多大型电厂普遍采用石灰石—石膏湿法脱硫工艺,效果较好,有利于本地区烟气污染物总量控制,改善周边环境。此项技术成熟,运行 经验 多,运行稳定,易于调整,能够取得很好的经济效益。

(2)投资高,占地面积大石灰石—石膏湿法脱硫工艺需要配置石灰石粉碎、磨制系统,石膏脱水系统、废水处理系统等,因此占地面积比较大,况且设备多,一次性建设投资就会比较大。

(3)吸收剂资源丰富,价格便宜我国有丰富的石灰石资源,并且品质也较好,价格便宜,碳酸钙含量在90%以上,优者可达95%以上,钙利用率较高。

(4)副产物的综合利用石灰石—石膏湿法脱硫工艺的脱硫副产物为二水石膏。石膏是用于生产建材产品和水泥缓凝剂,目前我国房地产市场非常大,石膏的利用率也很高,且消耗大,因此脱硫副产品基本可以达到综合利用。这样不仅可以增加电厂的经济效益,还会降低企业的运行成本,减少二次污染。

炉内喷钙加尾部增湿活化脱硫(LIFAC)

LIFAC技术是在炉内喷钙脱硫技术的基础上在锅炉尾部增设了增湿活化塔,以提高脱硫效率。石灰石粉作为吸收剂,由气力喷入炉膛950~1150℃的温度区,使石灰石受热分解为CaO和CO2,CaO再与烟气中的SO2反应生成CaSO3。此方法的脱硫效率较低,约为25%~35%。在尾部增湿活化反应器内,增湿水以雾状喷入,与未反应的CaO接触生成Ca(OH)2随后与烟气中的SO2反应,可以将系统脱硫效率提高到75%。增湿水由于烟气加热而迅速蒸发,未反应的吸收剂、反应产物被干燥,一部分从增湿活化器底部分离出来,其余的随烟气排出,被除尘器收集下来。为了提高吸收剂的利用率,部分飞灰返回增湿活化反应器入口实现再循环。

该技术具有以下特点:系统简单、占地面积少,投资及运行费用低,特别是可以分步实施,适应环保标准逐渐提高的要求,特别适用于中小机组改造,但可能会引起原锅炉结焦及受热面磨损;主要适用于燃煤含硫量低于的中、低硫煤种;脱硫效率在60%~85%之间,钙的利用率低,一般Ca/S为~;脱硫副产品呈干粉状,无废水排放,副产品的利用有一定困难,锅炉效率下降约。

循环流化床干法

烟气循环流化床脱硫技术(CFB)是20世纪80年代后期发展起来的一种新的烟气脱硫技术,该技术是利用循环流化床强烈的传热和传质特性,在吸收塔内加入消石灰等脱硫剂,用高速烟气使脱硫剂流态化从而与烟气强烈混合接触,烟气中的酸性污染物与脱硫剂中和、固化,从而达到净化烟气的目的。增湿(或制浆)后的吸收剂注入到吸收塔入口,使之均匀地分布在热态烟气中。此时,吸收剂得到干燥,烟气得到冷却、增湿,烟气中的SO2在吸收塔中被吸收,最终生成CaSO3和CaSO4。除尘器后的洁净烟气经引风机(或增压风机)升压后通过烟囱排放,被除尘器捕集下来的含硫产物和未反应的吸收剂,部分注入吸收塔进行再循环,以达到提高吸收剂利用率的目的。

旋转喷雾半干法烟气脱硫

喷雾干燥法脱硫工艺脱硫吸收剂是石灰,石灰经消化后加水形成消石灰乳,通过泵将其打入吸收塔内的雾化装置。在吸收塔内,被雾化后的吸收剂与烟气混合接触,并和烟气中的SO2发生化学反应,生成CaSO3和CaSO4,从而脱去烟气中的SO2。脱硫反应产物及未被利用的吸收剂以干燥的颗粒物形态随烟气带出吸收塔,进入除尘器被收集下来。为提高脱硫吸收剂的利用率,将部分脱硫灰渣返回制浆系统进行循环利用,其余的可综合利用。

该技术具有以下特点:技术成熟,流程简单,系统可靠性高;单塔处理能力大小(约200MW);中等脱硫效率70%~85%,钙的利用率较低,一般Ca/S=~,对生石灰品质要求不高;脱硫副产品呈干粉状,无废水排放,不过副产品利用有一定困难。此技术适应于中小规模机组,燃煤含硫量一般不超过,脱硫效率均低于90%。此技术在西欧的德国、奥地利、意大利、丹麦、瑞典、芬兰等国家应用比较多,主要应用于小型电厂或垃圾焚烧装置,美国也有15套装置(总容量500MW)正在运行,其中最大单机容量为520MW。1993年,我国山东黄岛电厂4号机组(210MW)引进了三菱旋转喷雾干燥脱硫工艺装置,处理烟气量为3×106m3/h,设计脱硫效率为70%。运行初期出现过吸收塔塔壁积灰、喷嘴结垢堵塞、R/A圆盘磨损等问题,但经过改进后基本运行正常。

3结语

脱硫技术目前相对比较成熟,应用较广泛,对于降低我国火电厂的环境污染有着十分重要的意义。通过脱硫技术的不断发展,必能达到新标准二氧化硫的排放要求。

参考文献

[1]周海滨,张东明,常燕.深度脱氮技术在电厂中水回用中的应用[J].工业水处理,2011,31(3):81-84.

[2]韩买良,马学武,吴志勇.火电厂水处理岛优化设计研究[J].华电技术,2010,32(6):12-16.

[3]徐庆东,张海燕.中水腐蚀特性试验与分析[J].华电技术,2008,30(3):29-32.

[4]韩买良,马学武,吴志勇.火电厂水处理岛优化设计研究[J].华电技术,2010,32(6):12-16.

