论文发表百科

信号检测与估计论文

发布时间:2024-07-05 03:51:45

信号检测与估计论文

主干学科:通信工程,电子技术,计算机科学与技术主要课程:电路分析、通信电子线路、脉冲数字电路、数字信号处理、信号与线性系统、微机原理及应用、电磁场理论、微波技术与天线、通信系统原理、信息论与编码、程控交换技术、移动通信技术、计算机网络通信、光纤通信技术等。

信息与通信工程是一级学科,下设通信与信息系统、信号与信息处理两个二级学科。该专业是一个基础知识面宽、应用领域广阔的综合性专业,涉及无线通信、多媒体和图像处理、电磁场与微波、医用X线数字成像、阵列信号处理和相空间波传播与成像以及卫星移动视频等众多高技术领域。培养知识面非常广泛,不仅对数学、物理、电子技术、计算机、信息传输、信息采集和信息处理等基础知识有很高的要求,而且要求学生具备信号检测与估计、信号分析与处理、系统分析与设计等方面的专业知识和技能,使学生具有从事本学科领域科学研究的能力。

1.Design and Implementation of the second-generation HDTV prototype video encoder of China,SPIE Vol. 4067,2000,第一作者2. 数字电视:电视广播的革命,科学,2000年4月,第一作者3.数字电视地面广播的发展现状和趋势——ADTB-T技术进展,电视技术,,第一作者4.视频流无缝拼接中的帧转换,通信技术,,第一作者5.全I帧编码中的TM5码率控制策略的改进,通信学报,,第二作者6.新一代静止图像编码系统——JPEG2000,电路与系统学报,,第二作者7.基于离散余弦变换域处理的快速台标插入法,红外与激光工程,,第二作者8.基于矢量量化和可变长编码的联合信源信道编码,上海交通大学学报,,第二作者9.压缩域运动补偿中的快速算法研究,电视技术,,第二作者10.无线信道中的电波传输,通信技术,,第二作者11.无线视频通信中的错误控制技术,信息技术,2003年8月,第二作者12.分层空时编码OFDM传输技术的研究,应用科学学报,2004年第23卷,第3期,第二作者13.基于OFDM的LS信道估计与信号检测的联合迭代算法研究,上海交通大学学报,2004年增刊,第二作者分层空时OFDM系统中多用户检测技术的研究,上海交通大学学报,2004年增刊,第二作者14.音频编辑处理系统的设计与实现,电声技术,2004年10月,第二作者

信息与通信工程是一级学科,下设通信与信息系统、信号与信息处理两个二级学科。该专业是一个基础知识面宽、应用领域广阔的综合性专业,涉及无线通信、多媒体和图像处理、电磁场与微波、医用X线数字成像、阵列信号处理和相空间波传播与成像以及卫星移动视频等众多高技术领域。培养知识面非常广泛,不仅对数学、物理、电子技术、计算机、信息传输、信息采集和信息处理等基础知识有很高的要求,而且要求学生具备信号检测与估计、信号分析与处理、系统分析与设计等方面的专业知识和技能,使学生具有从事本学科领域科学研究的能力。简介本学科以现代通信理论和现代信号处理理论为基础,研究光纤通信、数字与数据通信、高清晰度电视、卫星通信、信息安全、无线通信与个人通信、图像通信、多媒体信息通信、宽带网络技术、多媒体信号处理、雷达信号处理等等。拥有"区域光纤通信网与新型光通信系统"国家重点实验室,"信息安全综合管理技术研究" 上海市重点实验室、"涉密信息系统安全测评"国家保密局重点实验室等科研基地。和国内外许多著名高校和企业保持着密切的合作与交流,与包括美国AT&T Bell实验室等在内的著名学术机构建立了联合实验室。拥有一批先进的研究、开发和测试设备,宽带光纤通信试验网、计算机图象处理系统、信息安全攻防与评测技术模拟环境等实验研究平台。研究方向1. 数字电视图像通信2. 光纤通信3. 计算机通信及网络安全4. 无线通信5. 统计信号处理6. 生物信息技术7. 多媒体技术8. 智能信息处理专业特色信息与通信工程专业是一个基础知识面宽、应用领域广阔的综合性专业,涉及无线通信、多媒体和图像处理、电磁场与微波、医用X线数字成像、阵列信号处理和相空间波传播与成像以及卫星移动视频等众多高技术领域。培养知识面非常广泛,不仅对数学、物理、电子技术、计算机、信息传输、信息采集和信息处理等基础知识有很高的要求,而且要求学生具备信号检测与估计、信号分析与处理、系统分析与设计等方面的专业知识和技能,使学生具有从事本学科领域科学研究的能力。信息与通信工程专业十分重视教学与科研相结合,注重学生创新能力与实际工作能力的培养。利用各项经费,本学科已建成3C人才培养基地通信实验室、数字信号处理实验室、图像处理实验室、阵列信号处理实验室等四个专业实验室,以及通信原理与数字通信实验室、信号与系统实验室、通信电子电路实验室、EDA实验室和电磁场与微波实验室等五个教学实验室。通信工程专业代码:0810,分为两个学科,一个是偏向于传输的“通信与信息系统(081001)”,另一个是偏向于编解码的“信号与信息处理(081002)”。其中“通信与信息系统(081001)”的前身是电机系,交通大学是我国通信与信息系统研究的发祥地;“信号与信息处理(081002)”的前身是信息论系,西安电子科技大学是我国信号与信息处理的发祥地。(1)通信与信息系统(081001)1909年交通大学首开“无线电”科,开创了中国培养通信人才的先河,后来又成立了电信系,这里走出了简水生院士等一大批知名学者。交通大学于1917年在电机工程专业内设立“无线电门”,此后,于1921年设立“有线通信与无线通信门”。1952年院系调整后,成立了“电信系”。清华大学于1934年在电机系设立电讯组。1952年,清华大学、北京大学两校电机系的电讯组合并后成立了清华大学无线电工程系。这可以说是通信工程专业的类型。这一时期较有影响的人物如清华大学的任之慕、朱兰成、章名涛、叶楷、范绪筠、张钟俊等教授。建国初期,这一时期分别有张恩虬、王守武、胡汉泉、吴鸿适、王迁等学者活跃在本专业的教学领域。(2)信号与信息处理(081002)我国电子通信行业的奠基人和开拓者、电影《永不消逝的电波》主人公李侠的原型、1955年开国中将、西安电子科技大学创始人兼首任校长王诤在无线电通信方面做了开创性的贡献,他创建了我军无线电通信、无线电侦察和红色的新闻广播事业、气象事业,以及我国电子工业和人民邮电事业。1952年中国人民解放军事电信工程学院(现西安电子科技大学前身)首开“信息论系”和“雷达工程系”,开创了中国培养通信信息处理人才的先河。1952年中国科学院院士、电子专家毕德显和中国工程院院士、电子专家孙俊仁一起在西电创建了中国第一个雷达工程系,我国知名通信系统工程专家陈太一创建了中国第一个信息论系。后来又成立了通信工程学院和电子工程学院,这里走出了王中林院士、国际GSM奖获得者李默芳等一大批知名学者。主要课程信息与通信工程系拥有信息与通信工程一级学科,下设有通信与信息系统、信号与信息处理、电磁场与微波技术三个二级学科,硕士研究生按二级学科进行培养。力求培养掌握坚实的基础理论和系统深入的专业知识,具有很强的系统设计、技术开发的能力、与从事科学研究的能力,能把握研究方向的最新科技发展动态,高水平综合素质的信息与通信领域的高级专门人才。通信与信息系统无线通信理论与应用、数据传输理论及应用、交换及宽带网络、阵列信号处理理论与应用、无此传感器网络、光纤通信、卫星通信理论与应用信号与信息处理数字图像分析与处理、图像视频压缩编码、图像视频网络传输控制与检索管理、多媒体探测和测控中德信号与信息处理、阵列信号处理。电磁场与微波技术瞬态电磁场理论及其应用,宽带天线及超宽带天线。主干课程为:数理统计、随机过程、数字信号处理、信息论与编码,信号检测与估值、通信网络理论及其应用、数字图象处理、天线无线电波传播以及微波有源与无源电路原理。信息与通信工程系博士研究生按信息与通信工程一级学科培养,力求培养博士生成为在无线通信理论、AdHoc组网、无线传感器网络、地球物理勘探阵列信号处理,相空间波传播与成像、模式识别、多媒体和图像信息与信号处理、电磁场与微波等方面,掌握坚实宽广的基础理论和系统深入的专业知识,具有很强的独立从事科学研究的能力,组织科学研究和技术开发的能力,与从事专业教学的能力,并能把握本学科的研究方向与最新科技发展动态,能在信息与通信工程领域发挥学术带头人作用的高级专门人才。主要研究方向为:智能天线系统,宽带码分多址理论与技术,无线通信测试与仿真评估,下一代网络无线接入多输入多输出系统关键技术,AdHoc网络及无线传感器网络,图像及多维信息的分析处理与传输,认知无线电,地球物理勘探阵列信号处理,相空间波传播与成像,卫星移动视频和多媒体数据广播。主干课程为:泛函分析及应用、矩阵分析、信息论与编码,通信网络理论及其应用、高等电磁理论、天线无线电波传播、时频分析及其在工程中的应用以及神经网络理论及其应用。教育部一级学科代码及名称:0810 信息与通信工程(2007年)学校代码及名称 整体水平排名 得分 10003 清华大学 1 10010701 西安电子科技大学 2 9410013 北京邮电大学 3 9290002 国防科学技术大学 10007 北京理工大学 5 8810248 上海交通大学 10614 电子科技大学 10001 北京大学 8 8710006 北京航空航天大学 10286 东南大学 10004 北京交通大学 11 8410487 华中科技大学 12 8110213 哈尔滨工业大学 13 8010335 浙江大学 10698 西安交通大学 15 7710486 武汉大学 16 7610699 西北工业大学 10141 大连理工大学 18 7510056 天津大学 19 7410358 中国科学技术大学 10561 华南理工大学 10613 西南交通大学 10288 南京理工大学 23 7390005 解放军信息工程大学 90006 解放军理工大学 10280 上海大学 26 7210497 武汉理工大学 10027 北京师范大学 28 7010422 山东大学 10217 哈尔滨工程大学 30 6910617 重庆邮电学院 10110 中北大学 32 6810287 南京航空航天大学 10459 郑州大学 10033 中国传媒大学 35 6610294 河海大学 10300 南京信息工程大学 10079 华北电力大学 38 6411318 江西科技师范学院 39 6311664 西安邮电学院 10356 中国计量学院 41 61招生院校博士一级学科招生单位(一级学位指教育部批准,各单位可按一级学位或在一级学位下的任何二级学位授予博士和硕士学位。也就是说能同时在通信与信息系统﹑信号与信息处理专业招收博士和硕士,说明该校在通信和信号很有实力的)标注Y者为2006 新增学位授权点;标注Z者为2010 新增学位授权点北京大学北京航空航天大学北京交通大学北京理工大学北京邮电大学长春理工大学 Z大连海事大学 Z大连理工大学 Y电子科技大学东北大学 Z东南大学国防科学技术大学哈尔滨工程大学哈尔滨工业大学海军航空工程学院海南大学 Z河海大学 Z合肥工业大学 Z华南理工大学华中科技大学解放军电子工程学院 Y解放军理工大学解放军信息工程大学空军工程大学空军雷达学院 Z南京大学 Z南京航空航天大学南京理工大学南京邮电大学宁波大学 Z清华大学山东大学 Y上海大学上海交通大学深圳大学 Z四川大学 Y天津大学武汉大学 Y武汉理工大学 Y西安电子科技大学西安交通大学西北工业大学西南交通大学厦门大学 Z云南大学 Z浙江大学郑州大学 Z中北大学 Z中国传媒大学 Z中国科学技术大学中国科学院研究生院中国矿业大学 Z中山大学 Z重点学科院校拥有信息与通信工程国家一级重点学科的高校:清华大学,北京协和医学院—清华大学医学部北京交通大学北京理工大学北京邮电大学东南大学电子科技大学西安电子科技大学国防科学技术大学拥有通信与信息系统国家二级重点学科的高校(不含已拥有信息与通信工程国家一级重点学科的高校):北京大学北京航空航天大学天津大学哈尔滨工业大学上海交通大学浙江大学中国科学技术大学华南理工大学解放军信息工程大学解放军理工大学

