论文发表百科

目标追踪与检测的论文

发布时间:2024-07-03 04:14:47

目标追踪与检测的论文

运动目标检测与跟踪算法研究 视觉是人类感知自身周围复杂环境最直接有效的手段之一, 而在现实生活中 大量有意义的视觉信息都包含在运动中,人眼对运动的物体和目标也更敏感,能 够快速的发现运动目标, 并对目标的运动轨迹进行预测和描绘。 随着计算机技术、 通信技术、图像处理技术的不断发展,计算机视觉己成为目前的热点研究问题之 一。 而运动目标检测与跟踪是计算机视觉研究的核心课题之一, 融合了图像处理、 模式识别、人工智能、自动控制、计算机等众多领域的先进技术,在军事制导、 视觉导航、视频监控、智能交通、医疗诊断、工业产品检测等方面有着重要的实 用价值和广阔的发展前景。 1、国内外研究现状 运动目标检测 运动目标检测是指从序列图像中将运动的前景目标从背景图像中提取出来。 根据运动目标与摄像机之间的关系, 运动目标检测分为静态背景下的运动目标检 测和动态背景下的运动目标检测。 静态背景下的运动目标检测是指摄像机在整个 监视过程中不发生移动; 动态背景下的运动目标检测是指摄像机在监视过程中发 生了移动,如平动、旋转或多自由度运动等。 静态背景 静态背景下的运动目标检测方法主要有以下几种: (1)背景差分法 背景差分法是目前最常用的一种目标检测方法, 其基本思想就是首先获得一个 背景模型,然后将当前帧与背景模型相减,如果像素差值大于某一阈值,则判断 此像素属于运动目标,否则属于背景图像。利用当前图像与背景图像的差分来检 测运动区域,一般能够提供比较完整的特征数据,但对于动态场景的变化,如光 照和外来无关事件的干扰等特别敏感。 很多研究人员目前都致力于开发不同的背 景模型,以减少动态场景变化对运动目标检测的影响。背景模型的建立与更新、 阴影的去除等对跟踪结果的好坏至关重要。 背景差分法的实现简单,在固定背景下能够完整地精确、快速地分割出运动 对象。不足之处是易受环境光线变化的影响,需要加入背景图像更新机制,且只 对背景已知的运动对象检测比较有效, 不适用于摄像头运动或者背景灰度变化很 大的情况。 (2)帧间差分法 帧间差分法是在连续的图像序列中两个或三个相邻帧间, 采用基于像素的时 间差分并阈值化来提取图像中的运动区域。 帧间差分法对动态环境具有较强的自 适应性,但一般不能完全提取出所有相关的特征像素点,在运动实体内部容易产 生空洞现象。因此在相邻帧间差分法的基础上提出了对称差分法,它是对图像序 列中每连续三帧图像进行对称差分,检测出目标的运动范围,同时利用上一帧分 割出来的模板对检测出来的目标运动范围进行修正, 从而能较好地检测出中间帧 运动目标的形状轮廓。 帧间差分法非常适合于动态变化的环境,因为它只对运动物体敏感。实际上 它只检测相对运动的物体,而且因两幅图像的时间间隔较短,差分图像受光线 变化影响小,检测有效而稳定。该算法简单、速度快,已得到广泛应用。虽然该 方法不能够完整地分割运动对象,只能检测出物体运动变化的区域,但所检测出 的物体运动信息仍可用于进一步的目标分割。 (3)光流法 光流法就充分的利用了图像自身所携带的信息。在空间中,运动可以用运动 场描述,而在一个图像平面上,物体的运动往往是通过图像序列中图像灰度分布 的不同来体现,从而使空间中的运动场转移到图像上就表示为光流场。所谓光流 是指空间中物体被观测面上的像素点运动产生的瞬时速度场, 包含了物体表面结 构和动态行为等重要信息。 基于光流法的运动目标检测采用了运动目标随时间变 化的光流特性,由于光流不仅包含了被观测物体的运动信息,还携带了物体运动 和景物三位结构的丰富信息。 在比较理想的情况下,它能够检测独立运动的对象, 不需要预先知道场景的任何信息,可以很精确地计算出运动物体的速度,并且可 用于动态场景的情况。 但是大多数光流方法的计算相当复杂,对硬件要求比较高, 不适于实时处理,而且对噪声比较敏感,抗噪性差。并且由于遮挡、多光源、透明 性及噪声等原因,使得光流场基本方程——灰度守恒的假设条件无法满足,不能 正确求出光流场,计算方也相当复杂,计算量巨大,不能满足实时的要求。 动态背景 动态背景下的运动目标检测由于存在着目标与摄像机之间复杂的相对运动, 检测方法要比静态背景下的运动目标检测方法复杂。常用的检测方法有匹配法、 光流法以及全局运动估计法等。 2、运动目标跟踪 运动目标跟踪是确定同一物体在图像序列的不同帧中的位置的过程。 近年来 出现了大批运动目标跟踪方法,许多文献对这些方法进行了分类介绍,可将目标 跟踪方法分为四类:基于区域的跟踪、基于特征的跟踪、基于活动轮廓的跟踪、 基于模型的跟踪,这种分类方法概括了目前大多数跟踪方法,下面用这种分类方 法对目前的跟踪方法进行概括介绍。 (1)基于区域的跟踪 基于区域的跟踪方法基本思想是: 首先通过图像分割或预先人为确定提取包 含目标区域的模板,并设定一个相似性度量,然后在序列图像中搜索目标,把度 量取极值时对应的区域作为对应帧中的目标区域。 由于提取的目标模板包含了较 完整的目标信息,该方法在目标未被遮挡时,跟踪精度非常高,跟踪非常稳定, 但通常比较耗时,特别是当目标区域较大时,因此一般应用于跟踪较小的目标或 对比度较差的目标。该方法还可以和多种预测算法结合使用,如卡尔曼预测、粒 子预测等,以估计每帧图像中目标的位置。近年来,对基于区域的跟踪方法关注 较多的是如何处理运动目标姿态变化引起的模板变化时的情况以及目标被严重 遮挡时的情况。 (2)基于特征的跟踪 基于特征的跟踪方法基本思想是:首先提取目标的某个或某些局部特征,然 后利用某种匹配算法在图像序列中进行特征匹配,从而实现对目标的跟踪。该方 法的优点是即使目标部分被遮挡,只要还有一部分特征可以被看到,就可以完成 跟踪任务,另外,该方法还可与卡尔曼滤波器结合使用,实时性较好,因此常用 于复杂场景下对运动目标的实时、 鲁棒跟踪。 用于跟踪的特征很多, 如角点边缘、 形状、纹理、颜色等,如何从众多的特征中选取最具区分性、最稳定的特征是基 于特征的跟踪方法的关键和难点所在。 (3)基于活动轮廓的跟踪 基于活动轮廓的跟踪方法基本思想是:利用封闭的曲线轮廓表达运动目标, 结合图像特征、曲线轮廓构造能量函数,通过求解极小化能量实现曲线轮廓的自 动连续更新,从而实现对目标的跟踪。自Kass在1987年提出Snake模型以来,基 于活动轮廓的方法就开始广泛应用于目标跟踪领域。相对于基于区域的跟踪方 法,轮廓表达有减少复杂度的优点,而且在目标被部分遮挡的情况下也能连续的 进行跟踪,但是该方法的跟踪结果受初始化影响较大,对噪声也较为敏感。 (4)基于模型的跟踪 基于模型的跟踪方法基本思想是: 首先通过一定的先验知识对所跟踪目标建 立模型,然后通过匹配跟踪目标,并进行模型的实时更新。通常利用测量、CAD 工具和计算机视觉技术建立模型。主要有三种形式的模型,即线图模型、二维轮 廓模型和三维立体模型口61,应用较多的是运动目标的三维立体模型,尤其是对 刚体目标如汽车的跟踪。该方法的优点是可以精确分析目标的运动轨迹,即使在 目标姿态变化和部分遮挡的情况下也能够可靠的跟踪, 但跟踪精度取决于模型的 精度,而在现实生活中要获得所有运动目标的精确模型是非常困难的。 目标检测算法,至今已提出了数千种各种类型的算法,而且每年都有上百篇相 关的研究论文或报告发表。尽管人们在目标检测或图像分割等方面做了许多研 究,现己提出的分割算法大都是针对具体问题的,并没有一种适合于所有情况的 通用算法。 目前, 比较经典的运动目标检测算法有: 双帧差分法、 三帧差分法(对 称差分法)、背景差法、光流法等方法,这些方法之间并不是完全独立,而是可 以相互交融的。 目标跟踪的主要目的就是要建立目标运动的时域模型, 其算法的优劣直接影响 着运动目标跟踪的稳定性和精确度, 虽然对运动目标跟踪理论的研究已经进行了 很多年,但至今它仍然是计算机视觉等领域的研究热点问题之一。研究一种鲁棒 性好、精确、高性能的运动目标跟踪方法依然是该研究领域所面临的一个巨大挑 战。基于此目的,系统必须对每个独立的目标进行持续的跟踪。为了实现对复杂 环境中运动目标快速、稳定的跟踪,人们提出了众多算法,但先前的许多算法都 是针对刚体目标,或是将形变较小的非刚体近似为刚体目标进行跟踪,因而这些 算法难以实现对形状变化较大的非刚体目标的正确跟踪。 根据跟踪算法所用的预 测技术来划分,目前主要的跟踪算法有:基于均值漂移的方法、基于遗传算法的 方法、基于Kalman滤波器的方法、基于Monto Carlo的方法以及多假设跟踪的方 法等。 运动检测与目标跟踪算法模块 运动检测与目标跟踪算法模块 与目标跟踪 一、运动检测算法 1.算法效果 算法效果总体来说,对比度高的视频检测效果要优于对比度低的视频。 算法可以比较好地去除目标周围的浅影子,浅影的去除率在 80%以上。去影后目标的 完整性可以得到较好的保持,在 80%以上。在对比度比较高的环境中可以准确地识别较大 的滞留物或盗移物。 从对目标的检测率上来说,对小目标较难进行检测。一般目标小于 40 个像素就会被漏 掉。对于对比度不高的目标会检测不完整。总体上来说,算法在对比度较高的环境中漏检率 都较低,在 以下,在对比度不高或有小目标的场景下漏检率在 6%以下。 精细运动检测的目的是在较理想的环境下尽量精确地提取目标的轮廓和区域, 以供高层 进行应用。同时在分离距离较近目标和进行其它信息的进一步判断也具有一定的优势。 反映算法优缺点的详细效果如下所示: 去影子和完整性 效果好 公司内视频 左边的为去影前,右边的 为去影后的结果,可以看出在 完整 性和去影率上 都有所 突 出。 这两个视频的共周特点 城市交通 是,影子都是浅影子,视频噪 声不太明显。目标与背景的对 比度比较高。 效果差 这两个视频的特点是影子 都是深影子。虽然影子没有去 掉,但是物体的完整性是比较 高的。主要原因就是场景的对 路口,上午 十点 比度比较高。 滞留物检测和稳定性 效果好 会议室盗移 效果好的原因,一是盗移或 滞留目标与背景对比度较大,二 是目标本身尺寸较大。 另外盗移物或滞留物在保持 各自的状态期间不能受到光照变 化或其它明显运动目标的干扰, 要不然有可能会造成判断的不稳 定。 效果差 会议室 遗留 物 大部分时间内,滞留的判断 都是较稳定的,但是在后期出现 了不稳定。主要原因是目标太小 的原故。 因此在进行滞留物判断时, 大目标,对比度较高的环境有利 于判断的稳定性和准确性。 漏检率 效果好 城市交通 在对比度高的环境下, 目标相对都较大的情况下 (大于 40 个像素) 可以很 , 稳定的检测出目标。 在这种 条件下的漏检率通常都是 非常低的,在 以下。 效果差 行人-傍晚 和“行人”目录下 的 其 它 昏 暗 条件 下的视频 在对 比度较低的 情况 下,会造成检测结果不稳 定。漏检率较高。主要原因 是由于去影子造成的。 这种 对比度下的漏检率一般在 6%以下。 除了 对比度低是 造成 漏检的原因外, 过小的目标 也会造成漏检,一般是 40 个像素以下的目标都会被 忽略掉。 算法效率内存消耗(单位:b) .MD_ISRAM_data .MD_ISRAM_bss .MD_SDRAM_data 0x470 0x24 0x348 .MD_SDRAM_bss .MD_text 0x1a8480 0x6d40 速度 ms 运动区域占 2/3 左右时 CPU 占用率 一帧耗时 Max:57% Min: Avg: Max:23 Min: Avg:15 运动区域占 1/3 左右时 Max:45% Min: Avg:20% Max:18 Min: Avg:8 检测参数说明 检测参数说明 检测到的滞留物或盗走物的消失时间目前分别设定在 200 帧和 100 帧, 可以通过参数来 自行调整。 目前目标与背景的差异是根据局部光照强度所决定的, 范围在 4 个像素值以上。 目前参 数设置要求目标大小要在 20 个像素以上才能被检测到,可以通过参数来自行调整。 目标阴影的去除能力是可以调整的, 目前的参数设置可以去除大部分的浅影子和较小的 光照变化。 适用环境推荐光照条件较好(具有一定的对比度)的室内环境或室外环境。不易用它去检测过小的目 标,比如小于 40 个像素的目标。室外环境不易太复杂。输出目标为精细轮廓目标,可以为 后面高层应用提供良好的信息。 二、目标跟踪 稳定运行环境要求此版本跟踪算法与运动检测算法紧密结合, 对相机的架设和视频的背景环境和运动目标 数量运动方式有一定要求: 背景要求: 由于运动跟踪是基于运动检测的结果进行的, 所以对背景的要求和运动检测一样, 背景要求: 运动目标相对于背景要有一定反差。 运动目标:由于运动检测中,对较小的目标可能过滤掉。所以运动目标的大小要符合运动检 运动目标: 测的要求。运动目标的速度不能太大,要保证前后帧运动目标的重合面积大于 10 个像素。此阈值可修改(建议不要随意修改,过小,可能把碎片当成原目标分 裂出来的小目标,过大,可能失去跟踪。当然可试着调节以适应不同场景)。该 算法对由于运动检测在地面上产生的碎片抗干扰性比较差, 运动目标和碎片相遇 时,容易发生融合又分离的现象,造成轨迹混乱。消失目标和新生目标很容易当 成同一目标处理,所以可能出现一个新目标继承新生目标的轨迹。 运动方式: 运动目标的最大数量由外部设定。 但运动跟踪对运动目标比较稀疏的场景效果比 运动方式: 较好。 算法对由于运动检测在运动目标上产生的碎片有一定的抗干扰。 算法没对 物体的遮挡进行处理。对于两运动目标之间的遮挡按融合来处理。 拍摄角度: 拍摄角度:拍摄视野比较大,且最好是俯视拍摄。