点击下页还有更多>>>火力发电技术论文

给你一个目录看看 烟气脱硫系统采用石灰石—石膏湿法脱硫工艺,脱硫效率大于95%。一炉配备一套烟气脱硫装置(FGD),二氧化硫吸收系统为单元制。不设置GGH(烟气—烟气热交换器),采取提高后续烟道和烟囱的防腐措施,以增加脱硫系统运行的稳定性和可靠性。脱硫系统设置100%旁路烟道,以保证脱硫装置在任何情况下不会影响电厂机组安全运行。制浆系统按规划容量6×600MW统一考虑。石膏脱水按100%考虑,石膏脱水后含水率≤10%,石膏除综合利用外,还考虑可由汽车运往电厂干灰场堆放。脱硫废水由脱硫岛内脱硫废水处理设施处理。脱硫工程所需设备按关键和主要设备进口、部分设备国内配套的方式考虑。所有设备必须满足给定的气象条件和其他环境条件,原则上,除吸收塔、增压风机外其它设备应布置在室内,安装在室外的设备都应配备防雨及防冻的措施。 石灰石—石膏湿法脱硫主要有下列系统和设备:SO2吸收系统;烟气系统;吸收剂供应与制备系统;石膏脱水系统;FGD供水及排放系统;FGD废水处理系统;压缩空气系统;钢结构、楼梯和平台;附属管道和辅助设施;阀门和配件;保温、紧固件和外覆层;设备及设施的起吊设施;仪表和控制等。 一、SO2吸收系统 主要包括,但不限于此: 1、吸收塔:每炉一座带有玻璃鳞片树脂涂层或橡胶衬的钢制塔体及附属设备等。 2、浆液喷淋系统:包括吸收塔氧化浆池(位于吸收塔下部)、搅拌装置、3台循环泵、管线、喷咀、支撑、加强件和配件等。 3、吸收塔氧化风机系统:每座吸收塔有2台氧化风机(其中一台备用)及附属设备等。 4、除雾器:每座吸收塔一套两级除雾器,整套包括进出口罩、冲洗水系统的喷嘴、管道和附件等。 5、事故烟气冷却系统(如果需要) 6、石膏排浆泵:每座吸收塔2台100%容量的石膏排出泵(其中一台备用)。 7、其它:整套FGD装置内部、以及进入和离开FGD装置的所有输送管线,包括管道及衬里,接触浆液和酸液的设施;所有输送介质管道的伴热管线,紧固件等;设备及设施的起吊设施;吸收塔及系统内的防腐。 二、烟气系统 烟气系统是指从锅炉岛引风机后水平主烟道引出到脱硫后烟气再返回水平主烟道的整个烟风道系统及设备。烟气系统至少包括,但不限于此: 1、 增压风机:每炉提供一台增压风机及附属设备等 2、挡板门:每炉提供两套带有密封空气的双百叶窗式挡板门(进出口挡板)和一套带有密封空气的单轴双叶片百叶窗式挡板门(旁路挡板)及它们的附属设备等。每两炉提供三台100%容量密封风机(其中一台公用备用)和两套密封空气电加热装置,全套带有:底座、挡板、电机、联轴、风道及支架等。 3、烟道:提供的烟道和附属设备应是完整的相互连接的烟道段,包括从原烟气的接入到净烟气的排出,与钢结构水平主烟道的连接(包括支架)、旁路烟道的防腐及旁路挡板的安装(包括平台扶梯)等。 三、 吸收剂供应与制备系统 吸收剂供应与制备系统为4×600MW机组脱硫装置公用系统,将分期建设。 石灰石由卡车运至厂区,卡车卸下的石灰石经地下料斗、给料机,由斗提机送至石灰石贮仓贮存。再由称重给料机输送至湿式球磨机内磨浆,石灰石浆液经旋流器分离后,大颗粒物料再循环,溢流物料存贮于石灰石浆箱中,再泵送至吸收塔补充与SO2反应消耗了的吸收剂。全套至少包括,但不限于: 1、卸料及储存系统:—套汽车来料计量设备;地下料斗;全套输送装置;金属分离器;每两炉一座石灰石贮仓,容积满足BMCR工况下燃用设计煤时2×600MW机组7天石灰石耗量;每个石灰石贮仓配一套带抽风机的仓顶布袋过滤器及附属设备等 2、吸收剂制备及输送系统:磨机的称重给料机,每2×600MW机组一套;每两炉一台湿式球磨机,每台磨机的出力按2×600MW机组BMCR工况下燃用设计煤时150%的石灰石浆液量考虑,并满足燃用校核煤时石灰石浆液量要求;每台磨机一个磨机循环浆液箱,设两台100%容量磨机浆液循环泵(一台备用),循环输送石灰石浆液至旋流分离器;每台湿磨配1套旋流分离器组;四套FGD装置设二座石灰石浆液箱,其有效容积不小于4×600MW机组BMCR工况下燃用设计煤时6小时的石灰石浆液量;每两炉设三台100%容量石灰石浆液泵(两运一备)。 四、石膏脱水系统 石膏脱水系统为4×600MW机组脱硫装置公用系统,将分期建设。 1、第1级FGD石膏脱水系统 整套至少包括:每炉一套100%容量的石膏旋流器;四套FGD装置设二个公用的石膏浆缓冲箱;一个公用的石膏旋流器溢流箱;一套公用的废水旋流器;一个废水旋流器溢流箱;2台100%容量废水旋流器给料泵(其中一台备用)及附件;2台100%容量废水输送泵(其中一台备用)及附件;所有的附属设备等。 2、第2级FGD石膏脱水系统 把石膏浆脱水至含水量为10%或更少的全部必需设备,至少包括,但不限于此:每两炉设一台真空皮带脱水机,每台处理量按2×600MW机组BMCR工况下燃用设计煤时150%的的石膏浆液量考虑,并满足燃用校核煤时石膏浆液量要求;每台皮带过滤机配一台真空泵;所有其它必需的泵和箱;石膏冲洗水和滤布冲洗水系统;两套石膏皮带输送机及其钢支架;卸料采用带自动卸载设备的筒式钢筋混凝土结构石膏仓两座,每座石膏仓的容积满足2×600MW机组燃用设计煤BMCR工况下3天的石膏贮量;所有浆液箱、管道的防腐内衬。 五、FGD供水及排放系统 1、FGD供水系统:FGD供水系统为4×600MW机组脱硫装置公用系统,将分期建设。根据水源及用途在脱硫岛内设二~三个水箱及要求的全部连接管、阀门、检查开口、溢流管、排水管和其他必要的设施;所有必须的水泵等。 2、事故浆液系统:事故浆液系统为4×600MW机组脱硫装置公用系统;一个碳钢加衬里事故浆液箱,用于收集FGD吸收塔检修排空时排放浆液,事故处理后返回吸收塔;一运一备两台事故浆液返回泵。 3、排污坑:收集设备冲洗水、管道冲洗水、吸收塔区域、石灰石卸料及制备区、石膏脱水区冲洗水的收集坑,并定期返回吸收塔/石灰石浆液箱,每座排污坑1台排浆泵。 4、排放系统:设备冷却水排水返回工艺水箱;岛内生活污水排至岛外2米处的生活污水总管,由电厂统一处理;雨水排水接入厂区雨水下水道系统,送至岛外2米;处理后的脱硫废水排至岛外2米处的工业废水总管。 六、FGD废水处理系统 1 、脱硫废水处理装置容量按4×600MW机组脱硫装置的废水处理量考虑,其设备布置在脱硫公用设施区域内,与石膏脱水设施集中布置,但为独立的FGD废水处理系统。 2、脱硫废水引自废水旋流器并自流/泵送至到废水接收池。废水处理系统按125%容量设计,为使系统有高的可利用性,所有泵按100%安装备用。每个箱体都应设置旁路,以便箱体能够放空并进行维修。污泥脱水系统的污泥运至干灰场贮存。处理后废水排放至电厂工业废水下水道,送至脱硫岛外2米。 3、 废水处理后达到《污水综合排放标准》(GB8978-1996)第二时段一级标准。 4、 FGD废水系统内的所有设备、阀门、管道、仪表、平台、扶梯、支吊架等附件及设备管道安装,整套包括,但不限于此:废水缓冲箱、中和箱、沉淀箱、絮凝箱、澄清箱、浓缩箱及衬里防腐,阀门、仪表、管道、排水排污管、全部必须的连接件、法兰、人孔、平台、扶梯及其他配件。 七、压缩空气系统 1、杂用空气用于机械设备,风动工具,板手等操作,用于脱硫装置各种运行方式中,以及用于脱硫装置的维修目的;在岛内设杂用空气贮气罐。 2、高纯度,无油,无水的仪用压缩空气,用于脱硫装置所有气动操作的仪表和控制装置(阀门操作装置等);在岛内设仪用空气稳压罐。 八、仪表和控制系统(控制要点如下,但不限于此) 1、SO2吸收系统:吸收塔进口/出口二氧化硫浓度控制;石灰石浆液流量控制;循环浆液pH值控制;吸收塔氧化浆池液位控制;石膏浆液排放控制等。 2、烟气系统:烟气入口/出口温度测量;挡板门开/闭的控制;增压风机压力和流量控制;增压风机启闭控制;密封风机差压控制,启闭控制等。 3、吸收剂制备系统:湿式磨机给料量控制;旋流器溢流控制;旋流器出口石灰石粉细度监控;一旋流器流量和出口浓度控制;石灰石浆液泵流量控制等。 4、FGD石膏脱水系统:石膏旋流器溢流控制;石膏冲洗控制;石膏旋流器流量和出口浓度控制;真空泵压力控制;真空皮带脱水机石膏厚度控制等。 5、FGD供水及排放系统:工艺水泵和冲洗水泵压力和流量控制;箱体液位控制;事故情况下连锁控制事故排放等。 6、FGD废水处理系统及压缩空气系统仪表和控制,提供满足系统正常运行和事故/停机状态时需要的所有的仪表和控制。

海水法烟气脱硫毕业论文

海水法烟气脱硫工艺是利用天然海水的碱度脱除烟气中二氧化硫的一种脱硫方法。它可利用火电厂原有冷却用海水作为脱硫剂,在脱硫吸收塔内,大量海水喷淋洗涤进入吸收塔内的燃煤烟气,烟气中的二氧化硫被海水吸收而除去,净化后的烟气经除雾器除雾、烟气换热器加热后排放。吸收二氧化硫后的海水在曝气池中与海水混合,曝气处理,其中不稳定的亚硫酸根被氧化成为稳定的硫酸根,并使海水的PH值与COD等指标恢复到海水水质标准后排入大海。

海水脱硫适用于靠海边,扩散条件较好,用海水作为冷却水,燃用低、中硫煤的电厂烟气脱硫。据悉,国家发改委已将海水法火电脱硫工艺列为我国大力推进的海水火电脱硫技术。

现有技术

纯海水脱硫工艺,利用海水所具有的天然咸度以及硫酸盐对海洋的无害性原理。这项新工艺是目前全世界二百多种脱硫工艺中唯一无需任何人工原料,也没有副产物排放的绿色工艺,脱硫效率高于百分之九十。其设备造价和运行成本仅为目前世界上广泛采用的传统脱硫工艺的三分之一。

纯海水烟气脱硫法是计算机软件此系列产品利用了磁致伸缩技术的新一代高精度液位传感器,具有性能稳定、可靠性高、使用寿命长、安装方便等特点。可同时连续测量介质的液面、界面和湿度;符合工业防爆、防腐要求;平均无故障工作时间达23年。可配套各种形式的测量仪表,广泛应用于航天航空、石油化工等工业测量控制领域。

1.海水脱硫工艺原理

天然海水中含有大量的可溶盐,其主要成分是氯化物和硫酸盐,也含有一定量的可溶性碳酸盐。海水通常呈碱性,自然碱度为1.2-2.5mmol/L。这使得海水具有天然的酸碱缓冲能力及吸收SO2能力。利用海水这种特性洗涤并吸收烟气中的SO2,达到烟气净化之目的。

海水脱硫工艺按是否添加其他化学物质作吸收剂分为2类:(l)不添加任何化学物质,用纯海水作为吸收液的工艺,以挪威ABB公司开发的Flakt-Hydro工艺为代表。这种工艺已得到较多的工业化应用。(2)在海水中添加一定量石灰,以调节吸收液的碱度,以美国Bechte公司为代表。这种工艺在美国建成了示范工程,但未推广应用。以下介绍的海水脱硫工艺均指第1类。纯海水脱硫工艺的基本流程如图1所示。

海水脱硫工艺主要由烟气系统、供排海水系统、海水恢复系统、电气、控制系统等组成。其主要流程是:锅炉排出的烟气经除尘器后,由FGD系统增压风机送入气一气换热器的热侧降温,然后进入吸收塔,在吸收塔中被来自循环冷却系统的部分海水洗涤,烟气中的SO2在海水中发生以下化学反应:

SO2+H2O→H2 SO3

H2 SO3→H++HSO-3

HSO-3 →H++SO23-

SO23-+1/2O2→SO24-

以上反应中产生的H+与海水中的碳酸盐发生如下反应:

CO23-+H+→HCO3-

HCO3-+H+→H2CO3→CO2+H2

吸收塔内洗涤烟气后的海水呈酸性,并含有较多的SO32-,不能直接排放到海水中去。吸收塔排出的废水流入海水处理厂,与来自冷却循环系统的海水混合,用鼓风机鼓入大量空气,使SO32-氧化为SO42-;,并驱赶出海水中的CO2。混合并处理后海水的PH值、COD等达到同类海水水质标准后排入海域。净化后的烟气通过GGH升温后经烟囱排入大气。

2.深圳西部电厂4号机组海水脱硫工程

电厂概况

深圳西部电厂位于深圳市南头半岛西南端的妈湾港码头区。一期工程(2×300MW)机组属妈湾电力有限公司,二期工程(2 X 300MW)机组属西部电力有限公司,目前,正在建设的5、6号机组亦属西部电力有限公司。整个电厂占用妈湾港的 9.10.11号泊位。电厂西面临珠江口的内伶仃洋,厂区基本为开山填海而成,除东侧沿山地带为陆域外,其余为海域。西部电厂建设规模为 4 X 300MW,安装 2台引进型国产燃煤机组,3号机组已于1996年9月并网发电,4号机组于1997年10月建成投产。5、6号机组正在建设中。锅炉采用哈尔滨锅炉厂生产的HG-1025/18.2-YM6型,除尘器采用兰州电力修造厂生产的双室四电场除尘器,除尘效率> 99%。每两台炉各合用1 座高210米,出口直径7米的套筒烟囱,外简为钢筋混凝土结构,内简用耐腐蚀合金钢制成。

2.2 FGD系统主要设计依据

2、2.1 燃煤

设计煤种采用晋北烟煤,含硫量 0.63%。校核煤种为到货混合煤,含硫量为0.75℅。汽机T-ECR工况时,锅炉实际耗煤量为114.4t/h;锅炉B一MCR工况时,锅炉实际耗煤量126.9t/h。

2.2.2 烟气

FGD系统处理烟气量的设计值为T-ECR工况的锅炉烟气量,即 110万m3/h,FGD系统按锅炉 B一MCR工况设计。FGD系统入口烟温设计值为123℃,烟气温度变化范围 104-145℃。