信号检测与估计论文总结

《信号检测与估计》是张立毅编著的图书,共分12章,系统地介绍了信号检测与估计的基本理论。首先阐述了本课程的基础理论、随机信号分析及其统计描述。其次,介绍了经典检测、确知信号检测、随机参量信号检测、多重信号检测,以及序贯检测等基本检测理论和方法。最后,介绍了经典估计、信号参量估计、信号波形估计(维纳滤波、卡尔曼滤波和自适应滤波),以及功率谱估计等基本估计理论及方法。

信号检测理论的具体应用信号检测理论的最大特点在于:它提出了信号和噪音的概念,并将两者置于同一维度上组成两个具有重叠部分的分布。所以,信号检测理论不同于“全或无”的其他心理物理学理论,它可以与决策行为相结合,在心理物理与其它心理学领域之间提供联系。信号检测论作为心理学方法论的进步,不仅仅局限于研究阈限,还能够成为研究一般情况下人们对环境事件的决策的有效工具。信号检测理论的应用包括再认记忆的研究、痛觉研究、诊断测验等等。再认记忆在心理学研究中,“连续—非连续”的问题始终存在。核心的问题就是:心理过程究竟是在某一个连续体上变化,还是在相互分离的阶梯上变化?多年以来心理学家一直关心学习过程是全或无的还是连续的,学习曲线是否意味着一个个学习中的独立的微小增长,还是代表了整个学习的逐渐连续的增加?再认记忆中也有相似的问题:某事物被再认得条件究竟是其强度超过某一个阈限,而在此阈限下的记忆强度为零?还是其强度要超过记忆强度连续体上的某一个标准?按照再认记忆的信号检测论假设,新旧项目再记忆强度的连续体上形成两个互相重叠的正态分布。通过在不同的试验中诱导被试变化判断标准,可以得到对应的不同的集中率与虚惊率,并可以根据它们描出类似于ROC曲线的图样,称为MOC(记忆操作特征)曲线。假如信号检测论假设是正确的,那么MOC在以比率为坐标时应该是曲线,而在以z分数为坐标时呈现为直线。在再认记忆的非连续模型中,假定存在一个记忆强度的阈限,阈上项目总有再认反应,而阈下项目只有靠猜测才出现再认。按照这个模型,MOC在以比率为坐标时应当是直线。实验结果显示MOC形态符合再认记忆的信号检测论假设。信号检测论对再认记忆的良好解释使得此领域中的研究方法有重大进展。运用信号检测论,可以验证各种已知的影响再认记忆的因素,诸如:年龄、脑损伤、药物等,究竟影响了人们对新旧事物进行分辨的能力,还是改变了人们判断新旧的标准。例如:具体的应用发现,大麻能够同时降低再认记忆的分辨力和再认记忆的判断标准。另一个例子是,在临床上抑郁症和老年痴呆患者都会表现出记忆力的衰退。当某位病患表现出记忆衰退的症状,如何诊断其究竟是抑郁症患者还是智力减退呢?运用信号检测论的研究发现,抑郁和痴呆对再认记忆产生影响的方式是不同的。抑郁能够使再认记忆的判断标准升高,这可能是因为抑郁症患者伴随有严重的自信缺乏,因此他们在做出判断时显得过度保守。而老年痴呆患者则是在新旧项目的分辨力上明显低于对照组,由此可见老年痴呆患者有着确实的记忆损伤。信号检测论区分了以上两种疾患对再认记忆产生的影响,从而有可能使以上症状的区别和诊断精度提高。另外,有研究运用信号检测论方法发现,头部外伤引起的脑损伤者在再认记忆中同时具有较低的辨别力和较高的判断标准。研究者对此的解释是:脑损伤会导致记忆功能的衰退,而同时由于患者本身意识到自己在记忆方面的缺陷,他们在判断时会更加谨慎。疼痛疼痛是一种通常与组织损伤相伴的不愉快体验,作为一类由刺激引发的经验,它应该是心理物理学的研究对象。但是长久以来对疼痛的研究相对滞后,其中的一个原因在于疼痛并非由单纯刺激引起的简单感觉,它是感觉反应与情绪反应的混合物,因此很难准确地预测某个刺激会引起多大的痛觉。由此导致人们应用信号检测论的方法,去了解影响疼痛判断的各个因素分别作用于疼痛的那一个组成部分,是影响感觉成分的敏感程度,还是影响判断疼痛大小的标准位置。举例来说,用信号检测论方法可以分析镇痛药究竟是抑制了感觉输入,还是影响了情绪唤起,或是两者兼而有之?信号检测论在痛觉研究中的首次尝试是针对安慰剂的镇痛效果,实验证明服用安慰剂诱导被试的痛觉判断标准上升,而对不同强度刺激的分辨力并未受到影响。因此,尽管在服用安慰剂后被试对痛觉强度的报告变小了,但他们对疼痛的敏感性却没有受到影响。他们的这种报告上的变化可能是由于他们认为别人期望自己少报告一些疼痛。信号检测论的应用还发现镇静剂的镇痛作用和安慰剂一样,它们对疼痛辨别力并没有显著影响;笑气则是恰恰相反的例子,这种常用的麻醉气体可以同时降低疼痛的辨别力并提高疼痛判断的标准。另有人发现,针刺疗法在镇痛上的效果和笑气一致,也能降低疼痛的辨别力。最后,年龄对痛觉也会有影响,运用信号检测论可发现人们对痛的辨别能力岁年龄增长而逐渐衰退,而年长者同时会具有设立较高痛觉判断标准的倾向,这可能是因为他们不愿意时常报告刺激引起了痛觉。诊断测试临床诊断所做出的决定是十分重要的,但是这些判断往往并不准确。近来信号检测论的方法被应用于研究医生如何做出有否疾病的判断。研究者比较了诊断乳腺癌和肺结核的两种方法:直接观察x光照片和通过电视观察图像,使用d’作为信号检测论的区分指标。结果显示直接观察x光照片具有更高的辨别力,因此它是一种较好的诊断方法。另一个例子是诊断脑损伤的两种常见方法:计算机层描(CT)和放射性同位素(RN)。在这个研究中,CT和RN专业诊断人员各6名对136名病人做了检查,其中某些病人已知具有脑损伤,而另一些则没有。12名被试对他们每一次判断都在一个五点量表上报告确定程度,由此可以建立两种不同诊断方法的ROC曲线。曲线下的面积代表了对应诊断方法的鉴别能力,从中发现CT的鉴别效果更优于RN。运用信号检测论分析的实验结果还显示,诊断者所采用的诊断标准对诊断结果有显著的影响,这体现在集中率与虚报率的变化上。有研究者运用信号检测论对临床诊断行为中的判断标准最优化做出了解释,认为诊断标准受到疾病发生与不发生概率(信号与噪音的先验概率)以及确诊和误诊带来的利弊(支付阵)的影响。此外,信号检测论研究也运用在帮助人工智能的决策系统在所收集的信息中结合可能方法选择最优化的得决定标准,从而作出最优化的判断。例如NASA在90年代初期就开始将信号检测论分析运用于飞行器的碰撞规避警告系统的设计中。总结信号检测理论的实际应用价值,在于现实中的许多现象并非简单的存在着某些明显的界限,来区分不同属性的多种状态,例如记得与不记得、痛与不痛、有症状和无症状。当假设这些不同的状态在某个连续维度上有区别,并且不同状态的无数次观察分别形成重叠的正态分布,就可以利用信号检测理论来分离不同状态的差异距离和判断状态变化的标准,进一步也可能利用这些信息做到对状态判别的最优化