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :

能不能给我发一份呢?

追踪检测论文

先知论文检测上有目前权威的各个平台。1,根据高校论文检测平台----【先知论文检测】平台上认证的系统有7个左右。2,每个查重系统,都有其优劣性。有的数据库不同,有的价格太贵。3,我说个数据给你参考吧,维普17%,知网测的25%(只是针对这篇论文)。4,也有测维普27%,知网16%的。这跟数据库有关系。5,也跟论文有关系,如果知网刚好搜录了一篇和你论文有关的文章,当时维普没搜录,那用知网测就危险了,反过来也是一样的。5,最后如果还不放心,可以用跟学校相同的平台检测下。上面的几个平台,在高校论文检测平台上都有,直接在上面检测就可以了,也很方便。知网检测,就是用一定的算法将你的论文和知网数据库中已收录的论文进行对比,从而得出你论文中哪些部分涉嫌抄袭。目前的对比库有:中国学术期刊网络出版总库中国博士学位论文全文数据库/中国优秀硕士学位论文全文数据库中国重要会议论文全文数据库中国重要报纸全文数据库中国专利全文数据库互联网资源英文数据库(涵盖期刊、博硕、会议的英文数据以及德国Springer、英国Taylor&Francis 期刊数据库等)港澳台学术文献库优先出版文献库互联网文档资源论文查重

