论文发表百科

简谐运动论文参考文献

发布时间:2024-07-05 19:31:11

简谐运动论文参考文献

我国著名科幻作家刘慈欣曾经写过一部小说叫《地球大炮》,其中的“南极庭院工程”在漠河与南极之间挖了一条贯穿地球的弯曲隧道。

小说中还提到,如果从中国挖一条笔直的隧道,另一头的出口将是阿根廷。如果从这条笔直的隧道跳进去,需要花多长时间才能从另一头蹦出来呢?刘慈欣写道:

贝加纳来了兴趣:“……让我们看看:我跳进去后会一直加速,虽然我的加速度会随坠落深度的增加而减小,但确实会一直加速到地心,通过地心时我的速度达到最大值,加速度为零;然后开始减速上升,这种减速度的值会随着上升而不断增加,当到达地球的另一面阿根廷的地面时,我的速度正好为零。如果我想回中国,只需从那面再跳下去就行了,如果我愿意,可以在南北半球之间做永恒的简谐振动,嗯,妙极了,可是旅行时间……”

“让我们计算一下吧。”沈华北打开电脑。

计算结果很快出来了,以地球理想的平均密度,从中国跳进地球隧道,穿过直径一万两千多公里的地球,坠落到阿根廷,需42分钟12秒。

“快捷的旅行!”贝加纳高兴地说。

是的,42分钟12秒,这是科学家过去一致认同的简单估计,也是每个物理学的学生都要做的习题。

不过最近,有一位较真的科学家经过更精确的计算,从这个42分钟里又减去了4分钟,把答案变成了38分钟。也就是说,只需要花38分钟,你就能从另一头的阿根廷跳出来,也就是北京到天津一趟动车的时间啊。这篇论文发表在3月的American Journal of Physics期刊上。

物理老师之所以喜欢让学生们做这个习题,是因为它既涉及牛顿万有引力,又涉及一种简单但重要的简谐运动。学生们需要计算,掉入隧道的物体所受到的引力如何随着下落高度而变化。

为了计算这个问题,我们先要做出一些不那么切合实际的假设。我们假设:地球像一个台球一样,密度是均匀分布的,每立方米大约5500千克。在这种前提下,当你跳进隧道时,你受到的引力与你距离地球中心的距离有关。这是因为,当你不断下落时,位于你脚下的地球物质在不断的减少,而位于你头顶上的物质对你则失去了影响力。这时,学生们使用的模型称作“壳层定理”。

扩展阅读:

壳层定理(Shell Theorem)是古典重力学上的理论,其可简化重力于对称球体内部和外部的贡献,并且在天文学上有特别的应用。 壳层定理最先由牛顿在所推演出来,其阐明了:

1. 球对称物体对于球体外的重力贡献如同将球体质量集中于球心。

2. 在对称球体内部的物体不受其外部球壳的重力影响。

在这个模型里,由于你下落时受到的引力与你和地心的距离成比例,你会在这个隧道里来回穿梭,就像上下蹦跳的弹簧,也像来回晃动的钟摆。这个模型在教学中很好用,正是因为它是一个简单的简谐运动。

但实际情况却并不是这样的。我们都知道,地球的密度并不是均匀分布。地壳和地幔的密度较低,而地心的密度较高。所以,加拿大麦吉尔大学的物理学研究生Alexander Klotz开始思考,能不能建立一个更加准确的模型呢?Klotz说,他也不知道自己是如何开始思考这个问题的,不过他经常在reddit网站上回答网友提出的一些物理学问题,也许就在灵光乍现的一瞬间,他决定要重新计算一下。

为了获得更精确的地球质量分布,Klotz决定采用“初步参考地球模型”(PREM,Preliminary reference Earth model)。这个模型基于地震数据,考虑了一系列的地球性质,包括弹性、衰减、密度、压力和万有引力。在这个模型中,地球密度并不是一成不变的,而是随半径而增加,比如地表的密度低于1000千克/立方米,而在6371公里深的地核,密度升高到13000千克/立方米,并在地核的边缘(距地心3500公里处)有一个密度的突变。基于这个模型,Klotz得出了结论:落入“地球隧道”的物体,从另一边弹出来的时间是38分11秒,短于“均匀模型”预言的42分12秒。

Klotz还发现,如果我们假设物体下落过程中受到的万有引力恒等于在地表所受到的引力,那么答案会变成38分钟整。这种“引力恒定”的假设,需要地球的密度符合特殊的分布——随深度逐步稳定增加。当然,这种假设并不符合实际情况,因为地核的密度实际上是较稳定的,并不会随着深度变化。

那么,为什么“引力恒定”假说得出的答案与基于PREM模型的答案相差无几呢(只少了11秒)?Klotz解释说,这是由于地球的质量分布和引力随深度只有少量增加,基本上较为恒定,直到遇到地外核。从外核开始,引力会开始下降(这与得出42分12秒的模型类似)。但是,下落物体到达地核时,速度已经非常快了,因此通过地核的时间极其短,所以觉察不出太大的变化,也不会对结果产生很大影响。正如刘慈欣在《地球大炮》中所写道的:

这时,井壁发出的蓝光突然变成红色。

您现在已到达6300公里深度,速度8公里/秒,正在穿过地心!

耳机里响起了邓洋的声音:“你现在已达到可以飞出地球的速度,却正处在这个星球的中心,地球正在围着你旋转,所有的海洋和大陆,所有的城市和所有的人,都在围着你旋转。”

沐浴在这庄严的红光中,沈华北的脑海中又响起了音乐,这次是一首宏伟的交响曲,他以第一宇宙速度穿过这发着红光的地心隧道,仿佛漂行在地球的血管中,这使他热血沸腾。

邓洋又说:“虽然新固态材料有良好的绝热性能,现在你周围的温度仍超过了一千五百度,你的密封服中的冷却系统正在全功率运行。”

井壁的红光只延续了十多秒钟,又变回宁静的蓝光。

您已通过地心,现在正在上升,并开始减速。您已经上升了500公里,速度公里/秒,仍在固态地核中。

由于穿越地心的时间非常短,所以,采用“引力恒定”的假说得出了38秒的结论,与更精确的模型差得并不多。

在《地球大炮》的最后,地球隧道被科学家改造成了一个长达6300公里的电磁线圈,落入其中的物体不再进行简谐运动,而是不断的加速,用来发射火箭,真正变成了“地球大炮”。主人公沈华北通过地球大炮来到太空,望着蔚蓝色的地球,想到了第一个到达地心的人、如今依然被困在地心铁镍流中的孙女沈静。此刻,她正驾驶着“落日六号”地航飞船,在地心永恒的漂流。想起来好孤单,还好,大刘在另一部小说《带上她的眼睛》中,讲述了深在地心的沈静,通过主人公的“眼睛”,游历了高山与草原,也算是给读者一点安慰。

这是小说家浪漫的幻想。说不定在未来,真有那么一天,我们能挖穿地球。到那时候,我们和阿根廷之间,只隔着一个北京到天津的动车距离。那么,为了到达那一天,让物理学的计算先带上我们的眼睛和幻想吧!

(编译:汪汪)

【参考文献】

[1]Adrian Cho. How long would it take you to fall through Earth? Science, 2015; DOI: ;

[2]Alexander R. Klotz. The gravity tunnel in a non-uniform Earth. Am. J. Phys. 83, 231 (2015);

Am. J. Phys. 83, 231 (2015)

[3]刘慈欣. 《地球大炮》.

纤维增强树脂基复合材料层合结构具有比强度高、比刚度大、阻尼特性好、疲劳寿命长、结构可设计性强等优点,在航空、航天及一些特殊领域中被广泛使用。然而,复合材料的各向异性,非均匀性等特点给复合材料结构的力学分析带来了一系列的挑战。尤其在航空航天领域,飞行器在运行过程中所处的环境和所受的载荷都非常复杂。除了考虑飞行器在这些复杂环境下的自振特性和确定性外载作用下的动力响应外,考虑随机性外载的影响也不容忽视。随机振动理论和方法就是处理这类问题的先进思想和重要手段,但在国内外航空航天领域中还很少实际应用,主要原因之一就是现有随机振动分析方法复杂而且低效,这在很大程度上限制了飞行器设计水平的提高。虚拟激励法是高效精确的随机振动分析方法,迄今已经在大跨度结构抗震、抗风,海洋平台和汽车随机振动等多个工程领域被数以百计的专家针对各工程领域的特点予以发展而取得很多实际成效。但是迄今为止,这一有力的工具却并未在航空航天领域被充分认识和应用,在这些具有战略意义的重要领域中,所应用的随机振动分析方法依然复杂低效,缺乏创新意识。本论文针对这一现状,依据航空航天领域材料和结构的复杂性,以及飞行器所处环境的复杂性,将虚拟激励法作了有针对性的发展,以完全自主版权的DDJ有限元程序系统为开发平台,完成了求解复合材料结构随机振动的高效精确分析程序。本论文中,着重对如下问题进行了研究:1.建立了基于Mindlin一阶剪切变形理论的复合材料层合板有限元分析模型,推导了层合板的有限元列式,在DDJ程序平台上对复合材料层合板的自振频率和模态进行了分析。将虚拟激励法引入到航空航天领域广泛使用的复合材料层合结构的随机振动分析中,针对复杂的复合材料结构有限元模型和非经典阻尼体系,发展了包含全部参振振型和随机激励点之间耦合项的随机振动高效求解方法,比较圆满地解决了传统计算方法精度差、效率低的应用障碍。2.本文推广虚拟激励法于敷设粘弹性阻尼层的复合材料层合结构的平稳和非平稳随机振动分析,建立了高效精确计算方法。尤其是综合考虑了粘弹性阻尼材料的性能参数随频率变化的特点以及复合材料层合结构本身的模态阻尼,建立了组合系统的非经典阻尼表达。为了解决随频率变化的非经典阻尼体系的平稳/非平稳随机响应,本文结合精细积分方法提出了一种直接解法,只需用原系统的实模态对虚拟激励法做出相应的发展,就可精确地求解频变阻尼系统的随机振动。据此对飞机水平尾翼的复合材料安定面结构进行了模拟研究,从精细的计算模型及合理的计算结果可以看出,本文所提出的方法对于这类相当复杂的复合材料结构的随机振动分析十分有效。3.研究飞机对大气紊流响应的主要方法是随机振动功率谱法。用高效、精确的分析方法计算不同飞行环境下飞机的响应,以预测飞机疲劳寿命和可靠度等是航空工程领域研究热点。本文在考虑了二维平面流中简谐振动平板产生的非定常力基础上,又按照虚拟激励法的特点同时考虑了竖向简谐风的影响,进而研究了复合材料二维机翼的大气紊流响应。随机激励谱选用了Dryden紊流频谱模型。结果表明,在处理二维机翼在大气紊流响应的随机问题中,基于简谐响应分析的虚拟激励法不但是精确算法,而且效率非常高,具有很大的实用优势。发展这一方法对于该领域的数值计算是很有价值的。4.计算流体动力学(CFD)是研究流体动力学的有力工具。本文为计算机翼颤振/抖阵分析中的气动参数,首次使用雷诺平均湍流模型对二维翼型截面的颤振导数进行了求解。基于等最新提出的CFD网格控制算法以及所建立的数值风洞,计算了结构简谐运动下的气动力,并识别了湍流场中NACA0012翼型的颤振导数。将由此得到的颤振导数和气动力应用到大气紊流引起的随机振动计算中,并将计算结果与基于Theodorsen函数得出的响应解析解进行比较,得到了相当满意的一致。本文计算的CFD气动参数充分考虑了气体的分子粘性和紊流粘性,其作用相当于附加阻尼,因此比Theodosen函数方法限制更少、应用范围更广,而且在此基础上还可以考虑三维流和可压缩性。因此本文实施的基于CFD的气动力计算方法具有广阔的应用前景,将成为应用虚拟激励法于航空航天结构时确定气动参数的有力工具。可以说,这一成功的尝试为随机振动方法更广泛地应用于航空航天工程走出了很重要的一步。

