论文发表百科

智能火灾报警监控系统论文研究

发布时间:2024-07-03 11:22:05

智能火灾报警监控系统论文研究

由北京财富大厦一期工程看智能火灾报警控制系统的特点l 工程概况 北京财富中心是集甲级写字楼、高档公寓、五星级酒店、会议中心、文化艺术中心、休闲娱乐、商业等功能于一体的综合性国际化商务社区。整个工程规划建设用地面积为92100m2。总建筑面积72万m2。共分三期建设。项目位于东三环北路京广中心和嘉里中心之间。与北京中国国际贸易中心相距不远,与未来的中央电视台新址隔东三环路相望。是中央商务区的核心地段。 一期工程用地面积为28048m2。总建筑面积为247160m2,由一幢40层办公塔楼,一幢40层公寓塔楼和连接两者的服务式公寓(10层)和办公板楼(8层)组成。塔式公寓建筑高度120.95m,板式公寓建筑高度33.5m,塔式办公楼建筑高度154m,板式办公楼建筑高度40.095m。两层裙房设有会所和商业设施。地下三层为停车场及人防设施。地下二、三层与二、三期地下层相连。二期工程包括一栋五星级酒店和一栋超高层公寓。三期工程为一栋约260m高的办公楼。财富中心是由数栋超高层建筑组成的大型建筑群。 财富中心旨在中央商务区创造一个特别的城市空间和建筑,供人们交往、漫步、休闲等,创造新颖的工作和生活环境。设计中将创造良好的“光环境”、“声环境”。搞好防震、防火、防风、防水等设计.采用先进的楼宇自控系统、综合布线系统、中央空调系统、通讯电话系统、消防保安监控系统。力求建成一个集先进网络技术、通讯技术、控制技术于一体的智能化综合建筑群,为客户提供一种温馨、舒适、高效的工作条件。 2 系统构成 财富中心的消防报警系统采用控制中心报警系统。主要由以下几部分组成: 2.1报警系统控制主机 系统设有4台NF-8火灾报警控制器。其中: l#报警机监控办公楼21F--40F; 2#报警机监控办公楼2F-20F; 3#报警机监控办公楼B3F-1F和公寓楼1F-2 F; 4#报警机监控公寓楼3F--40F。 4台控制器分别承担各自所管辖区域的报警功能和消防设备联动控制功能,均可按照编程通过模块完成对消防水泵、电梯、非消防用电、各风机及各风口、防火卷帘门、防火门等等的控制功能。各消防水泵(包括避难层接力泵)、防排烟风机(包括避难层)均通过硬拉线引到消防中心。控制器之间采用快速以太网传输数据通讯。采用GEM3300(CRT)系统作为上级管理控制器。 2.2火灾探测、控制设备及其他相关设备 系统设有类比智能感烟探测器3666个。标准型感烟探测器3126个。类比智能感温探测器50个,标准型感温探测器4814个。智能控制中继器494个,探测器中继器2477个.手动报警按钮802个。还包括: 1)联动操作控制系统(综合操作控制柜); 2)消防电话系统; 3)电脑图文显示操作终端; 4)打印设备; 5)备用电源系统。 2.3消防系统功能 财富大厦一期工程消防控制中心设在裙房商业首层。作为整个建筑群的防灾指挥中心,肩负着对建筑物内所有防灾网络系统设备的监视、管理以及火灾时的控制、调度和指挥。其主要功能如下: ·监视功能:监视现场探测器的工作状态。对火警、故障等各类信息进行类比分析、判断;显示类比探测的烟雾资料、曲线;监视现场联动设备的工作状态;监视系统、线路工作状态;监视自动测试类比探测器的状态、结果。 ·控制功能:根据预定程序。对各种联动设备进行自动联动控制;通过触摸主机LCD屏幕或使用CRT图形显示操作系统.手动对各种联动设备进行单台控制或按类别控制。 ·记录功能:记录监视对象及控制对象的工作状态及过程;记录消防报警主机的操作过程;记录系统、设备故障信息。 ·管理功能:自动定期对系统进行常规检查测试;提供类比探测器的加烟、加温测试管理功能;实现白天,黑夜、空调机开,停变化时,探测器灵敏度的自动调整,根据环境状况自动修正灵敏度;提供探测器烟雾,温度曲线的历史资料。 ·CRT电脑图文显示操作功能:自动显示火灾报警部位的平面图形:显示类比探测的烟雾资料、曲线;显示所记录的火灾报警历史数据;通过鼠标、屏幕。对所需的联动设备进行操作控制。 3 工程设计 财富大厦一期工程为超高层民用建筑。属特级防护对象。采用全面保护方式,即,除面积小于5m2的厕所、卫生间、卫生间外。均安装火灾报警装置。 3.1现场探测报警设计 在电梯前室、机房、办公室、写字间等单独房间配置了带独立地址的类比智能感烟探测器。在大开间办公室等场所。考虑到将来二次装修时可能的房间分隔。均采用了类比智能感烟探测器,从而保证了二次装修时报警地址的足够余量。在走廊等其他公共区域等处。采用探测器中继器带若干个标准感烟探测器的方式。 地下车库采用了探测器中继器带若干个标准感温探测器的方式.防火卷帘门处的探测器设置了独立地址。 在每层通廊、电梯前室、疏散楼梯前室、重要机房等处,设置了紧急手动报警按钮。按钮上带有直接与消防中心通话的电话插孔。 将消火栓箱内自带的报警按钮接人消防报警主机,当消火栓按钮的玻璃被击碎时。报警主机可以将消火栓相应的楼层位置显示出来。同时可以联动消火栓水泵。 对每个水流指示器的报警点设置了独立的地址。对每一个湿式报警阀、雨淋阀及压力开关设置了独立的报警地址。 将70℃防火阀的信号接入报警主机。 在地上及地下各疏散楼梯处。设置声光报警装置。火灾报警确认后,报警主机发出控制信号,使着火层及相邻层的声光报警装置鸣响,警灯闪烁。 上述各种探测报警监示信号均由报警主机通过系统的传输主干线.完成信号的自动巡检和自动监测。 3.2消防联动控制 火灾时。消火栓按钮可现场直接启动相应消火栓泵,同时向消防控制中心发出信号;消防控制中心也可直接手动启停消火栓泵,显示消火栓泵的工作、故障状态,并按防火分区显示消火栓按钮的位置。 火灾时.报警阀压力开关向消防控制中心发出信号,可自动启动喷淋泵,消防控制中心也可直接手动启停喷淋泵,显示喷淋泵的工作、故障状态,并显示报警阀、检修阀、水流指示器的工作状态。在消防控制中心显示消防水箱溢流报警水位、消防保护停泵报警水位等。 在厨房、沿煤气管道的路径及公寓楼住户的厨房,设置可燃气体探测器。可燃气体探测器报警后,自动关闭相应的煤气管道切断阀。同时启动相应的排风机。并在消防控制中心显示煤气管道切断阀及排风机的工作状态。 对疏散通道上的防火卷帘.采取两步降落的控制方式;对非疏散通道处的防火卷帘,采取一步降落的控制方式。消防控制中心可显示感烟和感温探测器报警信号及防火卷帘的关闭信号。 火灾时。消防控制室可联动切断相应层的门禁控制主机电源,打开相应层疏散门,并接收其反馈信号。 在消防控制中心设有所有电梯运行状态模拟及操纵盘。火灾时,消防控制中心发出控制信号。强制所有电梯停于首层,并接受其反馈信号。 火灾时,按预定分区和预定程序,根据火灾发生部位自动/手动对非消防用电进行强行切断.停止空调机运行。当烟感探测器、温感探测器、手动报警按钮发出报警信号时。报警主机可以手动,自动停止空调机的运行;或当70℃防火阀熔断动作时。连锁停止相应空调机或新风机组运行。 火灾时。自动开启着火层及上下层的加压送风口和相应的加压送风机。现场手动开启加压送风口时,应直接启动相应的加压送风机。火灾时。开启避难层的加压送风机。 消防控制中心可手动启停所有排烟风机、加压送风机,可以显示所有70℃防火阀。280℃防火阀。加压送风口、排烟口等的工作状态,以及排烟风机、加压送风机的工作、故障状态。 消防中心设有专用对讲电话总机。除在各层的手动报警按钮上设置与主机相联的消防对讲插口外,变配电所值班室、通风机房、电梯机房等处。分别设置了独立的对讲电话机。避难层每隔20m设置消防电话分机及消防电话插孔。消防电话插孔翼楼、塔楼每层一线,消防专用电话分机避难层为一线。 报警主机系统具有广播联动接口控制功能。在紧急情况下,可手/自动将公共广播系统切换到紧急广播相应分区进行紧急广播。 本工程在四层计算机房和交换机房及档案库房等处.设置了气体灭火系统。在气体灭火保护区内,设置了专用气体灭火控制盘和紧急手动启停装置。当烟感探测器报警时。气体灭火控制盘使警笛鸣响,发出疏散警报;当温感报警时,气体灭火控制盘启动延时开始,30秒延时结束后,气体喷放灭火。同时,将报警信号、气体喷放信号及故障信号返回至报警主机。 4 系统特点 4.1分布智能系统 4.1.1智能探测 探测器本身配有cPu单元,可以对采集的烟雾数据进行分析判断,完成信号的基本处理,具有火灾参数连续采集、类比智能数据处理功能。 根据烟雾浓度可以区分预报警、火灾报警及联动报警。实现多级信号输出。 CPU单元可以自动检测出探测器自身的灰尘和污垢。报告给主机要求清洗。在未清洗前,自动对环境变化进行数字补偿和自动适应。 CPU单元接收自动测试信号,不需加烟就能自动诊断探测器的工作性能。 4.1.2智能控制器 控制器具有火灾参数类比运算及火灾模式识别功能。主机存储了大量不同燃烧物的典型燃烧过程曲线。主机判断火灾时,不但看现场的熘雾浓度值是否已经达到预定值。还要将探测器送回的烟雾资料与其所存储的大量的典型燃烧发生的过程参数的上升速率进行比较。因此,主机对火灾的判断准确可靠。并可以在火灾的早期阶段就准确报知火情。 根据接收的多级火灾报警信号,本着安全可靠的原则。方便灵活地对消防设备分类别联动。NF-8主机将不同类别的联动设备进行了分类,可以根据预定的控制程序。对各种联动设备。如防排烟风机、消防水泵、送排风口、防火阀、防火卷帘门、电梯、非消防电源等设备。按组、按位置、按类别进行联动控制.实现设备优化控制。 系统对探测信号设有“注意报警,火灾报警,联动报警。污垢报警,故障级别”等不同级别的灵敏度值。并可自动调整。 系统能对整个连接设备实现故障的自动诊断和自我报知。当系统出现故障或短路时,可以按故障点、故障部位进行系统的自动隔离或屏蔽选择,不影响其它设备的正常报警及联动功能。 控制器具有操作训练功能和火灾模拟训练功能。可以使值班人员能够在火灾发生的紧急情况下。 熟练掌握对应操作及相应的按钮位置。 4.1.3智能控制模块 系统采用智能控制模块,其控制输出信号具有连续电平式、脉冲式、瞬间式三种输出选择方式,适合于各种联动设备的控制。其输出电流的控制保护完全采用软件方式实现。当模块向外输出控制时,模块上的CPU将对输出电流进行监测计算。当测得的控制电流大于设定的模块保护电流时。模块将进行过流保护。智能控制模块带有短路自动隔离功能。 4.2智能冗余型环路防灾网络 NF-8系统是NF NETWORK网络型系统,二总线制环行连接。控制机自身具备有100Mbps快速以太网网络传输接口.可以简便地将最多32台控制机联网通信.组成最大81,600地址容量的防灾网络。同一建筑物内以星型方式将若干个控制机、CRT装在和楼层复示器等设备联网组合。建筑物之间的距离在100米以上时.可以通过控制机内的介质变换器(MEDI—A-COM),以光纤电缆为网络介质,控制器之间的距离最远15公里。正常通讯路径发生故障时。网络会自动切换至备用路径。当路径有两处发生故障时.网络会自动切换至备用路径。被隔离的控制器仍能独立监控自身系统;当网络中的控制器发生故障时。备用路径仍能继续通讯。 4.3分布式控制 财富大厦一期工程采用4台NF-8火灾报警控制器形成的防灾网络对约25万m2的建筑物实现全面保 护。采用多主机分布控制方式。4台控制器分别承担各自所管辖区域的报警功能和消防设备联动控制功能.均可按照编程通过模块完成对消防水泵的控制功能。除此之外,1号控制器通过硬拉线控制办公楼24层(避难层)消防接力泵;3号控制器通过硬拉线控制地下三层的消防水泵。控制器之间采用快速以太网传输数据通讯。采用GEM3300(CRT)系统作为上级管理控制器。实现系统综合信息处理。GEM3300可以监视整个建筑的火灾报警和消防设备联动控制状况。控制器之间采用星型组网。采用多主机分散控制可有效地降低整个控制系统的风险,不至于造成因中央控制器的事故而导致整个控制系统瘫痪。有效解决了控制重置和控制冲突的问题。 4.4与建筑设备自动化系统兼容 财富大厦一期工程为实现智能建筑“安全、高效、舒适、环保”的目的。设有建筑设备综合管理集成优化系统。智能化系统能够对大厦的各种设备进行自动控制和统一管理。并提供大容量、高速率的双向通讯服务。NF NETWORK网络系统采用通用的TCP/IP通讯协议,纳人大厦计算机集中管理系统平台,成为整个大厦智能化管理系统的有机组成部分.为将来的二期和三期工程预留了通讯接口。为财富中心的消防安全提供可靠的保障。