2、2、3 海水

以4号机组凝汽器循环冷却水作为脱硫吸收液。海水流量设计值为12t/S,凝汽器出口海水温度为27-40℃。海水盐度 2.3%。

2、3 西部电厂海水FGD系统

西部电厂4号机组海水 FGD工艺流程见图2。该工艺由烟气系统、吸收系统、海水供排水系统及恢复系统、电气及监测控制系统组成。

2.3.1烟气系统

FGD系统处理的烟气自4号机组引风机出口联络烟道引出,系统设进、出口挡板门及旁路烟道挡板门。FGD系统正常运行时,旁路挡板门关闭,全部烟气经脱硫系统后由烟囱排出。FGD系统停止运行时,旁路烟道开启,FGD系统进、出口烟道挡板门关闭,烟气直接进入烟囱排放。FGD系统内的烟气经增压风机进入GGH降温后再到吸收塔,净化后的烟气经GGH升温后,由烟囱排入大气。

2.3、2 SO2吸收系统

FGD系统的吸收塔采用填料塔型,为钢筋混凝土结构。烟气自吸收塔下部引进,向上流经吸收区,在填料表面与喷入吸收塔的海水充分反应,净化后的烟气经塔顶部的除雾器除去水滴后排出塔体。洗涤烟气后的海水收集在塔底部,并依靠重力排入海水恢复系统。

2.3.3海水供排水系统

西部电厂循环水采用的海水为直流式单元制供水系统,冷却水取自伶仃洋矾石水道,由2号取水口取深层海水供4号机组使用。FGD系统水源直接取自4号机组凝汽器排出口的虹吸井,部分海水进入吸水池,经升压泵送人吸收塔内洗涤烟气,吸收塔排出的海水自流进入曝气池,在此与虹吸并直接排入曝气池的海水汇流、充分混合并曝气,处理后的合格海水经4号机组排水沟入海。

2.3.4海水恢复系统

海水恢复系统的主体构筑物是曝气池,来自吸收塔的酸性海水与凝汽器排出的偏碱性海水在爆气池中充分混合,同时通过曝气系统向池中鼓入适量压缩空气,使海水中的亚硫酸盐转化为稳定无害的硫酸盐,同时释放出CO2,使海水的水质达到同类海水水质标准后排入海中。

2.3.5 电气

FGD系统用电电压为 6kV和 380V,大于或等于200kw的电动机采用6kV供电,200kW以下的电机采用380V供电。

2.3.6 仪表与控制

FGD系统的仪表控制系统具备以下主要功能:(1)数据采集功能。连续采集和处理反映FGD系统运行工况的重要测点信号,如 FGD系统进出口烟气的SO2、O2浓度及烟温等。曝气池排放口处pH、COD、水温等。(2)控制功能。对烟气挡板的前后压差进行闭环控制,其他设备采用顺序控制。(3)配备各种必要的烟气、海水现场监测仪表。

2.4 海水FGD系统运行状况

负责承建西部电厂4号机组海水脱硫工程的深圳市能源环保工程公司,在深圳市能源集团公司和各级政府有关职能部门的支持下,经过参建单位2年多的紧张施工,已使该工程于1999年3月8日顺利通过72h的连续运行,并移交生产。1999年6月底及7月初,由中、外双方对投运后的海水烟气脱硫系统进行了性能考核测试,中国环境监测总站对海水烟气脱硫装置进行了验收前的现场监测工作。测试结果表明:该脱硫系统运行稳定,设备状况良好,主要性能指标均满足国家的审查要求,达到或超过了设计值。

有关运行、设计资料见表1。海水脱硫系统性能保证设计值、实测值见表2、表3。

3 西部电厂示范工程的作用及应用前景

3.1 海水脱硫工艺的特点

海水脱硫工艺与湿式石灰石一石膏工艺、旋转喷雾脱硫工艺、炉内喷钙及增湿活化脱硫工艺主要性能的比较见表4。

由表4可看出海水脱硫工艺有以下特点:

(l)采用天然海水作吸收液,不添加其他任何化学物质,节省了吸收剂制备系

统,工艺简单。

(2)吸收系统不会产生结垢、堵塞等运行问题,系统可用率高.

(3)洗涤烟气的海水经处理符合环境要求后排入海中,无脱硫灰渣生成,不需灰渣处置设施。

(4)脱硫效率较高,有明显的环境效益。

(5)投资和运行费用较低,通常比湿式石灰石一石膏法低1/3.

3.2 西部电厂海水脱硫工程的示范作用

随着大气环保法规的颁布和实施,我国对SO2排放的限制愈来愈严格。在酸雨控制区和 SO2污染严重的地区,应用烟气脱硫技术控制SO2排放量,减少酸雨的危害已是十分紧迫的任务。但是,脱硫工程投资高,运行费用大,一直是阻碍我国脱硫技术发展和应用的重要问题。多年来,国家经贸委、国家电力公司、国家环保总局等一直致力于开发适合我国国情的投资省、运行费用低,运行可靠的脱硫技术。海水脱硫技术的特点符合上述要求,是一种适合我国应用的脱硫工艺。

我国的海岸线长,沿海地区经济发达,工业发展迅速,人口稠密,环境保护要求严格。沿海火电厂的新、改、扩建工程较多,因此海水脱硫工艺在我国有广泛的推广应用市场。

国家环保总局于1999年9月主持召开了“深圳西部电厂海水脱硫示范工程验收及总结研讨会”。出席会议的国家电力公司。中国环境监测总站、广东省、深圳市环保局等有关单位,对海水脱硫工艺能否在我国沿海地区进一步推广及国产化等问题进行了广泛深入的讨论。会议认为深圳西部电厂的海水脱硫系统各项性能指标均达到或超过了设计值,满足国家对该项目审查的要求,符合环保标准;中国环境监测总站对曝气池水面上空SO2浓度监测结果表明:曝气过程中没有SO2溢出情况,不会对周围环境造成不良影响;

根据国家电力公司和国家环保总局的要求,在该工程建设的同时,开展了脱硫工艺排水对附近海域水质、海生物及海底沉积物影响的跟踪监测与研究项目,自1997年以来,中国水利水电研究院和中科院南海研究所对电厂排水口附近海域进行了脱硫系统投运前的本底检测和投运后多次检测,深能集团公司对脱硫系统内的水质进行了同期的检测.2000年6月15,16日,由国家环保总局主持召开了阶段总结汇报会,与会领导与专家通过对检测结果的分析,一致认为海水脱硫工艺排水对海洋水质和海生物未产生不良影响,并认为在有条件的海边电厂可以作为一种比选脱硫工艺推广应用。国家环保总局于2000年9月30日以环监字【2000】111号通知,将该会议纪要印发给全国各有关单位。历时5年的海洋跟踪监测已完成了大纲要求的全部内容,国家环保总局在组织总报告的编写。以上的监测、研究工作为我国沿海地区火电厂推广应用海水脱硫技术提供了有力的科学依据。

总之,海水脱硫工艺利用海水的天然碱度脱硫,不添加任何化学试剂,系统简单,运行可靠,脱硫效率高,投资、运行费用较低,易于实现国产化设备配套。深圳西部电厂海水脱硫示范工程和相关的试验研究,以及目前进行的5、6号机组续建工程海水脱硫国产化建设项目,都将为我国推广应用海水脱硫技术及国产化设计、设备配套及施工建设奠定基础和积累经验。

您好!

海水脱硫工艺海水脱硫工艺是利用海水的碱度达到脱除烟气中二氧化硫的一种脱硫方法。在脱硫吸收塔内,大量海水喷淋洗涤进入吸收塔内的燃煤烟气,烟气中的二氧化硫被海水吸收而除去,净化后的烟气经除雾器除雾、经烟气换热器加热后排放。吸收二氧化硫后的海水与大量未脱硫的海水混合后,经曝气池曝气处理,使其中的SO32-被氧化成为稳定的SO42-,并使海水的PH值与COD调整达到排放标准后排放大海。海水脱硫工艺一般适用于靠海边、扩散条件较好、用海水作为冷却水、燃用低硫煤的电厂。海水脱硫工艺在挪威比较广泛用于炼铝厂、炼油厂等工业炉窑的烟气脱硫,先后有20多套脱硫装置投入运行。近几年,海水脱硫工艺在电厂的应用取得了较快的进展。此种工艺最大问题是烟气脱硫后可能产生的重金属沉积和对海洋环境的影响需要长时间的观察才能得出结论,因此在环境质量比较敏感和环保要求较高的区域需慎重考虑。

海水脱硫是以天然海水作为吸收剂脱除烟气中SO2的湿法脱硫技术,是海水直接利用的一个重要领域。该技术由美国加州伯克利大学Bromley L A 教授于上世纪60年代最先提出,而后挪威ABB公司、德国能捷斯·比晓夫公司(Lentjes Bischoff)和日本富士水化株式会社(Fujikasui Engineering)等相继开发出海水脱硫工业化技术。海水脱硫最初主要应用于铝冶炼厂和炼油厂,20世纪80年代末以来,在燃煤、燃油电厂的应用有较快发展,近年来投入运行的海水脱硫装置,多数是在燃煤、燃油电厂。