体育专业本科毕业论文(设计)开题报告

体育教学论文就是运用科学规范的方法对体育教学某些现象进行创造性的研究和理性认识,自觉地把握该现象的本质及一般发展规律,用论文的形式进行表述,那么,体育论文开题报告怎么写?我为大家推荐一篇优秀范文,大家不妨多加参考。

一、选题的背景与意义:

优秀的跳远选手在跳远时,是在追求快速及有效率的助跑以及强力有效的起跳动作,并以适当的起跳角度起跳,但是这两者同时成立是非常困难的,因为助跑速度越快,往上跳跃就会更加困难。

在人体起跳的肌肉变化及弹簧振子运动方面,许多学者都进行过深入研究,但很少将两者结合起来,采用物理方法分析人体起跳的运动过程。本研究正是针对这一问题提出,有一定的理论创新意义。同时,在国际跳高、跳远等运动项目中,我国选手较为落后,本课题的'研究成果可作为运动员调高、跳远运动项目的理论参考,对提高我们运动员的成绩具有较大的现实意义。

二、研究的基本内容与拟解决的主要问题:

三、研究的方法与技术路线:

拟研究大纲:

第一章 绪论

压缩弹簧弹起的物理原理

人起跳的条件

分段速度

起跳动作

起跳水平速度利用率

起跳垂直速度利用率

起跳角度

助跑速度利用率

最高速度

起跳技术

第二章 人起跳的物理原理

影响跳远成绩的主要因素

有关跳远助跑与助跑速度利用率的研究

有关跳远踩板研究

有关跳远起跳技术的研究

第三章 实验方法与步骤

研究对象

实验时间与地点

实验时间

实验地点

实验仪器

压缩弹簧压力部分

测量助跑分段速度部份

测量起跳动作部分

实验场地布置

受试者选取

受试者填写同意书及基本资料

建立选手基本资料

仪器校正与测试

实验目的与方法说明

基本能力测试

排定实验顺序

前测与后测

数据纪录、整理与分析

资料收集与处理分析

结果与讨论

第四章 结论与建议

研究结论

研究建议

四、研究的总体安排与进度:

五、主要参考文献:

[1] 谢利民.弹簧振子运动的实际动力学分析[J].上海师范大学学报(自然科学版),,31(2):91-94.

[2] 基特尔C.伯克利物理学教程,第一卷,力学[M].北京:科学出版社,1979.

[3] 药树栋,宫建平.弹簧振子振动的探讨[J].大学物理,(2):22-24.

[4] 肖波齐.基于Matlab的弹簧振子简谐振动研究[J].陕西科技大学学报,,26(6):116-119.

[5] 卢德明主编.运动生物力学测量方法[M].北京体育大学出版社, 2001

[6] 李建英,李磊,郭甫. 十运会男子三级跳远运动员三跳技术运动学分析[J].成都体育学院学报.2008(03)

[7] 宋亮,丁磊,巩磊. 对世界优秀男子三级跳远运动员运动技术的比较分析[J].体育科技.2008(01)

[8] 罗陵,刘春伟. 三级跳远运动员李延熙三跳起跳技术的运动学分析[J].北京体育大学学报.2008(02)

[9] 宋惠娟,王亚军. 我国部分优秀女子运动员三级跳远起跳若干速度指标的运动学分析[J].安徽体育科技.2006(05)

[10] 王 琨 等.对肌肉生物力学研究有关问题的探讨[J].上海体育学院学报,,25(1):36-40.

简谐运动的研究小论文

简谐振动的究 班级:电子信息工程 2009-1 实验序号:19 姓名:刘珂瑞摘要; 振动推导弹簧振子周期公式,使用天平测量两弹簧质量之和,在振动A<25cm的情况下,改变滑块配重质量m五次,应用光电计时器测量相应振动周期T。引入等效质应用滑块在气垫导轨上做往复震动,由滑块所受合力验证滑块运动是简谐量后的周期公式,求出两弹簧等效劲度系数k,等效质量m0相对误差的大小。关键词:气垫导轨 光电计时器 滑块 配重 弹簧正文(一)引言 通过对《大学物理实验》的学习,我设了对简谐振动的研究,由学校提供气垫导轨等设备,在老师帮住下,通过实验方法求出两弹簧等效的劲系数k和等效质量m0(二)实验原理1. 振子的简谐振动本实验中所用的弹簧振子是这样的:两个劲度系数同为 的弹簧,系住一个装有平板档光片的质量为m的滑块,弹簧的另外两端固定。系统在光滑水平的气轨上作振动, 在水平气垫导轨上的滑块的两端联接两根相同的弹簧,两弹簧的另一端分别固定在气轨的两端点。选取水平向右的方向作 X 轴的正方向,又设两根弹簧的倔强系数均为 k0 ,就是说,使弹簧伸长一段距离 l时,需加的外力为 k0x 在质量为 m 的滑块位于平衡位置 O 时,两个弹簧的伸长量相同,所以滑块所受的合外力为零。当把滑块从 O 点向右移距离x时,左边的弹簧被拉长,它的收缩力达到 k0x,右边的弹簧被压缩x,它的膨胀力达到 k0x ,结果滑块受到一个方向向左、大小为 2 k0x的弹性力 F 作用。 考虑到弹性力 F 的方向指向平衡位置 O ,且跟位移 x 的方向相反,故有 F=-2k0x如果上述两根弹簧的倔强系数不相同,而分别为 k 1 和 k 2 ,显然,这时式中的 2 k 应换为k1+k2。于是有 F=-( k1+k2)x=-kx当忽略弹簧质量时振幅周期有:T=2π√ m/k若考虑两弹簧质质量对周期的影响,等于在滑块上加了m0,振幅周期公式变为 T=2π√(m+m0)/k等效劲度系数k:T2=4π2(m+m0)/k => k=4π2(m+m0)/T2 等效质量m0: T2=4π2(m+m0)/k => m0=(kT2-4π2m)/4π2在振幅A<25cm的情况下,改变滑块质量m五次得到,m1,m2,m3,m4,m5,m6。和周期T1~T6,由式可得 ,因此可以用逐差法处理数据, T42-T12=4π2 (m4-m1)/k; T52-T22=4π2(m5-m2)/k; T62-T32=4π2(m6-m3)/k; 求出平均值 ;将 代入式 求出平均值 。 求相对误差:Er=δx/x0×100%其中 ,称为弹簧的有效质量,c为一常数。对绕制均匀圆筒状的弹簧,c的理论值为 ,即弹簧的自身质量是其有效质量的3倍。理论值m0,=(1/3)m,; m,为两弹簧质量 Er=(m0-m0,)/m0,×100%=(m0-1/3m,)/(1/3)m,×100%(三)实验内容准备工作1用酒精棉球擦拭气轨表面(在供气时)以及滑块内表面,用薄的小纸条检查气孔是否有堵塞。 2记下不带挡光片的滑块的净质量(由实验室给出),并用天平称量平板挡光片以及两个弹簧的质量。将平板挡光片固定在滑块上,其总质量即为滑块质量 。测定滑块振动的周期 1 .实验前,将光电门卡在导轨上,接通计时仪电源。打开电源,将MUJ-5B型计时计数测速仪的“功能”选为“ 周期”。2 .气轨调至水平,调平:接通气源,给气轨通气,把滑块放置与导轨上,纵向水平调节支架螺钉,横向水平调节支点螺钉,直至滑块(在实验段内保持不动,或稍有滑动,但不总是向一个方向滑动,即认为已基本调平。3 .如图 7-1 所示,在水平气垫导轨上的滑块的两端联接两根相同的弹簧,两弹簧的另一端分别固定在气轨的两端点把振动滑块放在气轨上,并给滑块一个位移(A<25cm),令其振动。 当滑块振动1-2周期后,按光电计数器“功能”键,测出滑块振动30 周所用的时间30T ,算出周期 T2 ,测量滑块质量。并记录在实验表格内 4 .在滑块上加配重铁片(每一次加一片),并测量滑块改变后的不同质量,分别改变滑块的质量大小五次,重复步骤 3 ,求出不同质量的周期T,5 .测量两弹簧质量之和m,(四)实验数据m, = ×10-3kg; k= N/s; m0= ×10-3kgi m/(10-3kg) 30T/s T2/S2 m0/(10-3kg) i m/(10-3kg) 30T/s T2/S2 m0/(10-3kg) k/(N/m) 1 4 2 5 3 6 (五)实验数据处理及结果 1)弹簧等效劲度计算: T42-T12=4π2(m4-m1)/k;T52-T22=4π2(m5-m2)/k; T62-T32=4π2(m6-m3)/k;k1=4π2(m4-m1)/(T42-T12)= 4π N/mk2=4π2(m5-m2)/(T52-T22)= 4π N/mk3=4π2(m6-m3)/(T62-T32)= 4π N/mk=k1+k2+k3=()= N/m2)弹簧等效质量计算:m01=(k1T2-4π2m1)/4π2=; m04=(k1T2-4π2m4)/4π2=(k2T2-4π2m2)/4π2 =; m05 =(k2T2-4π2m5)/4π2=(k3T2-4π2m3)/4π2 =; m06 =(k3T2-4π2m6)/4π2=(m01+m02+m03+m04+m05+m06)/6= g= ×10-3kg 3)相对误差: Er=δx/x0×100% Er=(m0-m0,)/m0,×100%=(m0-1/3m,)/(1/3)m,×100%=(六)结束语 由于气垫的漂浮作用,滑块与导轨平面间的摩擦阻力已经非常小,但上滑块运动时受到的空气阻力,导轨不是水水平的,导至滑块运动的是阻尼运动;在着实验时,没等滑块振动稳定后就开始计时,与理论值偏差较大参考文献:张彦纯 主编, 《大学物理实验》,机械工业出版社; 马文蔚等,《物理学》,北京:高等教育出版社,1999;林抒 龚镇雄,《普通物理实验》,北京:人民教育出版社,1982