论文开题报告基本要素

各部分撰写内容

论文标题应该简洁,且能让读者对论文所研究的主题一目了然。

摘要是对论文提纲的总结,通常不超过1或2页,摘要包含以下内容:

目录应该列出所有带有页码的标题和副标题, 副标题应缩进。

这部分应该从宏观的角度来解释研究背景,缩小研究问题的范围,适当列出相关的参考文献。

这一部分不只是你已经阅读过的相关文献的总结摘要,而是必须对其进行批判性评论,并能够将这些文献与你提出的研究联系起来。

这部分应该告诉读者你想在研究中发现什么。在这部分明确地陈述你的研究问题和假设。在大多数情况下,主要研究问题应该足够广泛,而次要研究问题和假设则更具体,每个问题都应该侧重于研究的某个方面。

摘要: 对火灾自动报警控制系统及智能火灾报警控制系统的特征进行了分析, 在高层建筑设 计中采用智能火灾报警控制系统的主—从式网络结构, 解决了高层建筑与大型建筑中探测区 域广、探测器数量多、原有系统不能适应等问题。 关键词:高层建筑 火灾自动报警 探测器 智能控制 联动控制 The design and application of automatic fire warning control system in high buidings Abstract: This article analyses the characteristics of the fire antomatic warning system and the intelligent fire warning control system. By using the sytem a lot of traditional problems can be solved, including using a lot of probes but cotrolling olny a relalively small area. Key words: high rised buiding; fire automatic warning system; probe; intelligent control; coordinated control system 随着我国经济建设的发展,现代高层建筑及重要建筑的防火问题引起了国家消防部门及设 计院等社会各界的高度重视。 国家制定了一系列防火规范, 从而促进火灾自动报警设备的研究和 推广使用。高层建筑建设规模大,装修标准高,人员密集,各种电气设备使用频繁,因而存在着 火灾隐患, 在建筑电气设计中必须严格依照规范要求设计火灾报警控制系统。 但选择何种控制系 统,使该系统充分有效地发挥功能,是设计中十分重要的问题。 1 火灾自动报警系统的主要部件及特征 火灾自动报警系统的基本形式有三种,即:区域报警系统、集中报警系统的控制中心报警系 统。高层建筑和大型建筑主要采用控制中心报警系统,这是一种复杂的火灾自动报警系统,主要 由触发器件、火灾报警装置、消防控制设备及电源组成。该系统从通报火灾到启动灭火系统和控 制各种消防设备,基本实现自动化。 触发器件 主要包括火灾探测器和手动火灾报警按钮。 火灾探测器是对火灾参数 (如烟、 温、 光、火焰辐射、气体浓度等)响应,并自动产生火灾报警信号的器件。按响应火灾参数的不同, 火灾探测器分为感温火灾探测器、感烟火灾探测器、气体火灾探测器、感光火灾探测器和复合火 灾探测器五种基本类型。 火灾报警装置 火灾报警装置 消防控制设备 在火灾自动报警系统中用以接收、 显示和传递火灾报警信号, 并能发生控制 在火灾自动报警系统中用以发出区别于环境声、光的火灾警报信号的装置, 在火灾自动报警系统中当接收到来自触发器件的火灾报警信号, 能自动或手 信号和具有其它辅助功能的控制指标设备。 如火灾警报器, 它是一种基本的火灾警报装置, 以声、 光音响方式向报警区域发出火灾警报信号。 动启动相关消防设施并显示其状态的设备。主要包括:火灾报警控制器;自动灭火系统的控制装 置;室内消火栓系统的控制装置;防排烟系统及空调通风系统的控制装置;常开防火门、防火卷 帘的控制装置;电梯回降控制装置以及火灾应急广播、火灾警报装置、消防通信设备、火灾应急 照明与疏散指示标志的控制装置等十类控制装置。 每个系统根据工程的需要应具有十类控制装置 的部分或全部。 电源 火灾自动报警系统属于消防用电设备,主电源采用消防电源,备用电源采用蓄电池, 保证不间断供电。 设计中消防控制设备主要设置在消防控制中心, 便于实行集中统一控制, 有些消防控制设备 可设在消防设备现场,而动作信号必须返回消防控制中心,实行集中与分散相结合的控制方式。 但该探测器有误报现象、控制器容量较小。 2 智能火灾报警控制系统工作原理 智能火灾报警控制系统与火灾自动报警系统不同之处在于: 将发生火灾期间所产生的烟、 温、 光等, 以模拟量形式连同外界相关的环境参量一起传送给报警器, 报警器再根据获取的数据及内 部存贮的大量数据,利用火灾判据来判断火灾是否存在。 智能火灾报警器中编址单元包括: 智能控测器、 智能手动按钮、 智能模块、 探测器并联接口、 总线隔离器和可编程继电器卡等。新型的智能火灾探测器,又称模拟量火灾探测器,这种探测器 给出的输出信号是代表被响应的火灾参数值的模拟量信号或其等效的数字信号。 传统探测器称为 有阈值火灾探测器,而智能火灾探测器没有阈值,却设有专用芯片,智能火灾探测器的应用提高 了报警系统的准确性和智能化程度。 在火灾报警时,报警控制器通过控制模块启动相应的外探设备,如排烟阀、送风阀、卷帘门 等,需要接受外控设备的反馈信号时,应加一个监视模块,控制模块和监视模块一样,联接在报 警回路总线上,安装在所控设备的附近。模块内设十进制编码开关,可现场编号,各占用回路总 线上一个地址。通过报警控制器显示控制模块和监视模块的具体地址,用声、光报警可反映联动 设备的工作状态。 可编程继电器卡,通过编程可实现对风机、水泵等大型设备的二级联动控制。智能控制是一 种无需人的干预就能够自主地驱动智能机器实现其目标的过程。 3 工程实例 火灾自动报警系统的设计应用 笔者 1992~1993 年参与设计的海南省物资局金属大厦,该大厦是座地下 1 层,地上 22 层, 建筑高度 70 多米,建筑面积 万平方米的写字楼。根据《高层民用建筑设计防火规范》的规 定,建筑高度超过 50 m 的办公楼属于一类防火建筑,因此该大厦要设火灾自动报警系统。 设计中选择了国产火灾自动报警系统,这种系统在当时较普遍,仅有一台主机控制器,因而 适用于中、小型建筑。 大厦消防控制中心设在 1 层,每层设层显示器。地下室作设备用房有变电室、空调机房、 水泵房,机房内设有防排烟风机、消防水泵等消防设备,当火灾发生时,温度达到一定值排 烟风机自动启动,并打开排烟阀,开始排烟(图 1)。 图1 排烟风机控制原理 该工程地下室是消防联动控制的集中点,将地下室的防排烟风机、排烟阀等控制线均引 至消防中心的联动控制器。消防泵、喷淋泵、正压风机、排烟风机、消防电梯等却属于外控 设备,均由联动控制器控制。整个火灾自动报警系统设计合理、运行可靠。 智能火灾报警系统的设计应用 随着科学技术的发展,智能火灾报警系统问世,从传统型走向智能型是国内外火灾报警 系统技术发展的必然趋势,工程设计人员必须予以充分重视。 徐州某大型建筑群由三栋塔楼组成,一栋为 25 层,一栋 13 层和一栋 12 层的塔楼由 4 层 裙楼连接而成,建筑面积 6 万平方米,建筑高度 85 m,主要功能:1 至 4 层为商场,5 层以上 为写字楼。由于该大厦建筑面积大,探测区域广,探测器数量非常可观。传统的火灾自动报 警系统已无法满足需要,因此,在设计中,经过反复的方案比较,选择了采用主—从式网结 构的智能火灾报警控制系统,该系统利用大容量的控制矩阵交叉查寻软件包,以软件编程代 替硬件组合,满足了大型工程的适用性,提高了消防联动的灵活性和可修改性。系统由主机、 从机、复示器等构成。该工程消防控制中心设于 1 层,主机和消防联动控制柜设在消防中心, 从机与复示器分设于楼层内。 智能探测器数量的确定 设计时先根据《火灾自动报警器系统设计规范》的规定确定探 测器的布局和设置。其规定探测区域内的每个房间至少应设置一只火灾探测器。感烟、感温 探测器的保护面积和保护半径应按表 1 确定。表中列出的是一个感烟探测器或感温探测器的 保护面积和保护半径。建筑物内往往一个探测区域的面积较大,超过一只探测器的保护面积, 这时需要计算一个探测区域内所需设置的探测器数量,可按下式计算: 式中:N 为一个探测区域内所需设置的探测器数量(只),N 取整数;S 为一个探测区域的面 积(m );A 为探测器的保护面积;K 为修正系数,重点保护建筑取 ~,非重点保护建 筑取 。 根据上式计算结果,可确定一个探测区内的智能探测器的安装数量。 选择控制器容量计算 该系统控制器为主—从式网络结构,每个主—从机系统,只能有 一台主机,从机数量根据工程要求确定,一般按探测器数量计算,从机数量最多为 15 台。 表1 感烟、感温探测器的保护面积和保护半径探测器的保护面积 A 和保护半径 R 火灾探测 器的种类 地面面积 S (m ) 2 2 房间高度 H (m) θ≤15° A (m ) 2 屋顶坡度 θ 15°<θ≤30° A (m ) 80 100 80 30 30 2 θ>30° A (m ) 80 120 100 30 40 2 R (m) 6/7 R (m) R (m) S≤80 感烟探测器 S>80 h≤12 6<h≤12 h≤6 80 80 60 30 20 感温探测器 S≤30 S>30 h≤8 h≤80 每台控制器最大有四个回路,每个回路容量均为 198 个地址,其中 99 个智能探测 器,99 个编址模块。因此一台主机或从机的最大容量为 4×99=396 个智能探测器, 4×99=396 个编址模块。 该工程经过计算,选用了一台主机和四台从机,每台控制器都按四个回路设计。 主机 N 控制 1~4 层商场内的所有探测器,手动报警按钮,控制按钮,水流指示器等消 防设备,从机 N1 控制地下室的所有探测器、送风阀、排烟阀、防火阀等消防设备,从 机 N2 控制 13 层和 12 层两座连通塔楼的 5~13 层的消防设备,N3、N4 分别控制 25 层 塔楼的 5~13 层和 14~25 层的消防设备。 整个大厦智能火灾报警控制系统设计比较合理,充分考虑到建筑群的特点,选用 一台主机、四台从机控制了 6 万平方米的建筑,如果用传统火灾自动报警系统则需要 几套控制系统分别控制,现有系统设计即经济实用,又准确可靠。 4 结论 综合上述工程设计与实践研究,可以得出以下几点认识与结论。 1) 传统的火灾自动报警系统适合于中、 小型建筑, 它的特点是探测器属于阀值型, 控制器仅有主机一台。而智能火灾报警控制系统,采用模拟量探测器,控制系统采用 主—从式网络结构,适应性强,尤其适合大型建筑的火灾报警系统。 2)智能火灾报警系统,克服了传统火灾自动报警系统存在的漏报和误报的难题, 提高了报警系统的准确性、可靠性。在设计中可灵活应用,根据工程需要选择适当的 从机数量,使工程设计最经济、最合理。 3)为了防患于未然,火灾报警系统的设计和应用十分重要,设计人员应根据不同 的建筑工程,优化设计方案。 参考文献:〔1〕 蔡自兴, 徐光礻 〔2〕 右.人工智能及其应用 〔M〕 .北京: 清华大学出版社, 1996,329~ 360 戴汝为.智能系统的综合集成〔M〕.杭州:浙江科学技术出版社,1995,128~ 160 〔3〕 陈一才.大楼自动化系统设计手册 〔M〕 .北京: 中国建筑工业出版社, 1994,230~ 270 〔4〕 王根堂.公安消防监督员业务培训教材,群众出版社,1997,213~236