运动目标检测与跟踪算法研究 视觉是人类感知自身周围复杂环境最直接有效的手段之一, 而在现实生活中 大量有意义的视觉信息都包含在运动中,人眼对运动的物体和目标也更敏感,能 够快速的发现运动目标, 并对目标的运动轨迹进行预测和描绘。 随着计算机技术、 通信技术、图像处理技术的不断发展,计算机视觉己成为目前的热点研究问题之 一。 而运动目标检测与跟踪是计算机视觉研究的核心课题之一, 融合了图像处理、 模式识别、人工智能、自动控制、计算机等众多领域的先进技术,在军事制导、 视觉导航、视频监控、智能交通、医疗诊断、工业产品检测等方面有着重要的实 用价值和广阔的发展前景。 1、国内外研究现状 运动目标检测 运动目标检测是指从序列图像中将运动的前景目标从背景图像中提取出来。 根据运动目标与摄像机之间的关系, 运动目标检测分为静态背景下的运动目标检 测和动态背景下的运动目标检测。 静态背景下的运动目标检测是指摄像机在整个 监视过程中不发生移动; 动态背景下的运动目标检测是指摄像机在监视过程中发 生了移动,如平动、旋转或多自由度运动等。 静态背景 静态背景下的运动目标检测方法主要有以下几种: (1)背景差分法 背景差分法是目前最常用的一种目标检测方法, 其基本思想就是首先获得一个 背景模型,然后将当前帧与背景模型相减,如果像素差值大于某一阈值,则判断 此像素属于运动目标,否则属于背景图像。利用当前图像与背景图像的差分来检 测运动区域,一般能够提供比较完整的特征数据,但对于动态场景的变化,如光 照和外来无关事件的干扰等特别敏感。 很多研究人员目前都致力于开发不同的背 景模型,以减少动态场景变化对运动目标检测的影响。背景模型的建立与更新、 阴影的去除等对跟踪结果的好坏至关重要。 背景差分法的实现简单,在固定背景下能够完整地精确、快速地分割出运动 对象。不足之处是易受环境光线变化的影响,需要加入背景图像更新机制,且只 对背景已知的运动对象检测比较有效, 不适用于摄像头运动或者背景灰度变化很 大的情况。 (2)帧间差分法 帧间差分法是在连续的图像序列中两个或三个相邻帧间, 采用基于像素的时 间差分并阈值化来提取图像中的运动区域。 帧间差分法对动态环境具有较强的自 适应性,但一般不能完全提取出所有相关的特征像素点,在运动实体内部容易产 生空洞现象。因此在相邻帧间差分法的基础上提出了对称差分法,它是对图像序 列中每连续三帧图像进行对称差分,检测出目标的运动范围,同时利用上一帧分 割出来的模板对检测出来的目标运动范围进行修正, 从而能较好地检测出中间帧 运动目标的形状轮廓。 帧间差分法非常适合于动态变化的环境,因为它只对运动物体敏感。实际上 它只检测相对运动的物体,而且因两幅图像的时间间隔较短,差分图像受光线 变化影响小,检测有效而稳定。该算法简单、速度快,已得到广泛应用。虽然该 方法不能够完整地分割运动对象,只能检测出物体运动变化的区域,但所检测出 的物体运动信息仍可用于进一步的目标分割。 (3)光流法 光流法就充分的利用了图像自身所携带的信息。在空间中,运动可以用运动 场描述,而在一个图像平面上,物体的运动往往是通过图像序列中图像灰度分布 的不同来体现,从而使空间中的运动场转移到图像上就表示为光流场。所谓光流 是指空间中物体被观测面上的像素点运动产生的瞬时速度场, 包含了物体表面结 构和动态行为等重要信息。 基于光流法的运动目标检测采用了运动目标随时间变 化的光流特性,由于光流不仅包含了被观测物体的运动信息,还携带了物体运动 和景物三位结构的丰富信息。 在比较理想的情况下,它能够检测独立运动的对象, 不需要预先知道场景的任何信息,可以很精确地计算出运动物体的速度,并且可 用于动态场景的情况。 但是大多数光流方法的计算相当复杂,对硬件要求比较高, 不适于实时处理,而且对噪声比较敏感,抗噪性差。并且由于遮挡、多光源、透明 性及噪声等原因,使得光流场基本方程——灰度守恒的假设条件无法满足,不能 正确求出光流场,计算方也相当复杂,计算量巨大,不能满足实时的要求。 动态背景 动态背景下的运动目标检测由于存在着目标与摄像机之间复杂的相对运动, 检测方法要比静态背景下的运动目标检测方法复杂。常用的检测方法有匹配法、 光流法以及全局运动估计法等。 2、运动目标跟踪 运动目标跟踪是确定同一物体在图像序列的不同帧中的位置的过程。 近年来 出现了大批运动目标跟踪方法,许多文献对这些方法进行了分类介绍,可将目标 跟踪方法分为四类:基于区域的跟踪、基于特征的跟踪、基于活动轮廓的跟踪、 基于模型的跟踪,这种分类方法概括了目前大多数跟踪方法,下面用这种分类方 法对目前的跟踪方法进行概括介绍。 (1)基于区域的跟踪 基于区域的跟踪方法基本思想是: 首先通过图像分割或预先人为确定提取包 含目标区域的模板,并设定一个相似性度量,然后在序列图像中搜索目标,把度 量取极值时对应的区域作为对应帧中的目标区域。 由于提取的目标模板包含了较 完整的目标信息,该方法在目标未被遮挡时,跟踪精度非常高,跟踪非常稳定, 但通常比较耗时,特别是当目标区域较大时,因此一般应用于跟踪较小的目标或 对比度较差的目标。该方法还可以和多种预测算法结合使用,如卡尔曼预测、粒 子预测等,以估计每帧图像中目标的位置。近年来,对基于区域的跟踪方法关注 较多的是如何处理运动目标姿态变化引起的模板变化时的情况以及目标被严重 遮挡时的情况。 (2)基于特征的跟踪 基于特征的跟踪方法基本思想是:首先提取目标的某个或某些局部特征,然 后利用某种匹配算法在图像序列中进行特征匹配,从而实现对目标的跟踪。该方 法的优点是即使目标部分被遮挡,只要还有一部分特征可以被看到,就可以完成 跟踪任务,另外,该方法还可与卡尔曼滤波器结合使用,实时性较好,因此常用 于复杂场景下对运动目标的实时、 鲁棒跟踪。 用于跟踪的特征很多, 如角点边缘、 形状、纹理、颜色等,如何从众多的特征中选取最具区分性、最稳定的特征是基 于特征的跟踪方法的关键和难点所在。 (3)基于活动轮廓的跟踪 基于活动轮廓的跟踪方法基本思想是:利用封闭的曲线轮廓表达运动目标, 结合图像特征、曲线轮廓构造能量函数,通过求解极小化能量实现曲线轮廓的自 动连续更新,从而实现对目标的跟踪。自Kass在1987年提出Snake模型以来,基 于活动轮廓的方法就开始广泛应用于目标跟踪领域。相对于基于区域的跟踪方 法,轮廓表达有减少复杂度的优点,而且在目标被部分遮挡的情况下也能连续的 进行跟踪,但是该方法的跟踪结果受初始化影响较大,对噪声也较为敏感。 (4)基于模型的跟踪 基于模型的跟踪方法基本思想是: 首先通过一定的先验知识对所跟踪目标建 立模型,然后通过匹配跟踪目标,并进行模型的实时更新。通常利用测量、CAD 工具和计算机视觉技术建立模型。主要有三种形式的模型,即线图模型、二维轮 廓模型和三维立体模型口61,应用较多的是运动目标的三维立体模型,尤其是对 刚体目标如汽车的跟踪。该方法的优点是可以精确分析目标的运动轨迹,即使在 目标姿态变化和部分遮挡的情况下也能够可靠的跟踪, 但跟踪精度取决于模型的 精度,而在现实生活中要获得所有运动目标的精确模型是非常困难的。 目标检测算法,至今已提出了数千种各种类型的算法,而且每年都有上百篇相 关的研究论文或报告发表。尽管人们在目标检测或图像分割等方面做了许多研 究,现己提出的分割算法大都是针对具体问题的,并没有一种适合于所有情况的 通用算法。 目前, 比较经典的运动目标检测算法有: 双帧差分法、 三帧差分法(对 称差分法)、背景差法、光流法等方法,这些方法之间并不是完全独立,而是可 以相互交融的。 目标跟踪的主要目的就是要建立目标运动的时域模型, 其算法的优劣直接影响 着运动目标跟踪的稳定性和精确度, 虽然对运动目标跟踪理论的研究已经进行了 很多年,但至今它仍然是计算机视觉等领域的研究热点问题之一。研究一种鲁棒 性好、精确、高性能的运动目标跟踪方法依然是该研究领域所面临的一个巨大挑 战。基于此目的,系统必须对每个独立的目标进行持续的跟踪。为了实现对复杂 环境中运动目标快速、稳定的跟踪,人们提出了众多算法,但先前的许多算法都 是针对刚体目标,或是将形变较小的非刚体近似为刚体目标进行跟踪,因而这些 算法难以实现对形状变化较大的非刚体目标的正确跟踪。 根据跟踪算法所用的预 测技术来划分,目前主要的跟踪算法有:基于均值漂移的方法、基于遗传算法的 方法、基于Kalman滤波器的方法、基于Monto Carlo的方法以及多假设跟踪的方 法等。 运动检测与目标跟踪算法模块 运动检测与目标跟踪算法模块 与目标跟踪 一、运动检测算法 1.算法效果 算法效果总体来说,对比度高的视频检测效果要优于对比度低的视频。 算法可以比较好地去除目标周围的浅影子,浅影的去除率在 80%以上。去影后目标的 完整性可以得到较好的保持,在 80%以上。在对比度比较高的环境中可以准确地识别较大 的滞留物或盗移物。 从对目标的检测率上来说,对小目标较难进行检测。一般目标小于 40 个像素就会被漏 掉。对于对比度不高的目标会检测不完整。总体上来说,算法在对比度较高的环境中漏检率 都较低,在 以下,在对比度不高或有小目标的场景下漏检率在 6%以下。 精细运动检测的目的是在较理想的环境下尽量精确地提取目标的轮廓和区域, 以供高层 进行应用。同时在分离距离较近目标和进行其它信息的进一步判断也具有一定的优势。 反映算法优缺点的详细效果如下所示: 去影子和完整性 效果好 公司内视频 左边的为去影前,右边的 为去影后的结果,可以看出在 完整 性和去影率上 都有所 突 出。 这两个视频的共周特点 城市交通 是,影子都是浅影子,视频噪 声不太明显。目标与背景的对 比度比较高。 效果差 这两个视频的特点是影子 都是深影子。虽然影子没有去 掉,但是物体的完整性是比较 高的。主要原因就是场景的对 路口,上午 十点 比度比较高。 滞留物检测和稳定性 效果好 会议室盗移 效果好的原因,一是盗移或 滞留目标与背景对比度较大,二 是目标本身尺寸较大。 另外盗移物或滞留物在保持 各自的状态期间不能受到光照变 化或其它明显运动目标的干扰, 要不然有可能会造成判断的不稳 定。 效果差 会议室 遗留 物 大部分时间内,滞留的判断 都是较稳定的,但是在后期出现 了不稳定。主要原因是目标太小 的原故。 因此在进行滞留物判断时, 大目标,对比度较高的环境有利 于判断的稳定性和准确性。 漏检率 效果好 城市交通 在对比度高的环境下, 目标相对都较大的情况下 (大于 40 个像素) 可以很 , 稳定的检测出目标。 在这种 条件下的漏检率通常都是 非常低的,在 以下。 效果差 行人-傍晚 和“行人”目录下 的 其 它 昏 暗 条件 下的视频 在对 比度较低的 情况 下,会造成检测结果不稳 定。漏检率较高。主要原因 是由于去影子造成的。 这种 对比度下的漏检率一般在 6%以下。 除了 对比度低是 造成 漏检的原因外, 过小的目标 也会造成漏检,一般是 40 个像素以下的目标都会被 忽略掉。 算法效率内存消耗(单位:b) .MD_ISRAM_data .MD_ISRAM_bss .MD_SDRAM_data 0x470 0x24 0x348 .MD_SDRAM_bss .MD_text 0x1a8480 0x6d40 速度 ms 运动区域占 2/3 左右时 CPU 占用率 一帧耗时 Max:57% Min: Avg: Max:23 Min: Avg:15 运动区域占 1/3 左右时 Max:45% Min: Avg:20% Max:18 Min: Avg:8 检测参数说明 检测参数说明 检测到的滞留物或盗走物的消失时间目前分别设定在 200 帧和 100 帧, 可以通过参数来 自行调整。 目前目标与背景的差异是根据局部光照强度所决定的, 范围在 4 个像素值以上。 目前参 数设置要求目标大小要在 20 个像素以上才能被检测到,可以通过参数来自行调整。 目标阴影的去除能力是可以调整的, 目前的参数设置可以去除大部分的浅影子和较小的 光照变化。 适用环境推荐光照条件较好(具有一定的对比度)的室内环境或室外环境。不易用它去检测过小的目 标,比如小于 40 个像素的目标。室外环境不易太复杂。输出目标为精细轮廓目标,可以为 后面高层应用提供良好的信息。 二、目标跟踪 稳定运行环境要求此版本跟踪算法与运动检测算法紧密结合, 对相机的架设和视频的背景环境和运动目标 数量运动方式有一定要求: 背景要求: 由于运动跟踪是基于运动检测的结果进行的, 所以对背景的要求和运动检测一样, 背景要求: 运动目标相对于背景要有一定反差。 运动目标:由于运动检测中,对较小的目标可能过滤掉。所以运动目标的大小要符合运动检 运动目标: 测的要求。运动目标的速度不能太大,要保证前后帧运动目标的重合面积大于 10 个像素。此阈值可修改(建议不要随意修改,过小,可能把碎片当成原目标分 裂出来的小目标,过大,可能失去跟踪。当然可试着调节以适应不同场景)。该 算法对由于运动检测在地面上产生的碎片抗干扰性比较差, 运动目标和碎片相遇 时,容易发生融合又分离的现象,造成轨迹混乱。消失目标和新生目标很容易当 成同一目标处理,所以可能出现一个新目标继承新生目标的轨迹。 运动方式: 运动目标的最大数量由外部设定。 但运动跟踪对运动目标比较稀疏的场景效果比 运动方式: 较好。 算法对由于运动检测在运动目标上产生的碎片有一定的抗干扰。 算法没对 物体的遮挡进行处理。对于两运动目标之间的遮挡按融合来处理。 拍摄角度: 拍摄角度:拍摄视野比较大,且最好是俯视拍摄。