全是纯手打的。。= =。1.我的总述前言:这是一种描述或者说定义罢了。就像什么是人?比如,我问你:什么是物质?。也只是人类的一种定义。确切的说,它满足正余弦图像的相关性质,所以就用正余弦来描述更加方便和直观。2。我的解释:要说为什么是正余弦图像。那个图像就是根据A=sin(ωt+φ)画出来的。如果想问这个式子怎么来的,这个是通过微积分得来的。高中不用管。他满足正余弦图像的相关性质,所以就用正余弦来描述。3。其他举例:比如电磁波和机械波。机械波是震动引起的,那电磁波呢?电磁波只不过是符合波的性质罢了。所以把他归为波来讨论。类似这样的例子有很多,这样做的好处是更加直观和简捷。4.我的物理老师曾说过:其实物理的根源是最简洁的。基础公式往往都最简洁的。只不过一部分被挖掘了出来,而一部分还没有被人发现。就像大一统理论一样。

细心观察,生活中其实也有很多物理现象,冰箱里就是如此。打开冰箱,会有一股凉气飘扬而出,每到夏天,这种感觉便更加明显,这和冰箱里各种物态变化的功劳是分不开的。冰箱里的凉气,是大量气态“搬热人员”在气化是吸热所造成的。有吸必有放,冰箱外部,在加压的条件下,这些勤劳的搬运工,在这里液化,将所保存的热量释放出来,以便于下一轮继续工作。当然,在冰冻室中,也会存在凝固的现象。如果你将冷冻室中的物品拿到冷藏室,也会出现融化的现象,但他们都是次要的了。还有更次要的,那就是任何地方都会出现的升华与凝华,就不用说了。小小的一个冰箱,就存在全部6种物态变化,更何况鬼斧神工的大自然呢?

1、特点

当某物体进行简谐运动时,物体所受的力跟位移成正比,并且总是指向平衡位置。它是一种由自身系统性质决定的周期性运动。

2、定义

如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。

扩展资料:

简谐运动的发现:

1656~1657年,荷兰的C.惠更斯首次提出物理摆的理论,并创制了单摆机械钟。20世纪初,人们关心的机械振动问题主要集中在避免共振上,因此,研究的重点是机械结构的固有频率和振型的确定。

1921年,德国的H.霍尔泽提出解决轴系扭转振动的固有频率和振型的计算方法。30年代,机械振动的研究开始由线性振动发展到非线性振动。

50年代以来,机械振动的研究从规则的振动发展到要用概率和统计的方法才能描述其规律的不规则振动──随机振动。

由于自动控制理论和电子计算机的发展,过去认为甚感困难的多自由度系统的计算,已成为容易解决的问题。振动理论和实验技术的发展,使振动分析成为机械设计中的一种重要工具。

参考资料来源:百度百科—简谐运动

参考资料来源:百度百科—机械振动

简谐振动课程论文参考文献

机械论文参考文献

在学习和工作中,大家都有写论文的经历,对论文很是熟悉吧,通过论文写作可以提高我们综合运用所学知识的能力。怎么写论文才能避免踩雷呢?以下是我收集整理的机械论文参考文献,仅供参考,大家一起来看看吧。

[1]尤世杰.试论机械加工中的工装夹具定位设计[J].工业技术,.

[2]张树勋.机械加工中的工装夹具定位设计方法[J].工业技术,.

[3]王存荣.机械加工中的工装夹具的定位设计及其价值研究[J].工程机械,.

[4]梁荣坚.机械加工中的工装夹具定位设计方法[J].机械管理开发,.

[5]胡建中,等.工程机械机群远程故障诊断系统研究.制造业自动化,2005(12):22-25,39.

[6]梁兰娇.浅谈工程机械油耗定额的制定[J].北方交通,2008(7):160-162.

[7]李兴,张礼崇,郜祥,等.机械设备状态监测及诊断技术[J].技术与市场,2012(01):49-50.

[8]杨晓强,张梅军,苏卫忠.机械设备状态监测系统[J].振动.测试与诊断,1999(03):29-32.

[9]张利群,朱利民,钟秉林.几个机械状态监测特征量的特性研究[J].振动与冲击,2001,20(1):20-21.

[10]徐敏,等.设备故障诊断手册-机械设备状态监测和故障诊断[M].西安交通大学出版社,1998.

[11]靳晓雄,胡子谷.工程机械噪声控制学[M].上海:同济大学出版社,1997.

[12]蒋真平,周守艳.工程机械噪声与控制分析[J].建筑机械,2007(4):79-82.

[13]张性伟,王世良,付光均.工程机械驾驶室内的降噪方法[J].工程机械,2008(1):61-63.

[14]廉红梅,朱武强.某型平地机噪声测试分析及降噪改进措施[J].工程机械,2019(7):40-45.

[15]邵杰,张少波,刘宏博.某型平地机作业时发出异响的原因及改进措施[J].工程机械与维修,2019(1):60-61.

[16]杨林.一种新型高精密机械密封的研究[J/OL].装备制造与教育,2017,(03):60-61+80(2017-10-30).

[17]许艾明,赵柱,陈琨,等.非确定工作状态下机械系统可靠性分析[J].机械设计与制造,2012(1):100-102.

[18]韩萍,张彦生.高新技术在工程机械上的应用及发展[C].北京:中国工程机械学会年会,2003.

[19]李志刚.矿山机械的润滑管理与保养分析[J].中国新技术新产品,2017,(21):128-129.

[20]武志敏.水泥机械液压系统液压油污染的危害与控制[J].内燃机与配件,2017,(20):88-89.

[21]白永,张啸晨.化工机械设备管理及维护保养技术分析[J].内燃机与配件,2017,(20):97-98.

[22]徐晓光,喻道远,饶运清,等.工程机械的智能化趋势与发展对策[J].工程机械,2002,33(6):9-12.

[23]王世明,杨为民,李天石,等.国外工程机械新技术新结构和发展趋势[J].工程机械,2004(1):4,65-70.

[24]邵杰,张勇.自动化技术在工程机械使用中的应用效用探讨[J].中国石油和化工标准与质量,2011(9):148.

[25]赵红,烟承梅,严纪兰.我国机械自动化技术的应用与发展前景展望[J].安阳师范学院学报,2014(5):65-67.

[26]毛安石.探析农业机械设计制造中自动化技术的应用[J].山西农经,2019(24):112+114.

[27]李杰.农业机械设计制造中自动化技术的应用[J].南方农机,2019,50(18):41.

[28]席猛.农业机械设计制造中自动化技术的应用探析[J].山西农经,2019(4):127.

[29]张永宽.全面应用自动化技术提升农业机械制造水平探究[J].南方农机,2018,49(20):33.

[30]黄东升.适用于中国非公路设备发展的液力传动油技术[J].润滑油,2016,31(5):10-13.

[31]李良敏,何超,宋成利,袁帅,张志阳,陈力.微创手术机器人机械臂结构设计与工作空间分析[J].医用生物力学,2019,01:40-46.

[32]梁东岚,张钺烔,吴嘉汶,姚翠兰.突破性机械义肢[J].中国科技教育,2019,02:22-23.

[33]郭磊.现代化医疗机械通气装置的应用[J].计算机产品与流通,2019,03:63.

[34]徐生龙,崔玉萍金属复合材料在机械制造中的应用研究[J/OL].世界有色金属,2017,(16):70+72(2017-10-25).

[35]刘浩浩,李洁,徐亦陈.基于粗糙集的起重机械安全风险评价[J/OL].土木工程与管理学报,2017,(05):154-158+169(2017-10-25).

[36]何帆,肖锡俊.心脏机械瓣膜置换术后早期患者抗凝治疗的进展[J/OL].中国胸心血管外科临床杂志,2017,(11):1-6(2017-10-25).

[37]刘文波.汽车控制中机械自动化技术的应用[J/OL].电子技术与软件工程,2017,(20):112(2017-10-26).

[38]刘坤,吉硕,孙震源,徐洪伟,刘勇,赵静霞.多功能坐站辅助型如厕轮椅机械结构设计与优化[J].吉林大学学报(工学版),2019,03:872-880.

[39]乔宇,姚运萍,马利强,杨小龙,陈继鹏,陈惠贤.重离子放疗辅助医用机械臂避撞路径规划研究[J].中国医疗设备,2019,06:61-65.

[40]龙腾.一种六自由度机械臂的控制系统设计[J].信息技术与网络安全,2019,06:65-68.

[41]赵海贤.探析机械工程智能化的现状及发展方向[J].江西建材,2017,(20):236+239.

[42]王恒宗.我国现代机械制造技术的发展趋势[J].信息记录材料,2017,18(11):5-6.

[43]徐沛锋.机械电子工程综述[J].信息记录材料,2017,18(11):14-15.

[44]韩宁.机械制造工艺与机械设备加工工艺要点[J].信息记录材料,2017,18(11):39-40.

[45]梁万吉.浅谈计算机辅助技术与机械设计制造的结合[J].信息记录材料,2017,18(11):64-65.

[46]罗校清.基于人工神经网络的工业机械故障诊断优化方法研究[J].科技创新与应用,2017,(30):106-107+110.

[47]张司颖.航空装备机械原因事故主要特点及预防措施[J].内燃机与配件,2017,(20):78-79.