火灾自动报警系统研究论文

PLC火灾自动报警控制暑号 张燕生口 摘要:本文提出了一种由可编程控制器(PLC)控 制的火灾自动探测报警控制器。将烟感、温度探测 器接入PLC,经PLC逻辑判断,经专用声光报警集 成电路来进行火灾报警、异常报警(烟感、温感其 中之一动作)、故障报警,并发出不同的声光信号、 显示出事故类型及位置。本控制器适用于总建筑面 积不超过100om2的各种地方,如图书馆、档案馆、 计算机房等处。由于PLC系统集成度高、杭干扰性 强、编程简单、系统便于开发和维护及升级,因此 其结构简单、可靠性强、开发使用及维护的成本都 很低,便于推广。 关键词:可编程控制器;火灾自动报警;烟感探头; 温感探头;自动监测 室内烟雾及温度的突变进行报警。 2、如探测器遗落,布线故障,内部元件损坏能 发生故障声光报警。 3、如两只探测器中有一个动作表示室内有异常 现象(如烟雾浓度过大或室内温差过大),该装置 能发出异常报警信号,令值班人员到现场处理。 4、如烟感、温感探测器同时动作说明有火灾, 该装置发出火灾报警。 5、故障、异常、火灾报警的声光各不相同,有 明显的区别,并能准确地显示出事故类型及位置。 6、留有接口,便于以后的系统维护和升级。 一、引言 近几年来建筑事业发展迅猛,现代建筑中要求 具备火灾报警以至自动消防系统,目前国内厂家生 产的还是以晶体管、小规模集成电路或单片机为基 础的产品,其系统复杂、成本高,不易维护,因此 我提出一种由PLC控制的火灾自动报警控制器的设 想,其系统简单、成本适中、易于系统维护和升级。 该装置能满足以下要求: 1、该装置具有烟感探测器及温感探测器,能对 二、系统组成与工作原理 系统硬件原理如图1所示。1为探测器,包括 温感和烟感实现各种信息的采集;2为PLC控制器, 实现逻辑判断和控制;3为电源,提供24V直流电 源;4报警显示盘,能够准确地显示出事故发生的 类型及位置;5为声光报警电路,发出三种不同的 声光报警信号。PLC不断地发出探测信号到探测器 上,其反馈信号由PLC采集并判断是正常、故障、 异常、火灾四种情况哪一种,然后控制声光报警电 路。 1、探测器 传感器世界—27 技术与应用 Teehnology&APPlieation加州细映眨翻的翔以吐切~ (1)温感探测器采用机械式差定温探测器。这种 探测器结构简单,灵敏度高,适于温度变化小的场 所。它是膨胀系数不同的双金属片组成,当温度变 化时,由于两种金属片会产生弯曲,因而使触点接 通。温感探测器信号探测的工作原理如图2(a)所示。 温度探测器K有三个接线端子,l是检查线,检查 探测器是否有故障;2是电源线;3是信号线,如温 度探测器动作,信号可从此线发出。平时在检查线 上加以矩形波信号,如图2(b),高电平为检查周期, 由图2(a)可知,1端为高电平则3端信号线输出也为 高电平此为正常,反之如l端为高电平而在3端为 低电平,则表明温感有故障,故可以根据检查周期 3端信号线上的电平高低来检查探测器是否正常。 在探测周期1端无电压,如温感未动作(K未闭合), 则信号线3端也应无电平输出,当有温度变化温感 动作K触头闭合,即使1端无电平输入,3端信号 线也有电平输出,此电平就是电源电压,故在探测 周期可根据3端的电压来判断温感是否动作。故根 据检查线上不同周期,信号线3上是否输出电平来 判断探测器是否丢失或断线,以及室内温度是否异 常。 吧吧县叠叠叠叠叠叠叠叠图图1系统硬件原理图光光光22222222222222222PLCCCCC报警电路路路lllll探测器器器器器器器器器器器 111检查线线 222电源线线 333信号线线 (((a)温度探测器接线端端 一一少蔺匕燮J藤-L塑习习 卜卜一水一一一神卜弓岭一一今}}} (((b)检查线上的矩形波波 图图2温度等效线图及波形形 (2)烟感探测器采用离子式感烟传感器。图3(a) 为离子烟感传感器的原理图,图3(b)为工作电压波 形图。它由1检查电离室、2补偿电离室、3信号放 大电路、4开关转换电路、5火灾模拟检查电路以及 6故障自动监测电路等组成。当无烟时,补偿室和 检查室的电压几乎相等:而当有烟时,烟进入检查 室,使电离电荷迁移速度降低,电离电流减少,监 测室的等效阻抗增加,而补偿室内阻抗保持不变, 因而引起电离室分压比的变化,在信号放大回路输 入端产生电压△V,此电压增加到一定值时,开关 转换电路即动作,发出报警信号并使确认灯亮。 为了防止传感器至控制器间发生电路断线、接 触不良、传感器丢失等问题发生,设有故障自动监 测电路。当发生上述情况之一时,故障监测电路动 作并发出报警信号,为防止探测器内部元件损坏而 引起误报。传感器设有火灾模拟检查电路,定期通 以电平,在信号端应有信号发生,否则应报传感器 故障。由图3(b)工作电压波形图可知在传感器检查 线上加以矩形电压波形,如传感器正常则信号线上 电平与检查线波形相同。如传感器内部元件损坏或 断线则不论检查线上电压如何,信号线上的电压皆 无电压,即为故障状态。而当检查线无电平输入时, 信号线上仍有电压输出则表明烟感探测器己动作。 2、PLC控制系统 PLC采用日本欧姆龙(OMRON)公司的C20 可编程控制器。其输入端0000一0015分别接入各室 的烟、温感信号线(至多16个)。输出端0500输 出一个矩形波信号接到各室的烟、温感检查线, 0501一0503接到声光报警器上发出不同的声光信号, 0501一0508接到报警显示盘上,显示事故类型及地 址。 3、报警显示盘 报警显示盘的面板如图5所示。由PLC输出端 0501一0505发出的状态信号送至报警显示盘,可以显 示出烟、温感异常或故障或火灾状态,并且由 0506一0509发出的四位地址信号送至显示盘,可以显 示具体地址(至多8个)。 ~~甘胜切汹 技术与应用 Teehnology&APPlieation 白匕,. 翔叹奢7U一 A检查线 B电源线 6故障自动全爹包客 确认灯检查电离室 信号放大电 5火灾模拟 检查电路 4故障自动 监测电路 2补偿电离室C信号线 D地线 (a)离子烟感探测器原理 检查线 一一门 一一-习 信号线(正常) 信号线(故障) 信号线(异常) (b)工作电压波形 图3离子烟感探测器原理图及波形 烟信1 温信1 0000 C20 0500+黔号接至传感器的检查线05011井.军r~~~~, 烟信2 温信2 00020502 0503 系统采用模块化结构,编程使用用梯形图语言,因 此其系统非常便于维护,功能扩展性强、升级容易 且成本低。 声光报警 0504 INPUI, 0014 0015 24V 0505 OUTPUT0506 0507 报警 显示盘 烟信… 温信… +24V 0508 0509 地 熬 蕊落夏漂 石刃、 地址b 地址c/ 地址.材 地 图4PLC系统原理图 }}}}亚亘三三二}、心}}}}}}}}}}}}}以以二巫亘』砂灰才口口}心心心心心 }}}匡巫巫』可农八口口}常门门门门……巨画巫三口冽’{口门门门门门 巨巨巨画巫三口冽’显示盘面板板板 烟烟烟烟感故障障障障障障障障障障 PLCFireAutoalarm Abstraet:Thisartieleofl七rsusaninstrumenioffireallto 一 smokedeteetorandtemPeraturedeteetor,andanalyses logie,thenissuesdifferentlight&soundsignalsand statusmessages:FireAlarlll,UnusualAlert,FaultAlert, ,forexample, libraries,arehivesandeomPuterroomsete二This instrumenihassimPlestruetUreand15reliable,andean bedeveloped,maintainedandPopularizedeasilyand eheaply,beeauseofifshighintegratedandanti一amminglevel,modularsystems如etureand15easytobe programmed. Keywords:progr田的mableLogiealController,Fire Autoalarlll,SmokeDeteetor,TemPeratureDeteetor, Aut0IT10llitor一 三、总结 本火灾自动报警控制器不同于其他的专用火灾 报警控制器之处就在于它是采用PLC为控制核心, 作者简介 张燕生:中国煤田物探研究院,河北泳州072750 读者服务卡编号008口 传感器世界

本来我是想把原文给你的 但是字太多 系统不能成功发送 所以只好给你网站了 最后两个网站都是建筑工程的论文 很多 上面几个 就是你要的建筑工程造价毕业论文 这个是和毕业设计有关的 也是建筑工程造价方面的哦 答案补充 写不开啊