随机过程是基础,就是了解和认识随机现象,并学习随机过程中的相关定理,目的是为学习其它知识打下基础。信号检测与估计可以说是随机过程的一个应用,前提是要有些随机过程的背景知识学起来才比较容易,统计信号处理也是随机过程的一个应用,侧重信号处理,就是用统计方法解决问题,随机过程的应用很广,不光是信号方面的,在整个科学技术里都很重要。随机过程关于教材的话,还没有遇到比较好的,个人认为看国外的比较好,中译版也可以,因为通俗易懂,信号检测和统计信号处理其实都差不多。

一个是最佳判决问题一个是估计量问题

信号检测与估计的相关论文

生物医学信号处理方法论文

生物医学信号处理是指据生物医学信号特点,应用信息科学的基本理论和方法,研究如何从扰和噪声淹没的观察记录中提取各种生物医学信号中所携带的信息,并对它们进步分析、解释和分类。以下是我精心准备的生物医学信号处理方法论文,大家可以参考以下内容哦!

摘 要: 生物医学信号是人体生命信息的集中体现,深入进行生物医学信号检测与处理的理论与方法的研究对于认识生命运动的规律、探索疾病预防与治疗的新方法都具有重要的意义。

关键词: 生物医学信号 信号检测 信号处理

1 概述

1。1 生物医学信号及其特点

生物医学信号是一种由复杂的生命体发出的不稳定的自然信号,属于强噪声背景下的低频微弱信号,信号本身特征、检测方式和处理技术,都不同于一般的信号。生物医学信号可以为源于一个生物系统的一类信号,这些信号通常含有与生物系统生理和结构状态相关的信息。生物医学信号种类繁多,其主要特点是:信号弱、随机性大、噪声背景比较强、频率范围一般较低,还有信号的统计特性随时间而变,而且还是非先验性的。

1。2 生物医学信号分类

按性质生物信号可分为生物电信号(Bioelectric Signals),如脑电、心电、肌电、胃电、视网膜电等;生物磁信号(Biomagnetic Signals),如心磁场、脑磁场、神经磁场;生物化学信号(Biochemical Signals),如血液的pH值、血气、呼吸气体等;生物力学信号(Biomechanical Signals),如血压、气血和消化道内压和心肌张力等;生物声学信号(Bioacoustic Signal),如心音、脉搏、心冲击等。

按来源生物医学信号可大致分为两类:(1)由生理过程自发产生的主动信号,例如心电(ECG)、脑电(EEG)、肌电(EMG)、眼电(EOG)、胃电(EGG)等电生理信号和体温、血压、脉博、呼吸等非电生信号;(2)外界施加于人体、把人体作为通道、用以进行探查的被动信号,如超声波、同位素、X射线等。

2 生物医学信号的检测及方法

生物医学信号检测是对生物体中包含的生命现象、状态、性质和成分等信息进行检测和量化的技术,涉及到人机接口技术、低噪声和抗干扰技术、信号拾取、分析与处理技术等工程领域,也依赖于生命科学研究的进展。信号检测一般需要通过以下步骤(见图1)。

①生物医学信号通过电极拾取或通过传感器转换成电信号;②放大器及预处理器进行信号放大和预处理;③经A/D转换器进行采样,将模拟信号转变为数字信号;④输入计算机;⑤通过各种数字信号处理算法进行信号分析处理,得到有意义的结果。

生物医学信号检测技术包括:(1)无创检测、微创检测、有创检测;(2)在体检测、离体检测;(3)直接检测、间接检测;(4)非接触检测、体表检测、体内检测;(5)生物电检测、生物非电量检测;(6)形态检测、功能检测;(7)处于拘束状态下的生物体检测、处于自然状态下的生物体检测;(8)透射法检测、反射法检测;(9)一维信号检测、多维信号检测;(10)遥感法检测、多维信号检测;(11)一次量检测、二次量分析检测;(12)分子级检测、细胞级检测、系统级检测。

3 生物医学信号的处理方法

生物医学信号处理是研究从扰和噪声淹没的信号中提取有用的生物医学信息的特征并作模式分类的方法。生物医学信号处理的目的是要区分正常信号与异常信号,在此基础上诊断疾病的存在。近年来随着计算机信息技术的飞速发展,对生物医学信号的处理广泛地采用了数字信号分析处理方法:如对信号时域分析的相干平均算法;对信号频域分析的快速傅立叶变换算法和各种数字滤波算法;对平稳随机信号分析的功率谱估计算法和参数模型方法;对非平稳随机信号分析的短时傅立叶变换、时频分布(维格纳分布)、小波变换、时变参数模型和自适应处理等算法;对信号的非线性处理方法如混沌与分形、人工神经网络算法等。下面介绍几种主要的处理方法。