[48]李光志,张营.《机械制图》教学改革创新[J].现代商贸工业,2017,(30):170.

[49]马占平.机械自动化在机械制造中的应用分析[J].内燃机与配件,2017,(20):47-48.

[50]程彬.关于我国工程机械机电一体化发展的探讨[J].内燃机与配件,2017,(20):138-139.

[51]韦邦国,宋韬,郭帅.基于最小二乘法的移动机械臂激光导航标定[J].工业控制计算机,2019,06:47-49.

[52]徐雅微,韩畅,赵子航,姚圣.基于VIVE的虚拟现实交互式机械臂仿真运动平台搭建[J].现代计算机,2019,14:68-72.

[53]马波,赵祎,齐良才.变分自编码器在机械故障预警中的应用[J].计算机工程与应用,2019,12:245-249+264.

[54]孙晓金,刘洪波.机械自动化设备设计的安全控制[J].南方农机,2020,51(04):132.

[55]葛兆花.机械制造及自动化的设计原则和发展趋势分析[J].南方农机,2020,51(04):134.

[56]柏洪武.机械工程自动化技术发展之我见[J].河北农机,2020(02):32.

[57]郭兰天,尚艳竣,蔡凤帅,韩祥晨,胡耀增.机械设计制造领域中自动化技术应用探索[J].中国设备工程,2020(03):35-36.

[58]王岩.农业机械自动化技术的应用探讨[J].农机使用与维修,2020(02):40.

[59]周海江.基于现代化的机械装配自动化应用及发展研究[J].农家参谋,2020(03):186.

[60]董佩.机械自动化设备的安全控制管理[J].机械管理开发,2020,35(01):233-234.

[61]王晗.机械自动化技术及其在机械制造中的`应用探讨[J].农家参谋,2020(02):203.

[62]刘梦,李娜.浅谈机械自动化在机械制造中的实践[J].科技风,2020(01):131.

[63]曹祥辉,宋瑞瑞.机械自动化与绿色理念相融合的应用分析[J].科技风,2020(01):145.

[64]张丽红,郝俊珂.机械自动化设计与制造问题及改进方法探究[J].科技风,2020(01):155.

[65]柏洪武.机械工程自动化技术存在的问题及解决策略[J].河北农机,2020(01):31.

[66].机械行业启动全面质量管理升级行动[J/OL].装备制造与教育,2017,(03):11(2017-10-30).

[67].2017机械行业经济运行形势分析[J/OL].装备制造与教育,2017,(03):14-16(2017-10-30).

[68].我省首评"机械工业50强"东汽、二重、川开等入选[J/OL].装备制造与教育,2017,(03):17(2017-10-30).

[69].2017年四川省机械工业联合会联络员会议在峨眉山召开[J/OL].装备制造与教育,2017,(03):17(2017-10-30).

[1]郑文纬,吴克坚.机械原理[M].北京:高等教育出版社,1997

[2]濮良贵.纪名刚.机械设计[M].北京:高等机械出版社.2006

[3]杨家军.机械系统创新设计[M].武汉:华中科技大学出版社.2000

[4]高志.黄纯颖.机械创新设计[M].北京:高等机械出版社.2010

[5]王晶.第四届全国大学生机械创新设计大赛决赛作品选集.北京:高等教育出版社,2011

[6]黄华梁、彭文生.创新思维与创造性技法.北京:高等教育出版社,2007

[7]李学志.计算机辅助设计与绘图[M].北京:清华大学出版社.2007

[8]吴宗泽.机械设计手册[M].北京:机械工业出版社.2008

[9]颜鸿森.姚燕安.王玉新等译.机构装置的创造性设计(creativedesignofmechanicaldevices)[M].北京:机械工业出版社.2002

[10]邹慧君.机械运动方案设计手册[M].上海:上海交通大学出版社.1994

[11]王世刚.张春宜.徐起贺.机械设计实践[M].哈尔滨:哈尔滨工程大学出版社.2001

[12][美]厄儿德曼.桑多尔著.机构设计--分析与综合.第一卷(1992),第二卷(1993).庄细荣等译.北京:高等教育出版社.1994

[13]温建民.Pro/三维设计基础与工程范例[M].清华大学出版社.2008

[14]赵瑜.闫宏伟.履带式行走机构设计分析与研究[M].东北大学出版社.2011

[15]秦大同.谢里阳.现代机械设计手册.第三卷.化学工业出版社[M].2011

[16]闻邦椿.机械设计手册.第二卷.第三卷.第四卷.机械工业出版社.2011

[17]陈敏.缪终生一种新型滚动四杆螺母副的研究与应用[J].江西理工大学南昌校区.江西.南昌2009.

[18]彭国勋.肖正扬.自动机械的凸轮机构设计[M].机械工业出版社.1990

[19]孙志礼.机械设计[M].东北大学出版.2011

[20]张也影.流体力学[M].高等教育出版社.1998

[21]吴涛、李德杰,彭城职业大学学报,虚拟装配技术,[J]2001,16(2):99-102.

[22]叶修梓、陈超祥,ProE基础教程:零件与装配体[M],机械工业出版社,2007.

[23]邓星钟,机电传动控制[M],华中科技大学出版社,2001.

[24]朱龙根,简明机械零件设计手册[M],机械工业出版社,2005.

[25]李运华,机电控制[M].北京航空航天大学出版社,2003.

1金会庆.驾驶适性.合肥:安徽人民出版社,1995.

2蔡辉、张颖、倪宗瓒等.Delphi法中评价专家的筛选.中国卫生事业管理,1995,1:49~55.

3侯定丕.管理科学定量分析引论.合肥:中国科技大学出版社,1993.

4王有森.德尔菲法.医学科研管理学(刘海林主编.第一版),北京:人民卫生出版社,1991:279~289.

5安徽省劳动保护教育中心编.劳动安全、卫生国家标准及其编制说明汇编第三辑,1987.

[1]王遐.随车起重机行业扫描[J].工程机械与维修,2006(3):68-71

[2]王金诺,于兰峰.起重运输机金属结构[M].北京:中国铁道出版社,2002

[3]卢章平,张艳.不同有限元分析网格的转化[J].机械设计与研究,2009(6):10-14

[4]朱秀娟.有限元分析网格划分的关键技巧[J].机械工程与自动化,2009(1):185-186

[5]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,

[6]桥斌.国内外随车起重机的对比[J].工程机械与维修,2006(7):91-92

[7]王欣,黄琳.起重机伸缩臂截面拓扑优化[J].大连理工大学学报,2009(3):374-379

[8]须雷.国外起重机行业未来的发展趋势[J].中国科技博览,2012(32):241

[9]张质文,王金诺.起重机设计手册[M].北京:中国铁道出版社,2000

[10]杨育坤.国外随车起重机的生产与发展[J].工程机械,1994(11):31-34

[11]刘宇,黄琳.起重机伸缩臂最优截面形式的研究[J].中国工程机械学报,2013(1):65-69

[12]张青,张瑞军.工程起重机结构与设计[M].北京:化学工业出版社,2008

[13]邓胜达,张建军.汽车起重机吊臂旁弯现象的分析[J].建筑机械化,2010(11):39-41

[14]李志敏.伸缩吊臂滑块局部应力分析及变化规律研究[D].成都:西南交通大学.2009

[15]蒋红旗.汽车起重机吊臂有限元优化设计[J].煤矿机械,2005(2):9-11

[16]中国机械工业联合会.GB/T3811-2008起重机设计规范[S].北京:中国标准出版社,2008

[17]张宇,张仲鹏.类椭圆截面吊臂的约束扭转特性研究[J].机械设计与制造,2012(3):237-239

[18]江兆文,成凯.基于ANSYS的全地面起重机吊臂有限元参数化建模与分析[J].建筑机械,2012(7):89-92

[1]邹银辉.煤岩体声发射传播机理研究[D].山东:山东科技大学硕士论文,2007

[2]贾宝新,李国臻.矿山地震监测台站的空间分布研究与应用[J].煤炭学报,2010,35(12):2045-2048

[3]柳云龙,田有,冯晅,等.微震技术与应用研究综述[J].地球物理学进展,2013,28(4):1801-1808

[4]徐剑平,陈清礼,刘波,等.微震监测技术在油田中的应用[J].新疆石油天然气,2011,7(1):89-82

[5]汪向阳,陈世利.基于地震波的油气管道安全监测[J].电子测量技术,2008,31(7):121-123

[6]何平.地铁运营对环境的振动影响研究[D].北京:北京交通大学,2012

[7]陆基孟.地震勘探原理[M].山东:中国石油大学出版社,1990

[8]崔自治.土力学[M].北京:中国电力出版社,2010

[9]许红杰,夏永学,蓝航,等.微震活动规律及其煤矿开采中的应用[J].煤矿开采,2012,17(2):93-95、16

[10]李铁,张建伟,吕毓国,等.采掘活动与矿震关系[J].煤炭学报,2011,36(12):2127-2132

[11]陈颙.岩石物理学[M].北京:北京大学出版社,2001

[12]秦树人,季忠,尹爱军.工程信号处理[M].北京:高等教育出版社,2008

[13]董越.SF6高压断路器在线监测及振动信号的分析[D].上海:上海交通大学,2008

[14]张谦.基于地脉动观测的城市地区工程场地动参数及反演地下结构的研究[D].北京:北京交通大学,2012

[15]刘振武,撒利明,巫芙蓉,等.中国石油集团非常规油气微地震监测技术现状及发展方向[J].石油地球物理勘探,2013,48(5):843-853

[16]聂伟荣.多传感器探测与控制网络技术-地面运动目标震动信号探测与识别[D].南京:南京理工大学,2001(6).