标签智能火灾探测器 复合传感器 神经网络 资料描述[页数] 36 [字数] 23119 [目录] 摘要 Abstract 1 绪论 1 2 系统架构设计 4 3 8051单片机的介绍 5 4 系统硬件设计 9 5 系统软件设计 25 6 结论 28 参考文献 致谢 [原文] 1 绪论 火灾报警器概述 随着传感器技术、微处理器技术和信号处理技术的飞速发展,复合火灾探测已经成为火灾自动探测技术的发展方向。目前复合火灾探测器的主要有光电感烟和感温复合、离子感烟和感温复合以及光电感烟、离子感烟和感温三复合等形式。采用复合探测方法的主要目的是使探测器能够均衡探测各种类型的火灾,特别是散射光烟雾探测器通过温度补偿,克服了其对带温升的黑烟不敏感的缺点,有力地推动了光电烟雾探测器的应用。但是光电感烟传感器和温度传感器复合探测器对低温升的黑色烟雾相应较差,离子感烟由于其存在放射性污染的可能性而越来越难以被市场接受,而且不论是光电还是离子感烟方法,本质上还是离子探测,各种灰尘、水汽和油雾等粒子干扰同样对它们产生影响。尽管可以采用信号处理的方法抑制这些干扰,但很难做到完全消除,因此需要寻找能更加有效探测火灾和减少误报的新的火灾探测方法。 众所周知,绝大多数火灾都要产生一氧化碳(CO)气体,在燃烧不充分的火灾早期更是这样,而且CO气体比空气轻,扩散性比烟雾强,特别是许多常用感烟方法的误报源并不产生CO气体,因此将CO传感器引入火灾探测,构成复合火灾探测器是一种比较理想的早期火灾探测方法。 九十年代以来,神经网络的自学习、自适应、自组织特性,引起了各国消防界和工程界的极大关注。日本的Y. Okayama 提出使用一种三层前馈BP神经网络来探测火灾,具有一定的自学习性和自适应性,但它对传感器信号的特点考虑不够全面,而且仅仅采用简单门限直接进行判决,不利于减少火灾的误报率。S. Nakanishi等人利用模糊逻辑方法处理烟雾浓度信号的烟、温、CO复合信号,系统的调节还采用了神经网络算法,实际结果显示误报率降低了50%,火灾报警时间还有所提前,但它只是用模糊逻辑方法调整报警延迟时间,没用充分发挥神经网络的优势...... [摘要] 目前,火灾自动报警系统领域中网络化、自动化技术日臻完善,但火灾探测器还存在着误报和漏报等问题。火灾探测器探测火灾的准确性将直接影响整个自动报警系统的性能。因此,火灾探测器技术己成为该领域的主要发展方向。 登陆 帮助 主页 资料广场 最新资料 最热门的资料 销售最多的资料 公开标签 权威会员 圈子 搜索圈子 公开圈子 会员注册 所有的资料 圈子名和圈子介绍 圈子内帖子 复合型智能火灾报警器的设计 复合型智能火灾报警器的设计¥ 抓取资料 文件内搜索 收集到购物车 复合型智能火灾报警器的设计.doc (773KB)标签智能火灾探测器 复合传感器 神经网络 资料描述[页数] 36 [字数] 23119 [目录] 摘要 Abstract 1 绪论 1 2 系统架构设计 4 3 8051单片机的介绍 5 4 系统硬件设计 9 5 系统软件设计 25 6 结论 28 参考文献 致谢 [原文] 1 绪论 火灾报警器概述 随着传感器技术、微处理器技术和信号处理技术的飞速发展,复合火灾探测已经成为火灾自动探测技术的发展方向。目前复合火灾探测器的主要有光电感烟和感温复合、离子感烟和感温复合以及光电感烟、离子感烟和感温三复合等形式。采用复合探测方法的主要目的是使探测器能够均衡探测各种类型的火灾,特别是散射光烟雾探测器通过温度补偿,克服了其对带温升的黑烟不敏感的缺点,有力地推动了光电烟雾探测器的应用。但是光电感烟传感器和温度传感器复合探测器对低温升的黑色烟雾相应较差,离子感烟由于其存在放射性污染的可能性而越来越难以被市场接受,而且不论是光电还是离子感烟方法,本质上还是离子探测,各种灰尘、水汽和油雾等粒子干扰同样对它们产生影响。尽管可以采用信号处理的方法抑制这些干扰,但很难做到完全消除,因此需要寻找能更加有效探测火灾和减少误报的新的火灾探测方法。 众所周知,绝大多数火灾都要产生一氧化碳(CO)气体,在燃烧不充分的火灾早期更是这样,而且CO气体比空气轻,扩散性比烟雾强,特别是许多常用感烟方法的误报源并不产生CO气体,因此将CO传感器引入火灾探测,构成复合火灾探测器是一种比较理想的早期火灾探测方法。 九十年代以来,神经网络的自学习、自适应、自组织特性,引起了各国消防界和工程界的极大关注。日本的Y. Okayama 提出使用一种三层前馈BP神经网络来探测火灾,具有一定的自学习性和自适应性,但它对传感器信号的特点考虑不够全面,而且仅仅采用简单门限直接进行判决,不利于减少火灾的误报率。S. Nakanishi等人利用模糊逻辑方法处理烟雾浓度信号的烟、温、CO复合信号,系统的调节还采用了神经网络算法,实际结果显示误报率降低了50%,火灾报警时间还有所提前,但它只是用模糊逻辑方法调整报警延迟时间,没用充分发挥神经网络的优势...... [摘要] 目前,火灾自动报警系统领域中网络化、自动化技术日臻完善,但火灾探测器还存在着误报和漏报等问题。火灾探测器探测火灾的准确性将直接影响整个自动报警系统的性能。因此,火灾探测器技术己成为该领域的主要发展方向。 本文在对国内外研究现状和存在的问题进行分析的基础上,在硬件和软件方面对火灾探测器技术进行研究。在硬件方面,采用温度传感器、CO传感器和光电感烟传感器组成复合型探测器,利用这三种传感器对火灾发生时的三种主要参数进行测量;软件方面,采用神经网络对采集各传感器的信号进行处理,而后再经模糊判决器来发出报警信号。这使探测器在输出报警信号时具有一定的智能化功能。实验结果表明,这种结构的火灾探测器不仅报警的准确性大大提高,还能进一步判定火灾的状态。由此可见,复合技术和神经网络技术的应用能够大大提高火灾探测器的性能,大大降低了误报率和漏报率,为早期报警提供有利条件 [参考文献] [1] 吴启鹏,新世纪消防科学技术展望.中国消防大全,2002 (11):4-5 [2] 徐春燕,火灾探测技术的发展及其应用.鞍钢技术,2000年第9期:60-62 [3] 王新军,三种火灾探测器性能比较及应用.隧道建设,2005 , 25(3)74-78 [4] 张佳薇,孙丽萍,宋文龙主编.传感器原理与应用.哈尔滨:东北林业大学出版社, [5] 张建华,王占林.基于神经网络的控制系统状态监测与故障诊断方法研究.96年中国控制与决策学术年会论文集 [6] 刘世良,潘一平,火灾多元复合探测技术的现状与发展.消防技术与产品信息1998年04期:21-24 [7] 吴龙标,火灾探测的人工神经网络方法.人类工效学.1997, 3 (2) :39-41 [8] 尚峰,蒋国平,DS18B20在火灾探测器中的应用.电子测量技术2003. [9] 范冰彦,家庭无线智能防盗报警系统.安防科技,2003. 3: 70-71 [10] 杨振汀,流行单片机实用子程序及应用实例.西安电子科技大学出版社, [11] 张毅刚,彭喜元,姜守达,乔立言.新编MCS-51单片机应用系统.哈尔滨:哈尔滨工业大学出版社,,142~146,155~156,164~166,215~217 [12] 周航慈,单片机应用程序设计技术(修订版).北京航空航天大学出版社, [13] 焦李成,神经网络系统理论.西安电子科技大学出版社,1995 [14] 睢丙东主编,单片机应用技术与实例.北京:电子工业出版社,,81~85 [15] 王慧主编,计算机控制系统.北京:化学工业出版社教材出版中心, [16] 尚峰,复合形火灾探测器的研究[硕士论文].大连理工大学. [17] 曹君,火灾报警系统设计[硕士论文].哈尔滨理工大学. [18] BRITISH STANDARD, Fire detection and fire alarm systems-Part5:Heat detectors-Point detectors. BS EN 54-5:2001:5-20 [19] James A. Milke, Monitoring Multiple Aspects of Fire Signatures for Discriminating Fire Detection, Fire Technology. Vol. 35. No. 3. 1999:25-29 [20] Holt, Alarm Signaling Systems. Electrical Construction and Maintenance, 2003,102(8):40, 42-43