化肥厂脱硫毕业论文

今年前5个月,兰州石化公司在新建大乙烯装置投用,产品产量、销售收入大幅增加的前提下,节能47911吨标煤。“三废”在稳定达标排放的基础上,工业废水中COD排放量同比下降377吨,石油类排放量下降35吨,二氧化硫排放量削减423吨,烟尘排放量削减49吨,实现了增产不增污的目标。 转变经济发展方式 优化资源利用 近年来,兰州石化依靠技术创新,改造传统产业,加快企业发展步伐,形成了年加工1050万吨原油和年产70万吨乙烯的规模。新建装置能耗低,“三废”排放量小,物料共享,水、汽重复应用,为转变经济发展方式、提高资源利用效率奠定了良好的基础。两年来,炼油、化工互供物料80多万吨,有效地提高了物料利用率。 为了充分利用炼厂干气,兰州石化新建了干气提取乙烯、乙烷装置。炼油系统加热炉、动力锅炉改烧干气,多余干气送到化工系统作燃料,每年为化工装置输送干气3万多吨,使干气资源得到了有效的利用。 同时,兰州石化优化生产、装置结构,关停了“三硝”、化纤等13套资源消耗大、能耗高、经济技术指标落后、经济效益差的装置。先后投入资金3亿多元,完成了化工污水处理场改造、催化剂与含硫污水综合治理、陈官营污水缓冲池综合整治、“两酸”扩改等31项“三废”治理工程,消灭了化肥厂黄烟,实现了废水达标排放、废气综合治理和废渣无害化填埋处置。 针对国内原油资源紧张的现实,兰州石化瞄准国际上先进的煤化工和天然气化工技术,加大研究开发力度,努力寻找资源替代品。计划在未来5年,天然气年用量达到5亿多标方,逐步开展天然气生产二甲醚、低碳烯烃等产品的研究利用,使天然气业务成为公司的主营业务之一。 依靠技术创新 发展循环经济 随着兰州石化炼油化工生产规模的扩大和产品加工深度的增加,炼油系统锅炉装置排放的凝结水中含油、含铁量不断增高。为了让凝结水得到有效利用,兰州石化投资建成了每小时处理量达100吨的凝结水除油除铁装置,将凝结水中所含的油、铁除去,重新用于生产中,带来了节能和减排双重效益。截至目前,新装置已运行19个月,节水39万吨;每年减少废水排放10多万吨。 以前,化工区的蒸汽冷凝水有一部分用于补充循环水。因冷凝水温度高,导致循环水温度上升,冷凝液没有得到高效利用,还浪费了一些热能。2005年,兰州石化在化工生产系统实施了热水伴热改造项目,将化工工艺管线的伴热介质由蒸汽改为蒸汽冷凝水余热,每年可节约蒸汽17万吨。目前,兰州石化正在对炼油系统工艺管线伴热进行类似的改造。项目完成后,每小时可节约蒸汽64吨。 兰州石化利用夹点技术对一套常减压装置换热网络改造后,原油换热终温由原来的265℃提高到了289℃,每年节能量达5000吨标准燃料油。实施了加热炉燃烧器油改气的改造后,每年节约燃料油18000吨,实现了炼油厂不烧燃料油的目标。将第二套常减压装置低温余热输送到原油罐区加热原油,每年回收的低温余热折合标准燃料油2044吨。 本着“高水高用、低水低用、中水回用”的原则,兰州石化积极研究水资源分级利用和污水治理及回用的新工艺,建立了厂区炼油、化工回用水管网,将回用的污水用于绿化、装置配药和冲厕。今年1月至5月,兰州石化回用生产污水万吨,与去年同期比提高54%;回用生活污水万吨,回用率与去年同期相比提高。 目前,兰州石化投资2500万元新建的微波处理装置即将投用,这套装置采用微波和沉淀过滤一体化处理技术,每小时处理污水400吨,还可对污水进行深度处理,进一步降低污水中COD、悬浮物、有机物等含量,达到水质净化的目的。投入运行后,将使全部生活污水回用于生产,作为循环水的补充用水,成为兰州石化进一步提高污水回用量的助推器。 强化日常管理 创建节约型企业 节能降耗,必须从日常抓起。兰州石化强化管理,大大降低了生产生活中的耗水量。 在催化剂生产中,针对水耗高的情况,兰州石化采取了将下道工序洗涤水用于上道工序洗涤等措施,使每吨催化剂新鲜水耗量由150 吨下降到65 吨。 化肥厂厂内生活用水以前由三条水线提供,厂里通过改变供水流程,将新老系统的供水线由三条改为一条,建立了供水网络,确保了科学合理用水。在保证员工必需生活条件的前提下,封闭了过多的澡堂,切除了耗水较大的直冲式公厕,生活水每小时的耗量由600多吨下降为200多吨。 兰州石化还加强计量管理,从点滴入手节约能源。 出台了《能源动力计量管理规定》、《计量检测数据仲裁管理办法》等7项制度,更新改造了对外交接、进出厂交接用计量表1780台,为深化节能节水提供了准确的依据。 “十一五”期间,兰州石化还将投入13亿多元环保专项资金,实施废水深度处理和综合利用、二氧化硫减排、废渣的无害化处理及源头治理等项目,进行锅炉烟气、催化裂化烟气脱硫设施建设,进一步减少新鲜水用量、回用生产生活污水、削减二氧化硫排放量。最终目标是建设氧化塘,将生产污水全部输送进去,经过处理后供给地方缺水企业使用,实现“零排放”目标,在环境友好中持续提升竞争实力。 兰州石化公司积极采用新技术和先进的管理手段,提高资源、能源的利用效率,削减“三废”排放,取得了良好的效果。近日,兰州石化被中国石油集团公司列为第一批循环经济示范区。推荐去看看北京的化肥厂 绝对有发现

时间一溜烟从指缝间流走,这段工作时间过得非常的快,现在我们需要认真回顾该阶段的工作,工作总结不仅对自己有用,对别人也有一定的借鉴作用。怎样才能让自己的工作总结不至于太平庸?下面,我们为你推荐了脱硫工作总结,希望对你有所帮助,动动手指请收藏一下!

首先,很感谢厂里领导能派遣我外出进行这次培训。可以说参加这次环保培训让我受益匪浅,使我对环境保护有了更近一步的认识。对环境保护的措施也有了更为深入的理论学习。以前只是对锅炉烟气的脱硫工作有一点直观上的感性认识。经过这次培训,现在不一样了,经过这次集中学习,我懂得了很多的关于脱硫的方法。我们厂对于锅炉烟气的处理现在还只是停留在单一的对烟气中的so2进行简单的处理,处理方法很简单,效率很有限,钙粉的利用率也比较低。要想全面的处理好我们的锅炉烟气,对其进行脱硫和脱硝,还需要下大力气来做,这是我们所有电厂的短处。

5月14日,我被安排到了太原市晋机宾馆,并且在那参加山西省第40期企业环保设备上岗操作资质培训。晋机的住宿环境一般,不过培训的教室和就餐的地方还不错。8天的时间里,太原市邀请了省环保厅、山西大学的专业培训老师,着重学习了电厂锅炉烟气、粉尘、污水的后期处理等电厂污染物知识;了解了电厂锅炉烟气的产生、成分对环境造成危害的污染物的治理方法;掌握了怎么对锅炉烟气进行处理的理论和方法。在后期的培训中,我们着重学习了现在国内许多先进的脱硫和脱销的理论知识,对于脱硫脱硝的副产品也有了一定程度的认识。下面是我经过这次的学习,对于现在国内的脱硫技术的总结。

脱硫,就是将煤中的硫元素用钙基等方法固定成为固体防止燃烧好时生成so2。脱硫方法一般可分为燃烧前脱硫、燃烧中脱硫和燃烧后脱硫等3类。

燃烧后脱硫,又称烟气脱硫(Fluegasdesulfurization,简称FGD),比我们的燃烧中投入钙基脱硫效果要好。在FGD技术中,按脱硫剂的种类划分,可分为以下五种方法:以CaCO3为基础的钙法,以MgO为基础的镁法,以Na2SO3为基础的钠法,以NH3为基础的氨法,以有机碱为基础的有机碱法。世界上普遍使用的商业化技术是钙法,所占比例在90%以上。按吸收剂及脱硫产物在脱硫过程中的干湿状态又可将脱硫技术分为湿法、干法和半干法。湿法FGD技术是用含有吸收剂的溶液或浆液在湿状态下脱硫和处理脱硫产物,该法具有脱硫反应速度快、设备简单、脱硫效率高等优点,但普遍存在腐蚀严重、运行维护费用高及易造成二次污染等问题。干法FGD技术的脱硫吸收和产物处理均在干状态下进行,该法具有无污水废酸排出、设备腐蚀程度较轻,烟气在净化过程中无明显降温、净化后烟温高、利于排气扩散、二次污染少等优点,但存在脱硫效率低,反应速度较慢、设备庞大等问题。半干法FGD技术是指脱硫剂在干燥状态下脱硫、在湿状态下再生,或者在湿状态下脱硫、在干状

态下处理脱硫产物的烟气脱硫技术。特别是在湿状态下脱硫、在干状态下处理脱硫产物的半干法,以其既有反应速度快、脱硫效率高的优点,又有干法无污水废酸排出、脱硫后产物易于处理的优势而受到人们广泛的关注。按脱硫产物的用途,可分为抛弃法和回收法两种。

为了将本次工作票月活动落实到实处,使本次活动的开展有成效,队长和专工经常到基层、现场进行现场检查,针对活动中出现的不良现象,保证了活动的正常开展。在工作票月活动中,各班组及时指导、督促,并认真落实对工作票制度。通过进行的有计划、有组织、有目的使本次责任事故的分析,最终都可以找出工作票上的问题。现将“工作票月”活动总结如下:

一、加强工作票流程,提高认识mis流程,强化管理。

1、针对工作票操作流程,在每周日晚上对所有工作负责人开展对生产mis系统工作票、操作票、设备缺陷处理操作流程培训。对新员工设备缺陷处理如何正确填写工作票及在工作上存在的危险点及预控措施,确保每位员工对mis的办票流程,对每位工作人员实际操作,部分新员工对工作卡票的正确填写规范不明确,工作负责人只会带领员工干活,不懂工作票办理流程的状况,有效提高了工作负责人的实际工作能力和业务水平。

2、班长和技术员每天开工前工作负责人必须向全体工作班成员交代工作任务,交代隔离措施,做好危险点分析、预控工作,制定详细的危险点分析和相应的防范措施后,工作组成员才可以在保证书上签字,强调无票不能作业,不得以卡带票工作,严格监督工作票代签,加强对工作卡票审核管理执行力度,工作程序规范化,使每项工作开工前的交底落到实处,专业队安全员检查各个工作监督,并在工作负责人在工作票中如有出现违规操作,及时通告、加以改正,情节严重连带班长技术员和工作负责人一起考核,为安全生产奠定了基础。

二、加强工作票监督管理分析对安全的重要性。

1、让每位员工时时刻刻都能意识到工作票是在工作中的第一道生命保障,认识到工作票的重要性,一个工作负责人同时带一张以上工作票;杜绝非工作负责人代领工作票,如工作负责人休假不在现场,及时变更工作负责人。工作负责人必须对工作班成员进行安全、技术交底,交代清楚本次工作中的危险点及预控措施,工作班成员全部明白并在安全保证书或安全技术交底上签字后方可开始工作。

2、工作票和操作票是作业人员作业的凭证,要经过开票人、监护人等人员的审核,检查安全措施、危险点预控正确、完整了才能进行工作,工作票为了确保人身、设备安全,而要求运行人员采取隔离的安全措施。

电厂的“两票三制”是电力生产的前辈们用血和生命换来的,用事故教训谱写的。在实践中要认真学习执行各项规章制度,规范遵守“两票三制”,从而提高预防事故的能力,将误操作、设备异常和事故消灭在萌芽状态中,改变以往生产过程中事故是不可避免的的错误思想意识,防止事故、正确填写工作票。

三、每周工作票的分析会

在日常检修作业中,热力机械工作票执行过程中往往存在着一些这样或那样的问题,这些问题的存在容易引发人身伤害和设备损坏事件,因此及时总结、分析这些常见问题出现的原因所在,采取预防和纠正措施,保证检修作业人身设备安全的需要,也是加强工作票管理工作,各班组成员在一周内工作票执行情况及工作票管理方面的一些问题和建议。队内安全员通报一周内对各班组工作票质量方面发现的问题。对所有问题汇总并逐条针对实际情况开展认真讨论、分析,对一些管理上的漏洞和新问题制定切合实际的现场危险点分析、预控措施。同时,各班组制定下周工作重点,研究解决工作中的难点和问题,使工作有了超前准备,杜绝了工作上被动应付和盲目蛮干现象,,使各员工意识到了工作票在工作中的重要性,从而保证了现场工作的安全。