高一物理知识点总结 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=。 注: (1)平均速度是矢量; (2)物体速度大,加速度不一定大; (3)a=(Vt-Vo)/t只是量度式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh 注: (1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 (3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注: (1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动、万有引力 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2, 位移方向与水平夹角α:tgα=y/x=gt/2Vo 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 注: (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落体运动的合成; (2)运动时间由下落高度h(y)决定与水平抛出速度无关; (3)θ与β的关系为tgβ=2tgα; (4)在平抛运动中时间t是解题关键;(5)做曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时,物体做曲线运动。 2)匀速圆周运动 1.线速度V=s/t=2πr/T 2.角速度ω=Φ/t=2π/T=2πf 3.向心加速度a=V2/r=ω2r=(2π/T)2r 4.向心力F心=mV2/r=mω2r=mr(2π/T)2=mωv=F合 5.周期与频率:T=1/f 6.角速度与线速度的关系:V=ωr 7.角速度与转速的关系ω=2πn(此处频率与转速意义相同) 8.主要物理量及单位:弧长(s):米(m);角度(Φ):弧度(rad);频率(f):赫(Hz);周期(T):秒(s);转速(n):r/s;半径(r):米(m);线速度(V):m/s;角速度(ω):rad/s;向心加速度:m/s2。 注: (1)向心力可以由某个具体力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直,指向圆心; (2)做匀速圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的2)力的合成与分解 1.同一直线上力的合成同向:F=F1+F2, 反向:F=F1-F2 (F1>F2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理) F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分解:Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算。 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F´{负号表示方向相反,F、F´各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广 {正交分解法、三力汇交原理} 5.超重:FN>G,失重:FN>r} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 动能保持不变,向心力不做功,但动量不断改变。

21世纪是知识爆炸的时代,大学物理也不例外。这是我为大家整理的大学物理学术论文,仅供参考!

中学物理中的物理模型

摘要:本文阐述了物理模型的概念、功能,中学物理教材中常见的六种物理模型,物理模型在中学物理教学中地位和作用,以及中学阶段在物理模型的教学过程中应该注意的若干问题。

关键词:中学物理;教学;物理模型

一、物理模型的概念及功能

物理学所分析、研究的实际问题往往很复杂,有众多的因素,为了便于着手分析与研究,物理学往往采用一种“简化”的方法,对实际问题进行科学抽象化处理,保留主要因素,略去次要因素,得出一种能反映原物本质特性的理想物质(过程)或假想结构,此种理想物质(过程)或假想结构就称之为物理模型。

物理模型按其设计思想可分为理想化物理模型和探索性物理模型。前者的特点是突出研究客体的主要矛盾,忽略次要因素,将物体抽象成只具有原物体主要因素但并不客观存在的物质(过程),从而使问题简化。如质点模型、点电荷模型、理想气体模型、匀速直线运动模型等等。后者的特点是依据观察或实验的结果,假想出物质的存在形式,但其本质属性还在进一步探索之中。如原子模型、光的波粒二象性模型等等。

人们建立和研究物理模型的功能主要在于:

一是可以使问题的处理大为简化而又不会发生大的偏差,从中较为方便地得出物体运动的基本规律;

二是可以对模型讨论的结果稍加修正,即可用于对实际事物的分析和研究;

三是有助于对客观物理世界的真实认识,达到认识世界,改造世界,为人类服务之目的。

二、中学物理教材中经常碰到的几种物理模型

物理模型就它在实际问题中所扮演角色或所起作用的不同,可分为:

1.物理对象模型 即把物理问题的研究对象模型化。

例如质点,舍去和忽略形状、大小、转动等性能,突出它具有所处位置和质量的特性,用一个有质量的点来描述,又如点电荷、弹簧振子、单摆、理想变压器、理想电表等等,都是属于将物体本身的理想化。

另外诸如点光源、电场线、磁感线等,则属于人们根据它们的物理性质,用理想化的图形来模拟的概念。

2.物理过程模型 即把研究对象的实际运动过程进行近似处理。排除其在实际运动过程中的一些次要因素的干扰,使之成为理想的典型过程。

如研究一个铁球从高空中由静止落下的过程。首先应考虑吸引力,由公式F=GMm�r2可知,铁球越接近地面,F就越大,其次还要考虑空气阻力、风速、地球自转等影响。这样考查铁球下落运动过程就显得十分复杂,研究起来十分不便。为此,我们在研究过程上突出铁球下落的主要因素,即受重力作用,而忽略其它次要影响,并把重力视为恒力,通过如此简化,使研究问题简化,其研究结果也不致影响到基本规律的正确性。从而成为物理学中一个典型的运动过程,即自由落体运动。这种物理模型称之为过程模型。

教材中的匀速直线运动、简谐振动、弹性碰撞;理想气体的等温、等容、等压、绝热变化等等都是将物理过程模型化。

3.物理条件模型 如自由落体运动规律就是在建立了“忽略空气阻力,认为重力恒定”的条件模型之后才得出来的。力学中的光滑斜面;热学中的绝热容器;电学中的匀强电场、匀强磁场等等,也都是把物体所处的条件理想化了。

4.物理等效模型 即通过充分挖掘原有物理模型的特征去等效具有相似性质或特点的现象和相似运动形态的物质和运动。如将理想气体分子等效为弹性小球,并用弹性小球对器壁的碰撞去解释和推导气体压强公式,用单摆振动模型去等效类比电磁振荡过程等等。

5.物理实验模型 在实验的基础上,抓住主要矛盾,忽略次要矛盾,然后根据逻辑推理法则,对过程作进一步的分析,推理,找出其规律,得出实验结论。

如伽利略就是从斜槽上滚下的小球滚上另一斜槽,后者坡度越小,小球滚得越远的实验基础上提出了他的理想实验――在无摩擦力情况下,从斜槽滚下的小球将以恒定的速度在无限长的水平面上永远不停地运动下去,从而推翻了延续两千多年的“力是维持物体运动的不可缺少”的结论,为惯性定律(牛顿第一定律)的产生奠定了基础。

再如在研究电场强度时,设想在电场中放置一个不会引起电场变化的点电荷,去考查它在各点的F�q值等等。

6.物理数学模型 即建立以物理模型为描述对象的数学模型,进行对客观实体近似的定量计算,从而使问题由繁到简。如单摆的摆线与竖直方向的夹角不得大于50,使弧线计算转化为三角计算等等。

三、物理模型在中学物理教学中的地位和作用

1.建立正确鲜明的物理模型是物理学研究的重要方法和有力手段之一

物理学所研究的各种问题,在实际上都涉及许多因素,而模型则是在抓住主要因素,忽略次要因素的基础上建立起来的。它具有具体形象、生动、深刻地反映了事物的本质和主流这一重要属性。

如“质点”模型,在物体的宏观平动运动中,描述运动的物理量位移、速度、加速度等对同一物体来说其上各点都相同,在这些问题的研究中,运动物体的大小和形状是可不考虑的,故可将运动物体质点化,即用质点模型来取代真实运动的物体。

2.正确鲜明的物理模型本身就是重要的物理内容之一,它与相应的物理概念、现象、规律相依托

人们认识原子结构的进程中,从汤姆逊模型到卢瑟福模型的飞跃就是生动的反映。

爱因斯坦光电效应方程的建立成功地解释了光电效应,而它是建立在反映光粒子性的“光子”模型之上的。

诸多的事实都在说明大凡物理现象、过程、规律都直接与之相应的物理模型关联着;一定的物理模型又是最生动最集中地反映着相应的物理概念、现象、过程和规律,二者密不可分。

3.正确鲜明的物理模型的建立,使许多抽象的物理问题变得直观化、具体化、形象化

例如,电场线对电场的描述,磁感线对磁场的描述。分子模型对理解分子动理论的基本观点,原子核式结构对a粒子散射实验现象的解释;光子模型对光的粒子性的理解等等,凡是学物理的人都会感受到物理模型所给予的无可争辩的重要作用。

四、物理模型的教学要着眼于学生掌握建立正确鲜明的物理模型这一根本方法

物理模型是物理基础知识的一部分,属物理概念的范畴。学习前人为我们创造的各种物理模型是完成教学内容的重要组成部分,培养学生掌握这一方法,即对一个具体的物理内容、现象或过程能反映出一幅鲜明的“物理图景”,是培养学生科学思维能力的一个重要方面。为此,我们在教学中应注意如下几点:

1.讲清各物理模型设计的依据。物理模型看上去是独立的,但设计物理模型的思想是相通的。

2.讲授物理模型要前后呼应,触类旁通。运动学中建立的“质点”模型,发展到质点动力学中,万有引力定律中,以至物体转动问题中,还可引伸到单摆中的摆球,弹簧振子中的振子,甚至帮助我们建立电学中的点电荷模型,光学中的点光源模型。

3.物理模型思维贯穿在物理教学的过程中,随着人们对某个物理问题认识的不断深刻和提高,物理模型也必将随之完善和准确。例如对于光本性的问题,人们从牛顿的微粒说,惠更斯的波动说、电磁说、粒子说到波粒二象性,在此发展过程中光的模型也随之一次次地得到深化。

4.在平时的例题教学中也是处处体现了物理模型的重要地位和作用。解答各类物理习题,学生能否依据题意建立起相应的物理模型,是解题成败的重要环节。如果解题者所理解的题意中的物理模型与命题者的设计模型一致,题意就必然变得清晰鲜明,习题的难点便会随之而突破,这种例子是垂手可得的。

总之,物理模型的教学确实需要我们予以足够的重视,这个问题对提高我们的物理教学水平关系甚大。

物理猜想与中学物理教学

【摘 要】阐述物理猜想在中学物理教学中的意义及教师在物理课堂教学中引导学生进行物理猜想的方法。

【关键词】中学 物理猜想 物理教学

【中图分类号】 G 【文献标识码】 A

【文章编号】0450-9889(2014)11B-0076-02

随着基础教育课程改革的逐步深入,在新课程标准中,对高中生在学习物理过程中的学习能力提出了更高的要求,由此教会学生运用物理猜想方法可以让学生更有效地学好物理。为了促进中学生学会运用物理猜想方法,新课程的物理教材刻意设计了许多研究物理现象的活动。以此增进学生对物理知识的理解,提高学生学习物理知识的能力,例如提出问题、猜想与假设、合作与交流等能力。这些基本能力是确保科学研究各种物理现象得以顺利进行的前提和基础。只有通过猜想、假设,并经过许多的研究活动,才能使研究物理现象过程顺利完成。根据笔者这十多年的教学经验,总结出物理猜想对高中物理教学的作用以及如何通过物理猜想提高物理教学的经验,现浅谈自己的看法。

一、物理猜想对中学物理教学有着重要的意义

新课标义务教育阶段的物理课程中,提出要鼓励学生积极大胆地进行科学研究,使学生从基本的科学研究过程中学到科学研究的方法,最终达到提高他们的科学研究能力的目的。使学生养成尊重事实、大胆想象的科学习惯,发扬研究真理的科学精神;培养学生敢于质疑、勇于创新、战胜困难的信心和决心。在中学物理教学中教师的作用是引导学生进行科学猜想,引导学生进行科学探索活动,提升他们的科学探索创新能力。鼓励他们在研究活动过程中,根据已经了解的物理知识和物理现象,进行猜想与假设,然后设计实验,通过亲自动手做实验来验证自己的猜想与假设。因此,要达到新课标中的要求,笔者认为猜想在新课程标准的教学过程中的运用起到了关键的作用。物理猜想的运用是教育教学发展的要求,也是促进物理教育教学改革和发展的需要。笔者认为运用物理猜想法在中学物理教学中有以下几个重要的意义。