论文火灾自动报警系统的研究

摘要: 对火灾自动报警控制系统及智能火灾报警控制系统的特征进行了分析, 在高层建筑设 计中采用智能火灾报警控制系统的主—从式网络结构, 解决了高层建筑与大型建筑中探测区 域广、探测器数量多、原有系统不能适应等问题。 关键词:高层建筑 火灾自动报警 探测器 智能控制 联动控制 The design and application of automatic fire warning control system in high buidings Abstract: This article analyses the characteristics of the fire antomatic warning system and the intelligent fire warning control system. By using the sytem a lot of traditional problems can be solved, including using a lot of probes but cotrolling olny a relalively small area. Key words: high rised buiding; fire automatic warning system; probe; intelligent control; coordinated control system 随着我国经济建设的发展,现代高层建筑及重要建筑的防火问题引起了国家消防部门及设 计院等社会各界的高度重视。 国家制定了一系列防火规范, 从而促进火灾自动报警设备的研究和 推广使用。高层建筑建设规模大,装修标准高,人员密集,各种电气设备使用频繁,因而存在着 火灾隐患, 在建筑电气设计中必须严格依照规范要求设计火灾报警控制系统。 但选择何种控制系 统,使该系统充分有效地发挥功能,是设计中十分重要的问题。 1 火灾自动报警系统的主要部件及特征 火灾自动报警系统的基本形式有三种,即:区域报警系统、集中报警系统的控制中心报警系 统。高层建筑和大型建筑主要采用控制中心报警系统,这是一种复杂的火灾自动报警系统,主要 由触发器件、火灾报警装置、消防控制设备及电源组成。该系统从通报火灾到启动灭火系统和控 制各种消防设备,基本实现自动化。 触发器件 主要包括火灾探测器和手动火灾报警按钮。 火灾探测器是对火灾参数 (如烟、 温、 光、火焰辐射、气体浓度等)响应,并自动产生火灾报警信号的器件。按响应火灾参数的不同, 火灾探测器分为感温火灾探测器、感烟火灾探测器、气体火灾探测器、感光火灾探测器和复合火 灾探测器五种基本类型。 火灾报警装置 火灾报警装置 消防控制设备 在火灾自动报警系统中用以接收、 显示和传递火灾报警信号, 并能发生控制 在火灾自动报警系统中用以发出区别于环境声、光的火灾警报信号的装置, 在火灾自动报警系统中当接收到来自触发器件的火灾报警信号, 能自动或手 信号和具有其它辅助功能的控制指标设备。 如火灾警报器, 它是一种基本的火灾警报装置, 以声、 光音响方式向报警区域发出火灾警报信号。 动启动相关消防设施并显示其状态的设备。主要包括:火灾报警控制器;自动灭火系统的控制装 置;室内消火栓系统的控制装置;防排烟系统及空调通风系统的控制装置;常开防火门、防火卷 帘的控制装置;电梯回降控制装置以及火灾应急广播、火灾警报装置、消防通信设备、火灾应急 照明与疏散指示标志的控制装置等十类控制装置。 每个系统根据工程的需要应具有十类控制装置 的部分或全部。 电源 火灾自动报警系统属于消防用电设备,主电源采用消防电源,备用电源采用蓄电池, 保证不间断供电。 设计中消防控制设备主要设置在消防控制中心, 便于实行集中统一控制, 有些消防控制设备 可设在消防设备现场,而动作信号必须返回消防控制中心,实行集中与分散相结合的控制方式。 但该探测器有误报现象、控制器容量较小。 2 智能火灾报警控制系统工作原理 智能火灾报警控制系统与火灾自动报警系统不同之处在于: 将发生火灾期间所产生的烟、 温、 光等, 以模拟量形式连同外界相关的环境参量一起传送给报警器, 报警器再根据获取的数据及内 部存贮的大量数据,利用火灾判据来判断火灾是否存在。 智能火灾报警器中编址单元包括: 智能控测器、 智能手动按钮、 智能模块、 探测器并联接口、 总线隔离器和可编程继电器卡等。新型的智能火灾探测器,又称模拟量火灾探测器,这种探测器 给出的输出信号是代表被响应的火灾参数值的模拟量信号或其等效的数字信号。 传统探测器称为 有阈值火灾探测器,而智能火灾探测器没有阈值,却设有专用芯片,智能火灾探测器的应用提高 了报警系统的准确性和智能化程度。 在火灾报警时,报警控制器通过控制模块启动相应的外探设备,如排烟阀、送风阀、卷帘门 等,需要接受外控设备的反馈信号时,应加一个监视模块,控制模块和监视模块一样,联接在报 警回路总线上,安装在所控设备的附近。模块内设十进制编码开关,可现场编号,各占用回路总 线上一个地址。通过报警控制器显示控制模块和监视模块的具体地址,用声、光报警可反映联动 设备的工作状态。 可编程继电器卡,通过编程可实现对风机、水泵等大型设备的二级联动控制。智能控制是一 种无需人的干预就能够自主地驱动智能机器实现其目标的过程。 3 工程实例 火灾自动报警系统的设计应用 笔者 1992~1993 年参与设计的海南省物资局金属大厦,该大厦是座地下 1 层,地上 22 层, 建筑高度 70 多米,建筑面积 万平方米的写字楼。根据《高层民用建筑设计防火规范》的规 定,建筑高度超过 50 m 的办公楼属于一类防火建筑,因此该大厦要设火灾自动报警系统。 设计中选择了国产火灾自动报警系统,这种系统在当时较普遍,仅有一台主机控制器,因而 适用于中、小型建筑。 大厦消防控制中心设在 1 层,每层设层显示器。地下室作设备用房有变电室、空调机房、 水泵房,机房内设有防排烟风机、消防水泵等消防设备,当火灾发生时,温度达到一定值排 烟风机自动启动,并打开排烟阀,开始排烟(图 1)。 图1 排烟风机控制原理 该工程地下室是消防联动控制的集中点,将地下室的防排烟风机、排烟阀等控制线均引 至消防中心的联动控制器。消防泵、喷淋泵、正压风机、排烟风机、消防电梯等却属于外控 设备,均由联动控制器控制。整个火灾自动报警系统设计合理、运行可靠。 智能火灾报警系统的设计应用 随着科学技术的发展,智能火灾报警系统问世,从传统型走向智能型是国内外火灾报警 系统技术发展的必然趋势,工程设计人员必须予以充分重视。 徐州某大型建筑群由三栋塔楼组成,一栋为 25 层,一栋 13 层和一栋 12 层的塔楼由 4 层 裙楼连接而成,建筑面积 6 万平方米,建筑高度 85 m,主要功能:1 至 4 层为商场,5 层以上 为写字楼。由于该大厦建筑面积大,探测区域广,探测器数量非常可观。传统的火灾自动报 警系统已无法满足需要,因此,在设计中,经过反复的方案比较,选择了采用主—从式网结 构的智能火灾报警控制系统,该系统利用大容量的控制矩阵交叉查寻软件包,以软件编程代 替硬件组合,满足了大型工程的适用性,提高了消防联动的灵活性和可修改性。系统由主机、 从机、复示器等构成。该工程消防控制中心设于 1 层,主机和消防联动控制柜设在消防中心, 从机与复示器分设于楼层内。 智能探测器数量的确定 设计时先根据《火灾自动报警器系统设计规范》的规定确定探 测器的布局和设置。其规定探测区域内的每个房间至少应设置一只火灾探测器。感烟、感温 探测器的保护面积和保护半径应按表 1 确定。表中列出的是一个感烟探测器或感温探测器的 保护面积和保护半径。建筑物内往往一个探测区域的面积较大,超过一只探测器的保护面积, 这时需要计算一个探测区域内所需设置的探测器数量,可按下式计算: 式中:N 为一个探测区域内所需设置的探测器数量(只),N 取整数;S 为一个探测区域的面 积(m );A 为探测器的保护面积;K 为修正系数,重点保护建筑取 ~,非重点保护建 筑取 。 根据上式计算结果,可确定一个探测区内的智能探测器的安装数量。 选择控制器容量计算 该系统控制器为主—从式网络结构,每个主—从机系统,只能有 一台主机,从机数量根据工程要求确定,一般按探测器数量计算,从机数量最多为 15 台。 表1 感烟、感温探测器的保护面积和保护半径探测器的保护面积 A 和保护半径 R 火灾探测 器的种类 地面面积 S (m ) 2 2 房间高度 H (m) θ≤15° A (m ) 2 屋顶坡度 θ 15°<θ≤30° A (m ) 80 100 80 30 30 2 θ>30° A (m ) 80 120 100 30 40 2 R (m) 6/7 R (m) R (m) S≤80 感烟探测器 S>80 h≤12 6<h≤12 h≤6 80 80 60 30 20 感温探测器 S≤30 S>30 h≤8 h≤80 每台控制器最大有四个回路,每个回路容量均为 198 个地址,其中 99 个智能探测 器,99 个编址模块。因此一台主机或从机的最大容量为 4×99=396 个智能探测器, 4×99=396 个编址模块。 该工程经过计算,选用了一台主机和四台从机,每台控制器都按四个回路设计。 主机 N 控制 1~4 层商场内的所有探测器,手动报警按钮,控制按钮,水流指示器等消 防设备,从机 N1 控制地下室的所有探测器、送风阀、排烟阀、防火阀等消防设备,从 机 N2 控制 13 层和 12 层两座连通塔楼的 5~13 层的消防设备,N3、N4 分别控制 25 层 塔楼的 5~13 层和 14~25 层的消防设备。 整个大厦智能火灾报警控制系统设计比较合理,充分考虑到建筑群的特点,选用 一台主机、四台从机控制了 6 万平方米的建筑,如果用传统火灾自动报警系统则需要 几套控制系统分别控制,现有系统设计即经济实用,又准确可靠。 4 结论 综合上述工程设计与实践研究,可以得出以下几点认识与结论。 1) 传统的火灾自动报警系统适合于中、 小型建筑, 它的特点是探测器属于阀值型, 控制器仅有主机一台。而智能火灾报警控制系统,采用模拟量探测器,控制系统采用 主—从式网络结构,适应性强,尤其适合大型建筑的火灾报警系统。 2)智能火灾报警系统,克服了传统火灾自动报警系统存在的漏报和误报的难题, 提高了报警系统的准确性、可靠性。在设计中可灵活应用,根据工程需要选择适当的 从机数量,使工程设计最经济、最合理。 3)为了防患于未然,火灾报警系统的设计和应用十分重要,设计人员应根据不同 的建筑工程,优化设计方案。 参考文献:〔1〕 蔡自兴, 徐光礻 〔2〕 右.人工智能及其应用 〔M〕 .北京: 清华大学出版社, 1996,329~ 360 戴汝为.智能系统的综合集成〔M〕.杭州:浙江科学技术出版社,1995,128~ 160 〔3〕 陈一才.大楼自动化系统设计手册 〔M〕 .北京: 中国建筑工业出版社, 1994,230~ 270 〔4〕 王根堂.公安消防监督员业务培训教材,群众出版社,1997,213~236

刚好在做这个题目的毕业论文火灾报警系统,从发展过程来看,大体可分为三个阶段。 第一阶段:多线型火灾自动报警系统。每个探测器除需提供两根电源线外,还需提供一根报警信号线,探测器电源由报警器提供,探测器的信号线均连接到报警显示盘上,报警时点亮相应的指示灯,如日本“日探”公司生产的CPF 火灾报警系统,此类系统的功能一般以报警为主,辅以一些简单的联动功能(也为多线制),如驱动警铃等,其报警器对外围探测器无故障检测功能,只会对电源线的断线做出故障反应,安装此类系统比较繁琐,特别是校线工作量较大[4]。 第二阶段:总线型火灾自动报警系统。这种自动报警系统已采用微处理器控制,其线制一般有四线制、三线制、二线制,探测器和模块均采用地址编码形式,通过总线与控制器实现信号传送,其探测器的报警形式为开关量,它的灵敏度在制造时,通过硬件决定,不可调整,此类系统可进行现场编程,并通过各种模块对各联动设备实行较复杂的控制,此类系统已具有系统自检以及对外围器件的故障检验等功能,但对故障类型不能区分,目前国内生产的火灾自动报警系统大多数为此类产品,由于此类产品具有报警和控制功能,它的施工、安装较为方便,且价格较低,已被大量使用[5]。 第三阶段:智能型火灾自动报警系统。由于采用了先进的计算机控制技术,智能化程度大大提高,探测器的报警形式采用数字量,并可通过软件对其灵敏度根据使用场合、时间进行设定和调整,如可设定白天、夜间、休息日不同灵敏度。对探测器的使用环境参数变化较大的场所,灵敏度设定相对低一些,对环境较稳定或一些重要的场所,灵敏度设定相对高一些,这一功能可提高系统的稳定性及可靠性,减少误报[6]。 国外一些较发达的国家,具有火灾预防、报警、扑救、善后处理等比较完善的消防体系。政府每年都要拨出大笔资金用于消防设备更新、人员培训以及消防设施维护。德国、日本、美国等国家就采用计算机与用户终端的传感器或者用户终端信号采集器相连,对火灾自动报警设备实时监控以及故障远程传输。例如:美国、加拿大、英国、澳大利亚、日本等国家在建设和应用城市火灾自动报警监控系统方面均有可供借鉴的成功经验。他们将自动火灾报警作为公共报警手段接入监控系统,并有效运行多年,使消防指挥中心能够快速准确判断火灾地点、火灾类型,并调度消防部队迅速到达现场,自动报警监控系统在此起到了很大的作用。此外,这些国家在监控系统管理方面比较规范,专门成立一个监控服务机构,该机构的责任是保证火灾报警数据通信畅通,为用户服务,对用户负责,同时向消防部队传送可靠的火灾报警信息,而消防部门的主要责任是对此类服务机构进行资质审查及监督管理。这种管理运作方式已经取得了良好的效果[7]。 我国火灾报警系统起步较发达国家晚几十年,从上世纪 70 年代我国才开始研制生产火灾报警系统产品。进入 80 年代后,国内主要厂家也多是模仿国外产品,或是引进国外技术进行生产,没有真正意义上的核心技术,并且市场也刚刚开始发育。火灾报警产品真正发展是在 90 年代以后,随着政府逐渐开放国门,国外企业开始大量进入中国消防市场,带来先进技术的同时也促进了市场的成熟。这时期,我国生产火灾报警产品的企业也得到了快速发展,部分企业进行了合资生产、技术合作,取得了不菲的成绩,也造就了现今市场上许多有实力的商家,部分技术已接近或赶上了国际水平[8]。

刚刚回答另外一个人的问题,估计这个答案你也用的上: 二十多年前,中国的消防报警产品刚刚起步,无论产品技术含量、产品系列完整性、使用性,还是社会影响程度都是相当低的。国外的产品和品牌一统天下,占领中国的大部分市场。由于中国的建设正在飞速发展,市场大的惊人,难道这由中国发展带来的成果只能由外国企业来瓜分?可幸的是中国企业抓住了机遇,顶住了挑战,先是一批国家的科研院所,后是一批国营企业、民营企业,业内也吸引和凝聚一大批国内的技术和管理精英,花了十多年时间,通过几次产品更新换代,就使自己的产品紧紧跟上了国际水平,并且夺回了大部分国内市场,使得现在大多国外产品只有招架之功,这是典型的自力更生,走自己的路。当然目前而言,我们基本占据的是国内市场,对外还刚启动。中国企业正虎视眈眈,准备进军海外市场。 现状与特点:消防报警产品是一个系列产品,包括火灾探测设备、信息传输设备、报警分析控制器、消防控制联动。是物理传感技术、自动控制、计算机技术、数据传输和管理、智能楼宇等技术的综合集成,属于高新技术。依托中国多年的基本建设的发展,这个行业也得到发展,具备了和国外知名企业抗衡的能力。在目前中国许多冠名以高新技术的行业中,中国企业大多做的是下游的制造和服务,分取极少一部分的利润,象消防报警产品那样又拥有自我知识产权,又拥有大量市场的行业其实是很少的。在消防报警产品的技术含量上,国内产品和国外产品差距不是很大,许多指标已经超越,存在的问题是:类似于国外消防报警产品的大批量规模化的生产才刚起步,有待于积累经验和技术;也因此在产品一致性和长期稳定性上有一些差距;国内正在形成权重的大型企业和集团,这样可以带领国内的各家企业去冲击海外市场,并最终占领海外的消防报警市场。