第一步,我们首先找到一个正规的靠谱的论文查重系统,如今在网上随便一搜论文查重系统就能够查找出来很多不同品牌的论文查重平台,我们在挑选的时候,要多注意关注和考察这些论文查重平台,对其多进行一些了解。第二步,找到正规的合适的论文查重平台之后,我们就可以上传论文进行查重检测。部分论文查重系统有根据不同的论文类型设置相对应的论文查重入口,因此我们在上传论文要选择对应自己论文类型的查重入口,在上传论文之前,一般需要先输入作者姓名和论文题目。第三步,支付论文查重费用。上传完论文需要支付一定的查重费用,论文查重系统才会开始自动检测论文,不同的论文查重系统有着不同的收费标准,检测费用会有一定的差别,我们支付对应的费用即可;也有部分论文查重系统比如PaperPP有免费查重活动,我们成功参与活动之后即可获得免费论文查重机会,不用支付查重费用。第四步,下载论文查重报告。当我们完成论文查重之后,需要找到论文查重报告并下载,因为查重平台只会将查重报告保留一段时间,如果我们不及时下载的话,超过保留时限查重报告是会被清空的。通过论文查重报告我们可以看到自己论文的重复率以及论文中具体是有哪些内容被检测出重复。

在首页下方选择合适的论文查重系统。步骤:1、用户进入维普查重首页后,在首页下方选择合适的论文查重系统,注意查看自己的论文是否符合查重系统的标准。2、在查重界面输入论文题目和论文作者,并将待检测论文上传至查重系统中,点击提交检测按钮。3、等待30分钟,60分钟左右的查重时间,查重完成后,用户在查重界面点击下载检测报告按钮,输入查重订单编号,点击查询结果,最后下载论文查重报告单至用户电脑中。

目标检测与跟踪论文

原文: Scalable Object Detection using Deep Neural Networks——学术范 最近,深度卷积神经网络在许多图像识别基准上取得了最先进的性能,包括ImageNet大规模视觉识别挑战(ILSVRC-2012)。在定位子任务中获胜的模型是一个网络,它预测了图像中每个对象类别的单个边界框和置信度得分。这样的模型捕获了围绕对象的整幅图像上下文,但如果不天真地复制每个实例的输出数量,就无法处理图像中同一对象的多个实例。在这篇论文中提出了一个显著性启发的神经网络检测模型,它预测了一组与类无关的边界框,每个框有一个分数,对应于它包含任何感兴趣的对象的可能性。该模型自然地为每个类处理数量可变的实例,并允许在网络的最高级别上进行跨类泛化。 目标检测是计算机视觉的基本任务之一。一个解决这个问题的通用范例是训练在子图像上操作的对象检测器,并在所有的场所和尺度上以详尽的方式应用这些检测器。这一范例被成功地应用于经过区别训练的可变形零件模型(DPM)中,以实现检测任务的最新结果。对所有可能位置和尺度的穷举搜索带来了计算上的挑战。随着类数量的增加,这个挑战变得更加困难,因为大多数方法都训练每个类单独的检测器。为了解决这个问题,人们提出了多种方法,从检测器级联到使用分割提出少量的对象假设。 关于对象检测的文献非常多,在本节中,我们将重点讨论利用类不可知思想和解决可伸缩性的方法。 许多提出的检测方法都是基于基于部件的模型,最近由于有区别学习和精心设计的特征,已经取得了令人印象深刻的性能。然而,这些方法依赖于在多个尺度上详尽地应用零件模板,这是非常昂贵的。此外,它们在类的数量上是可伸缩的,这对像ImageNet这样的现代数据集来说是一个挑战。 为了解决前一个问题,Lampert等人使用分支绑定策略来避免计算所有可能的对象位置。为了解决后一个问题,Song et al.使用了一个低维部件基,在所有对象类中共享。基于哈希算法的零件检测也取得了良好的结果。 另一种不同的工作,与我们的工作更接近,是基于对象可以本地化的想法,而不必知道它们的类。其中一些方法建立在自底向上无阶级分割[9]的基础上。通过这种方式得到的片段可以使用自上而下的反馈进行评分。基于同样的动机,Alexe等人使用一种廉价的分类器对对象假设是否为对象进行评分,并以这种方式减少了后续检测步骤的位置数量。这些方法可以被认为是多层模型,分割作为第一层,分割分类作为后续层。尽管它们编码了已证明的感知原理,但我们将表明,有更深入的模型,充分学习可以导致更好的结果。 最后,我们利用了DeepLearning的最新进展,最引人注目的是Krizhevsky等人的工作。我们将他们的边界盒回归检测方法扩展到以可扩展的方式处理多个对象的情况。然而,基于dnn的回归已经被Szegedy等人应用到对象掩模中。最后一种方法实现了最先进的检测性能,但由于单个掩模回归的成本,不能扩展到多个类。 我们的目标是通过预测一组表示潜在对象的边界盒来实现一种与类无关的可扩展对象检测。更准确地说,我们使用了深度神经网络(DNN),它输出固定数量的包围盒。此外,它为每个盒子输出一个分数,表示这个盒子包含一个对象的网络信任度。 为了形式化上述思想,我们将i-thobject框及其相关的置信度编码为最后一网层的节点值: Bounding box: 我们将每个框的左上角和右下角坐标编码为四个节点值,可以写成vectorli∈R4。这些坐标是归一化的w. r. t.图像尺寸,以实现图像绝对尺寸的不变性。每个归一化坐标是由最后一层的线性变换产生的。 Confidence: 置信度:包含一个对象的盒子的置信度得分被编码为单个节点valueci∈[0,1]。这个值是通过最后一个隐藏层的线性变换产生的,后面跟着一个sigmoid。 我们可以组合边界盒位置sli,i∈{1,…K}为一个线性层。同样,我们可以将所有置信区间ci,i∈{1,…K}作为一个s型层的输出。这两个输出层都连接到最后一个隐藏层 在推理时,我们的算法生成kbound盒。在我们的实验中,我们使用ek = 100和K= 200。如果需要,我们可以使用置信分数和非最大抑制在推理时获得较少数量的高置信框。这些盒子应该代表对象。因此,它们可以通过后续的分类器进行分类,实现目标检测。由于盒子的数量非常少,我们可以提供强大的分类器。在我们的实验中,我们使用另一个dnn进行分类。 我们训练一个DNN来预测每个训练图像的边界框及其置信度得分,以便得分最高的框与图像的groundtruth对象框很好地匹配。假设对于一个特定的训练例子,对象被标记为boundingboxesgj,j∈{1,…,M}。在实践中,pre- dictionary的数量远远大于groundtruthboxm的数量。因此,我们试图只优化与地面真实最匹配的预测框子集。我们优化他们的位置,以提高他们的匹配度,最大化他们的信心。与此同时,我们将剩余预测的置信度最小化,这被认为不能很好地定位真实对象。为了达到上述目的,我们为每个训练实例制定一个分配问题。Wexij∈{0,1}表示赋值:xij= 1,如果第i个预测被赋值给第j个真对象。这项任务的目标可以表示为 其中,我们使用标准化边界框坐标之间的el2距离来量化边界框之间的不同。此外,我们希望根据分配x优化盒子的可信度。最大化指定预测的置信度可以表示为  最终的损失目标结合了匹配损失和信心损失 受式1的约束。α平衡了不同损失条款的贡献。 对于每个训练例子,我们通过解决一个最佳的赋值x*的预测到真实的盒子 约束执行赋值解决方案。这是二部匹配的一种变体,是一种多项式复杂度匹配。在我们的应用程序中,匹配是非常便宜的——每幅图像中标记的对象的数量少于一打,而且在大多数情况下只有很少的对象被标记。然后,通过反向传播优化网络参数。例如,反向传播算法的一阶导数计算w、r、t、l和c 尽管上述定义的损失在原则上是足够的,但三次修改使其有可能更快地达到更好的准确性。第一个修改是对地面真实位置进行聚类,并找到这样的聚类/质心,我们可以使用这些聚类/质心作为每个预测位置的先验。因此,鼓励学习算法为每个预测位置学习一个残差到一个先验。 第二个修改涉及到在匹配过程中使用这些先验:不是将N个groundtruth位置与K个预测进行匹配,而是在K个先验和groundtruth之间找到最佳匹配。一旦匹配完成,就会像之前一样计算目标的置信度。此外,位置预测损失也不变:对于任何一对匹配的(目标,预测)位置,其损失定义为groundtruth和对应于匹配先验的坐标之间的差值。我们把使用先验匹配称为先验匹配,并假设它促进了预测的多样化。  需要注意的是,尽管我们以一种与类无关的方式定义了我们的方法,但我们可以将它应用于预测特定类的对象盒。要做到这一点,我们只需要在类的边框上训练我们的模型。此外,我们可以预测每个类的kbox。不幸的是,这个模型的参数数量会随着类的数量线性增长。此外,在一个典型的设置中,给定类的对象数量相对较少,这些参数中的大多数会看到很少有相应梯度贡献的训练示例。因此,我们认为我们的两步过程——首先本地化,然后识别——是一个更好的选择,因为它允许使用少量参数利用同一图像中多个对象类型的数据 我们使用的本地化和分类模型的网络架构与[10]使用的网络架构相同。我们使用Adagrad来控制学习速率衰减,128的小批量,以及使用多个相同的网络副本进行并行分布式训练,从而实现更快的收敛。如前所述,我们在定位损失中使用先验——这些是使用训练集上的均值来计算的。我们还使用α = 来平衡局部化和置信度损失。定位器可以输出用于推断的种植区以外的坐标。坐标被映射和截断到最后的图像区域。另外,使用非最大抑制对盒进行修剪,Jaccard相似度阈值为。然后,我们的第二个模型将每个边界框分类为感兴趣的对象或“背景”。为了训练我们的定位器网络,我们从训练集中生成了大约3000万幅图像,并对训练集中的每幅图像应用以下步骤。最后,样品被打乱。为了训练我们的本地化网络,我们通过对训练集中的每一幅图像应用以下步骤,从训练集中生成了大约3000万幅图像。对于每幅图像,我们生成相同数量的平方样本,使样本总数大约为1000万。对于每幅图像,样本被桶状填充,这样,对于0 - 5%、5 - 15%、15 - 50%、50 - 100%范围内的每个比例,都有相同数量的样本,其中被包围框覆盖的比例在给定范围内。训练集和我们大多数超参数的选择是基于过去使用非公开数据集的经验。在下面的实验中,我们没有探索任何非标准数据生成或正则化选项。在所有的实验中,所有的超参数都是通过对训练集。 Pascal Visual Object Classes (VOC)挑战是最常用的对象检测算法基准。它主要由复杂的场景图像组成,其中包含了20种不同的对象类别的边界框。在我们的评估中,我们关注的是2007版VOC,为此发布了一个测试集。我们通过培训VOC 2012展示了结果,其中包含了大约。11000张图片。我们训练了一个100框的定位器和一个基于深度网络的分类器。 我们在一个由1000万作物组成的数据集上训练分类器,该数据集重叠的对象至少为 jaccard重叠相似度。这些作物被标记为20个VOC对象类中的一个。•2000万负作物与任何物体盒最多有个Jaccard相似度。这些作物被贴上特殊的“背景”类标签。体系结构和超参数的选择遵循。 在第一轮中,定位器模型应用于图像中最大-最小中心方形作物。作物的大小调整到网络输入大小is220×220。单次通过这个网络,我们就可以得到上百个候选日期框。在对重叠阈值为的非最大抑制后,保留评分最高的前10个检测项,并通过21路分类器模型分别通过网络进行分类。最终的检测分数是给定盒子的定位分数乘以分类器在作物周围的最大方形区域上评估的分数的乘积。这些分数通过评估,并用于计算精确查全曲线。 首先,我们分析了本地化器在隔离状态下的性能。我们给出了被检测对象的数量,正如Pascal检测标准所定义的那样,与生成的包围框的数量相对比。在图1中,我们展示了使用VOC2012进行训练所获得的结果。此外,我们通过使用图像的最大中心面积(max-center square crop)作为输入以及使用两个尺度(second scale)来给出结果:最大中心面积(max-center crop)的第二个尺度(select3×3windows的大小为图像大小的60%)正如我们所看到的,当使用10个边界框的预算时,我们可以用第一个模型本地化的对象,用第二个模型本地化48%的对象。这显示出比其他报告的结果更好的性能,例如对象度算法达到42%[1]。此外,这个图表显示了在不同分辨率下观察图像的重要性。虽然我们的算法通过使用最大中心作物获得了大量的对象,但当使用更高分辨率的图像作物时,我们获得了额外的提升。进一步,我们用21-way分类器对生成的包围盒进行分类,如上所述。表1列出了VOC 2007的平均精度(APs)。达到的平均AP是,与先进水平相当。注意,我们的运行时间复杂度非常低——我们只使用top10框。示例检测和全精度召回曲线分别如图2和图3所示。值得注意的是,可视化检测是通过仅使用最大中心方形图像裁剪,即使用全图像获得的。然而,我们设法获得了相对较小的对象,例如第二行和第二列的船,以及第三行和第三列的羊。 在本工作中,我们提出了一种新的方法来定位图像中的对象,该方法可以预测多个边界框的时间。该方法使用深度卷积神经网络作为基本特征提取和学习模型。它制定了一个能够利用可变数量的groundtruth位置的多箱定位成本。在“一个类一个箱”方法的情况下,对1000个盒子进行非max-suppression,使用与给定图像中感兴趣的DeepMulti-Box方法相同的准则,并学习在未见图像中预测这些位置。 我们在VOC2007和ILSVRC-2012这两个具有挑战性的基准上给出了结果,在这两个基准上,所提出的方法具有竞争力。此外,该方法能够很好地预测后续分类器将探测到的位置。我们的结果表明,deepmultibox的方法是可扩展的,甚至可以在两个数据集之间泛化,就能够预测感兴趣的定位,甚至对于它没有训练的类别。此外,它能够捕获同一类物体的多种情况,这是旨在更好地理解图像的算法的一个重要特征。 在未来,我们希望能够将定位和识别路径折叠到一个单一的网络中,这样我们就能够在一个通过网络的一次性前馈中提取位置和类标签信息。即使在其当前状态下,双通道过程(本地化网络之后是分类网络)也会产生5-10个网络评估,每个评估的速度大约为1个CPU-sec(现代机器)。重要的是,这个数字并不与要识别的类的数量成线性关系,这使得所提出的方法与类似dpm的方法非常有竞争力。