1.提高学生学习兴趣和增进学生学习主动性

学生往往对新生事物比较好奇,都希望能够尽快了解其中的知识、规律和奥秘。如果在中学物理教学过程中多鼓励学生对所要学习的物理现象猜想出其可能出现的某些现象或规律,那么不但能增强学生的新奇心,而且还能激发学生的探究意识和能力,使他们更能积极地深入到学习新知识当中。锻炼和培养中学生的物理猜想能力,能提高学生对研究物理问题的兴趣和欲望。兴趣和欲望正是学生学习物理知识的动力。因此,物理猜想是提高学生学习兴趣和增进学生主动学习的好方法。

2.提高学生的思维能力

在中学物理教学过程中,教师要经常通过提出问题并引导学生根据他们现有知识和理解问题的能力进行猜想,经过观察、实验、归纳、总结等进行严格推理和验证,使学生在学习物理知识的过程中逐渐提高他们的发散思维能力,也使他们思想更加灵活。因此通过猜想法不仅使学生容易理解和掌握物理知识,而且有利于提高学生的思维能力。

3.有利于学生巩固所学的物理知识

物理猜想是学生根据自己的思维意识进行推测,是开放性的思维方式。经过对事物仔细观察和辩别认识,提高了学生对事物整体性的研究,促进学生的思维进程,使学生迅速地理解和掌握新知识。如果这些新知识是由学生自己主动猜想后经过验证推理得来的,那么学生就比较容易接受。因此,这些物理现象及规律就会深深刻印在学生的心里,巩固这些新的物理知识。

4.培养学生创新能力

在新课程标准中,特别着重对中学生创新能力培养。科学的物理猜想是培养中学生创新能力的主要方法之一。科学的物理猜想对中学生创新能力的培养起着积极的作用,它能提高学生的反应能力和灵活解题能力。因此,科学的物理猜想能够非常有效地提高中学生的创新能力。

二、教师在物理课堂教学中引导学生进行物理猜想的方法

教师在教学过程中为了尽可能地发挥学生的想象能力,要根据学生现已掌握的物理知识、兴趣爱好和想象能力等引导学生提出猜想。教师如何更好地引导学生运用已掌握的物理知识和技能来构建出新的物理猜想呢?笔者认为,教师在实际教学过程中需要讲究提出猜想一些方法。

1.启发学生根据自己各种经历、各种经验和已学的知识提出猜想

科学发展的经验告诉我们,科学的猜想并非胡乱猜测,它需要有科学依据,要根据学生的经历、经验、生活常识等提出猜想。爱因斯坦创立的“相对论”起初就是根据前人的经验、自己的经历以及自己掌握的科学知识提出的猜想,然后通过观察、推理、推导、证明,才提出了理论依据,最后才建立了举世闻名的“相对论”。例如,在学习“自由落体运动”时,先让学生观察羽毛和铁片在有空气的玻璃管中同时下落的情况,再启发他们猜想如果将玻璃管中的空气抽出后,再让羽毛和铁片同时下落会出现什么情况。让学生猜想并记下这些猜想,然后通过演示实验让学生观察,最后得出结论。这种通过启发学生猜想和实验演示相结合的教学方法,更能加深学生理解所学的物理知识。

2.激励学生讨论,诱发物理猜想

在教学过程中学生引导学生进行猜想时,应该将学生分成几个组,让各组提出各自不同的猜想,并由他们各自陈述自己猜想的理由和依据。激励他们讨论、争辩,经过讨论和争辩提高他们对物理猜想的兴趣和对物理猜想的积极性。例如,在学习“牛顿第二定律”时,将同学们分成两个小组,一组猜想物体的加速度与力的关系,另一组猜想物体的加速度与质量的关系,然后让他们分别做实验,得出结论。教师在课堂中认真听取各组学生的观点后,引导诱发他们讨论并猜想加速度与力及质量的关系,最后总结出牛顿第二定律。这样能更好地完成教学任务,取得更好的教学效果。

3.鼓励学生大胆猜想

在教学过程中许多学生由于害怕自己提出的猜想被其他同学取笑或者自己提出的猜想不正确被老师责怪而羞以启齿,这时教师应该鼓励、引导学生大胆猜想,消除他们的顾虑。例如,研究玻璃的折射率时,可以猜想单色光通过平行玻璃砖后传播方向是否发生改变。先鼓励学生大胆进行猜想其出射的方向,并记下来。不管他们的猜测是否合理、准确,教师都要持平和的态度,让实验验证结果。只有这样才能提高学生的学习积极性,增强学生科学猜想的意识。

4.创造良好的猜想条件

在教学过程中,当教学到有利于培养学生猜想能力的内容时,教师应该积极引导鼓励学生进行猜想。例如,在“楞次定律”教学中,教师在课堂演示让磁体的N极靠近闭合的铝环的实验之前,先启发学生猜想让磁体的N极靠近闭合的铝环时会看到什么现象,让磁体的N极去靠近有缺口的铝环时又会看到什么现象。然后通过实验引导学生注意观察实验现象。同样,让磁体的S极去靠近闭合的铝环时又会出现什么情况。总之,教师要尽最大可能为学生进行猜想创造条件。

物理猜想既是一种自由尝试,也是一种严谨的创造,因此,在教学过锃中,教师要善于抓住每一个有利于提高学生猜想能力的机会,鼓励学生大胆猜想,从而提高他们的思维能力,增加他们学习物理的兴趣,进而提高物理教学的效率。

【参考文献】

[1]王较过,孟蓓.物理探究教学中培养“猜想与假设”能力的策略[J].当代教师教育,2008(6)

[2]付红周.新课程下全方位认识猜想及其在物理教学中的培养・高中物理[M].北京:人民教育出版社,2012

[3]林东槟.物理探究教学中培养猜想与假设能力的策略[J].实验教学与仪器.2013(4)

[4]蔡严娟.新课改物理探究教学中猜想与假设能力的培养[J].现代教育科研论坛.2011(5)

简谐运动的研究实验论文

弹簧的质量忽略不计

如果硬是要把弹簧的质量计算在内的话。 那么我们研究整个运动的对象就不仅仅是滑块了。而是还要加上弹簧的质量。 并且这用我们高中的知识是解不出来的。 因为这个时候我们研究的对象是不均衡的,弹簧的伸长和压缩都会改变整个运动的‘重心’和对地面的摩擦力和研究对象的位移。 请注意,重心上是打了引号的,因为物体本没有重心,是人们希望便于研究所虚构出来的一个抽象物理位置。 你提的这个问题在高中来说是钻牛角尖了。不过却很有探讨性。课下稍微思考会就行。不必钻透。 好了, 希望我的回答对你有所帮助。

简谐运动中 ,弹簧的质量是忽略不计的

简谐振动的究 班级:电子信息工程 2009-1 实验序号:19 姓名:刘珂瑞摘要; 振动推导弹簧振子周期公式,使用天平测量两弹簧质量之和,在振动A<25cm的情况下,改变滑块配重质量m五次,应用光电计时器测量相应振动周期T。引入等效质应用滑块在气垫导轨上做往复震动,由滑块所受合力验证滑块运动是简谐量后的周期公式,求出两弹簧等效劲度系数k,等效质量m0相对误差的大小。关键词:气垫导轨 光电计时器 滑块 配重 弹簧正文(一)引言 通过对《大学物理实验》的学习,我设了对简谐振动的研究,由学校提供气垫导轨等设备,在老师帮住下,通过实验方法求出两弹簧等效的劲系数k和等效质量m0(二)实验原理1. 振子的简谐振动本实验中所用的弹簧振子是这样的:两个劲度系数同为 的弹簧,系住一个装有平板档光片的质量为m的滑块,弹簧的另外两端固定。系统在光滑水平的气轨上作振动, 在水平气垫导轨上的滑块的两端联接两根相同的弹簧,两弹簧的另一端分别固定在气轨的两端点。选取水平向右的方向作 X 轴的正方向,又设两根弹簧的倔强系数均为 k0 ,就是说,使弹簧伸长一段距离 l时,需加的外力为 k0x 在质量为 m 的滑块位于平衡位置 O 时,两个弹簧的伸长量相同,所以滑块所受的合外力为零。当把滑块从 O 点向右移距离x时,左边的弹簧被拉长,它的收缩力达到 k0x,右边的弹簧被压缩x,它的膨胀力达到 k0x ,结果滑块受到一个方向向左、大小为 2 k0x的弹性力 F 作用。 考虑到弹性力 F 的方向指向平衡位置 O ,且跟位移 x 的方向相反,故有 F=-2k0x如果上述两根弹簧的倔强系数不相同,而分别为 k 1 和 k 2 ,显然,这时式中的 2 k 应换为k1+k2。于是有 F=-( k1+k2)x=-kx当忽略弹簧质量时振幅周期有:T=2π√ m/k若考虑两弹簧质质量对周期的影响,等于在滑块上加了m0,振幅周期公式变为 T=2π√(m+m0)/k等效劲度系数k:T2=4π2(m+m0)/k => k=4π2(m+m0)/T2 等效质量m0: T2=4π2(m+m0)/k => m0=(kT2-4π2m)/4π2在振幅A<25cm的情况下,改变滑块质量m五次得到,m1,m2,m3,m4,m5,m6。和周期T1~T6,由式可得 ,因此可以用逐差法处理数据, T42-T12=4π2 (m4-m1)/k; T52-T22=4π2(m5-m2)/k; T62-T32=4π2(m6-m3)/k; 求出平均值 ;将 代入式 求出平均值 。 求相对误差:Er=δx/x0×100%其中 ,称为弹簧的有效质量,c为一常数。对绕制均匀圆筒状的弹簧,c的理论值为 ,即弹簧的自身质量是其有效质量的3倍。理论值m0,=(1/3)m,; m,为两弹簧质量 Er=(m0-m0,)/m0,×100%=(m0-1/3m,)/(1/3)m,×100%(三)实验内容准备工作1用酒精棉球擦拭气轨表面(在供气时)以及滑块内表面,用薄的小纸条检查气孔是否有堵塞。 2记下不带挡光片的滑块的净质量(由实验室给出),并用天平称量平板挡光片以及两个弹簧的质量。将平板挡光片固定在滑块上,其总质量即为滑块质量 。测定滑块振动的周期 1 .实验前,将光电门卡在导轨上,接通计时仪电源。打开电源,将MUJ-5B型计时计数测速仪的“功能”选为“ 周期”。2 .气轨调至水平,调平:接通气源,给气轨通气,把滑块放置与导轨上,纵向水平调节支架螺钉,横向水平调节支点螺钉,直至滑块(在实验段内保持不动,或稍有滑动,但不总是向一个方向滑动,即认为已基本调平。3 .如图 7-1 所示,在水平气垫导轨上的滑块的两端联接两根相同的弹簧,两弹簧的另一端分别固定在气轨的两端点把振动滑块放在气轨上,并给滑块一个位移(A<25cm),令其振动。 当滑块振动1-2周期后,按光电计数器“功能”键,测出滑块振动30 周所用的时间30T ,算出周期 T2 ,测量滑块质量。并记录在实验表格内 4 .在滑块上加配重铁片(每一次加一片),并测量滑块改变后的不同质量,分别改变滑块的质量大小五次,重复步骤 3 ,求出不同质量的周期T,5 .测量两弹簧质量之和m,(四)实验数据m, = ×10-3kg; k= N/s; m0= ×10-3kgi m/(10-3kg) 30T/s T2/S2 m0/(10-3kg) i m/(10-3kg) 30T/s T2/S2 m0/(10-3kg) k/(N/m) 1 4 2 5 3 6 (五)实验数据处理及结果 1)弹簧等效劲度计算: T42-T12=4π2(m4-m1)/k;T52-T22=4π2(m5-m2)/k; T62-T32=4π2(m6-m3)/k;k1=4π2(m4-m1)/(T42-T12)= 4π N/mk2=4π2(m5-m2)/(T52-T22)= 4π N/mk3=4π2(m6-m3)/(T62-T32)= 4π N/mk=k1+k2+k3=()= N/m2)弹簧等效质量计算:m01=(k1T2-4π2m1)/4π2=; m04=(k1T2-4π2m4)/4π2=(k2T2-4π2m2)/4π2 =; m05 =(k2T2-4π2m5)/4π2=(k3T2-4π2m3)/4π2 =; m06 =(k3T2-4π2m6)/4π2=(m01+m02+m03+m04+m05+m06)/6= g= ×10-3kg 3)相对误差: Er=δx/x0×100% Er=(m0-m0,)/m0,×100%=(m0-1/3m,)/(1/3)m,×100%=(六)结束语 由于气垫的漂浮作用,滑块与导轨平面间的摩擦阻力已经非常小,但上滑块运动时受到的空气阻力,导轨不是水水平的,导至滑块运动的是阻尼运动;在着实验时,没等滑块振动稳定后就开始计时,与理论值偏差较大参考文献:张彦纯 主编, 《大学物理实验》,机械工业出版社; 马文蔚等,《物理学》,北京:高等教育出版社,1999;林抒 龚镇雄,《普通物理实验》,北京:人民教育出版社,1982