电气火灾监控系统应用及研究论文

电气火灾监控报警系统基于智能视频分析,自动对视频图像信息进行分析识别,无需人工干预;对监控区域中的烟雾、火焰进行检测,以最快、最佳的方式进行预警,有效的协助管理人员处理,并最大限度地降低误报和漏报现象;同时还可查看现场录像,方便事后管理查询。

一、火灾探测器分类

可以分为感烟、感温、感光、气体、复合五种基本类型。

1、点型感温探测器:响应异常温度、温升速率和温差变化等。

2、感烟探测器:烟跑探测器里,阻挡光线,发出信号。分为离子感烟、光电感烟、红外光束、吸气型等。

3、线形红外光束感烟火灾探测器

4、空气采样吸气型探测器

为主动探测器,可用在平常房间比较脏的有灰尘的地方,不会像点式感烟一样容易误报。

5、感光探测器(火焰探测器):探测火焰发出的特定波段电磁辐射的探测器,可分为紫外、红外及复合式等类型。

二、手动火灾报警按钮

分为编码型报警按钮与非编码型报警按钮

三、消防电弧和声光警报器

四、火灾自动报警系统

1、区域报警系统

由火灾探测器、手动火灾报警按钮、火灾声光警报器及火灾报警控制器等组成,系统中可包括消防控制室图形显示装置和指示楼层的区域显示器,适用于仅需要报警,不需要联动自动消防设备的保护对象。

区域报警系统接收到探测器等信号后,只干一件事,让火灾声光警报器动作,提示人,赶紧跑。

2、集中报警系统

由火灾探测器、手动火灾报警按钮、火灾声光警报器、消防应急广播、消防专用电话、图形控制室显示装置、火灾报警控制器、消防联动控制器等组成。适用于具有联动要求的保护对象。

集中报警系统必须得有消防应急广播、消防专用电话和消防控制室图形显示装置。

3、控制中心报警系统

由火灾探测器、手动火灾报警按钮、火灾声光警报器、消防应急广播、消防专用电话、图形控制室显示装置、火灾报警控制器、消防联动控制器等组成,且包含两个及两个以上的集中报警系统。

其中一个火灾报警控制器为总指挥,一般适用于建筑群或体量很大的保护对象,这些保护对象中可能设置几个消防控制室,也可能由于分期建设而采用了不同企业的产品或同一企业不同系列的产品,或由于系统容量限制而设置了多个起集中作用的火灾报警控制器等情况。

系统安装与调试

火灾自动报警系统施工安装前,需进行现场检查(检验)和设计符合性检查。

1)火灾自动报警系统应单独布线,系统内不同电压等级、不同电流类别的线路,不应布在同一管内或线槽的同一槽孔内。

2)导线在管内或线槽内不应有接头或扭结。从接线盒、线槽等处引到探测器底座、控制设备、扬声器的线路,当采用金属软管保护时,其长度不应大于 2m。

3)管路超过下列长度时,应在便于接线处装设接线盒:

①管子长度每超过 30m,无弯曲时。

②管子长度每超过 20m,有1个弯曲时。

③管子长度每超过 10m,有2个弯曲时。

④管子长度每超过 8m,有3个弯曲时。

4)线槽敷设时,应在下列部位设置吊点或支点:

①线槽始端、终端及接头处。

②距接线盒 处。

③线槽转角或分支处。

④直线段不大于 3m 处。

5)火灾自动报警系统导线敷设后,应用 500V 兆欧表测量每个回路导线对地的绝缘电阻,且绝缘电阻值不应小于20MΩ。

同一工程中的导线,不同用途选择不同颜色加以区分。电源线正极应为红色,负极应为蓝色或黑色。

系统主要组件安装

一、控制器类设备的安装要求

1)控制器类设备在消防控制室内的布置要求:

①设备面盘前的操作距离,单列布置时不应小于 ,双列布置时不应小于 2m。

②在值班人员经常工作的一面,设备面盘至墙的距离不应小于 3m。

③设备面盘后的维修距离不宜小于 1m。

④设备面盘的排列长度大于 4m 时,其两端应设置宽度不小于 1m 的通道。

2)控制器类设备采用壁挂方式安装时,其主显示屏高度宜为 ~;其靠近门轴的侧面距墙不应小于 ,正面操作距离不应小于 ;落地安装时,其底边宜高出地(楼)面 ~。

3)控制器安装在轻质墙上时,应采取加固措施。

4)引入控制器的电缆或导线的安装要求:

端子板的每个接线端,接线不得超过 2 根,电缆芯线和导线,应留有不小于 200mm 的余量并应绑扎成束。

控制器的主电源应直接与消防电源连接,严禁使用电源插头。控制器与其外接备用电源之间应直接连接。

5)火灾报警控制器应在 100s 内发出故障信号,火灾探测器收到报警信号,报警信号在 10s 内反馈到控制中心。

二、火灾探测器的安装要求

1.点型感烟、感温火灾探测器

点型感温火灾探测器的安装间距,不应超过 10m;点型感烟火灾探测器的安装间距,不应超过 15m。

探测器至端墙的距离,不应大于安装间距的一半。

探测器宜水平安装,当确实需倾斜安装时,倾斜角不应大于 45º。

2.分布式线型光纤感温火灾探测器

感温光纤严禁打结,光纤弯曲时,弯曲半径应大于 50mm;分布式感温光纤穿越相邻的报警区域时应设置光缆余量段,隔断两侧应各留不小于 8m 的余量段;每个光通道始端及末端光纤应各留不小于 8m 的余量段。

三、手动火灾报警按钮的安装要求

1)手动火灾报警按钮,当安装在墙上时,其底边距地(楼)面高度宜为 ~。

2)手动火灾报警按钮的连接导线,应留有不小于 150mm 的余量,且在其端部应有明显标志。

四、消防电气控制装置的安装要求

1)消防电气控制装置在安装前,应进行功能检查。

2)消防电气控制装置在消防控制室内墙上安装时,其主显示屏高度宜为 ~;其靠近门轴的侧面距墙不应小于 ,正面操作距离不应小于 ;落地安装时,其底边宜高出地(楼)面 ~。

五、模块的安装要求

1)模块的连接导线应留有不小于 150mm 的余量,其端部应有明显标志。

2)光警报器与消防应急疏散指示标志不宜在同一面墙上,安装在同一面墙上时,距离应大于 1m。

六、消防应急广播扬声器和火灾警报器的安装要求

1)火灾光警报装置应安装在安全出口附近明显处,底边距地(楼)面高度在 以上。

2)光警报器与消防应急疏散指示标志不宜在同一面墙上,安装在同一面墙上时,距离应大于 1m。

七、消防联动控制器

离器保护范围内的任一点短路,检查总线隔离器的隔离保护功能。

50 个输入/输出模块同时处于动作状态(模块总数少于 50 个时,使所有模块动作),检查消防联动控制器的最大负载功能。

八、消防专用电话

消防专用电话安装在墙上时,其底边距地面高度宜为 。

九、电气火灾监控探测器的安装要求

剩余电流式探测器负载侧的 N 线不应与其他回路共用,且不能重复接地(不能和 PE 线相连)。

系统工程质量检测判定标准

系统内的设备及配件规格型号与设计不符、无国家相关证书和检验报告;系统内的任一控制器和火灾探测器无法发出报警信号,无法实现要求的联动功能的,定为 A 类不合格。

检测前提供的资料不符合相关要求的定为 B 类不合格。其余不合格项均为 C 类不合格。系统检测合格判定应为:A=0 且 B≤2,且 B+C≤检查项的 5%为合格,否则为不合格。

年度检测与维修

点型感烟火灾探测器投入运行 2 年后,应每隔 3 年至少全部清洗一遍。

通过采样管采样的吸气式感烟火灾探测器对采样管道进行定期吹洗,最长的时间间隔不应超过一年;不同类型的探测器应有 10%且不少于 50 只的备品。

常见故障及处理方法

火灾探测器常见故障

1)故障现象。火灾报警控制器发出故障报警,故障指示灯亮,打印机打印探测器故障类型、时间、部位等。

2)故障原因。探测器与底座脱落、接触不良;报警总线与底座接触不良;报警总线开路或接地性能不良造成短路;探测器本身损坏;探测器接口板故障。

3)排除方法。重新拧紧探测器或增大底座与探测器卡簧的接触面积;重新压接总线,使之与底座有良好接触;查出有故障的总线位置,予以更换;更换探测器;维修或更换接口板。

年度检测与维修

各类消防用电设备、主备电源自动转换装置,应进行 3 次转换信号,每次均正常。

火灾报警控制器

①实际安装台数 5 台以下,全部检验

②6-10 台,抽检 5 台

③实际安装超过 10 台,按实际安转数量 30-50%的比例抽检,不少于 5 台火灾探测器

④实际安装台数 100 台以下,检验 20 只(每个回路都应抽检)

⑤实际安装超过 100 台,按实际安转数量 10-20%的比例抽检,不少于 20 台

室内消火栓

①控制室操作启停 1-3 次

②操作消火栓的按钮,按实际安转数量 5-10%比例抽检自动喷水系统

③控制室操作启停 1-3 次

④水流指示器、信号阀等按照实际安装数量 30-50%比例抽检

⑤压力开关、电动阀、电磁阀等全数检查

⑥卷帘门5樘以下,全数检查,超过5樘按实际 20%抽检,总数不少于5樘。

火灾自动报警系统误报的原因

一、产品质量

产品技术指标达不到要求,稳定性比较差,对使用环境中的非火灾因素无法自动处理而误报。

二、设备选择和布置不当

1)探测器选型不合理:灵敏度高的火灾探测器能在很低的烟雾浓度下报警,相反,灵敏度低的探测器只能在高浓度烟雾环境中报警,如在地下车库选用高灵敏度的感烟探测器,在锅炉房高温度环境中选用定温探测器。

2)使用场所性质变化后未及时更换相适应的探测器,例如将办公室、商场等改作厨房、洗浴房、会议室时,原有的感烟火灾探测器会受新场所产生的油烟、香烟烟雾、水蒸气、灰尘、杀虫剂以及醇类、酮类、醚类等腐蚀性气体等非火灾报警因素影响而误报警。

三、环境因素

1)电磁环境干扰主要表现为:空中电磁波干扰,电源及其他输入输出线上的窄脉冲群干扰、人体静电干扰。

2)气流可影响烟气的流动线路,对离子感烟探测器影响比较大,对光电感烟探测器也有一定影响。

3)感温探测器布置得距高温光源过近,感烟探测器距空调送风口过近,感温探测器安装在易产生水蒸气、车库等场所。

4)光电感烟探测器安装在可能产生黑烟和大量粉尘、可能产生水蒸气和油雾等的场所。

四、其他原因

1)系统接地被忽略或达不到标准要求,线路绝缘达不到要求,线路接头压接不良或布线不合理、系统开通前对防尘、防潮、防腐措施处理不当。

2)元件老化,一般火灾探测器使用寿命约为12年,每2年要求全面清洗一次。

3)灰尘和昆虫。据有关统计,60%的误报是因灰尘影响。

4)探测器损坏。

版权申明:本微信内容转自网络,如涉及作品版权问题,请与我们联系,我们将第一时间协商版权问题或删除内容!本文为原作者个人观点,不代表本公众号赞同其观点和对其真实性负责。

论文题目应以最恰当、最简明的词语反映论文中最重要的特定内容的逻辑组合,关于自动化专业的论文题目有哪些?下面我给大家带来自动化专业的论文题目选题参考,希望能帮助到大家!