光阴似箭,20xx年即将过去,在这辞旧迎新之际,我们为了把各项工作做得更好,取长补短,发挥优势,所以对过去一年的工作加以总结。在分厂领导的正确指导下脱硫工作在过去的一年里硕果累累。同时也存在很多不足之处。在过去的一年里我们主要做了以下工作:

首先在安全生产方面,我们以“管理现行,行为控制,持续改进”为指导思想,紧紧围绕“生命至上,安全为天”为行动指南,把各项工作落到实处。年初我们以分厂规章制度为前提根据实际情况制定了更具体的管理规定。坚持班前讲安全,班中查安全,班后总结安全。让每个职工时刻牢记安全是第一要务。班组员工认真学习各项安全指示精神,针对现场发现的安全隐患能及时整改。做到隐患不留死角。特别是在今年四月份的大修中,我们组织严密,重视安全,时时提醒大家不能忘记安全,因为我们时刻把安全放到第一位安全警钟长鸣,所以大修期间没有因为管理不善而发生事故。但是,在平时的生产中对安全管理也有疏忽的地方,在今后的工作中要完善各项安全管理制度,使安全管理更上一层楼。在执行工艺纪律上我们能够做到认真执行公司及分厂的各项工艺纪律,基本上能够完成上级下达的各项任务。同时我们也存在很多不足之处:如,改造后的电除尘,在运行过程中我们没有重视指标执行情况,责任心不强,执行力不够,没有严格按照巡回检查制度执行造成电除尘温度不达标,致使瓷瓶多次爆裂影响生产,给公司及分厂造成了很大的撏失。我们一定会汲取教训,在今后的工作中严格执行工艺指标,把各项工作做得尽可能万无一失,为飞行腾飞做出贡献。

文明生产劳动纪律:为确保安全稳定高符合生产,减少不必要的撏失,加强管理,责任到人,杜绝跑冒滴漏,节能降耗,维护好设备,使其达到长周期运行。认真传达执行公司文件精神,使每个职工自觉的礼貌用语,文明待人。针对在工作中违反劳动纪律现象,我们采取“以人为本”的理念,以“劳动纪律规定”为准则,做到对事不对人,纪律面前人人平等。要求职工做到的班组长首先要做到,班段长身先士卒做员工的楷模。我们从元月份组织员工认真学习“白国周班组管理”,以“六个三”为指导方针开展各项工作。使每个班长的管理水平有所提高。针对个别违纪的员工我们以“管理规定”为准绳,进行了处理。由于我们严抓管理全年无严重违纪现象发生。

在学习方面我们能认真组织各班组利用交接班的机会学习上级文件,建立健全班组管理体系。通过民主评议产生班委成员,充分发挥每个班委成员的带头作用。在4月份大修工作中,由于在各班长的带领下,扒塔,装塔,清槽等各项工作都能出色提前完成,为提前开车打下了坚实的基础。

我们每月坚持召开一次班组长会议,充分发挥民主集中制,使班组管理民主化,制度化,充分体现了以人为本的管理制度。过去的一年有成绩也有失误,为了把今后的工作做得更好,,总结过去展望未来,在今后的工作中我们要加倍努力,严格管理,认真地完成上级领导下达的各项任务,充分发挥组长的聪明才智。为分厂的工作做出应有的贡献。

脱硫

脱硫专业在20xx年初制定本专业工作目标,重点治理电除尘漏灰、输灰管路漏泄、脱硫设备稳定运行及现场文明生产治理。

我们根据现有人员情况,想完成工作目标有一定困难,得到有关领导的支持从汽机专业抽调两名骨干充实到除尘班。除尘班人员得到充实后班组的管理工作有了新的起色,班组人员面貌有了变化,设备缺陷年初一周有二十几条到现在一周不超过十条,设备可靠性有了很大的提高。

设备缺陷管理上重点是抓消缺质量,组织骨干人员研究缺陷频发部位级规律制定消缺计划。列如下料阀三个月就磨损,平衡管弯头6个月磨损。在处理缺陷时跟踪检查进行验收。

针对20万电除尘器气力输灰系统球形气锁下料阀运行周期短的情况,脱硫专业联合阀门设计厂家对现场运行情况进行综合分析,制定改造方案,选择在1号炉1电场安装4台陶瓷阀门旋转型下料阀,该下料阀主要优点是阀板密封面选用陶瓷材料,硬度高、适应煤种灰分和颗粒度变化的能力强,阀门不需要压缩空气密封系统,减少了故障点。通过运行结果和停机检修进行的检查工作,没有发生阀门密封面损坏,气力输灰系统运行正常,没有发生过灰斗积灰排除不畅通的情况。在20xx年,我们将继续对改造阀门进行跟踪和检查工作,确保设备正常运行,同时确认此种阀门最终的使用效果,为下一步输灰系统改造工作积攒技术资料和改造可行性方案。

1号、2号电除尘器气力输灰系统第1和第2电场共计16个气力输灰仓泵从20xx年正式投产使用到20xx年,频繁发生仓泵泵体漏泄的情况。通过对仓泵金属罐壁厚度测量发现,罐壁严重减薄厚度只有3mm—5mm(原始厚度12mm),同时罐体磨损漏泄部位主要集中在气流流速最高的罐体进出口部位,为此在20xx年准备将16个仓泵进行整体更换,经过与厂家价格咨询,每个仓泵价格在3万元左右,如果更换16个仓泵,总费用需要50万元。为了节省费用和充分落实修旧利废的工作原则,脱硫专业针对漏泄情况进行了专项研究工作,查找主要漏泄点和漏泄原因,查找耐磨性能好的金属材质,最终方案确定通过更换仓泵下部锥体来解决频繁漏泄

的问题。在20xx年检修工作中对这16个仓泵下部锥体进行了全部更换,改造完成后,再没有发生仓泵漏泄的情况,极大地减轻了人员的工作强度,保证了现场的文明生产工作。在改造工作中同时发现这16个仓泵下部的气化槽存在损坏严重的情况,不能对输灰系统起到很好的气化悬浮效果,为此脱硫专业成立了现场课题小组,对气化槽损坏问题进行了分析研究,决定放弃原始设备采用的流化布夹层结构,改造为多孔碳化硅形式,通过改造后的运行和检查工作,没有发生气化板损坏情况,气化槽运行正常,满足设备运行要求。

20xx年脱硫专业最大的技改项目是7号炉电除尘器改造工程,改造项目涉及一级除尘器、二级除尘器的三个电场,投入资金500余万元。为了保证改造工程的顺利进行,确保改造工程达标,脱硫检修专业联合脱硫运行专业抽调专人成立了联合检查小组,对改造工程进行了全面的监督检查工作。通过改造工程的参与工作,锻炼了检修队伍,使参加人员对电除尘器安装、质量监督、检修工艺等方面得到了极大地提高,为今后的设备检修工作积累了大量的实际经验。同时在检查过程中,对施工单位存在的安全、安装质量等方面的问题及时进行了监督整改工作,保证了改造工程的圆满完成。7号炉电除尘器改造工程从8月26日正式开工,到10月23日机组启动运行,没有发生人员伤害情况。

7号炉电除尘器运行到11月18日,改造电除尘器运行稳定,收尘效率对照改造前有了显著提高。由于电除尘器运行稳定,脱硫系统运行需要的循环灰得到了保证,确保脱硫系统能够正常稳定运行。

在7号炉电除尘器检修过程中,针对原有设备流化斜槽和流化底仓漏泄频繁的问题,脱硫专业派专人对内部进行检查,彻底封堵了原始漏泄点。对流化底仓和4条流化斜槽损坏的流化布进行了全部更换。

20万脱硫系统使用的真空皮带脱水机,在以往的运行过程中经常发生皮带跑偏、真空不合格的情况。利用本年度的检修工作,对打褶的滤布进行了更换、重新调整和定位了传动皮带和滤布的张紧装置,更换了损坏阀门和漏泄的冲洗水管道。在真空皮带脱水机外部加装了防止溅水的塑料软帘,使现场文明生产得到了保证。

20xx年脱硫专业对20万机组2号灰库顶部的4台切换阀进行了改型试验工作。原始切换阀为气动合金形式,由于切换阀设备在室外不止,不可避免地会受到雨、雪天气的侵

袭,由于切换阀不需要经常操作,导致气动系统发生缺陷后不能及时被发现,每当发现设备损坏时,往往已经发展到必须彻底更换的程度,不仅增加了检修成本和劳动强度,而且对现场安装生产造成了安全隐患。为此脱硫专业本次改型工作时选择了手动陶瓷切换阀,手动阀门形式操作可靠,对设备故障判断准确,同时切换阀内部采用了陶瓷材料增加了设备耐磨性能,避免了设备频繁磨损增加的工作量。从20xx年6月份安装使用到11月份,设备运行稳定,运行操作也没有发生故障。

在1号炉检修过程中发现吸收塔喷嘴堵塞严重,堵塞达到30%。严重影响了脱硫效率的提升,增加了浆液循环泵的用电量,为此在机组检修中对这些堵塞喷嘴进行了切割处理,对内部堵塞物全部疏通。通过疏通工作消除了喷嘴堵塞情况,检修后试验喷嘴都达到了使用效果。同时运行专业制定了吸收塔停运时喷嘴冲洗办法,保证了今后喷嘴不会再发生堵塞情况。在1、2号机组检修期间对6台浆液循环泵、4台石膏排出泵、旋流站系统设备进行了全面检修,更换叶轮和机械密封14套/台,更换损坏的浆液管道40段。从根本上保证了20万脱硫系统的正常运行。

本年度对化学系统设备圆满地完成了预定的各项检修项目。在制氢站压缩空气管道底沟内增加了蒸汽伴热管道,通过改造工作消除了往年冬季发生压缩空气管道冻结危及制氢系统正常工作的问题。

为保证20xx—20xx冬季供热工作中,化学检修班组在人员少、工作繁重的情况下,对化学热网系统检修工作及早动手,将热网系统各水箱出入口阀门进行彻底检修工作,更换阀门8套。紧接着在9月份就进行各种泵类的检修工作,保证了热网系统的正常投运。

通过20xx年的检修工作,脱硫专业在设备缺陷治理、漏泄治理等方面取得了一定的成绩,但设备存在问题仍然比较突出如20万机组烟囱腐蚀、20万机组烟道腐蚀漏泄等项目,还需要大量的资金和人员投入。但是我们相信在公司正确领导下,通过专业部门的努力工作,今后的工作一定会取得更好的成果。