大学物理简谐振动论文

不是写得很明确吗?E=(kA^2)/2,振动系统的总能量只与系统的振幅和弹簧的弹性系数有关,与其它的参数无关!题中已经明确告诉你,两个振动系统的弹簧相同,振幅一样,那么,它们的总能量就一定相同!----------所以,不能是A

条件:同方向,角频率 相同。即 要求的 。下面给出两种x的求法:旋转矢量法和解析法。

要求: 频率相同 。否则无法画在一张图内。(其实不相同也可以用向量加法,但比较麻烦) 求法:在一张图总画出 和 ,用向量加法将 和 加起来就是x。 适用于简单的数字,易于记忆。

直接用公式求解: 适用性强,但是可能会记错,可用旋转矢量法推导。

形象地,同相时(相位差 ), ,反相时(相位差 ),

上面两个同方向同频率合成的简单推广,只是当多个简谐振动的振幅相同、相位差依次为 时,表达式可写的比较简单:

当 频率不同 时,相位差随时间而改变,合振动一般不为简谐振动。情况复杂,这里只讨论两个频率相差较小的情况。 例:两个频率相差很小的音叉同时振动 拍 的定义:频率较大而频率之差很小的两个同方向简谐振动合成时,其合振动的振幅时而加强时而减弱的现象。 假设一个简单的情况:振幅相同,初相位为0: 则x为 由于 ,可将前半段(低频部分)看成合振动的“振幅”,次振幅随时间作缓慢的周期性变化,范围为0~2A;将后半段(高频部分)看成合振动的频率。 经计算,合振幅的变化频率( 拍频 )为 若知道了其中一个频率和拍频,可计算出另一个频率。 应用:乐队“定音”,声学,速度测量,无线电技术,卫星跟踪等。

21世纪是知识爆炸的时代,大学物理也不例外。这是我为大家整理的大学物理学术论文,仅供参考!

中学物理中的物理模型

摘要:本文阐述了物理模型的概念、功能,中学物理教材中常见的六种物理模型,物理模型在中学物理教学中地位和作用,以及中学阶段在物理模型的教学过程中应该注意的若干问题。

关键词:中学物理;教学;物理模型

一、物理模型的概念及功能

物理学所分析、研究的实际问题往往很复杂,有众多的因素,为了便于着手分析与研究,物理学往往采用一种“简化”的方法,对实际问题进行科学抽象化处理,保留主要因素,略去次要因素,得出一种能反映原物本质特性的理想物质(过程)或假想结构,此种理想物质(过程)或假想结构就称之为物理模型。

物理模型按其设计思想可分为理想化物理模型和探索性物理模型。前者的特点是突出研究客体的主要矛盾,忽略次要因素,将物体抽象成只具有原物体主要因素但并不客观存在的物质(过程),从而使问题简化。如质点模型、点电荷模型、理想气体模型、匀速直线运动模型等等。后者的特点是依据观察或实验的结果,假想出物质的存在形式,但其本质属性还在进一步探索之中。如原子模型、光的波粒二象性模型等等。

人们建立和研究物理模型的功能主要在于:

一是可以使问题的处理大为简化而又不会发生大的偏差,从中较为方便地得出物体运动的基本规律;

二是可以对模型讨论的结果稍加修正,即可用于对实际事物的分析和研究;

三是有助于对客观物理世界的真实认识,达到认识世界,改造世界,为人类服务之目的。

二、中学物理教材中经常碰到的几种物理模型

物理模型就它在实际问题中所扮演角色或所起作用的不同,可分为:

1.物理对象模型 即把物理问题的研究对象模型化。

例如质点,舍去和忽略形状、大小、转动等性能,突出它具有所处位置和质量的特性,用一个有质量的点来描述,又如点电荷、弹簧振子、单摆、理想变压器、理想电表等等,都是属于将物体本身的理想化。

另外诸如点光源、电场线、磁感线等,则属于人们根据它们的物理性质,用理想化的图形来模拟的概念。

2.物理过程模型 即把研究对象的实际运动过程进行近似处理。排除其在实际运动过程中的一些次要因素的干扰,使之成为理想的典型过程。

如研究一个铁球从高空中由静止落下的过程。首先应考虑吸引力,由公式F=GMm�r2可知,铁球越接近地面,F就越大,其次还要考虑空气阻力、风速、地球自转等影响。这样考查铁球下落运动过程就显得十分复杂,研究起来十分不便。为此,我们在研究过程上突出铁球下落的主要因素,即受重力作用,而忽略其它次要影响,并把重力视为恒力,通过如此简化,使研究问题简化,其研究结果也不致影响到基本规律的正确性。从而成为物理学中一个典型的运动过程,即自由落体运动。这种物理模型称之为过程模型。

教材中的匀速直线运动、简谐振动、弹性碰撞;理想气体的等温、等容、等压、绝热变化等等都是将物理过程模型化。

3.物理条件模型 如自由落体运动规律就是在建立了“忽略空气阻力,认为重力恒定”的条件模型之后才得出来的。力学中的光滑斜面;热学中的绝热容器;电学中的匀强电场、匀强磁场等等,也都是把物体所处的条件理想化了。

4.物理等效模型 即通过充分挖掘原有物理模型的特征去等效具有相似性质或特点的现象和相似运动形态的物质和运动。如将理想气体分子等效为弹性小球,并用弹性小球对器壁的碰撞去解释和推导气体压强公式,用单摆振动模型去等效类比电磁振荡过程等等。

5.物理实验模型 在实验的基础上,抓住主要矛盾,忽略次要矛盾,然后根据逻辑推理法则,对过程作进一步的分析,推理,找出其规律,得出实验结论。

如伽利略就是从斜槽上滚下的小球滚上另一斜槽,后者坡度越小,小球滚得越远的实验基础上提出了他的理想实验――在无摩擦力情况下,从斜槽滚下的小球将以恒定的速度在无限长的水平面上永远不停地运动下去,从而推翻了延续两千多年的“力是维持物体运动的不可缺少”的结论,为惯性定律(牛顿第一定律)的产生奠定了基础。

再如在研究电场强度时,设想在电场中放置一个不会引起电场变化的点电荷,去考查它在各点的F�q值等等。

6.物理数学模型 即建立以物理模型为描述对象的数学模型,进行对客观实体近似的定量计算,从而使问题由繁到简。如单摆的摆线与竖直方向的夹角不得大于50,使弧线计算转化为三角计算等等。

三、物理模型在中学物理教学中的地位和作用

1.建立正确鲜明的物理模型是物理学研究的重要方法和有力手段之一

物理学所研究的各种问题,在实际上都涉及许多因素,而模型则是在抓住主要因素,忽略次要因素的基础上建立起来的。它具有具体形象、生动、深刻地反映了事物的本质和主流这一重要属性。

如“质点”模型,在物体的宏观平动运动中,描述运动的物理量位移、速度、加速度等对同一物体来说其上各点都相同,在这些问题的研究中,运动物体的大小和形状是可不考虑的,故可将运动物体质点化,即用质点模型来取代真实运动的物体。