3。1 频域分析法

信号的频域分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而将时间变量转变成频率变量,帮助人们了解信号随频率的变化所表现出的特性。信号频谱X(f)描述了信号的频率结构以及在不同频率处分量成分的大小,直观地提供了从时域信号波形不易观察得到频率域信息。频域分析的'一个典型应用即是对信号进行傅立叶变换,研究信号所包含的各种频率成分,从而揭示信号的频谱、带宽,并用以指导最优滤波器的设计。

3。2 相干平均分析法

生物医学信号常被淹没在较强的噪声中,且具有很大的随机性,因此对这类信号的高效稳健提取比较困难。最常用的常规提取方法是相干平均法。相干平均(Coherent Average)主要应用于能多次重复出现的信号的提取。如果待检测的医学信号与噪声重叠在一起,信号如果可以重复出现,而噪声是随机信号,可用叠加法提高信噪比,从而提取有用的信号。这种方法不但用在诱发脑电的提取,也用在近年来发展的心电微电势(希氏束电、心室晚电位等)的提取中。

3。3 小波变换分析法

小波分析是传统傅里叶变换的继承和发展,是20世纪80年代末发展起来的一种新型的信号分析工具。目前,小波的研究受到广泛的关注,特别是在信号处理、图像处理、语音分析、模式识别、量子物理及众多非线性科学等应用领域,被认为是近年来在工具及方法上的重大突破。小波分析有许多特性:多分辨率特性,保证非常好的刻画信号的非平稳特征,如间断、尖峰、阶跃等;消失矩特性,保证了小波系数的稀疏性;紧支撑特性,保证了其良好的时频局部定位特性;对称性,保证了其相位的无损;去相关特性,保证了小波系数的弱相关性和噪声小波系数的白化性;正交性,保证了变换域的能量守恒性;所有上述特性使小波分析成为解决实际问题的一个有效的工具。小波变换在心电、脑电、脉搏波等信号的噪声去除、特征提取和自动分析识别中也已经取得了许多重要的研究成果。

3。4 人工神经网络

人工神经网络是一种模仿生物神经元结构和神经信息传递机理的信号处理方法。目前学者们提出的神经网络模型种类繁多。概括起来,其共性是由大量的简单基本单元(神经元)相互广泛联接构成的自适应非线性动态系统。其特点是:(1)并行计算,因此处理速度快;(2)分布式存贮,因此容错能力较好;(3)自适应学习(有监督的或无监督的自组织学习)。

参考文献

[1] 邢国泉,徐洪波。生物医学信号研究概况。咸宁学院学报(医学版),2006,20:459~460。

[2] 杨福生。论生物医学信号处理研究的学科发展战略。国外医学生物医学工程分册,1992,4(15):203~212。

中国海洋大学(Ocean University of China,OUC),位于山东省青岛市,是一所海洋和水产学科特色显著、学科门类齐全的教育部直属重点综合性大学,是国家“985工程”和“211工程”重点建设的高校,2017年9月入选国家“世界一流大学建设高校”(A类)。学校创建于1924年,历经私立青岛大学、国立青岛大学、国立山东大学、山东大学等办学时期,于1959年发展成为山东海洋学院,1960年被国家确定为全国13所重点综合性大学之一,1988年更名为青岛海洋大学,2002年更名为中国海洋大学。

信息与通信工程是一级学科,下设通信与信息系统、信号与信息处理两个二级学科。培养知识面非常广泛,不仅对数学、物理、电子技术、计算机、信息传输、信息采集和信息处理等基础知识有很高的要求,而且要求学生具备信号检测与估计、信号分析与处理、系统分析与设计等方面的专业知识和技能,使学生具有从事本学科领域科学研究的能力。

为适应我国社会主义建设的需要,本专业培养德、智、体全面发展的信息与通信工程领域的科学研究、工程技术专门人才和高等学校师资力量。在信号理论、通信系统方面掌握坚实的基础理论、系统的专门知识和必要的实验技能,熟悉所从事研究方向的科学技术的发展动向,掌握一门外国语,能熟练地进行专业阅读并能撰写论文摘要,具体从事本学科领域内科学研究,及教学工作的能力或独立从事实际工作的专门技术水平,具有实事求是,严谨的科学作风。

信息与通信工程专业培养具有扎实的通信理论与系统、信息传输与处理技术、电子技术及计算机应用技术等方面的理论基础知识,系统学习航空通信、移动通信和网络通信等方向的专业课程,掌握现代通信网络应用、数据传输设计和航空通信技能的复合型高级工程技术人才。

教育部学科评估是教育部官方按照国务院学位委员会的要求对全国各高校的所有一级学科进行的综合性排名,是评价大学的唯一具有官方性质的排名,分别于2002年、2007年、2012年进行了三次。

信息领域主要的一级学科共有4个,分别是:0809电子科学与技术、0810信息与通信工程、0811控制科学与工程、0812计算机科学与技术。这四个一级学科覆盖面广、积淀深厚、发展迅速、热门度高、开设广泛,是信息领域的核心学科,也是中国各大高校——尤其是C9高校和其他985高校重点发展的对象,因而竞争极其激烈。此外,0803光学工程、0835软件工程这两个小学科也属于信息领域。

关于考研择校和定专业选择中国海洋大学946信号与系统的原因主要有以下原因:信号与系统这门课相对简单,题型数量有限,只要把基础知识学好,题量刷够之后较为容易。中国海洋大学身处985高校位置,资源平台更好,并且是985高校中较为容易上岸的一所高校。3)中国海洋大学对于非985/211的歧视更小,自我感觉并无歧视。

考研政治:建议十二月前每天都朗读知识点,背诵关键知识点,并且刷选择题,在十二月之前不要动分析题,到了十二月全力背分析题(肖四肖八)。

考研数学一:数学作为能否上岸的关键学科建议付出50%以上的时间和精力,具体复习时间节点规划如下:1)在九月之前,最好八月中旬之前完成所有内容的复习并做好一定的练习(达到可以做真题的水平)2)开始刷真题(最好八月中就开始,越早越好),从最开始的年份开始刷(相对简单),如果感觉十分困难,那么就先暂停,去重新把认为困难的地方复习好了再重新继续刷,反复这个过程之后会越刷越顺畅,越刷越自信。另外推荐数一同学时间充足的话可以把数二的三十多套真题也刷了,因为真题的参考价值肯定要比参考书更高,把时间放在真题上更合理。3)十一月前完成所有真题之后,等待模拟题的公布,建议刷李林四套卷和李林六套卷(难度符合考研),张宇、汤家凤等人的预测卷很难,时间够就刷,但是不要自我打击,因为确实难度远高于考研。

专业课946信号与系统:1)强烈建议先学《信号与线性系统分析》吴大正版本,我们当时学习的是第四版,现在推出了第五版,因为第四版中有几处内容错误,应该是在第五版进行的订正,所以推荐学习第五版。学习的过程中可以看西电郭宝龙老师的视频(基础)以及西电李学武老师的视频(考研进阶),边看视频边学课本,学完之后把课后题做完,建议做两遍加深印象;2)再把吴大正版本的教材学习完毕之后,建议找一些其它学校的信号与系统考研真题来练习,到了练习真题练习得差不多的时候再使用中国海洋大学的真题(原因是海大真题年份较少,参考价值最大,省着点用,最后使用还可以起到测评自己水平的作用);3)在刷完海大以及其它高校的信号与系统真题,已经有了夯实的基础知识和解题水平之后之后,建议开始学习《信号与系统(第二版)》--奥本海姆版本。

(建议在十一月开始此步骤并在十二月之前完成)原因在于中国海洋大学本科生学习的信号与系统教材是奥本海姆的版本,所以对于出考研试题有着很大的影响,无独有偶,在2018/2020年均在考研试题上出现了奥本海姆版本教材的课后习题,连数字都没改,只要做过,就可以秒杀,所以奥本海姆的课后习题一定要做。

复试准备经验2029年学硕复试线343分,进入复试24人,录取19人,比例约80%(注:不包含保研生)。

复试准备过程要从课本基础着手,选择《通信原理(第七版)》—樊昌信版本,注重基础,刷好课后题即可,不放心的话可以找一些其它题目来做,但是按照往年难度来讲,就是课后题的难度,另外书中基础概念一定要搞清楚搞明白,面试的时候很有可能问其中的基础概念,让你做一些论述,复试整体并非十分难,但是课本一定要学明白,另外想提醒学弟学妹,不要担心自己本科履历不好而影响复试,在这方面海大基本没有歧视,只要沉着冷静,回答得体,也可以在复试取得高分。

还有考研是有雷区的,这个人人都知道!但你真得清楚考研有哪些雷区吗?今天,我们就来说说,那些我们应该知道的考研雷区!希望大家在知道这些雷区之后,能够躲过这些雷区,提高复习效率!让我们更好地投入到考研复习之中。

雷区1:专硕比学硕容易

这个绝对是误会!