能不能给我发一份呢?

论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :

行人检测与跟踪论文

参考资料: 行人检测算法 行人检测是使用计算机视觉技术来判断图像或视频中是否存在行人。可以通过跟行人跟踪,行人重识别技术,来应用于人工智能系统,车辆辅助驾驶系统、智能交通等领域① 处理数据 ② 训练模型 ③ 输出目标位置① 外观差异大。包括视觉、姿态、服饰和附着物、光照、成像距离等。行人不同的运动姿态、角度,都会显示出不同的外观,而且成像距离远近不一,也会造成外观大小不同 ② 遮挡问题,在行人密集的地方,会发生行人被遮挡的问题,或者是被周围的建筑物遮挡住 ③ 背景复杂,有些物体的外观、造型、颜色、纹理等都比较接近人体,例如雕塑或人像广告牌、假人等。之前就有个新闻说红绿灯行人越线检测时,把公共汽车上的代言人广告中的代言人也检测了出来 ④ 检测速度,行人检测一般使用了比较复杂的模型,运算量相当大,要达到实时非常困难,一般需要大量的优化Faster R-CNN 文献[16]分析了Faster R-CNN在行人检测问题上的表现,结果表明,直接使用这种算法进行行人检测效果并不满意。作者发现,Faster R-CNN中的RPN网络对提取行人候选区域是相当有效的,而下游的检测网络表现的不好。作者指出了其中的两个原因:对于小目标,卷积层给出的特征图像太小了,无法有效的描述目标;另外,也缺乏难分的负样本挖掘机制。作者在这里采用了一种混合的策略,用RPN提取出候选区域,然后用随机森林对候选区域进行分类。这一结构如下图所示: DeepParts 文献[21]提出了一种基于部件的检测方案,称为DeepParts,致力于解决遮挡问题。这种方案将人体划分成多个部位,分别进行检测,然后将结果组合起来。部位划分方案如下图所示: 整个系统的结构如下图所示: RepLoss RepLoss[14]由face++提出,主要目标是解决遮挡问题。行人检测中,密集人群的人体检测一直是一个难题。物体遮挡问题可以分为类内遮挡和类间遮挡两类。类内遮挡指同类物体间相互遮挡,在行人检测中,这种遮挡在所占比例更大,严重影响着行人检测器的性能。 针对这个问题,作者设计也一种称为RepLoss的损失函数,这是一种具有排斥力的损失函数,下图为RepLoss示意图: RepLoss 的组成包括 3 部分,表示为: 其中L_Attr 是吸引项,需要预测框靠近其指定目标;L_RepGT 和 L_RepBox 是排斥项,分别需要当前预测框远离周围其它的真实物体和该目标其它的预测框。系数充当权重以平衡辅助损失。 HyperLearner 文献[25]提出了一种称为HyperLearner的行人检测算法,改进自Faster R-CNN。在文中,作者分析了行人检测的困难之处:行人与背景的区分度低,在拥挤的场景中,准确的定义一个行人非常困难。 作者使用了一些额外的特征来解决这些问题。这些特征包括: apparent-to-semantic channels temporal channels depth channels 为了将这些额外的特征也送入卷积网络进行处理,作者在VGG网络的基础上增加了一个分支网络,与主体网络的特征一起送入RPN进行处理: 其他的基本上遵循了Faster R-CNN框架的处理流程,只是将anchor参数做了改动。在实验中,这种算法相比Faster R-CNN有了精度上的提升。 从上面的回顾也可以看出,与人脸检测相比,行人检测难度要大很多,目前还远称不上已经解决,遮挡、复杂背景下的检测问题还没有解决,要因此还需要学术界和工业界的持续努力。