自动化 毕业 论文题目

1、配网自动化相关技术的研究

2、数字化变电站自动化技术的应用

3、现场总线与工厂底层自动化及信息集成技术

4、电力自动化技术的新发展

5、冶金自动化发展的策略与思考

6、简述电力系统及其自动化发展趋势研究

7、变电所综合自动化系统应用分析与探讨

8、浅谈数字变电站自动化系统

9、自动化专业人才培养方案和课程体系的改革与实践

10、配电网自动化技术问题初探

11、配电自动化系统中配电终端配置数量规划

12、基于组态软件的综合自动化平台的设计与实现

13、生产线自动化及远程监控

14、地铁自动化控制相关系统的对比及应用

15、配电自动化试点工程技术特点及应用成效分析

16、大型自动化控制系统故障报警技术应用研究

17、变电站综合自动化通信系统运行维护分析

18、浅谈变电站综合自动化系统的结构形式

19、如何提高综合自动化变电站的抗电磁干扰能力

20、动力部一降压变电站综合自动化系统改造及应用

21、智能变电站是变电站综合自动化的发展目标

22、中心城市大型配电自动化设计方案与应用

23、浅析电气自动化控制系统的设计思想

24、建筑电气自动化系统安装的施工技术探讨

25、水电厂电气自动化控制设备的可靠性探讨

26、铝工业电气自动化的现状与发展趋势

27、配网自动化建设对供电可靠性的影响研究

28、浅谈电力自动化管理系统

29、铁路变电站自动化监控系统的研制

30、浅析集控站综合自动化系统运行中存在的问题

31、基于IEC 61850的变电站自动化 系统安全 风险评估

32、新型智能配电自动化终端自描述功能的实现

33、天津城市核心区配电自动化技术实施与进展

34、配电自动化若干问题的探讨

35、矿井主扇风机自动化与信息化改造

36、馈线自动化自适应快速保护控制方案

37、自动化系统运行中出现的操作失误、服务失败及补救 措施

38、应用于拣选操作的自动化立体仓库作业优化调度

39、地质环境自动化远程监测项目社会评估--以山东省为例

40、矿井自动化项目技术管理模式浅论

41、自动化仓储系统优化 方法 的研究

42、电气自动化工程控制系统的现状及其发展趋势

43、自动化专业卓越工程师课程体系的改革与实践

44、国外配网自动化建设模式对我国配网建设的启示

45、煤矿自动化与信息化技术回顾与展望

46、基于调度策略的自动化仓库系统优化问题研究

47、配网自动化建设抵御呼伦贝尔寒冬

48、藁城新区水厂的自动化建设

49、综合自动化变电站电压量传输新方式

50、以先进自动化技术确保中线调水畅通

电气自动化专业毕业论文题目

1、 建筑电气工程自动化设计及实现分析

2、 电气自动化在电气工程中的应用

3、 建筑中的电气工程及自动化技术探讨

4、 成品金电气自动控制称量与熔铸的研发与应用

5、 电气自动化工程控制系统的现状及其发展趋势

6、 探究加强企业电气控制线路的合理设计

7、 电动挖掘机在高原环境下的电气特性及系统设计

8、 浅谈电气自动化控制系统的应用及发展

9、 电气自动化工程控制系统现状及其发展趋势探讨

10、 试论电气工程及其自动化的发展趋势

11、 高职电气自动化专业的现状分析及发展

12、 智能化技术在电气工程自动化控制中的应用

13、 智能化技术在电气工程自动化控制中的应用探究

14、 智能化技术在电气工程自动化控制中的应用

15、 智能化技术在电气工程自动化控制中的应用

16、 浅析煤矿生产中电气自动化技术的应用及发展

17、 电气自动化在煤矿生产中的应用

18、 单片机在煤矿电气自动化控制技术中的应用研究

19、 基于人工智能的电气自动化控制研究

20、 工业电气自动化中数字技术的应用与创新

21、 多功能舞台电气控制系统的研究与设计

22、 PLC技术在电气设备自动化控制中的应用

23、 电气自动化技术在铝电解过程中的应用研究

24、 电气自动化控制中的人工智能技术探讨

25、 PLC在选煤厂电气自动化系统中的应用与发展

26、 电气火灾监控系统原理及应用研究

27、 电气自动化控制中的PLC的有效应用

28、 PLC技术的原理、优点及其在电气设备自动化控制中的实践研究

29、 井下电气自动化控制系统优化分析

30、 矿井电气自动化系统优化分析研究

31、 智能化技术在电气工程自动化控制中的具体应用初探

32、 人工智能技术在电气自动化控制中的应用分析

33、 电气工程自动化中人工智能的运用

34、 面对人才需求的高校电气自动化专业创新能力培养模式研究

35、 电气工程及其自动化专业实践教学的探索与思考

电气工程及其自动化论文题目

1、智能化技术电气工程及其自动化的应用探析

2、探讨电气工程及其自动化发展问题分析及应对措施

3、电气工程及其自动化的智能化技术应用分析

4、电气工程及其自动化的质量控制与安全管理

5、PLC技术在电气工程及其自动化控制

6、电气工程的应用及其自动化分析

7、PLC技术在电气工程及其自动化控制中的运用

8、电气工程及其自动化的不足与改善对策分析

9、电气工程及其自动化的质量控制与安全管理

10、浅谈电气工程及其自动化在机械工程中的应用

11、PLC技术在电气工程及其自动化控制中的应用

12、电气工程及其自动化在农村配电网的应用探析

13、电气工程及其自动化技术下的电力系统自动化发展探讨

14、PLC技术在电气工程及其自动化控制中的运用

15、电气工程及其自动化低压电器中继电器的应用

16、电气工程及其自动化存在的问题及应对策略

17、电气工程及其自动化中智能化技术的应用分析

18、继电器在电气工程及其自动化低压电器中的应用研究

19、PLC技术在电气工程及其自动化控制中的应用

20、PLC技术在电气工程及其自动化控制中的应用分析

21、电气工程及其自动化中智能化技术的实际应用

22、电气工程及其自动化的智能化技术应用研究

23、电气工程及其自动化中 网络技术 的应用分析

24、刍议电气工程及其自动化的智能化技术应用

25、电气工程及其自动化的质量控制与安全管理

26、浅析继电器在电气工程及其自动化低压电器中的应用

27、关于电气工程及其自动化技术在发电厂的应用初探

28、电气工程及其自动化低压电器中继电器的应用

29、继电器在电气工程及其自动化低压电器中的应用研究

30、PLC技术在电气工程及其自动化控制系统中的运用

31、PLC技术在电气工程及其自动化控制中的应用

32、继电器在电气工程及其自动化低压电器中的应用分析

33、试论电气工程及其自动化的智能化技术应用

34、电气工程及其自动化专业实践教学的策略

35、电气工程及其自动化中智能化技术的应用

36、我国电气工程及其自动化的发展现状与前景

37、电气工程及其自动化技术在智能建筑中的应用

38、电气工程及其自动化的智能化技术应用

39、论如何提高电气工程及其自动化

40、电气工程及其自动化的质量控制与安全管理

41、智能建筑中电气工程及其自动化技术探讨

42、PLC技术在电气工程及其自动化控制

43、智能建筑中电气工程及其自动化技术的应用分析

44、PLC技术在电气工程及其自动化控制中的应用分析

45、电气工程及其自动化技术在供热建设中的难点分析

46、智能建筑中的电气工程及其自动化技术分析

47、电气工程及其自动化低压电器中继电器的应用探究

48、PLC技术在电气工程及其自动化控制中的运用分析

49、电气工程及其自动化控制中PLC技术的应用

50、智能建筑中电气工程及其自动化技术分析

自动化专业的论文题目选题相关 文章 :

★ 自动化专业学术论文(2)

★ 机械类专业论文选题题目

★ 电气自动化专业毕业论文范文

★ 电气工程自动化大专毕业论文

★ 自动化专业概论论文范文怎么写

★ 机械制造与自动化专业参考论文(2)

★ 有关电气自动化毕业论文范文

★ 大专机械制造与自动化专业毕业论文(2)

★ 机械制造与自动化专业毕业论文

★ 大专机械制造与自动化专业毕业论文

电气火灾监控系统是指当被保护线路中的被探测参数超过报警设定值时,能发出报警信号、控制信号并能指示报警部位的系统。

火灾自动报警系统毕业论文

摘要:从设计依据、火灾自动报警系统的设备设置部位、火灾自动报警系统的消防联动控制及火灾自动报警系统的布线等方面对高层民用建筑火灾自动报警系统的设计提出粗浅见解 关键词:高层民用建筑 火灾自动报警系统 设计 随着我国经济建设的迅速发展,人民生活水平的不断提高以及其它各项事业的兴旺发达,城市用地日益紧张,促进建筑物正朝着高层化、密集化方向发展,该建筑物的装修用料和方式也越趋多样化,并随着用电负荷及煤气耗量的加大,对火灾自动报警系统设计提出了更高、更严格的要求。为确保人民生命财产的安全,火灾自动报警系统设计就成为高层民用建筑设计中最重要的设计内容之一。现依据作者在设计监理工作中的体会,针对高层民用建筑物之火灾自动报警系统的设计,提出现行国家有关标准及规范中欠明确或不完全相同的细节之粗浅见解,以供同行们讨论和指正。一、设计依据火灾自动报警系统的设计是一项专业性很强的技术工作,同时也具有很强的政策性。因此,首先明确设计依据:1、要掌握建筑设计防火规范、系统设计规范、设备制造标准、安装施工验收规范及行政管理法规等五大方面的消防法规,并注意了解现行国家有关标准及规范中的正面词:“必须”、“应”、“宜”、“可”和反面词:“严禁”、“不应”、“不得”、“不宜”的含义。2、要结合高层民用建筑物的功能、用途及属于哪级保护对象和防火等级,并认真执行现行国家有关标准及规范的宽严程度及公安消防监督部门的审批意见。二、火灾自动报警系统的设备设置部位1、火灾探测器的设置敞开或封闭楼梯间应单独划分探测区域,并每隔2~3层设置一个火灾探测器。前室(包括防烟楼梯间前室、消防电梯前室、消防电梯与防烟楼梯间合用的前室)和走道应分别单独划分探测区域,特别是前室与电梯竖井、疏散楼梯间及走道相通,在发生火灾时烟气更容易聚集或流过,是人员疏散和消防扑救的必经之地,故应装设火灾探测器。对于一般电梯前室虽然不是人员疏散必经之地,但该前室与电梯竖井相通,也是在发生火灾时烟气容易聚集或流过,宜单独划分探测区域及装设火灾探测器。前室(包括防烟楼梯间前室、消防电梯前室、消防电梯与防烟楼梯间合用的前室)和走道应分别单独划分探测区域,特别是前室与电梯竖井、疏散楼梯间及走道相通,在发生火灾时烟气更容易聚集或流过,是人员疏散和消防扑救的必经之地,故应装设火灾探测器。对于一般电梯前室虽然不是人员疏散必经之地,但该前室与电梯竖井相通,也是在发生火灾时烟气容易聚集或流过,宜单独划分探测区域及装设火灾探测器。电缆竖井应单独划分探测区域及装设火灾探测器。一则是恐怕竖井形成拔烟火的通道;二则是恐怕发生火灾时火势沿电缆延燃。为防止竖井形成拔烟火的通道及防止发生火灾时火势沿电缆延燃,“高层民用建筑设计防火规范”及“民用建筑电气设计规范”分别在建筑上和在电线或电缆的选型上提出详细的具体规定,但考虑具体实施的难度及现状,对电缆竖井装设火灾探测器是十分必要,并配合竖井的防火分隔要求,每隔2~3层或每层安装一个。电梯机房应装设火灾探测器。其一电梯是重要的垂直交通工具;其二电梯机房有发生火灾的危险性;其三电梯竖井存在必要的开孔,如层门开孔、通风孔、与电梯机房或滑轮间之间的永久性开孔等;其四在发生火灾时,电梯竖井往往成为火势蔓延的通道,容易威胁电梯机房的设施。为此,对电梯机房设置火灾探测器是必要的,并对电梯竖井之顶部宜设置火灾探测器。2、手动火灾报警按钮的设置针对各楼层的前室(包括防烟楼梯间前室、消防电梯前室、消防电梯与防烟楼梯间合用的前室)是发生