由于专硕学制比学硕短,更适合就业发展的专业设置,报考专硕的人数就多,这就造成了专硕比学硕压力更大。

此外,除了专硕的英语二确实比英语一要简单那么一点点外,专业课难度也是不小的。所以,我们不能一概而论专硕比学硕更容易些。

雷区2:公共课并不难

很多考生在复习的时候,往往觉得专业课更难一些,因此在专业课复习上,就花费了更多时间和精力。

尤其是文科出身的同学,往往错以为自己之前一直学过考研政治的相关内容,觉得考研政治提前背一背,做一做预测卷就可以考出好成绩了!但最终是很多同学考研专业课都过分数线了,但是考研政治和考研英语并不理想,最后与理想院校专业失之交臂。

所以,大家一定要牢记——公共课并不简单,千万不要大意轻敌。

雷区3:普通高校的学生会被歧视

在考研推免过程之中,院校歧视是存在的,但是如果你专业知识足够扎实的话,你依然可以用实力来证明自己。

但在全国统招考研初试中,你的专业课成绩说明你的真实实力,只要你对专业课知识掌握得十分扎实,通过了复试。

到时候,普通高校出身的你,会不会被老师歧视,大家先不用着急,那是复试阶段的事情了。我们首先要通过初试,获得复试机会。

雷区4:复习时间越长越好

很多人觉得我复习时间越长越好,但是忽略了复习时间安排和复习效率的重要性!

如果没有可行的复习时间安排表,我们很快就会在复习中,感受到倦怠,没有目标,进而也就没有了复习效率。

没有复习效率,就像题海战术一样,都是在做无用功,大大浪费了我们宝贵的复习时间,影响我们复习精力的合理利用。

雷区5:复习三个月就可以了

很多同学迷信“临时抱佛脚”,因为用三个月的时间,就可以复习好考研专业课和公共课的内容,却忽略了考研并非期末考试。

期末考试考查的是我们对一个学期学到的知识的掌握程度,而考研是检验我们对大学四年学科相关内容的掌握程度。

所以,仔细想想,就可以知道考研涉及到的知识点数量是多么的庞大。那么,希望自己三个月就能复习好,有一点痴心妄想,并且并不可行!

雷区6:不用太在意考研大纲

很多人复习的时候,常常会闭门造车,因为只要看课本和复习参考书,就可以不用看考研大纲了!

其实,这种想法是非常错误的。每年的考研大纲都略有不同,而这不同,很有可能成为今年考研的变动之处。

所以,面对考研大纲,不要大意,要仔细研读,根据考研大纲,我们是可以预测今年的考试范围。

雷区7:做笔记=抄书

其实考研复习期间的笔记,有多种形式,有梳理知识点和框架的考点总结笔记,有记录错题的错题集,有总结考研重难点考点的笔记。

笔记虽然多种多样,但是无论是哪一种笔记,都不是对于教科书的简单抄录,笔记是我们对于知识点内容的总结归纳和提炼。

如果大家认为笔记只是抄书的话,那么我们也没有必要做笔记;同时,很多人做笔记,并没有效果,也就有了原因。

雷区8:真题不会再考

很多同学一度误以为考过的真题不会再考,所以对真题也就没有那么重视了!

但其实是,一个学科虽然知识点众多,但是它的重难点内容还是相对固定的,这些重难点内容往往又会放在主观题里进行考查。

所以,我们在复习真题的时候,一定要吃透真题,做到举一反三,让自己即使再次面对真题,也不会不知道该如何解答。

雷区9:不做主观题没有关系的

主观题尤其在专业课里占分数很高。但很多同学在主观题复习上,往往不如做选择题更上心,很多同学在考前,都没有真真正正做过几次主观题。

最后在考场上,面对主观题,大家一肚子知识点,却不知道该如何组织语言,把得分点写出来。

所以,我们在复习的时候,一定要多练手,多做主观题,熟悉解题思路,逐步培养咱们的答题能力。

以上就是大家在考研复习时,比较多的碰到的雷区,希望大家复习的时候,能够完美躲过这些雷区,考上理想的院校专业。

最后个人建议考研如同逆水行舟,不进则退,希望学弟学妹们每天把自己的学习时间提上来,认真准备,考海大并不难,对手只有自己,我上岸之前也很担心能否考上,就问我本科的老师,老师对我说“只要你扪心自问,你付出的够多,不敢说结果好不好,但是一定会对得起你的付出。”一分耕耘一分收获,希望大家充满信心迎接考研,诚祝考研成功。

信号检测与估计的应用总结论文

随机过程是基础,就是了解和认识随机现象,并学习随机过程中的相关定理,目的是为学习其它知识打下基础。信号检测与估计可以说是随机过程的一个应用,前提是要有些随机过程的背景知识学起来才比较容易,统计信号处理也是随机过程的一个应用,侧重信号处理,就是用统计方法解决问题,随机过程的应用很广,不光是信号方面的,在整个科学技术里都很重要。随机过程关于教材的话,还没有遇到比较好的,个人认为看国外的比较好,中译版也可以,因为通俗易懂,信号检测和统计信号处理其实都差不多。