姓名:王梦妮 学号:20021210873 学院:电子工程学院 【嵌牛导读】本文主要介绍了无人驾驶中所需的行人检测算法 【嵌牛鼻子】无人驾驶 环境感知 计算机视觉 SVM Adaboost算法 【嵌牛提问】无人驾驶中所用到的行人检测算法有哪些 【嵌牛正文】 在同样的交通路况下,无人车通过对自身运动状态及行驶环境信息进行分析,决策出最佳行驶策略和行驶方案代替驾驶员完成一系列驾驶行为,从而降低道路交通事故的发生率。而在无人驾驶中最为重要的技术便是环境感知,而在城市道路上有大量的行人出行,只有准确快速地检测出行人与对其进行跟踪,才能避免车撞人。 计算机视觉是研究赋予机器“人眼”功能的科学,通过多个传感器来获取一定范围内的色彩数据,用算法分析得到的数据从而理解周围环境,这个过程模拟了人眼以及大脑的处理过程,从而赋予机器视觉感知能力。现有的行人检测技术大多都是检测照片中的行人目标,这种照片的拍摄大多是拍摄的静止目标,图像的分辨率和像素点包含的语义信息都及其丰富,对应的算法在这样的图片上往往能取得理想的效果,但是用于无人车的“眼睛”,算法的鲁棒性就表现的非常差。这是因为在实际的道路环境中,摄像头需要搭载的车身上,在行进过程中跟随车以一定的速度移动,并且在实际道路中,行人目标往往是在运动的,由此提取出拍摄视频中的一帧就会出现背景虚化,造成像素点包含的语义信息大量减少,增加了行人检测的难度。 行人检测是计算机视觉领域的一个重要研究课题。在实际生活中,行人大多处于人口密集、背景复杂的城市环境中,并且行人的姿态各不相同,如何将行人从色彩丰富、形状相似的环境中快速准确地提取出来,是行人检测算法的难点。 行人检测算法分为两大类,一类是基于传统图像处理,另一类是基于深度学习的方法。近年来随着计算机计算速度的大幅提升,基于深度学习的方法有着越来越高的检测速度与检测精度,在行人检测领域应用越加广泛。 (一)基于传统图像处理的行人检测算法 使用传统的图像处理方法来做行人检测一般都是由两个步骤组成,第一就是需要手工设计一个合理的特征,第二就是需要设计一个合理的分类器。手工设计特征就是找到一种方法对图像内容进行数学描述,用于后续计算机能够区分该图像区域是什么物体,分类器即是通过提取的特征判断该图像区域属于行人目标还是属于背景。在传统的图像处理领域,手工特征有许多种,比如颜色特征、边缘特征(canny算子和sobel算子)以及基于特征点的描述子(方向梯度直方图)等。 学者们一致认为方向梯度直方图是最适合行人检测的人工特征,其主要原理是对图像的梯度方向直方图进行统计来表征图像。该特征是由Dalal于2005提出的,并与SVM分类器相结合,在行人检测领域取得了前所未有的成功。 传统的行人检测方法首先需要通过提取手工设计特征,再使用提取好的特征来训练分类器,得到一个鲁棒性良好的模型。在行人检测中应用最广泛的分类器就是SVM和Adaboost。SVM分类器就是要找到一个超平面用来分割正负样本,这个超平面的满足条件就是超平面两侧的样本到超平面的距离要最大,即最大化正负样本边界。下图即为线性SVM的示意图。Adaboost分类算法的主要原理不难理解,就是采用不同的方法训练得到一系列的弱分类器,通过级联所有的弱分类器来组成一个具有更高分类精度的强分类器,属于一种迭代算法。原理简单易于理解且有着良好的分类效果,唯一不足就是练多个弱分类器非常耗时。下图为面对一个二分类问题,Adaboost算法实现的细节。               (二)基于深度学习的行人检测算法     近年来,随着硬件计算能力的不断增强,基于卷积神经网络的深度学习飞速发展,在目标检测领域取得了更好的成绩。卷积神经网络不再需要去手动设计特征,只需要将图片输入进网络中,通过多个卷积层的卷积操作,提取出图像的深层语义特征。要想通过深度学习的方法得到一个性能良好的模型,需要大量的样本数据,如果样本过少,就很难学习到泛化能力好的特征,同时在训练时,由于涉及到大量的卷积操作,需要进行大量计算,要求硬件设备具有极高的算力,同时训练起来也很耗时。随着深度学习的飞速发展,越来越多基于深度学习的模型和方法不断被提出,深度学习在目标检测领域会有更加宽广的发展空间。 Ross Girshick团队提出了系列行人检测算法,其中Faster R—CNN 算法通过一个区域提议网络来生成行人候选框,在最后的特征图上滑动来确定候选框。Faster RCNN是首个实现端到端训练的网络,通过一个网络实现了特征提取、候选框生成、边界框回归和分类,这样的框架大大提高了整个网络的检测速度。 He Kaiming等人在2017年提出Mask R—CNN算法,该算法改进了Faster·R—CNN, 在原有的网络结构上增加了一个分支进行语义分割,并用ROI Align替代了ROI Pooling,取得了COCO数据集比赛的冠军。

行人重识别这个方向较为不错的,未来发展上限高。

行人重识别(Person re-identification)也称行人再识别,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该行人图像。旨在弥补固定的摄像头的视觉局限,并可与行人检测/行人跟踪技术相结合,可广泛应用于智能视频监控、智能安保等领域。

由于不同摄像设备之间的差异,同时行人兼具刚性和柔性的特性 ,外观易受穿着、尺度、遮挡、姿态和视角等影响,使得行人重识别成为计算机视觉领域中一个既具有研究价值同时又极具挑战性的热门课题。

行人重识别的研究起始于二十世纪九十年代中期。研究者们借鉴、引入了一些图像处理、模式识别领域的成熟方法,侧重研究了行人的可用特征、简单分类算法。自2014 年以来,行人重识别技术的训练库趋于大规模化,广泛采用深度学习框架。随着高校、研究所以及一些厂商的研究持续深入,行人重识别技术得到了飞速的发展。

海外主要的行人重识别系统的研究机构有悉尼科技大学(UTS)、伦敦玛丽女王大学(QMUL)等;中国大陆及港澳台的主要有清华大学、北京大学、复旦大学、香港中文大学、西安交通大学、中国科学技术大学、中山大学,中科院自动化所等。