该脱硫工艺以氨水为吸收剂,副产硫酸铵化肥。锅炉排出的烟气经烟气换热器冷却至90~100℃,进入预洗涤器经洗涤后除去HCI和HF,洗涤后的烟气经过液滴分离器除去水滴进入前置洗涤器中。在前置洗涤器中,氨水自塔顶喷淋洗涤烟气,烟气中的SO2被洗涤吸收除去,经洗涤的烟气排出后经液滴分离器除去携带的水滴,进入脱硫洗涤器。在该洗涤器中烟气进一步被洗涤,经洗涤塔顶的除雾器除去雾滴,进入脱硫洗涤器。再经烟气换热器加热后经烟囱排放。洗涤工艺中产生的浓度约30%的硫酸铵溶液排出洗涤塔,可以送到化肥厂进一步处理或直接作为液体氮肥出售,也可以把这种溶液进一步浓缩蒸发干燥加工成颗粒、晶体或块状化肥出售。

通过这次的环保培训,使我对于我们电厂产生的废气、粉尘和废水有了纯粹的理论的认识,结合我们平时的工作实际,才深切体会到了环境污染物处理的难度,我虽然经过这次学习没有彻底通透的掌握,毕竟时间有限,但是我对于这一学科从原来的厌恶反感和麻痹大意中渐渐清醒,真的很感谢厂里领导能派我去参加培训。其实当时通知我去参加培训我真没当回事,心里感觉没有什么可学的,出去又没有什么好玩的地方可玩,现在真的是不会再有以前的想法了。

烟气循环流化床脱硫工艺由吸收剂制备、吸收塔、脱硫灰再循环、除尘器及控制系统等部分组成。该工艺一般采用干态的消石灰粉作为吸收剂,也可采用其它对二氧化硫有吸收反应能力的干粉或浆液作为吸收剂。

由锅炉排出的未经处理的烟气从吸收塔(即流化床)底部进入。吸收塔底部为一个文丘里装置,烟气流经文丘里管后速度加快,并在此与很细的吸收剂粉末互相混合,颗粒之间、气体与颗粒之间剧烈摩擦,形成流化床,在喷入均匀水雾降低烟温的条件下,吸收剂与烟气中的二氧化硫反应生成CaSO3和CaSO4。脱硫后携带大量固体颗粒的烟气从吸收塔顶部排出,进入再循环除尘器,被分离出来的颗粒经中间灰仓返回吸收塔,由于固体颗粒反复循环达百次之多,故吸收剂利用率较高。

此工艺所产生的副产物呈干粉状,其化学成分与喷雾干燥法脱硫工艺类似,主要由飞灰、CaSO3、CaSO4和未反应完的吸收剂Ca(OH)2等组成,适合作废矿井回填、道路基础等。

典型的烟气循环流化床脱硫工艺,当燃煤含硫量为2%左右,钙硫比不大于时,脱硫率可达90%以上,排烟温度约70℃。此工艺在国外目前应用在10~20万千瓦等级机组。由于其占地面积少,投资较省,尤其适合于老机组烟气脱硫。

双碱法烟气脱硫塔‎rightleder`是采用钠基脱硫剂进行塔内脱硫,由于钠基脱硫剂碱性强,吸收二氧化硫后反应产物溶解度大,不会造成过饱和结晶,造成结垢堵塞问题。另一方面脱硫产物被排入再生池内用氢氧化钙进行还原再生,再生出的钠基脱硫剂再被打回脱硫塔循环使用。双碱法脱硫工艺降低了投资及运行费用,比较适用于中小型锅炉进行脱硫改造的脱硫除尘器。高效脱硫技术是利用氢氧化钠溶液作为启动脱硫剂,配制好的氢氧化钠溶液直接打入脱硫塔洗涤脱除烟气中SO2来达到烟气脱硫的目的,然后脱硫产物经脱硫剂再生池还原成氢氧化钠再打回脱硫塔内循环使用。除尘器的脱硫工艺主要包括5个部分:(1)吸收剂制备与补充。(2)吸收剂浆液喷淋。(3)塔内雾滴与烟气接触混合。(4)再生池浆液还原钠基碱。(5)石膏脱水处理。

浅谈再生效果对脱硫效率的影响 现在国内化肥及焦化厂脱硫大部分采用的是湿式氧化法。该脱硫方法主要由两部分构成:一部分为吸收系统,主要以脱硫塔为主以及其它配套设备;另一部分为再生系统,主要以再生槽(或再生塔)为主以及其它配套设备。一般来说,吸收部分主要影响煤气的脱硫效率,再生部分主要影响溶液中硫泡沫的生成及回收,但实际并不如此简单,二者之间存在着互为依托的有机联系。吸收不好会影响到硫泡沫的生成量及硫黄的回收率;同样,再生不好会影响煤气的脱硫效率。所以,在脱硫效率下降时,我们不仅要将眼光盯向吸收部分,查找原因,而且也要将眼光转向再生部分,考虑问题。下面,将我在售后服务过程中遇到的氧化再生部分出现的问题影响脱硫效率的典例进行分析,来与大家探讨,以便在今后脱硫系统出现问题时参考。 1 溶液在再生槽停留时间过长,影响溶液总碱度 湿式氧化再生设备现阶段主要有两种,一种为高塔再生,一种为低槽喷射再生。两种再生设备构造不同,工艺控制条件也有差异。再生塔因气液为滞流,再生时间要求较长,一般为30分钟以上。再生槽喷射喉管为湍流,再生时间要求较短,一般为12分钟以上。再生停留时间短了,都清楚影响溶液的氧化程度及硫泡沫的浮选效果。但停留时间长了呢,一般不会引起人们的关注。在某化肥厂因再生槽停留时间过长而影响了生产。 该化肥厂生产能力为8万吨/年合成氨。半水煤气气量约30000m3/h,入口H2S一般在左右,出口H2S工艺控制在100~200mg/m3。脱硫塔为两台,串联运行,规格为φ4000和φ44000。其中φ4000为空塔溶液喷淋,φ42000下部为空塔溶液喷淋,上部仅有600mm高φ76阶梯环填料。采用喷射再生槽。槽内设有档板,档板间距一米,档板内底部铺有空气管,空气同高塔再生一样,由外部输入。今年3月15日脱硫系统检修后开车,开车时因脱硫液中碱度比较高,总碱度达到18g/L,脱硫出口H2S几乎检测不到。因此,将平常开的两台脱硫溶液泵停了一台,改为一台溶液泵运行,溶液泵铭牌标注流量为900m3/h,因溶液泵叶轮小,又无溶液计量表,故溶液循环量无法准确计量。但可以肯定的是,脱硫溶液循环量减少了一半,溶液循环量减少后在补碱量每天1200公斤不变的情况下,脱硫液的总碱度逐天下降,10天后脱硫液总碱度降至10 g/L以下,半水煤气出口H2S也控制不住,升至200mg/m3以上,无奈又开启了两台脱硫溶液泵,恢复到平常的溶液循环量,脱硫液中的总碱度又逐步升高至13 g/L,基本维持了不再波动。该厂脱硫技术人员估计脱硫液在开一台泵时,脱硫液在再生槽停留时间为50分钟以上,甚至更长一些。由于溶液在再生槽停留时间较长,便产生了过度氧化情况,使脱硫液中副反应速度增快,尤其是副盐Na2SO4含量增长速度快,该厂脱硫液分析Na2S2O3含量140 g/L,Na2SO4含量已达82 g/L。由于副盐的快速增长,消耗了大量的碱,使溶液的总碱度有了明显下降,进而影响到了脱硫效率。这是问题产生的根本原因。后来溶液循环量增加到正常时,总碱度也逐渐恢复,生产随之正常。 2 再生槽喷射器入口压力影响脱硫效率 再生槽喷射器主要由气室、喷嘴、喉管、扩散管、尾管组成。喷射器的制作质量和现场安装质量都会影响到脱硫液的再生质量,继而影响到脱硫效率。喷射器的选择就比较重要,一定要选择有技术实力和信誉好的正规厂家,这样才能保证再生系统的硬件不会出问题。例如某甲醇厂,就曾在这方面出过问题。 该厂再生槽设计安装的是某公司生产的玻璃钢喷射器,喷射器喷嘴φ32mm,喉管φ108mm,尾管φ219mm,但溶液入口管仅有φ65mm,操作溶液入口压力控制在~。但在运行过程中一直处于不正常状态,喷射器喉管经常发生硫膏堵塞现象,频繁至一星期就要拆卸疏通一次,因喷射器是玻璃钢材质,疏通过程中经常破碎,无奈之下更换了我公司生产的喷射器,并采取了高位安装。更换喷射器后,喷射器喉管硫膏堵塞现象很少发生,更换半年运行中也仅个别几支喷射器疏通检查过。更为明显的是,更换喷射器后,再生槽硫泡沫生成量明显增多,硫黄产量由更换前的每天20盒(每盒约25公斤)增至80盒。经分析对比,我认为主要原因有两个,一个是我公司生产的喷射器质量明显优于更换前的喷射器;二是更换前的喷射器溶液入口管直径较小,造成喷射器溶液入口总管压力表指示~,实际喷射器喷嘴处压力根本达不到,影响到喷射器抽吸空气量,造成硫硫液再生不好。 更换喷射器前该厂生产负荷处于较低水平,生产水煤气量为23000m3/h以下,入口硫~,脱硫塔两台串联运行,规格φ4400,内装三段φ76阶梯环,每段高5m,各段之间有槽式液体分布器,所以脱硫效率根本不存在问题。更换喷射器后,生产水煤气量逐渐增至33000m3/h,入口硫也增至 g/m3左右,水煤气出口硫化氢也大幅超标,达到200mg/m3以上。而工艺要求控制在50mg/m3以下。当时认为主要原因在脱硫的吸收系统,因为在两台脱硫塔的A塔检修过程中,因脱硫效率不存在问题,为了防堵,少装了三分之一填料。另外,两塔的溶液循环量因填料碎片堵塞脱硫液进口喷头,造成两塔溶液循环总量由1000 m3/h减至700 m3/h,主观认为这是影响脱硫效率的主要原因。该厂为了增加产量,消除隐患,保证水煤气出口硫化氢达标,停车进行了检修,将少装的A塔填料恢复到以前的数量,溶液喷头进行了清理,溶液循环量检修后由700 m3/h增至1050 m3/h,但水煤气出口硫并未有明显降低,这才将目光转向了再生系统。当时再生槽喷射器溶液的入口压力,应该说也达到了喷射器入口压力指标,喷射器入口管φ133,也不存在卡脖子现象,喷射器也不存在明显的堵塞现象。看似没有什么太大问题,但在调整过程中,将喷射器溶液入口压力由增至后,情况有很大改观,再生槽硫泡沫明显增多,出口H2S也由200 mg/m3降至9 mg/m3。 从以上事例可以看出,脱硫再生系统不仅能影响硫泡沫的生成和浮选,而且也影响溶液再生的质量,进而影响到脱硫效率。一般来说,32#喷射器溶液入口压力~即可,但也要根据再生槽设备的规格和脱硫液的黏度来考虑。如我们为该甲醇厂提供的喷射器尾管直径为φ159,而原来的是φ219。显然,φ219尾管溶液出口压力小于我们公司尾管配置。另外,φ219尾管的长度又比较高,达到10m左右,这样更致使尾管出口的溶液压力减小,影响到吸收空气量。也就影响了溶液的再生质量。同时也影响了硫泡沫的浮选。 脱硫溶液中的副盐含量也是影响再生效果的一个主要因素,尤其是再生溶液压力在临界点时反应更为灵敏。如某甲醇厂再生槽这种情况,稍一提溶液再生压力就有效果。该甲醇厂在刚开车时(其它厂也有这种情况)并没有感觉到再生槽溶液入口压力有什么大的影响,但随着水煤气量的增加,入口硫的增高,脱硫液中副盐的增长,导致脱硫液黏度增大,也就是脱硫液的比重增大,在相同的溶液压力下达到的再生效果完全不同。所以,在调节脱硫效率时,不仅考虑吸收系统,也要考虑再生系统,考虑再生系统时要参考再生设备规格和溶液粘度的影响,做到综合分析,有的放矢。