信号检测理论的具体应用信号检测理论的最大特点在于:它提出了信号和噪音的概念,并将两者置于同一维度上组成两个具有重叠部分的分布。所以,信号检测理论不同于“全或无”的其他心理物理学理论,它可以与决策行为相结合,在心理物理与其它心理学领域之间提供联系。信号检测论作为心理学方法论的进步,不仅仅局限于研究阈限,还能够成为研究一般情况下人们对环境事件的决策的有效工具。信号检测理论的应用包括再认记忆的研究、痛觉研究、诊断测验等等。再认记忆在心理学研究中,“连续—非连续”的问题始终存在。核心的问题就是:心理过程究竟是在某一个连续体上变化,还是在相互分离的阶梯上变化?多年以来心理学家一直关心学习过程是全或无的还是连续的,学习曲线是否意味着一个个学习中的独立的微小增长,还是代表了整个学习的逐渐连续的增加?再认记忆中也有相似的问题:某事物被再认得条件究竟是其强度超过某一个阈限,而在此阈限下的记忆强度为零?还是其强度要超过记忆强度连续体上的某一个标准?按照再认记忆的信号检测论假设,新旧项目再记忆强度的连续体上形成两个互相重叠的正态分布。通过在不同的试验中诱导被试变化判断标准,可以得到对应的不同的集中率与虚惊率,并可以根据它们描出类似于ROC曲线的图样,称为MOC(记忆操作特征)曲线。假如信号检测论假设是正确的,那么MOC在以比率为坐标时应该是曲线,而在以z分数为坐标时呈现为直线。在再认记忆的非连续模型中,假定存在一个记忆强度的阈限,阈上项目总有再认反应,而阈下项目只有靠猜测才出现再认。按照这个模型,MOC在以比率为坐标时应当是直线。实验结果显示MOC形态符合再认记忆的信号检测论假设。信号检测论对再认记忆的良好解释使得此领域中的研究方法有重大进展。运用信号检测论,可以验证各种已知的影响再认记忆的因素,诸如:年龄、脑损伤、药物等,究竟影响了人们对新旧事物进行分辨的能力,还是改变了人们判断新旧的标准。例如:具体的应用发现,大麻能够同时降低再认记忆的分辨力和再认记忆的判断标准。另一个例子是,在临床上抑郁症和老年痴呆患者都会表现出记忆力的衰退。当某位病患表现出记忆衰退的症状,如何诊断其究竟是抑郁症患者还是智力减退呢?运用信号检测论的研究发现,抑郁和痴呆对再认记忆产生影响的方式是不同的。抑郁能够使再认记忆的判断标准升高,这可能是因为抑郁症患者伴随有严重的自信缺乏,因此他们在做出判断时显得过度保守。而老年痴呆患者则是在新旧项目的分辨力上明显低于对照组,由此可见老年痴呆患者有着确实的记忆损伤。信号检测论区分了以上两种疾患对再认记忆产生的影响,从而有可能使以上症状的区别和诊断精度提高。另外,有研究运用信号检测论方法发现,头部外伤引起的脑损伤者在再认记忆中同时具有较低的辨别力和较高的判断标准。研究者对此的解释是:脑损伤会导致记忆功能的衰退,而同时由于患者本身意识到自己在记忆方面的缺陷,他们在判断时会更加谨慎。疼痛疼痛是一种通常与组织损伤相伴的不愉快体验,作为一类由刺激引发的经验,它应该是心理物理学的研究对象。但是长久以来对疼痛的研究相对滞后,其中的一个原因在于疼痛并非由单纯刺激引起的简单感觉,它是感觉反应与情绪反应的混合物,因此很难准确地预测某个刺激会引起多大的痛觉。由此导致人们应用信号检测论的方法,去了解影响疼痛判断的各个因素分别作用于疼痛的那一个组成部分,是影响感觉成分的敏感程度,还是影响判断疼痛大小的标准位置。举例来说,用信号检测论方法可以分析镇痛药究竟是抑制了感觉输入,还是影响了情绪唤起,或是两者兼而有之?信号检测论在痛觉研究中的首次尝试是针对安慰剂的镇痛效果,实验证明服用安慰剂诱导被试的痛觉判断标准上升,而对不同强度刺激的分辨力并未受到影响。因此,尽管在服用安慰剂后被试对痛觉强度的报告变小了,但他们对疼痛的敏感性却没有受到影响。他们的这种报告上的变化可能是由于他们认为别人期望自己少报告一些疼痛。信号检测论的应用还发现镇静剂的镇痛作用和安慰剂一样,它们对疼痛辨别力并没有显著影响;笑气则是恰恰相反的例子,这种常用的麻醉气体可以同时降低疼痛的辨别力并提高疼痛判断的标准。另有人发现,针刺疗法在镇痛上的效果和笑气一致,也能降低疼痛的辨别力。最后,年龄对痛觉也会有影响,运用信号检测论可发现人们对痛的辨别能力岁年龄增长而逐渐衰退,而年长者同时会具有设立较高痛觉判断标准的倾向,这可能是因为他们不愿意时常报告刺激引起了痛觉。诊断测试临床诊断所做出的决定是十分重要的,但是这些判断往往并不准确。近来信号检测论的方法被应用于研究医生如何做出有否疾病的判断。研究者比较了诊断乳腺癌和肺结核的两种方法:直接观察x光照片和通过电视观察图像,使用d’作为信号检测论的区分指标。结果显示直接观察x光照片具有更高的辨别力,因此它是一种较好的诊断方法。另一个例子是诊断脑损伤的两种常见方法:计算机层描(CT)和放射性同位素(RN)。在这个研究中,CT和RN专业诊断人员各6名对136名病人做了检查,其中某些病人已知具有脑损伤,而另一些则没有。12名被试对他们每一次判断都在一个五点量表上报告确定程度,由此可以建立两种不同诊断方法的ROC曲线。曲线下的面积代表了对应诊断方法的鉴别能力,从中发现CT的鉴别效果更优于RN。运用信号检测论分析的实验结果还显示,诊断者所采用的诊断标准对诊断结果有显著的影响,这体现在集中率与虚报率的变化上。有研究者运用信号检测论对临床诊断行为中的判断标准最优化做出了解释,认为诊断标准受到疾病发生与不发生概率(信号与噪音的先验概率)以及确诊和误诊带来的利弊(支付阵)的影响。此外,信号检测论研究也运用在帮助人工智能的决策系统在所收集的信息中结合可能方法选择最优化的得决定标准,从而作出最优化的判断。例如NASA在90年代初期就开始将信号检测论分析运用于飞行器的碰撞规避警告系统的设计中。总结信号检测理论的实际应用价值,在于现实中的许多现象并非简单的存在着某些明显的界限,来区分不同属性的多种状态,例如记得与不记得、痛与不痛、有症状和无症状。当假设这些不同的状态在某个连续维度上有区别,并且不同状态的无数次观察分别形成重叠的正态分布,就可以利用信号检测理论来分离不同状态的差异距离和判断状态变化的标准,进一步也可能利用这些信息做到对状态判别的最优化

高速铁路信号是高速列车安全、高密度运行的基本保障。下面是我整理的高速铁路信号技术论文,希望你能从中得到感悟!

基于无线通信技术的高速铁路信号系统应用

摘 要

高速铁路信号系统是高速列车安全、高密度运行的基本保障。无线通信技术在铁路信号系统的应用,不但减少了高速铁路的信号系统成本,还较好的确保了高速铁路的安全。随着科学技术的进步,高速铁路不断的向着智能信息化转变,这就给无线通信技术领域提出了更加严格的要求,为了适应高速铁路的快速发展,各国都在潜心研究基于无线通信技术的新一代的铁路信号系统。本文介绍了国外无线通信系统在高速铁路信号系统中的发展情况,分析了运用无线通信技术的高速铁路信号系统的特点和问题,并探讨了无线通信技术在高速铁路信号系统中的应用。

【关键词】无线通信 高速铁路 信号系统

在整个高速铁路工程中,虽然信号系统的投资总额所占比率较小,但其起到的作用十分关键。由于轨道电路传输环境较差、传输信息的速率较低、设备更新维护费用高,所以基于轨道电路的列车控制系统已经不能满足高速铁路的快速发展要求。在80年代,国外开始研究基于无线通信的铁路信号系统TBS(Transmission Based Signalling),希望通过无线通信技术的应用来提高铁路的管理职能、缩短列车间隔时间、节约能源、降低系统的成本。1995年在关于TBS的国际会议中,会议代表分析了无线通信技术在铁路信号系统应用的的可行性,并指出了无线通信技术可能给铁路信号系统带来的积极影响,表明了TBS将会成为未来铁路信号系统的发展方向。

1 国外TBS的发展情况

北美TBS的发展情况

1983年,美国铁道协会和加拿大铁道协会共同最早提出了基于无线通信的先进列车控制系统ATCS。ATCS主要是通过数字数据通信手段和先进的微处理器获取列车的精确位置和速度等信息,并对列车进行安全控制。ATCS的运用不仅避免了很多地面信号设备的安装,节省了系统成本,还消除信号盲区,增强了列车的安全系数。ATCS是由中央控制系统、无线数据通信网络、车载设备、路旁设备和线路维护人员移动终端五个子控制系统构成的。它的系统结构设计和功能模块的划分为以后基于无线通信的铁路信号系统奠定了基础。随着无线通信技术的发展,在ATCS之后北美又出现了很多基于无线通信的铁路信号系统,其中ARES可以提供非常可靠的检查和平衡手段,在很大程度上降低了人为操作失误造成的错误,使列车行驶更加安全。另外,PTS、PTC、AATC、ITCS等系统也是比较著名的。

欧洲TBS的发展情况

1992年国际铁盟下属的欧洲铁路研究机构提出了一套欧洲的铁路运输管理系统,包括车票发售、各国铁路互操作性等多个方面,ETCS就是其中非常重要的一部分。在欧共体委员会设立标准化欧洲铁路控制系统项目ETCS之前,欧洲各国铁路标准和模式不尽相同,轨距、信号设备、供电设备也不一样,因此各国只能使用自己的ATP、ATC系统。各国铁路制式上的差异使得欧洲铁路很难形成连续运输。在设立了标准化欧洲铁路控制系统项目ETCS后,各国的铁路开始逐渐按照统一标准进行规范,并逐渐取代各国不同的列车自动控制系统和防护系统。ETCS的目标就是要实现欧洲铁路的统一,提高各国铁路的互操作性,使铁路控制系统的功能和设备更加规范。

日本TBS的发展情况

在日本铁路信号系统的发展历程中,先后出现了ATS、现行ATC、数字式ATC、计算机和无线通信辅助信息控制系统等。其中现行ATC作为一种列车超速防护系统,以良好的自动制动功能保护了列车的安全。但在系统工作时,采用的最强的自动制动,影响了乘客的舒适程度。在1987年,日本开始基于无线通信的铁路信号系统的研究,为CARAT的出现奠定了坚实的基础。CARAT的使用能够使列车连续测定自身位置和行驶速度,使地面系统能够很好的了解列车运行情况,保证列车的运输安全。