教育追踪研究论文

作者简介: 董海涛,上海师范大学附属外国语中学特级教师,E-mail:(上海,201600),享受上海市松江区区政府津贴。曾先后获得安徽省特级教师、安徽省优秀班主任、阜阳市首届学科带头人、首届名师等荣誉称号。曾获安徽省青年教师高中数学优质课大赛和阜阳市青年教师高中数学优质课大赛一等奖;在各级刊物发表教育教学论文60余篇。一、中学教师撰写论文的意义 很多一线教师都发出过这样的疑问:作为教师,把课上好,让学生满意、家长满意、社会满意不就行了吗,为什么还要撰写教育科研论文呢?有些年轻教师感叹:“我也想写论文,可论文太难写,这可如何是好?”经验老成的教师在随手翻阅期刊时可能会嗤之以鼻:“案例文章编故事,解题文章堆数字。这样的论文谁都能写,只是我不屑去写而已。”那么,教育科研论文究竟是什么?教师是否需要写论文?如果需要,又该如何选题呢? 要回答以上问题,首先要明白何为论文。英国思想家培根说:“阅读使人充实,写作使人精确。”写作是作者善于倾听、强化反思、广泛阅读、深化认知、凝练语言、字斟句酌的综合体现,而教育研究论文则是教师教学研究智慧的结晶,是对智力劳动的浓缩记录,是对教学研究经验的提炼与升华。一篇好的教育论文同优质教学一样,反映了教师的责任心,展现了教师的个人兴趣和教育研究成果,而非教学琐事的简单累积或堆砌。一篇好的论文有助于阅读者深入思考、强化交流、拓展视野。所以,中学教师的论文写作,不仅是开展教育科研的需要,也是克服职业倦怠的最好抓手。1. 撰写论文是教育实践的需要 中学一线教师撰写论文,是备课、教学之外更深层次的思考,是与自己心灵的对话,是一个梳理思路、总结得失、自我完善、自我发展、自我提高的过程。因此,教师在进行教育教学实践活动时,如果能够及时地将发生在身边的教学案例记录下来,并结合教育理论和课程标准进行适度的反思、升华,将为我国基础教育的发展提供重要的实践素材。此外,教育教学既是一门科学,也是一门艺术,课堂教学效果、学科育人效果与教师的语言魅力息息相关,论文写作同样也是对课堂语言的升华,更是传承教育成果的重要工具。 2. 撰写论文是教师自我成长的需要 华东师范大学叶澜教授说过:“一个老师写一辈子教案,不一定成为名师,但如果坚持写三年的反思,就有可能成为名师。”中学教师的论文写作是把教学工作中的问题、困惑或成功,通过自己的思考,撰写成文,与更多同行分享交流,让更多学生受益提升。无数名师的成长案例表明,教研写作是一线教师教学专业发展的重要支点和独特路径,也是提高自身理论水平和实践能力,促进自我成长的必然需求。 3. 撰写论文是克服职业倦怠的抓手 中学教师始终奋斗在教学一线,长期单调、重复的学科教学工作可能容易使其产生职业倦怠。通常情况下,教师在工作10年后基本熟悉了教材,也获得了一定的教学成绩,但可能更容易迷失方向,忘记初心;而工作20年的“老教师”,更容易达到职业发展的天花板,失去发展的目标。那么,如何突破教师职业发展的瓶颈呢?论文写作便是一个重要抓手。当教师看到自己思考研究的成果变成了铅字,得到了同行的认可,自豪感和成就感就会油然而生,并会对相关领域进行更加深入的思考和探究,从而产生职业幸福感,有效克服职业倦怠。4. 撰写论文可积累丰富的研究素材 一线中学教师在长期的教学实践中接触了大量丰富、真实的教学案例,而这些真实的课堂生成,是教育专家在进行理论阐述时的重要素材,也是教材编写专家进行教材编写时的重要借鉴。这些真实的课堂生成,也是中学教师得天独厚的写作资源与优势,将为基础教育研究提供丰富的原始素材。二、中学教师撰写教育科研论文的选题策略 教而不研则怠,研而不教则空。中学教师擅长课堂教学,因此在撰写教育科研论文时要基于课堂实践,立足解决教学中的困惑、总结教学中的得与失,服务教学,提高教育教学质量。论文的选题方向是衡量一篇教学科研论文水平的重要依据,并决定着论文的意义和价值。在此,笔者结合自己的经验和体会,总结了一些撰写教育科研论文的选题策略。 1. 追踪热点 热点是指受广大家长、学生和教师广泛关注的事件或问题,因此具有较高的研究和思考价值。所以教师在进行论文写作时要利用热点酝酿选题,同时把握规律,踩准节奏,在经过深入的思考和创新后,提出自己的观点或方案,做到追踪而不追风。跟风是人云亦云,跟踪则是关注与思考;跟风是步人后尘,跟踪是变化与创新。 例如,由章建跃博士领衔的《中学数学核心概念、思想方法的结构体系及其教学设计的理论研究与实践探索》课题组,曾探讨了高中数学概念教学的重要性,而这一观点恰好与笔者的教学理念十分契合。于是“如何进行概念教学”便成为笔者关注的一个热点,同时笔者结合自己的教学实践,通过《数学概念的教学要追求自然》《数学概念教学要讲清楚从哪里来到哪里去》两篇论文,系统阐述了对数学概念教学的理解。相关论文相继发表于《中小学数学》杂志。 2. 发挥特点 每位教师都有自己的教学特点和教学风格,有人擅长课堂教学研究,有人专于竞赛辅导,有人在优质课大赛中如鱼得水,有人在解题教学中左右逢源。一个人的成功不是无限地弥补自己的不足,而是无限地发挥自己的长处。所以教师应针对自己的特点,撰写自己的体会和感悟与同行分享,展示自己的长处与同行互相交流、学习与借鉴,这也是精彩论文的重要部分。 从教26年,笔者一直视课堂教学为自己的生命,对高中数学课堂教学也有较多体会。笔者还参加了省级高中数学优质课大赛或参与了学校年轻教师参赛过程中的备课,对高中数学课堂教学产生了更深的领悟。基于此,笔者连续撰写多篇论文阐述了高效课堂教学的真谛,其中包括《将“过程”还给学生,让“告诉”远离课堂》《数学教学应是过程的教学》《精彩的讲解代替不了思维的活动》《数学课堂教学应因生成而精彩》《注重过程的教学才是有效的教学》等,这些论文先后发表在《数学通讯(教师刊)》《中学数学研究》《福建中学数学》《中小学数学(高中)》等数学期刊上。3. 抓住小点 一线教师由于理论学习有限,时间与精力亦有限,所以论文写作选题宜小不宜大,否则必然会因为选题太大而造成内容空泛。因此,教师在撰写教育科研论文时,应聚焦教材解读、课堂教学、解题研究、学法指导等日常教学内容,这样的选题既容易入手也容易写出新意,能够写深、写透。但有些教师可能会产生这样的误解,既然是“抓住小点”,论文标题就可以冠以“浅谈”“浅析”“之我见”等。事实上,这些只是作者一种谦逊的表达方法,如果教师真的只是“浅谈”就不要谈了,“抓住小点”就是为了“深谈”。 笔者最初开始撰写论文时,都是两千字左右的小论文,集中精力解决一个教学中出现的问题或对教材某一个细小的地方提出编写建议。逐渐地,随着写作水平的提高,笔者撰写的论文字数渐渐能够达到四千字左右,最多时可达五千字。但笔者给自己写作提出的要求并不在于字数,而是深信“浓缩的才是精华”。字数的增加,只是因为有话可说。 4. 攻克难点 每位教师在教学实践中,都既有自己擅长的领域也有自己的短板,写自己之所长固然是对的,但是也要在自己的短板上勇于突破,这样才能在自己的学科领域成长为有一席之地的学科名师。 在笔者曾经工作过的一所学校,生源并不理想,这就要求教师控制课堂教学的难度,这也使笔者的数学解题能力受到一定的影响。为此,笔者决定给自己加压,并主动研究专业数学杂志中与解题相关的论文,同时结合日常教学,研究高中数学解题策略。近年来,笔者亦陆续有解题类的专业论文见诸报端。 5. 开发盲点 教师对教材中的经典内容都会进行重点研究,所形成的研究成果也相对丰富,典型案例也亮点纷呈。因此,除非有特别的设计和亮点,相关论文被发表的机会并不大。实际上,更值得教师探讨的是新课程中新增加的内容,或者一些普遍不被教师们重点研究的教学内容。这些内容由于比较缺乏教学成果,教师在这些方面的选题会更有意义。同时,如果一线教师能够对教学“盲点”产生教学心得或教学体会,然后再撰写成文,将有更多机会在各类报刊发表自己的见解。 例如,高中数学的“统计”部分,被大多数教师认为“简单”而快马加鞭地在教学中一带而过。这部分内容也不常被大家拿来当做论文选题。但在高三模拟考试中,统计部分往往错误率较高。这一现象引起了笔者的深刻思考,于是便针对相关现象撰写了《认真挖掘“简单”内容的育人价值》一文,并最终发表于中学数学教学委员会会刊《中国数学教育》。选修部分同样是写作选题的冷门,笔者曾针对选修内容撰写了《对直线参数方程的认识及应用举例》《利用直线参数方程的几何意义巧解距离问题》两篇文章,并相继发表于《中小学数学(高中)》和《高中数学教与学》。三、结语 研究无边际,即可贴地而行又可于云端跳舞;教学要有度,充分理解学生方能深入浅出。教师们只要勤于积累,资源俯首皆是;只要勇于思考,想法不请自来;只要勇于实践,感悟自然深刻透彻[1]。在这样的基础上,教师们从普通论文写作进阶到真正的学术论文撰写,思如涌泉、文如行云流水的状态也就为时不远了。更重要的是,随之而来的思维深度、广度和灵活度的提升,视野的开阔,将使教师们更好地驾驭课堂教学。

教育资讯化是目前各国提高教学质量,促进优秀教育资源共享,实现教育现代化的重要举措。下面是我为大家整理的,供大家参考。

资讯科技的突飞猛进带动了学校教育资讯化的发展。高职教育作为我国高等教育的重要组成部分,是培养专业技术人才的重要场所,无一例外地要顺应资讯化发展的需要,合理、有效地应用资讯化教学。而为了达到这个目的,首先要探索符合高职教育特点的资讯化教学设计模式。

一、资讯化教学设计概述

1.资讯化教学

资讯化教学是把资讯科技引入教学,以资讯科技为支援来辅助教学,运用现代资讯科技来促进教育发展的教学。其基本点是教学所运用的技术和手段都是为教学服务的。资讯化是重点,学生掌握著资讯访问的主动权。资讯化教学的本质是充分且恰当地运用现代资讯科技、资源及手段,实现从以“教”为中心的教学模式向以“学”为中心的学习方式转变的新型教学形态。在资讯化教学中,教师要注重培养学生的思维能力,鼓励学生独立思考,积极探索所学内容。

2.资讯化教学设计

资讯化教学设计是在现代教学理念的指引下,分析教学问题和确定教学目标。在此基础上,充分利用资讯科技手段和资讯资源,使其有效地辅助教学,从而使教学过程的各个环节更加科学、合理、有效。它以“自主、探究、合作”为特征,设计的核心是教学过程。它强调以学生为中心,引导学生利用丰富的学习资源,充分发挥学生的主观能动性。

二、资讯化教学设计模式的研究

随着对资讯化教学的研究与实践的发展,在教学领域也展开了对资讯化教学设计模式的研究。三种典型的资讯化教学模式如下:

1.英特尔未来教育模式

英特尔未来教育是一个大型的国际教育合作模式,旨在将资讯科技和有效的教学资源融入到现代的教学过程中,是国际范围内的教师发展专案。该模式抓住了学习者不满足于传统的学习方式,渴望以现代化的学习方式掌握实践技能的心理,引进了全新的教育理念、先进的资讯科技以及适宜的教学方法,并融入了有效的教学资源,形成了以学为本、以学习者为中心、吸引激励学生、增强学习效果、提高学生创新能力典型的资讯化教学设计模式。“英特尔未来教育”教学设计过程模式如图1所示,该模式主要经过八个步骤的教学设计,从教学目标出发,通过制定计划、查阅资料、整合评价教学专案,到建立具体的实施方案,并反复加以修改进行资讯化的教学设计。在教学设计过程中,充分体现了教师的组织、引领、指导的主导作用,强化了学生自主、创新、协作的学习主体地位。教学设计的核心是问题设计,因此,问题的设计是“英特尔未来教育模式”取得成败的关键要素。“英特尔未来教育模式”是较成功的资讯化教学设计模式,目前已经取得可观的教育成果,特别是在中小学教育方面。但在应用过程中也存在一定的不足,例如单元计划不够精炼,教师需要丰富的教学经验并具备充足的教学资源支撑,否则教学过程无法进行。教育环境因素也制约著这种模式的运用。

教学设计模式

WebQuest教学设计模式较规范地体现了资讯化教学设计的理念和结构,试图把传统封闭式与知识中心的教学模式转变成开放式与能力培养为中心的教学模式。该模式以网路资讯平台为基础,让学生在假定的情景中,通过对资讯的分析和综合,对既定的学习任务做出创造性的解决方案。它关注于学生如何利用所得到的丰富资讯,并倾向于在分析与综合上为学生提供支援。WebQuest教学设计模式如图2所示,首先要求教师有一个明确的教学目的,即培养或提高学生哪方面的技能。根据教学目的,教师要选择一个需要创造性的或有多种解决途径的、并能体现学科综合性的任务主题。接下来需要学生搜寻并整理网路中的相关资源,在这个环节中教师必须适当地指导学生有效地利用并优化网路资源。然后,设计可行的、明确的具体步骤。最后,学生要呈现成果,相应的评价不受人员、时间和空间的限制,可以用网路模式展开。WebQuest教学设计模式的教学内容多样、追踪资讯前沿、任务真实、合作性强等这些优点都是传统教学无法比拟的。但也存在欠缺之处,比如形式化、模式化的倾向较重,实际应用的效果不明显,强调资源的引进而忽视了资源的应用等。