2.正确鲜明的物理模型本身就是重要的物理内容之一,它与相应的物理概念、现象、规律相依托

人们认识原子结构的进程中,从汤姆逊模型到卢瑟福模型的飞跃就是生动的反映。

爱因斯坦光电效应方程的建立成功地解释了光电效应,而它是建立在反映光粒子性的“光子”模型之上的。

诸多的事实都在说明大凡物理现象、过程、规律都直接与之相应的物理模型关联着;一定的物理模型又是最生动最集中地反映着相应的物理概念、现象、过程和规律,二者密不可分。

3.正确鲜明的物理模型的建立,使许多抽象的物理问题变得直观化、具体化、形象化

例如,电场线对电场的描述,磁感线对磁场的描述。分子模型对理解分子动理论的基本观点,原子核式结构对a粒子散射实验现象的解释;光子模型对光的粒子性的理解等等,凡是学物理的人都会感受到物理模型所给予的无可争辩的重要作用。

四、物理模型的教学要着眼于学生掌握建立正确鲜明的物理模型这一根本方法

物理模型是物理基础知识的一部分,属物理概念的范畴。学习前人为我们创造的各种物理模型是完成教学内容的重要组成部分,培养学生掌握这一方法,即对一个具体的物理内容、现象或过程能反映出一幅鲜明的“物理图景”,是培养学生科学思维能力的一个重要方面。为此,我们在教学中应注意如下几点:

1.讲清各物理模型设计的依据。物理模型看上去是独立的,但设计物理模型的思想是相通的。

2.讲授物理模型要前后呼应,触类旁通。运动学中建立的“质点”模型,发展到质点动力学中,万有引力定律中,以至物体转动问题中,还可引伸到单摆中的摆球,弹簧振子中的振子,甚至帮助我们建立电学中的点电荷模型,光学中的点光源模型。

3.物理模型思维贯穿在物理教学的过程中,随着人们对某个物理问题认识的不断深刻和提高,物理模型也必将随之完善和准确。例如对于光本性的问题,人们从牛顿的微粒说,惠更斯的波动说、电磁说、粒子说到波粒二象性,在此发展过程中光的模型也随之一次次地得到深化。

4.在平时的例题教学中也是处处体现了物理模型的重要地位和作用。解答各类物理习题,学生能否依据题意建立起相应的物理模型,是解题成败的重要环节。如果解题者所理解的题意中的物理模型与命题者的设计模型一致,题意就必然变得清晰鲜明,习题的难点便会随之而突破,这种例子是垂手可得的。

总之,物理模型的教学确实需要我们予以足够的重视,这个问题对提高我们的物理教学水平关系甚大。

物理猜想与中学物理教学

【摘 要】阐述物理猜想在中学物理教学中的意义及教师在物理课堂教学中引导学生进行物理猜想的方法。

【关键词】中学 物理猜想 物理教学

【中图分类号】 G 【文献标识码】 A

【文章编号】0450-9889(2014)11B-0076-02

随着基础教育课程改革的逐步深入,在新课程标准中,对高中生在学习物理过程中的学习能力提出了更高的要求,由此教会学生运用物理猜想方法可以让学生更有效地学好物理。为了促进中学生学会运用物理猜想方法,新课程的物理教材刻意设计了许多研究物理现象的活动。以此增进学生对物理知识的理解,提高学生学习物理知识的能力,例如提出问题、猜想与假设、合作与交流等能力。这些基本能力是确保科学研究各种物理现象得以顺利进行的前提和基础。只有通过猜想、假设,并经过许多的研究活动,才能使研究物理现象过程顺利完成。根据笔者这十多年的教学经验,总结出物理猜想对高中物理教学的作用以及如何通过物理猜想提高物理教学的经验,现浅谈自己的看法。

一、物理猜想对中学物理教学有着重要的意义

新课标义务教育阶段的物理课程中,提出要鼓励学生积极大胆地进行科学研究,使学生从基本的科学研究过程中学到科学研究的方法,最终达到提高他们的科学研究能力的目的。使学生养成尊重事实、大胆想象的科学习惯,发扬研究真理的科学精神;培养学生敢于质疑、勇于创新、战胜困难的信心和决心。在中学物理教学中教师的作用是引导学生进行科学猜想,引导学生进行科学探索活动,提升他们的科学探索创新能力。鼓励他们在研究活动过程中,根据已经了解的物理知识和物理现象,进行猜想与假设,然后设计实验,通过亲自动手做实验来验证自己的猜想与假设。因此,要达到新课标中的要求,笔者认为猜想在新课程标准的教学过程中的运用起到了关键的作用。物理猜想的运用是教育教学发展的要求,也是促进物理教育教学改革和发展的需要。笔者认为运用物理猜想法在中学物理教学中有以下几个重要的意义。

1.提高学生学习兴趣和增进学生学习主动性

学生往往对新生事物比较好奇,都希望能够尽快了解其中的知识、规律和奥秘。如果在中学物理教学过程中多鼓励学生对所要学习的物理现象猜想出其可能出现的某些现象或规律,那么不但能增强学生的新奇心,而且还能激发学生的探究意识和能力,使他们更能积极地深入到学习新知识当中。锻炼和培养中学生的物理猜想能力,能提高学生对研究物理问题的兴趣和欲望。兴趣和欲望正是学生学习物理知识的动力。因此,物理猜想是提高学生学习兴趣和增进学生主动学习的好方法。

2.提高学生的思维能力

在中学物理教学过程中,教师要经常通过提出问题并引导学生根据他们现有知识和理解问题的能力进行猜想,经过观察、实验、归纳、总结等进行严格推理和验证,使学生在学习物理知识的过程中逐渐提高他们的发散思维能力,也使他们思想更加灵活。因此通过猜想法不仅使学生容易理解和掌握物理知识,而且有利于提高学生的思维能力。

3.有利于学生巩固所学的物理知识

物理猜想是学生根据自己的思维意识进行推测,是开放性的思维方式。经过对事物仔细观察和辩别认识,提高了学生对事物整体性的研究,促进学生的思维进程,使学生迅速地理解和掌握新知识。如果这些新知识是由学生自己主动猜想后经过验证推理得来的,那么学生就比较容易接受。因此,这些物理现象及规律就会深深刻印在学生的心里,巩固这些新的物理知识。

4.培养学生创新能力

在新课程标准中,特别着重对中学生创新能力培养。科学的物理猜想是培养中学生创新能力的主要方法之一。科学的物理猜想对中学生创新能力的培养起着积极的作用,它能提高学生的反应能力和灵活解题能力。因此,科学的物理猜想能够非常有效地提高中学生的创新能力。

二、教师在物理课堂教学中引导学生进行物理猜想的方法

教师在教学过程中为了尽可能地发挥学生的想象能力,要根据学生现已掌握的物理知识、兴趣爱好和想象能力等引导学生提出猜想。教师如何更好地引导学生运用已掌握的物理知识和技能来构建出新的物理猜想呢?笔者认为,教师在实际教学过程中需要讲究提出猜想一些方法。

1.启发学生根据自己各种经历、各种经验和已学的知识提出猜想

科学发展的经验告诉我们,科学的猜想并非胡乱猜测,它需要有科学依据,要根据学生的经历、经验、生活常识等提出猜想。爱因斯坦创立的“相对论”起初就是根据前人的经验、自己的经历以及自己掌握的科学知识提出的猜想,然后通过观察、推理、推导、证明,才提出了理论依据,最后才建立了举世闻名的“相对论”。例如,在学习“自由落体运动”时,先让学生观察羽毛和铁片在有空气的玻璃管中同时下落的情况,再启发他们猜想如果将玻璃管中的空气抽出后,再让羽毛和铁片同时下落会出现什么情况。让学生猜想并记下这些猜想,然后通过演示实验让学生观察,最后得出结论。这种通过启发学生猜想和实验演示相结合的教学方法,更能加深学生理解所学的物理知识。

2.激励学生讨论,诱发物理猜想

在教学过程中学生引导学生进行猜想时,应该将学生分成几个组,让各组提出各自不同的猜想,并由他们各自陈述自己猜想的理由和依据。激励他们讨论、争辩,经过讨论和争辩提高他们对物理猜想的兴趣和对物理猜想的积极性。例如,在学习“牛顿第二定律”时,将同学们分成两个小组,一组猜想物体的加速度与力的关系,另一组猜想物体的加速度与质量的关系,然后让他们分别做实验,得出结论。教师在课堂中认真听取各组学生的观点后,引导诱发他们讨论并猜想加速度与力及质量的关系,最后总结出牛顿第二定律。这样能更好地完成教学任务,取得更好的教学效果。

3.鼓励学生大胆猜想

在教学过程中许多学生由于害怕自己提出的猜想被其他同学取笑或者自己提出的猜想不正确被老师责怪而羞以启齿,这时教师应该鼓励、引导学生大胆猜想,消除他们的顾虑。例如,研究玻璃的折射率时,可以猜想单色光通过平行玻璃砖后传播方向是否发生改变。先鼓励学生大胆进行猜想其出射的方向,并记下来。不管他们的猜测是否合理、准确,教师都要持平和的态度,让实验验证结果。只有这样才能提高学生的学习积极性,增强学生科学猜想的意识。

4.创造良好的猜想条件

在教学过程中,当教学到有利于培养学生猜想能力的内容时,教师应该积极引导鼓励学生进行猜想。例如,在“楞次定律”教学中,教师在课堂演示让磁体的N极靠近闭合的铝环的实验之前,先启发学生猜想让磁体的N极靠近闭合的铝环时会看到什么现象,让磁体的N极去靠近有缺口的铝环时又会看到什么现象。然后通过实验引导学生注意观察实验现象。同样,让磁体的S极去靠近闭合的铝环时又会出现什么情况。总之,教师要尽最大可能为学生进行猜想创造条件。

物理猜想既是一种自由尝试,也是一种严谨的创造,因此,在教学过锃中,教师要善于抓住每一个有利于提高学生猜想能力的机会,鼓励学生大胆猜想,从而提高他们的思维能力,增加他们学习物理的兴趣,进而提高物理教学的效率。

【参考文献】

[1]王较过,孟蓓.物理探究教学中培养“猜想与假设”能力的策略[J].当代教师教育,2008(6)

[2]付红周.新课程下全方位认识猜想及其在物理教学中的培养・高中物理[M].北京:人民教育出版社,2012

[3]林东槟.物理探究教学中培养猜想与假设能力的策略[J].实验教学与仪器.2013(4)

[4]蔡严娟.新课改物理探究教学中猜想与假设能力的培养[J].现代教育科研论坛.2011(5)

相关百科
热门百科
首页
发表服务