2 TBS的特点和问题

在速度比较高的高速铁路上,距离比较近时,可以采用红外、蓝牙等无线通信技术实现对列车的控制;在距离比较远时,则可以通过全球定位控制系统、信标、计轴装置等来测定列车的速度和位置。车载计算机可以通过无线收发装置将列车的速度、位置信息发送给调度控制计算机,通过调度控制计算机的处理,再将列车允许的最大速度等信息通过无线通信发回给列车计算机。列车司机可以根据车载计算机的提醒进行相应的操作,如果列车司机没有及时作出反应,信息控制系统还可以自行将车速降低到允许范围以内。

TBS的特点

(1)在TBS中,主控中心可以根据列车的运行状态和操作状态通过车载计算机来调整列车的运行,加大了高速铁路信号系统的管理职能,保证了列车的安全,提高了铁路线路的通行能力。

(2)在无线通信信号系统控制下,列车和地面的可靠信息量增大,列车运行变得更加稳定,且避免了不必要的加速和制动,节约了能源,也让旅客乘车变得更加舒适。

(3)无线通信技术的运用,省掉了大量的地面信号装备,大大减少了设备的安装、维护、修整费用。

(4)无线通信信号系统的适应能力极强,通过软件上的调整就可以使列车的运行速度提高,且能够自动调整运行图,大大的提高了铁路运输管理能力。

(5)无线通信信号系统还可以通过车地间的双向信息通道实现列车的闭锁控。

TBS的问题

(1)高铁信号系统使用轨道电路只能使用较低的信息发送频率,传输环境恶劣,很难让电码的传送速率满足高速铁路的运行速度要求。

(2)TBS通过环线设备和应答器件接受数据信息,列车进行操作可能会有时间上的延迟,可能会给列车的运行造成不良的影响。

(3)轨道间的电缆电线作为车地之间的双向信息通道,虽然传输信息量大,抗干扰能力强,但设备费用较高,且防盗能力很差,一旦丢失,后果严重。

3 无线通信技术在高速铁路信号系统中的应用 微机联锁

无线通信技术在微机联锁方面运用的可行性还需进一步研究,但ATCS中提出,可以将检测到的道岔、信号机闭锁状态发送给主控中心,并利用道旁接口单元来接收主控中心的控制命令,以实现控制一组道岔、信号机动作的目的。另外道旁接口单元可以利用无线信道联系控制中心,通过电缆连接现场设备,从而检测并控制一些辅助的子系统。目前看来,无线通信技术用于微机联锁的现场设备可能会增加一些投资,且大型站场道岔众多,干扰较大,但还是具有较好的发展前景。

集中调度

在调度集中系统中,调度中心职要根据车站到发线占用情况和区段内闭塞分区大概了解列车运行的状况,并根据得到的信息排列进路。但利用TBS,控制系统就能够准确的了解列车运行的位置、速度,并根据沿线的信号系统情况发送列车控制命令,保证列车在最短的实践间隔内高速、安全、稳定的运行。无线通信技术赋予列车与控制中心的双线数据通信,给列车的运行带来了很大的方便,且实现了行车指挥自动化。

中继器

在高速铁路的实际运行中,我不可能在所有的高速铁路中都设这无线通信基站,这样不但增加了设备投资,还使无线通信铁路信号系统失去了存在的真正意义。有了中继器,基站就可以通过中继器接受和发送一些射频信号,从而使基站不仅可以管理基站区域范围内的站区,还能够将管理中继器管理的一些车辆和线路。

提高平交道口的通过效率

为了提高平交道口的防护能力和和通过效率,防止由于无线设备故障造成不必要的损失,主控中心按照时间间隔不断的查询道口的运行状态,并将查询信息及时反馈给接近道口的列车。另外主控中心通过接收的列车位置、速度信息,可以计算列车通过道口的时间,并根据实际情况设定列车的最大允许速度和列车运行线路参考。这样,列车通过平交道口就有了安全保障,而且还大大提高了道口的通过效率。

加强维修处防护

在高速铁路某路段需要进行维修时,维修部门可以通过移动终端将维修点输入到系统中,通过主控中心的传送,列车就可以很好的了解路段情况。在实际的运行中,列车可以根据了解到的维修点信息对列车进行操作,另外在列车接近维修点事,移动终端接受到地面系统的警报信号,以保证列车能够及时在维修段之前停车。

4 总结

随着高速铁路的不断发展,要确保列车的安全,先进的信号系统成了高速铁路运行的重中之重。在高速铁路信息系统中,无线通信的运用仍处于初期阶段,在具体的TBS规划时应充分考虑其与全路运输管理系统的接口,使无线通信技术更充分的运用在高速铁路的发展当中。

参考文献

[1]闵耀兴.我国铁路列车安全控制系统的现状[J].哈铁科技通讯,1997(04).

[2]姚丽娟.我国铁路信号系统的现状与发展[J].铁道通信信号,2003(04).

[3]步兵.基于通信的列车控制系统的可靠性分析方法[J].交通运输工程学报,2001(01).

[4]杨绚,陈德旺,陈荣高.速铁路列控系统主动安全控制的分析与思考[J].铁路计算机应用,2012(08).