3.祝氏资讯化教学设计模式

祝智庭教授对英特尔未来教育模式进行了深入研究,在“英特尔未来教育模式”基本理论的指导下,建立了一种新型资讯化教学设计的模式,该种教学设计模式将评价修改贯穿始终,能够达到资讯反馈及时、逐步修改完善、适时调整提高的目的,如图3所示。该教学设计模式的流程是教师首先分析对应单元的教学目标,根据分析的结果确定学生在学习中应达到的知识目标和能力目标。接着,依据知识目标和能力目标设计教学任务和问题设计,运用恰当的教学方法和手段激发学生潜能,唤醒学生学习的积极性和主动性,变被动学习为主动学习。然后按照学习目标,教师查询选用合适的教学资源并设计好使用这些资源的要求,让学生在使用的时候方便快捷。在教学过程设计中,教师要根据单元内容、所要求达到的知识目标和能力目标、学生的认知能力设计教学过程,最终达到学生的认知过程的目标。最后,教师要根据教学过程设计具体的实施方案,并根据方案设计教学模式,注明教学策略、教学过程中的注意事项以及临时问题的处理等。在上述八个环节中要反复评价修改,对教学设计不断完善,达到够用、适用、好用的目的。该教学设计模式主要是针对单元教学进行设计的,与课程教学设计相比每一环节更具体,为资讯化单元教学设计奠定了强有力的基础。但其教学设计范围较小,应用过程中有一定的局限性。

三、高职教育的资讯化教学设计模式

1.高职教育对资讯化教学设计的要求

首先,参考以上模式,扬长避短。以上关于资讯化教学模式的研究是研究者们经过多年研究和实践的成果,提供了系统化和具有实践意义的教学模式,为教育者的实际教学和资讯化教学设计提供了很有价值的参考。但这些模式的适用范围较广,缺乏针对性,因此,要把这些模式应用于高职教育,必须在结合高职教育特点的基础上进行改进和细化。其次,以资讯化手段辅助实践教学。高职院校大多数的专业课程以技术实践为主,因此,合理地运用资讯化教学手段,不能喧宾夺主,使其成为实践教学的辅助手段。不能只注重教学内容的丰富和形式的新颖,而忽视了资讯科技对课堂教学的支撑作用。但是,如果能够合理、有效地运用资讯化教学手段,就可以更大地满足技术实践的需要。因此,高职教育的资讯化教学设计模式必须本着服务于实践教学的理念,以资讯化手段提高实践教学的效果。再次,对于高职教育的可行性。高职教育的资讯化教学设计模式要符合高职院校的实际,例如现有的资讯化装置、硬体、软体等,需要投入的人力、物力不能大大超出高职院校的承受能力,并且构建的资讯化教学设计模式应符合高职教师所具有的或可提升的资讯科技素质。资讯化教学设计模式是否能够被教师有效地应用于资讯化教学中,还取决于高职教师的资讯科技能力的高低。只有当教师的资讯科技能力和水平达到适宜的水平,才能保证资讯化教学设计被广泛应用且富有成效。最后,适应资讯科技的发展。资讯科技的发展和更新的速度迅速,因此,构建的资讯化教学设计模式要适应资讯科技的发展和更新,具有灵活性和先进性。关注现代资讯科技的发展,并具有一定的预见性,构建符合现代资讯科技发展的资讯化教学设计模式。

2.符合高职教育发展的教学设计模式

基于以上分析,笔者认为,高职教育的资讯化教学设计模式应当以学生为中心,以学生活动为主线。学生是教学活动的主体,在整个教学活动中,学生的“学”应摆在核心的位置。因此,在资讯化教学设计模式中,以学生的活动为主线,引导学生自主地发现问题、分析问题和解决问题,激发学生的创新意识,培养学生的创新精神和实践能力。在以学生为主体的教学活动中,教师要发挥好主导作用。首先,要设计符合学生特点和教学需要的资讯化教学情境。要尽可能地设计真实的情境,这样既能激发学生的学习兴趣,又能提高学生的实战能力。引导学生带着真实的“任务”或“问题”进入学习情境,使学生的学习直观化和形象化。因此,在创设情境时要充分运用资讯化手段,运用图片、动画、视讯以及声音、文字和语言等多种资讯的功能,设计出较为“真实的情境”,使学生在这样的情境中探索实践,加深对问题的理解。其次,教师要设计好资讯资源。确定专案所需的资讯资源,例如文字资讯、相关图片、视讯案例等,还包括需利用的网路、软体及相关的配套设施。提前准备好这些资源以后,课上引导学生有效地利用这些资源。必要时还要做一定的指导,从而顺利地完成任务。再次,要注意教师在教学活动中不仅要“提出问题”,还要在学生“分析问题”和“解决问题”的过程中给予必要的引导和指导。例如指导学生在学习过程中如何开展探究活动、需要遵循哪些步骤才能完成任务等,这也是教师的主导作用之一。最后,教师要对学生和自身在各个环节中的表现进行评价和反思,以便随时调整设计,使其适应学生和教学的需要,从而获得最理想化的教学效果。尤其针对学生活动的核心环节,要进行重点的评价与反思,并及时修改。这是一个动态的、回圈的过程,在这个过程中,要注意学生的主体地位和教师的主导作用。总之,高职教育的资讯化教学设计模式的重点是以学生活动为主线的资讯化实践教学。以电子课件、图片、视讯、音讯、动画、教学软体、虚拟情境等资讯化的手段实现原本无法实现的实践教学,并且可以简化实践教学的过程。实践教学的环节和过程较为复杂的,可以通过资讯化手段有效地对整个过程进行简化。这样既可以提高实训的效率,又可提高实践教学的效果。

1高校计算机教育中的网路资讯保安的突出问题

高等教育院校对大学生的资讯保安知识教育不到位

大部分高等教育院校对大学生的资讯保安知识宣讲力度不够。大多数院校只是在醒目的位置和选传栏位置,贴上资讯保安防护资讯和张贴宣传布标。高校仅这一点的工作付出是不够的,只有通过专业人员多次对学生们有组织的教学和普及网路安全案例的科学知识,才能够让这些年轻人学习到资讯保安的理论知识,克制恐惧、消除误解、和解决困惑。高校只有通过合理、科学的组织活动,才能让大学生通过高等学府的教育,才能以正确的态度处理资讯保安问题。

高等教育学校缺乏对资讯保安的防范队伍建设

高校在计算机教育过程中的资讯保安问题,在高等教育学校资讯化教育初期,未有得到有关部门的重视。各院校通过正式训练的学校资讯保安保障队伍少之又少,大多数高校只是任命几位计算机教室和相关工作人员负责校园计算机及其网路的日常维护,没有形成一个系统的校园资讯保安队伍,有组织、有规律、有计划的进行计算机教育过程中的全方位的安全资讯保障。

计算机的资讯保安问题在学生的科普方法少、技术落后

在很多高校的课程里,很多教师都会给学生们讲解计算机的资讯保安问题和防范的方法,但是使用的教材都已经出版很多年了,并且教师对大学生的传道,还是沿用过去的传统模式。这样的局面需要改变,高校的资讯保安教育必须与时俱进,才会让更多的学生受益。现在众多的高校在此方面已发生了钜变,都纷纷提高本校学生学习计算机的资讯保安方面的实践课,让学生在学习中不断积累经验和丰富自己的资讯保安的知识,为从根本上解决计算机教育过程中的资讯保安问题奠定了坚实的基础。

2计算机本身的隐患和人为的错误影响着资讯保安问题

首先,计算机本身有很多硬体和软体的隐患问题。这些不足之处都很容易被一些不法分子所利用。计算机网路系统中的网路线路、计算机储存装置、包括计算机网路装置等等,都会被一些居心叵测的人通过技术手段窃取资讯,加之很多高校的计算机自身维护和系统的资讯保安预案不到位,给予黑客更多的可乘之机。高等教育院校的软体有更多的问题,没有任何一个软体是没有缺陷的,十分完美的!黑客通过技术手段就能通过软体的漏洞来打通电脑的保护和防范,所以在软体防护中,要及时的更新和观察。其次,计算机在使用中,很多人为习惯也造成计算机的损伤。比如:一些教师对电脑强制关机,甚至有人习惯性直接关掉教室电源;校内教学机经常被用来连结外网等等。也有很多大学生习惯性的一个U盘插到底,在那台机器上都用一个U盘,平时忙于上课,都不注意查杀病毒,很多时候木马病毒都是通过这种方式,偷偷溜进校园教学机中,为计算机教学过程中的资讯保安造成很大的威胁。众所周知,黑客对安全资讯造成的威胁,除了技术的原因外,很多计算机自身系统的更新、防毒软体的升级及其配套装置等都是与计算机资讯保安息息相关的。有很多时候计算机管理人员一时的疏忽,可能就会造成非常严重的后果,这样的例子在银行、学校、 *** 部门等行业都屡见不鲜。

3计算机教育过程中的资讯保安的防护措施

首先,资讯保安的最佳防护就是心防。高校抓好校园网路文化,鼓励大家文明使用计算机网路,在教学中不断给大学生灌输安全防范意识,提高大家对此类资讯保安问题的重视。校园里每个使用网路的教师和学生,都能够从心底,牢记资讯保安防护。大学生要具备自我保护意识,校园内个人的使用者名称隐私及与校园内与自己财产等重要资讯,要做好保密工作,不能轻易告知他人。其次,高校建立高效、安全计算机网路系统。在系统防护中,高校拿出足够的资金、人力来保障学校内的网路维护人员的工作,把日常的硬体检修、系统更新、线路维护、学生机的定期查杀病毒、多媒体教室和机房的环境检测、教师及学生的使用者资讯的管理等,这些都是维护学校计算机教育过程中资讯保安的最强保障。最后,校园内教育过程中的资讯保安需要在维护人员,不断完善防火墙技术和提高计算机内防毒和防毒软体等级的同时,也要实时监控外网使用者对校园网页、课程资讯、校园内资讯资源的使用情况,发现异常及时解决。对于高校的重要资讯资源,技术人员要对这部分内容要加密处理,还要做计算机防御措施,严防死守。总之,高校的计算机教育过程中的资讯保安问题,主要是人的自我防护意识、计算机相关配套装置的和防毒软体的使用。近几年的校园资讯保安事件多有发生,给了师生们很多的警醒,高校每年对计算机硬体和软体的投入也逐年增加,计算机防护知识在高校内得到最大程度的普及,提高了计算机教育的安全等级,让师生才能安心、放心。

相关百科
热门百科
首页
发表服务