我有多路火灾报警器的全部相关资料

本来我是想把原文给你的 但是字太多 系统不能成功发送 所以只好给你网站了 最后两个网站都是建筑工程的论文 很多 上面几个 就是你要的建筑工程造价毕业论文 这个是和毕业设计有关的 也是建筑工程造价方面的哦 答案补充 写不开啊

摘要: 对火灾自动报警控制系统及智能火灾报警控制系统的特征进行了分析, 在高层建筑设 计中采用智能火灾报警控制系统的主—从式网络结构, 解决了高层建筑与大型建筑中探测区 域广、探测器数量多、原有系统不能适应等问题。 关键词:高层建筑 火灾自动报警 探测器 智能控制 联动控制 The design and application of automatic fire warning control system in high buidings Abstract: This article analyses the characteristics of the fire antomatic warning system and the intelligent fire warning control system. By using the sytem a lot of traditional problems can be solved, including using a lot of probes but cotrolling olny a relalively small area. Key words: high rised buiding; fire automatic warning system; probe; intelligent control; coordinated control system 随着我国经济建设的发展,现代高层建筑及重要建筑的防火问题引起了国家消防部门及设 计院等社会各界的高度重视。 国家制定了一系列防火规范, 从而促进火灾自动报警设备的研究和 推广使用。高层建筑建设规模大,装修标准高,人员密集,各种电气设备使用频繁,因而存在着 火灾隐患, 在建筑电气设计中必须严格依照规范要求设计火灾报警控制系统。 但选择何种控制系 统,使该系统充分有效地发挥功能,是设计中十分重要的问题。 1 火灾自动报警系统的主要部件及特征 火灾自动报警系统的基本形式有三种,即:区域报警系统、集中报警系统的控制中心报警系 统。高层建筑和大型建筑主要采用控制中心报警系统,这是一种复杂的火灾自动报警系统,主要 由触发器件、火灾报警装置、消防控制设备及电源组成。该系统从通报火灾到启动灭火系统和控 制各种消防设备,基本实现自动化。 触发器件 主要包括火灾探测器和手动火灾报警按钮。 火灾探测器是对火灾参数 (如烟、 温、 光、火焰辐射、气体浓度等)响应,并自动产生火灾报警信号的器件。按响应火灾参数的不同, 火灾探测器分为感温火灾探测器、感烟火灾探测器、气体火灾探测器、感光火灾探测器和复合火 灾探测器五种基本类型。 火灾报警装置 火灾报警装置 消防控制设备 在火灾自动报警系统中用以接收、 显示和传递火灾报警信号, 并能发生控制 在火灾自动报警系统中用以发出区别于环境声、光的火灾警报信号的装置, 在火灾自动报警系统中当接收到来自触发器件的火灾报警信号, 能自动或手 信号和具有其它辅助功能的控制指标设备。 如火灾警报器, 它是一种基本的火灾警报装置, 以声、 光音响方式向报警区域发出火灾警报信号。 动启动相关消防设施并显示其状态的设备。主要包括:火灾报警控制器;自动灭火系统的控制装 置;室内消火栓系统的控制装置;防排烟系统及空调通风系统的控制装置;常开防火门、防火卷 帘的控制装置;电梯回降控制装置以及火灾应急广播、火灾警报装置、消防通信设备、火灾应急 照明与疏散指示标志的控制装置等十类控制装置。 每个系统根据工程的需要应具有十类控制装置 的部分或全部。 电源 火灾自动报警系统属于消防用电设备,主电源采用消防电源,备用电源采用蓄电池, 保证不间断供电。 设计中消防控制设备主要设置在消防控制中心, 便于实行集中统一控制, 有些消防控制设备 可设在消防设备现场,而动作信号必须返回消防控制中心,实行集中与分散相结合的控制方式。 但该探测器有误报现象、控制器容量较小。 2 智能火灾报警控制系统工作原理 智能火灾报警控制系统与火灾自动报警系统不同之处在于: 将发生火灾期间所产生的烟、 温、 光等, 以模拟量形式连同外界相关的环境参量一起传送给报警器, 报警器再根据获取的数据及内 部存贮的大量数据,利用火灾判据来判断火灾是否存在。 智能火灾报警器中编址单元包括: 智能控测器、 智能手动按钮、 智能模块、 探测器并联接口、 总线隔离器和可编程继电器卡等。新型的智能火灾探测器,又称模拟量火灾探测器,这种探测器 给出的输出信号是代表被响应的火灾参数值的模拟量信号或其等效的数字信号。 传统探测器称为 有阈值火灾探测器,而智能火灾探测器没有阈值,却设有专用芯片,智能火灾探测器的应用提高 了报警系统的准确性和智能化程度。 在火灾报警时,报警控制器通过控制模块启动相应的外探设备,如排烟阀、送风阀、卷帘门 等,需要接受外控设备的反馈信号时,应加一个监视模块,控制模块和监视模块一样,联接在报 警回路总线上,安装在所控设备的附近。模块内设十进制编码开关,可现场编号,各占用回路总 线上一个地址。通过报警控制器显示控制模块和监视模块的具体地址,用声、光报警可反映联动 设备的工作状态。 可编程继电器卡,通过编程可实现对风机、水泵等大型设备的二级联动控制。智能控制是一 种无需人的干预就能够自主地驱动智能机器实现其目标的过程。 3 工程实例 火灾自动报警系统的设计应用 笔者 1992~1993 年参与设计的海南省物资局金属大厦,该大厦是座地下 1 层,地上 22 层, 建筑高度 70 多米,建筑面积 万平方米的写字楼。根据《高层民用建筑设计防火规范》的规 定,建筑高度超过 50 m 的办公楼属于一类防火建筑,因此该大厦要设火灾自动报警系统。 设计中选择了国产火灾自动报警系统,这种系统在当时较普遍,仅有一台主机控制器,因而 适用于中、小型建筑。 大厦消防控制中心设在 1 层,每层设层显示器。地下室作设备用房有变电室、空调机房、 水泵房,机房内设有防排烟风机、消防水泵等消防设备,当火灾发生时,温度达到一定值排 烟风机自动启动,并打开排烟阀,开始排烟(图 1)。 图1 排烟风机控制原理 该工程地下室是消防联动控制的集中点,将地下室的防排烟风机、排烟阀等控制线均引 至消防中心的联动控制器。消防泵、喷淋泵、正压风机、排烟风机、消防电梯等却属于外控 设备,均由联动控制器控制。整个火灾自动报警系统设计合理、运行可靠。 智能火灾报警系统的设计应用 随着科学技术的发展,智能火灾报警系统问世,从传统型走向智能型是国内外火灾报警 系统技术发展的必然趋势,工程设计人员必须予以充分重视。 徐州某大型建筑群由三栋塔楼组成,一栋为 25 层,一栋 13 层和一栋 12 层的塔楼由 4 层 裙楼连接而成,建筑面积 6 万平方米,建筑高度 85 m,主要功能:1 至 4 层为商场,5 层以上 为写字楼。由于该大厦建筑面积大,探测区域广,探测器数量非常可观。传统的火灾自动报 警系统已无法满足需要,因此,在设计中,经过反复的方案比较,选择了采用主—从式网结 构的智能火灾报警控制系统,该系统利用大容量的控制矩阵交叉查寻软件包,以软件编程代 替硬件组合,满足了大型工程的适用性,提高了消防联动的灵活性和可修改性。系统由主机、 从机、复示器等构成。该工程消防控制中心设于 1 层,主机和消防联动控制柜设在消防中心, 从机与复示器分设于楼层内。 智能探测器数量的确定 设计时先根据《火灾自动报警器系统设计规范》的规定确定探 测器的布局和设置。其规定探测区域内的每个房间至少应设置一只火灾探测器。感烟、感温 探测器的保护面积和保护半径应按表 1 确定。表中列出的是一个感烟探测器或感温探测器的 保护面积和保护半径。建筑物内往往一个探测区域的面积较大,超过一只探测器的保护面积, 这时需要计算一个探测区域内所需设置的探测器数量,可按下式计算: 式中:N 为一个探测区域内所需设置的探测器数量(只),N 取整数;S 为一个探测区域的面 积(m );A 为探测器的保护面积;K 为修正系数,重点保护建筑取 ~,非重点保护建 筑取 。 根据上式计算结果,可确定一个探测区内的智能探测器的安装数量。 选择控制器容量计算 该系统控制器为主—从式网络结构,每个主—从机系统,只能有 一台主机,从机数量根据工程要求确定,一般按探测器数量计算,从机数量最多为 15 台。 表1 感烟、感温探测器的保护面积和保护半径探测器的保护面积 A 和保护半径 R 火灾探测 器的种类 地面面积 S (m ) 2 2 房间高度 H (m) θ≤15° A (m ) 2 屋顶坡度 θ 15°<θ≤30° A (m ) 80 100 80 30 30 2 θ>30° A (m ) 80 120 100 30 40 2 R (m) 6/7 R (m) R (m) S≤80 感烟探测器 S>80 h≤12 6<h≤12 h≤6 80 80 60 30 20 感温探测器 S≤30 S>30 h≤8 h≤80 每台控制器最大有四个回路,每个回路容量均为 198 个地址,其中 99 个智能探测 器,99 个编址模块。因此一台主机或从机的最大容量为 4×99=396 个智能探测器, 4×99=396 个编址模块。 该工程经过计算,选用了一台主机和四台从机,每台控制器都按四个回路设计。 主机 N 控制 1~4 层商场内的所有探测器,手动报警按钮,控制按钮,水流指示器等消 防设备,从机 N1 控制地下室的所有探测器、送风阀、排烟阀、防火阀等消防设备,从 机 N2 控制 13 层和 12 层两座连通塔楼的 5~13 层的消防设备,N3、N4 分别控制 25 层 塔楼的 5~13 层和 14~25 层的消防设备。 整个大厦智能火灾报警控制系统设计比较合理,充分考虑到建筑群的特点,选用 一台主机、四台从机控制了 6 万平方米的建筑,如果用传统火灾自动报警系统则需要 几套控制系统分别控制,现有系统设计即经济实用,又准确可靠。 4 结论 综合上述工程设计与实践研究,可以得出以下几点认识与结论。 1) 传统的火灾自动报警系统适合于中、 小型建筑, 它的特点是探测器属于阀值型, 控制器仅有主机一台。而智能火灾报警控制系统,采用模拟量探测器,控制系统采用 主—从式网络结构,适应性强,尤其适合大型建筑的火灾报警系统。 2)智能火灾报警系统,克服了传统火灾自动报警系统存在的漏报和误报的难题, 提高了报警系统的准确性、可靠性。在设计中可灵活应用,根据工程需要选择适当的 从机数量,使工程设计最经济、最合理。 3)为了防患于未然,火灾报警系统的设计和应用十分重要,设计人员应根据不同 的建筑工程,优化设计方案。 参考文献:〔1〕 蔡自兴, 徐光礻 〔2〕 右.人工智能及其应用 〔M〕 .北京: 清华大学出版社, 1996,329~ 360 戴汝为.智能系统的综合集成〔M〕.杭州:浙江科学技术出版社,1995,128~ 160 〔3〕 陈一才.大楼自动化系统设计手册 〔M〕 .北京: 中国建筑工业出版社, 1994,230~ 270 〔4〕 王根堂.公安消防监督员业务培训教材,群众出版社,1997,213~236

相关百科
热门百科
首页
发表服务