天然气气脱硫毕业论文

KR法与喷吹法在铁水预脱硫中应用的比较 面对钢铁市场日趋激烈的竞争,经济高效的铁水预处理脱硫,作为现代钢铁工业生产典型优化工艺流程:“高炉炼铁—铁水预处理—转炉炼钢—炉外精炼—连铸连轧”的重要环节之一,已经被广泛的应用于实际生产。 随着社会经济和钢铁工业的高速发展,社会对钢铁质量的要求越来越高、越来越苛刻,产品的种类也急剧增加,尤其是高品质高附加值钢种的需求不断在增大。面对钢铁市场日趋激烈的竞争,经济高效的铁水预处理脱硫,作为现代钢铁工业生产典型优化工艺流程:“高炉炼铁—铁水预处理—转炉炼钢—炉外精炼—连铸连轧”的重要环节之一,已经被广泛的应用于实际生产。 近30年来铁水脱硫技术迅速发展,现已经有十几种处理方法,其中应用最广且最具代表性的主要是喷吹法和KR机械搅拌法。它们在技术上都已相当成熟,从两种工艺在实际生产中的应用效果来看,二者是互有长短。虽然喷吹法发展迅速,目前在实际生产中应用更广泛,可KR法在这几年中又有了新发展,呈现出强劲的势头。那么,这两种工艺模式各有什么优劣势?哪种更具有应用前景呢?在国内外冶金界始终没有较统一的看法。为此,本文着重就两种工艺模式的发展、应用和运营成本作了比较,尤其是它们对整个流程影响的比较,希望能对技术人员及企业技术的选择提供参考。 KR法与喷吹法的工艺及特点 在进行比较前,先了解两种方法的工艺及特点是很有必要的,不仅有利于理解两种方法的实质,也是深刻理解对两种脱硫模式分析比较的前提。 KR机械搅拌法,是将浇注耐火材料并经过烘烤的十字形搅拌头,浸入铁水包熔池一定深度,借其旋转产生的漩涡,使氧化钙或碳化钙基脱硫粉剂与铁水充分接触反应,达到脱硫目的。其优点是动力学条件优越,有利于采用廉价的脱硫剂如CaO,脱硫效果比较稳定,效率高(脱硫到≤ %) ,脱硫剂消耗少,适应于低硫品种钢要求高、比例大的钢厂采用。不足是,设备复杂,一次投资较大,脱硫铁水温降较大。 喷吹法,是利用惰性气体(N2或Ar)作载体将脱硫粉剂(如CaO,CaC2和Mg)由喷枪喷入铁水中,载气同时起到搅拌铁水的作用,使喷吹气体、脱硫剂和铁水三者之间充分混合进行脱硫。目前,以喷吹镁系脱硫剂为主要发展趋势,其优点是设备费用低,操作灵活,喷吹时间短,铁水温降小。相比KR法而言,一次投资少,适合中小型企业的低成本技术改造。喷吹法最大的缺点是,动力学条件差,有研究表明,在都使用CaO基脱硫剂的情况下,KR法的脱硫率是喷吹法的四倍。 KR法与喷吹法的发展及现状 从前面分析二者的方法和特点可以知道,它们互有长短、各具特色,这也决定了它们的发展历程和现状必然是不同的。进一步了解它们的发展和现状,将更有利于理解各自技术的特点。 从时间上来看,喷吹法的研发及应用要早于机械搅拌法。喷吹法主要有原西德Thyssen的ATH(斜插喷枪)法、新日铁的TDS(顶吹法)和英国谢菲尔德的ISID法,早在1951年,美国钢厂就已成功地运用浸没喷粉工艺喷吹CaC2粉进行铁水脱硫。直至今日,尽管两种脱硫工艺方法在技术上都已相当成熟,全世界绝大多数钢铁厂广泛采用仍是铁水喷粉脱硫工艺。机械搅拌法有原西德DO (Demag-Ostberg) 法、RS (Rheinstahl) 法和赫歇法, 日本新日铁的KR (Kambara Reactor) 法和千叶的NP 法,其中,以KR法工艺技术最成熟、应用最多。KR法搅拌脱硫是日本新日铁广钿制铁所于1963年开始研究,1965年才实际应用于工业生产,之后迅猛的发展趋势表明,它具有投入生产使用较早的喷吹法无可比拟的某种优势。 在冶金工业中喷吹这种形式应用非常广泛,比如在转炉及精炼工艺中的各种顶吹、底吹和复吹技术等。当铁水预处理时,使用喷吹法把脱硫剂加入铁水中进行脱硫,这显然是可行的且易于人们接受。最早脱硫剂是以氧化钙基为主,辅助添加CaC2,而且喷吹过程也很难获得较好的动力学条件,这时主要面临两个问题:一是,如何保证CaC2的安全存贮运输和脱硫剂的脱硫效果;二是,怎样解决因动力学不足导致的脱硫效率低下,不能实现深脱硫的问题。 第一个问题侧重于开发使用更具有脱硫效率且安全的脱硫剂,于是出现了镁基复合喷吹法,脱硫效果有所改善却成效不大,而且镁粉在运输、储存、使用中同样存在很多的安全隐患,给生产带来诸多不便。然而,新型脱硫剂——钝化颗粒镁的开发成功,使纯镁喷吹脱硫技术得以实现,达到了真正高效安全的工艺目标,目前,镁系脱硫剂已经成为世界铁水预处理中的主导脱硫材料。针对第二个问题,如何才能获得更好的动力学条件呢?从工艺模式着手,技术人员研发出了具有实际应用价值的机械搅拌脱硫法,其中以KR法为典型,在根本上改善了脱硫过程中的动力学条件,并可以在脱硫剂中不加CaC2而主要采用CaO,避免了生产中使用CaC2而带来的不便和危险。然而,在工业应用时却又出现许多技术难题,比较突出的如,搅拌头的使用寿命较短;单工位操作设备导致更换搅拌头的同时无法进行铁水脱硫等。可最终这些难点还是被陆续攻破,解决了搅拌头的寿命问题,使其从原来的几十炉提高到现在的几百炉,而且摸索出了氧化钙基脱硫剂应该有一个最佳的指标要求,可以达到最理想的脱硫效果。目前,KR法已经完全可以达到深脱硫的要求,即把铁水中的硫脱至小于。同时,双工位布置形式的出现克服了单工位的不足,使生产的连续化程度得以提高。很长时间,KR法成本问题(尤其是前期投资)加上其过程时间较长,以及不适应于大型铁水罐,故发展缓慢;直至二十世纪后期,其投资降低后,加上运行费用低廉,所以又受到了重视。 KR法与喷吹法的比较 从铁水脱硫工艺倍受人们的重视以来,KR法与喷吹法技术一直处于发展之中,目前虽仍需完善可也已趋近于成熟,这样两者之间才更具备可比性,本文主要从以下几文面进行具体比较。 1 技术与设备 在喷吹法中,单吹颗粒镁铁水脱硫工艺因其设备用量少、基建投入低、脱硫高效经济等诸多优势而处于脱硫技术的主要发展趋势之一,可在相当长的时间我国都是引进国外的技术和设备。到2002年10月国内才首次开发出铁水罐顶喷单一钝化颗粒金属镁脱硫成套技术设备,整套装置中,除重要电器元器件采用进口或合资的外,其余机电产品100%实现了国产化,包括若干最关键的技术设备。喷吹技术和设备的国产化直接降低了建设投资和运行操作的成本,从前期的一次性投资来看,要比KR法略有优势。 虽然搅拌法的技术专利也是国外拥有,可从其设备和技术本身而言并没有难点,机械构成是常规的机械传动和机械厂提升;加料也采用的是常规大气压下的气体粉料输送系统,可以说在系统的机、电、仪、液等方面的技术应用都是十分成熟。尽管如此,KR 法设备仍然是重量大且较复杂,可它的优势是运营操作费用低廉,由此所产生的经济效益完全可弥补前期的一次性高额投资。根据有关推算,一般3~5年即可收回所增加的投资。2000年武汉钢铁设计研究院针对武钢二炼钢厂的情况,对KR 法和喷吹法两种方案的投资进行了估算,KR 法的投资估算比喷吹法投资估算多200万元。 2 脱硫效果 实际生产过程中的铁水脱硫效果,不仅与设备有关,而且受脱硫剂、操作工艺水平、时间及温度等诸多因素影响,本文主要考虑的是纯镁喷吹法和CaO基KR法。一般对铁水预处理的终点硫含量要求是不高于50ppm,工厂生产和实验研究结果表明,喷吹法因其脱硫剂Mg的较强脱硫能力,KR法由于其表现出色的动力学条件,在可以接受的时间内(一般≤15min),它们都能达到预处理要求的目标值。国内各大钢厂的具体脱硫数据可见表1。在喷吹法中,复合脱硫剂使用CaO比例越高,脱硫效果越差,使用纯镁时脱硫率最高;KR法使用CaO脱硫剂,脱硫率只是略低于喷吹纯镁。 处理容器 脱硫剂 脱硫剂消耗/kg·t -1 脱硫率ηS/ % 最低硫/ ppm 纯处理时间/ min 处理温降/ ℃ 铁损/ kg·t-1 钢厂 机械搅拌法- KR 法 100t铁水罐 CaO ≤20 5 28 - 武钢二炼 CaO 基喷吹法 280t混铁车 CaO基 75 60 - 宝钢一炼 CaC2 + CaO喷吹法 140t铁水罐 50% CaO+50% CaC2 40 - 31 - 攀枝花 Mg +CaO混合喷吹 100t铁水罐 20% Mg+80% CaO - 7 武钢一炼 Mg +CaO复合喷吹 300t铁水罐 Mg + CaO(1:3) Mg < 10 - - 宝钢 Mg + CaO复合喷吹 160t铁水罐 Mg + CaO(1:2~3) Mg 90 ≤50 8~14 - 本钢 纯Mg 喷吹 100t铁水罐 Mg ≥95 ≤10 5~8 武钢一炼 3 温降 铁水温降的消极影响是降低了铁水带入转炉的物理热,主要体现在转炉吃废钢的能力下降,导致转炉冶炼的能耗和物料消耗升高,直接影响了冶炼的经济成本。KR法因动力学条件好,铁水搅拌强烈,而且CaO的加入量较大,导致温降也大,目前国内KR法工艺应用较成熟的武钢可以使温降控制在28℃左右。相比之下,镁基的脱硫温降都比较小(参照表1),主要原因有以下三点:喷吹法动力学条件差,铁水整体搅拌强度不大,热量散失少;金属镁的脱硫反应过程是个放热反应;镁的利用率高,脱硫粉剂加入量少。 4 铁损 铁水预处理脱硫过程的铁损主要来自于两部分:脱硫渣中含的铁和扒渣过程中带出的铁水。由于两种工艺模式的不同,实际渣中含铁和扒渣带出铁量都有较大的差别,目前没有公开发表的详细对比数据。一方面,较少的脱硫剂产生的脱硫渣少,则渣中含铁量也低,由此颗粒镁喷吹脱硫的铁损要少一些;另外,颗粒镁喷吹脱硫的渣量少,扒净率相对低,而KR法的脱硫渣扒净率相对高。就扒渣的铁损而言,由于还取决于高炉渣残留量及扒渣过程,综合考虑看KR法与喷吹法区别不大。究竟哪个是主要因素,与各钢厂的实际操作有很大的关系,通过换算,得出具体数据可见表2。可见,喷吹法时,采用脱硫剂的CaO含量越高,则扒渣铁损越大;而KR法使用CaO作为主要脱硫剂成分,其铁损只是略高于喷吹镁脱硫铁损。 5 脱硫剂 铁水预处理过程中,脱硫剂是决定脱硫效率和脱硫成本的主要因素之一。根据日本新日铁曾做的计算,脱硫剂的费用约为脱硫成本的80%以上,所以,脱硫剂种类的选择是降低成本的关键。然而,选择时必须得结合考虑不同工艺方法的特点。 基于动力学条件和脱硫效率,目前喷吹法主要采用的是镁基脱硫剂,KR法采用的是石灰脱硫剂。根据理论计算,在1350℃,镁脱硫反应的平衡常数可达×103,平衡时的铁水含硫量可达×10-5%,大大高于CaO的脱硫能力。然而,上文已经把两种脱硫剂在各自工艺中的脱硫效果进行了对比,表明,结合实际生产工艺后它们都能达到用户对脱硫的最高要求。 在脱硫方式选择时还要考虑脱硫剂的一个因素,就是脱硫剂的来源问题。一般而言,大部分钢铁生产企业都要使用石灰石,要么有自己的石灰厂,要么有稳定的协作供货渠道,来源稳定,成本稳定,而且供货及时,不用考虑仓储问题。虽然我国的金属镁资源丰富,可是相对钢铁企业来说,获得搅拌法所需的CaO基脱硫剂更为容易,钝化颗粒镁就不具备这些有利因素。℃左右。相比之下,镁基的脱硫温降都比较小(参照表1),主要原因有以下三点:喷吹法动力学条件差,铁水整体搅拌强度不大,热量散失少;金属镁的脱硫反应过程是个放热反应;镁的利用率高,脱硫粉剂加入量少。