作者简介

孙屹枫(1982-),男,天津市人。中国民用航空大学大学本科毕业。研究方向:铁路信号。

作者单位

铁道第三勘察设计院集团有限公司电化电信处 天津市 300251

点击下页还有更多>>>高速铁路信号技术论文

围绕自己在那个学校的学习生涯来学- - 我作文不是很好 说说试试 ̄. ̄

信号检测与估计的应用举例小论文

信号检测理论的具体应用信号检测理论的最大特点在于:它提出了信号和噪音的概念,并将两者置于同一维度上组成两个具有重叠部分的分布。所以,信号检测理论不同于“全或无”的其他心理物理学理论,它可以与决策行为相结合,在心理物理与其它心理学领域之间提供联系。信号检测论作为心理学方法论的进步,不仅仅局限于研究阈限,还能够成为研究一般情况下人们对环境事件的决策的有效工具。信号检测理论的应用包括再认记忆的研究、痛觉研究、诊断测验等等。再认记忆在心理学研究中,“连续—非连续”的问题始终存在。核心的问题就是:心理过程究竟是在某一个连续体上变化,还是在相互分离的阶梯上变化?多年以来心理学家一直关心学习过程是全或无的还是连续的,学习曲线是否意味着一个个学习中的独立的微小增长,还是代表了整个学习的逐渐连续的增加?再认记忆中也有相似的问题:某事物被再认得条件究竟是其强度超过某一个阈限,而在此阈限下的记忆强度为零?还是其强度要超过记忆强度连续体上的某一个标准?按照再认记忆的信号检测论假设,新旧项目再记忆强度的连续体上形成两个互相重叠的正态分布。通过在不同的试验中诱导被试变化判断标准,可以得到对应的不同的集中率与虚惊率,并可以根据它们描出类似于ROC曲线的图样,称为MOC(记忆操作特征)曲线。假如信号检测论假设是正确的,那么MOC在以比率为坐标时应该是曲线,而在以z分数为坐标时呈现为直线。在再认记忆的非连续模型中,假定存在一个记忆强度的阈限,阈上项目总有再认反应,而阈下项目只有靠猜测才出现再认。按照这个模型,MOC在以比率为坐标时应当是直线。实验结果显示MOC形态符合再认记忆的信号检测论假设。信号检测论对再认记忆的良好解释使得此领域中的研究方法有重大进展。运用信号检测论,可以验证各种已知的影响再认记忆的因素,诸如:年龄、脑损伤、药物等,究竟影响了人们对新旧事物进行分辨的能力,还是改变了人们判断新旧的标准。例如:具体的应用发现,大麻能够同时降低再认记忆的分辨力和再认记忆的判断标准。另一个例子是,在临床上抑郁症和老年痴呆患者都会表现出记忆力的衰退。当某位病患表现出记忆衰退的症状,如何诊断其究竟是抑郁症患者还是智力减退呢?运用信号检测论的研究发现,抑郁和痴呆对再认记忆产生影响的方式是不同的。抑郁能够使再认记忆的判断标准升高,这可能是因为抑郁症患者伴随有严重的自信缺乏,因此他们在做出判断时显得过度保守。而老年痴呆患者则是在新旧项目的分辨力上明显低于对照组,由此可见老年痴呆患者有着确实的记忆损伤。信号检测论区分了以上两种疾患对再认记忆产生的影响,从而有可能使以上症状的区别和诊断精度提高。另外,有研究运用信号检测论方法发现,头部外伤引起的脑损伤者在再认记忆中同时具有较低的辨别力和较高的判断标准。研究者对此的解释是:脑损伤会导致记忆功能的衰退,而同时由于患者本身意识到自己在记忆方面的缺陷,他们在判断时会更加谨慎。疼痛疼痛是一种通常与组织损伤相伴的不愉快体验,作为一类由刺激引发的经验,它应该是心理物理学的研究对象。但是长久以来对疼痛的研究相对滞后,其中的一个原因在于疼痛并非由单纯刺激引起的简单感觉,它是感觉反应与情绪反应的混合物,因此很难准确地预测某个刺激会引起多大的痛觉。由此导致人们应用信号检测论的方法,去了解影响疼痛判断的各个因素分别作用于疼痛的那一个组成部分,是影响感觉成分的敏感程度,还是影响判断疼痛大小的标准位置。举例来说,用信号检测论方法可以分析镇痛药究竟是抑制了感觉输入,还是影响了情绪唤起,或是两者兼而有之?信号检测论在痛觉研究中的首次尝试是针对安慰剂的镇痛效果,实验证明服用安慰剂诱导被试的痛觉判断标准上升,而对不同强度刺激的分辨力并未受到影响。因此,尽管在服用安慰剂后被试对痛觉强度的报告变小了,但他们对疼痛的敏感性却没有受到影响。他们的这种报告上的变化可能是由于他们认为别人期望自己少报告一些疼痛。信号检测论的应用还发现镇静剂的镇痛作用和安慰剂一样,它们对疼痛辨别力并没有显著影响;笑气则是恰恰相反的例子,这种常用的麻醉气体可以同时降低疼痛的辨别力并提高疼痛判断的标准。另有人发现,针刺疗法在镇痛上的效果和笑气一致,也能降低疼痛的辨别力。最后,年龄对痛觉也会有影响,运用信号检测论可发现人们对痛的辨别能力岁年龄增长而逐渐衰退,而年长者同时会具有设立较高痛觉判断标准的倾向,这可能是因为他们不愿意时常报告刺激引起了痛觉。诊断测试临床诊断所做出的决定是十分重要的,但是这些判断往往并不准确。近来信号检测论的方法被应用于研究医生如何做出有否疾病的判断。研究者比较了诊断乳腺癌和肺结核的两种方法:直接观察x光照片和通过电视观察图像,使用d’作为信号检测论的区分指标。结果显示直接观察x光照片具有更高的辨别力,因此它是一种较好的诊断方法。另一个例子是诊断脑损伤的两种常见方法:计算机层描(CT)和放射性同位素(RN)。在这个研究中,CT和RN专业诊断人员各6名对136名病人做了检查,其中某些病人已知具有脑损伤,而另一些则没有。12名被试对他们每一次判断都在一个五点量表上报告确定程度,由此可以建立两种不同诊断方法的ROC曲线。曲线下的面积代表了对应诊断方法的鉴别能力,从中发现CT的鉴别效果更优于RN。运用信号检测论分析的实验结果还显示,诊断者所采用的诊断标准对诊断结果有显著的影响,这体现在集中率与虚报率的变化上。有研究者运用信号检测论对临床诊断行为中的判断标准最优化做出了解释,认为诊断标准受到疾病发生与不发生概率(信号与噪音的先验概率)以及确诊和误诊带来的利弊(支付阵)的影响。此外,信号检测论研究也运用在帮助人工智能的决策系统在所收集的信息中结合可能方法选择最优化的得决定标准,从而作出最优化的判断。例如NASA在90年代初期就开始将信号检测论分析运用于飞行器的碰撞规避警告系统的设计中。总结信号检测理论的实际应用价值,在于现实中的许多现象并非简单的存在着某些明显的界限,来区分不同属性的多种状态,例如记得与不记得、痛与不痛、有症状和无症状。当假设这些不同的状态在某个连续维度上有区别,并且不同状态的无数次观察分别形成重叠的正态分布,就可以利用信号检测理论来分离不同状态的差异距离和判断状态变化的标准,进一步也可能利用这些信息做到对状态判别的最优化

1等比量表 (1)感觉比例法 要点: 感觉量加倍或减半。 举例: 不同豪朗伯的光强度实验,响度实验。 定律: 斯蒂文斯定律。 (2)数量估计法 要点: 先呈现一个标准刺激,并赋予一个主观数值(如100),然后变化物理刺激的强度,让被试根据刚才的标准刺激,主观估计该刺激的数值。 举例: 气味的强度实验 定律: 斯蒂文斯定律。 2等距量表 (1)感觉等距法 要点: 将一个感觉分成主观上相等距离 举例: 音高 定律: 韦伯,费希纳定律。 (2)差别阈限法 要点: 以绝对阈限为零点,用最小可觉差作为心理物理量表的等距单位制作量表。 定律: 韦伯,费希纳定律 3顺序量表 (1)对偶比较法 要点: 刺激配成对判断。 举例: 颜色爱好的顺序量表。 (2)等级排列法 要点: 许多刺激同时呈现,让许多被试者按照一定标准,把刺激排成顺序。 举例: 天文学家等级排名。 信号检测论的由来 电子侦察系统中的信号检测,与人类感知过程的信号检测联系起来。 信号检测论能够区分辨别力和反应标准,因而可以被用到心理物理实验中。 (一)基本原理 统计学原理 最优决策与判断原则 人在判断信号标准时,受到如下几个因素的影响: 信号和噪音的特点: 1先验概率 2个体判定结果的奖惩的严格程度 正确拒绝的奖励越大,虚报的惩罚越大,判断标准就越高。报准的奖励越大,漏报的惩罚越大,判断标准就越低。 被试因素: 3被试所要达到的目的 如果被试追求最大正确判断的概率,击中和正确拒绝的概率就相等。虚报和漏报的概率也相等,判断标准位于两个分布曲线的交点。 4其他因素 (1)被试者的速度与准确性权衡。 (2)被试有关实验的知识和经验。 (3)被试者的主观预期概率。 (4)系列跟随效应。 #以上因素的影响,使人类的判断标准不稳定。实验中应尽可能控制这些因素,使判断标准相对稳定。 (三)信号检测论的应用 1有无法 实验程序: 口头报告有无信号。信号和噪音各自呈现的次数由先定概率规定。二者呈现的总次数在100-200次以上。 2评价法 实验程序: 与有无法相同。将从"有信号"和"无信号"的感觉连续划分成几个评价等级,被试根据自己的判断报告感觉评价等级。 3迫选法 实验程序: 每个系列包含连续呈现的m个刺激,其中一个是信号、其余是噪音,口头报告在哪一个时间顺序上出现的是信号,在哪一个时间顺序是噪音。 应用 1医学研究与临床诊断 研究仪器与临床诊断中,药物对疾病的判断能力,药物对疾病的作用,避免误诊。 2心理学研究中的应用 感知觉: 个体视知觉,听觉和各种皮肤知觉等方面的感受性。 认知研究: 被试对不同特征的刺激的编码与判断。 个体反应倾向的评价。 内隐记忆、阈下知觉和意识领域的研究。 3工业心理学的应用 主要用于研究人们的警戒水平,避免各种操作和作业的失误造成人员和财产损失。 评价 1可以分开测量被试的辨别力和反应倾向。 2测量信号的同时也可以测量噪音,建立报准率和虚报率两个尺度,使对反应倾向的测量成为可能。 #更适合用于人的主观态度对实验结果有较大的实验中。

随机过程是基础,就是了解和认识随机现象,并学习随机过程中的相关定理,目的是为学习其它知识打下基础。信号检测与估计可以说是随机过程的一个应用,前提是要有些随机过程的背景知识学起来才比较容易,统计信号处理也是随机过程的一个应用,侧重信号处理,就是用统计方法解决问题,随机过程的应用很广,不光是信号方面的,在整个科学技术里都很重要。随机过程关于教材的话,还没有遇到比较好的,个人认为看国外的比较好,中译版也可以,因为通俗易懂,信号检测和统计信号处理其实都差不多。

相关百科
热门百科
首页
发表服务