甲醇的生产,主要是合成法,尚有少量从木材干馏作为副产回收。合成的化学反应式为: H2 + CO → CH3OH 合成甲醇可以固体(如煤、焦炭)液体(如原油、重油、轻油)或气体(如天然气及其他可燃性气体)为原料,经造气净化(脱硫)变换,除去二氧化碳,配制成一定的合成气(一氧化碳和氢)。在不同的催化剂存在下,选用不同的工艺条件。单产甲醇(分高压法低压和中压法),或与合成氨联产甲醇(联醇法)。将合成后的粗甲醇,经预精馏脱除甲醚,精馏而得成品甲醇。高压法为BASF最先实现工业合成的方法,但因其能耗大,加工复杂,材质要求苛刻,产品中副产物多,今后将由ICI低压和中压法及Lurgi低压和中压法取代。

摘要 :天然气经过开采之后,要实现其有效利用,必须对天然气进行净化处理,而天然气在净化处理过程中具有易燃易爆、高温高压以及有毒有害等特点,安全隐患非常多。为了保障天然气净化过程安全可靠,有必要加强天然气净化设备的检修,并对检修过程进行严格的安全管理。基于此,本文深入分析天然气净化设备的检修,并提出具体安全管理措施,为相关工作的开展提供一定参考。

关键词: 天然气;净化设备;检修;安全管理

天然气净化过程中存在诸多安全隐患,一旦净化设备出现故障或者危险情况,很容易引发安全事故。为了有效保障天然气净化安全可靠,需要对天然气净化设备加强检修与保养,并针对检修过程强化安全管理,保障天然气净化设备检修顺利进行,有效消除各项安全隐患。

1天然气净化设备的检修

在检修天然气净化设备过程中,最重要的就是明确各方面的危险源。在明确危险源的检修当中,主要是对FeS自燃问题、液体泄露以及气体管线积液等问题进行重点检查。当天然气净化设备停止生产而且同时进行空气吹扫和催化剂降温的时候,很容易出现FeS自燃现象,或者设备和空气实现较大面积接触的时候,也很容易导致FeS产生自燃。天然气净化设备在进行开车或者停车过程中,很容易出现气相管线积液情况,这种问题隐蔽性较强,所以很容易被忽视,进而引发较大危害。导致这种问题出现,主要是由于放空管线、蒸汽管线以及蒸汽过热器等出现缺陷造成的。基于此,在检修工作当中,需要着重对疏水器相应疏水情况进行全面检查,并在实际开车之前实现合理化校调,对阀门状态进行全面检查,还要检查放空低点,实现排液处理。设备以及管线超压在天然气净化设备当中也属于重要的潜在危险源,会严重威胁相关人员和物体,在实际检修当中,一旦发现漆膜脱落、支撑架变形以及捕雾网损坏,需要及时置换氮气,同时加水进行浸泡。如果催化剂出现活性降低或者停产进度出现缓慢情况,需要及时调校仪表,若同时发生配风异常,要马上降低风级,加快分析频率。当管线出现穿孔或者变形的时候,要增加巡检频率,及时停止进风并加入氮气。除此以外,还要对管线、超温以及设备当中出现的H2S、SO4、CH4残留以及过程气泄漏、原料气和酸气等进行充分识别和检修。

2天然气净化设备检修的安全管理

完善建立检修安全管理制度

在天然气净化设备检修过程中,面临着诸多安全隐患,为了降低危险发生率,保障检修工作能够顺利开展,需要完善的制定检修安全管理制度。在相关制度当中明确规定设备日常管理规范、应急措施、检修标准和工具使用规范等,在全面落实相关安全管理规范之下,进一步确保天然气净化设备检修当中相关人员和物体的安全。

贯彻落实PDCA管理制度

所谓PDCA,指的是对管理过程还有工作质量进行高效控制的工具,包含了四个阶段,即计划→实施→检查→行动。对天然气净化设备实现全面检修的时候,需要贯彻落实PDCA管理制度,在实际检修当中,首先要科学进行检修方案的制定,并对相关方案进行全面检查与审阅,之后要根据相关方案进行所有检修工作,在检修工作结束后对其开展效果进行科学的分析和评估,对检修工作当中存在的各种问题进行总结,针对性的提出解决和优化对策,实现改进处理[1]。以此促使天然气净化设备检修工作形成良性循环模式,促使检修工作更加顺畅,管理水平不断提高。

实施检修现场安全员管理制度

在全面实施检修现场安全员管理制度过程中,需要至少委派一名安全员对检修现场进行安全看护,针对检修现场的工具使用以及人员出入进行真实记录,及时发现并报警紧急事件,协调相关部门有效处理,并和检修人员进行深入沟通等,以此有效确保检修现场所有工作人员的安全。为了有效发挥检修现场安全员的职能作用,需要严格的对现场安全员进行岗前培训,促使其充分了解并掌握检修工作当中涉及到的各种危险源以及各种工作规范,在实际管理当中对检修人员存在的错误和不当行为及时指出和纠正,促使各项检修工作规范进行。安全员在实际工作当中,要在现场检修之前,充分告知检修人员在检修工作当中需要注意的`各种安全事项。

全面检查检修现场

由于天然气净化设备检修过程中,检修人员的注意点主要在设备方面,且很多检修人员缺乏一定安全意识,为了有效保障检修安全,需要安排专门人员对检修现场进行全过程监督。在充分检查和监督检修现场的时候,需要确保现场安全员全面履行自身职责,保障检修人员其许可单保持完整,还要检查检修人员掌握的检修内容以及涉及到的安全事项,对检修过程中出现的各种不安全行为要及时制止并纠正,对检修现场出现的各种问题进行记录、汇总,并在分析之后及时解决处理[2]。在实际检修工作当中,还需要充分落实检修作业许可制度,保障作业许可单的完整,在申请通过之后方可进行具体检修作业。

做好净化设备的日常保养和维护工作

为了有效保障天然气净化设备检修安全,需要对相关设备加强日常保养和维护工作,避免相关设备由于长期运转导致出现不良问题,进而增加安全隐患。做好净化设备的日常保养以及维护,能够有效减少设备检修工作压力,并降低检修工作事故发生率,强化安全管理。

3结语

天然气净化设备自身具有较高的危险性,为了保障设备运行安全,需要在实际工作当中加强设备的检修,并注意在检修过程中做好安全管理,充分保障天然气净化设备的顺利运行以及检修工作的安全有序。在天然气净化设备检修过程中,要着重识别各种危险源,并贯彻落实各项安全管理制度,做好日常维护和保养工作。

参考文献:

[1]袁莉.浅谈如何提高天然气净化企业安全管理[J].山东工业技术,2016(8):74-74.

[2]田晓龙,张保利,李梦洁,等.天然气净化厂检修现场安全管理探讨[J].化工管理,2017(20):264-264.

相关百科
热门百科
首页
发表服务