论文发表百科

发展中的电化学电容器毕业论文

发布时间:2024-07-03 09:59:26

发展中的电化学电容器毕业论文

内容:实验数据。意义:储存电荷。1、内容:圆柱形电化学电容器制备是惠州亿纬锂能股份有限公司于2012年12月29日申请的专利,其内容就是申请专利的相关实验数据。2、意义:圆柱形电化学电容器常用于制成超级电容器,是一种新型的电荷储备元件,与一般电池相比,具有容量大、支持大电流充放电、循环寿命长和环保无污染等优点,能提供快速的能量释放,满足高功率需求,因此在新能源、交通运输、工业等领域有着广阔的应用前景。

所谓超级电容器,又称电化学电容器,是近年来越来越流行的一种储能系统。它可以被认为是类似于普通电容器和电池的混合体,但又不同于两者。就像电池一样,超级电容器也具有由电解质隔开的正极和负极。但是,与电池不同的是,超级电容器像电容器一样以静电的方式储存能量,而不是像电池那样以化学的方式储存能量。此外,超级电容器还拥有锂电池无可比拟的优点,比如它在很小的体积下能存储很大的电容量;循环使用寿命长,可以反复充放电数十万次;充放电时间短;超低温特性好;大电流放电能力强等。如此看来,超级电容器才是作为电动汽车动力来源的最好办法。毕竟电池容量的大小直接影响着续航里程的长短和电动汽车的发展,而超级电容器的优点,完全符合完美电池的定义。并且中国研发的石墨烯基超级电容器已经走在了世界前列。中国的墨烯技术是世界最高水平。一:常州立方能源技术有限公司研制的石墨烯基超级电容器可以实现100%回收利用,解决了电池的污染问题。实现了超过一百万次的安全充放电,且产品的充放电速度是市场同类产品的两倍。同时,可在零下40摄氏度和70摄氏度之间安全工作。根据需求,超级电容器可以任意并联使用,以增加电容量。二:上海硅酸盐所科学家已研制出一种高性能超级电容器电极材料——氮掺杂有序介孔石墨烯。该材料具有极佳的电化学储能特性,可用作电动车的“超强电池”:充电只需7秒钟,即可续航35公里。三:东旭光电的石墨烯锂离子电池产品"烯王"可在5C条件下,实现不到15分钟的快速充电,而且可在-30至80℃的环境下工作,循环寿命更高达3500次。此前测试,"烯王"充电用时不到15分钟,仅为普通充电产品的1/24。四:中国中车株洲电力机车有限公司自主研制的新一代大功率石墨烯超级电容问世。南车株机世界首列超级电容100%低地板有轨电车,其采用7500F双电层超级电容,寿命长达10年,充放电次数可达100万次。列车每次进站可快速充电,最大充电时间30秒,最快10秒便能完成充电。代表了目前世界超级电容单体技术的最高水平。但是,凡事都有利有弊,目前想用超级电容普遍代替锂电池还是做不到的,因为目前生产超级电容在技术上还不完全,生产成本高。再有一点就是其不耐高温,不能放置在潮湿的环境中,否则会影响正常工作,甚至损坏电池。但是,我们相信在不久的将来,我们会攻克超级电容带来的不足,届时新能源汽车的动力电池将会有新的突破。

咦,你们那里的人素质不都是挺高地吗,那里走出的院士不是挺多地吗,那里的博导不是世界上最好的吗,下面的工程技术应用,对于他们来说,都是小菜一碟,信手拈来,举手之劳罢了,不足一提,太小小意思了。如何将电动车寄回家?生产通用装置,可以套在绝大多数国产电动两轮车上,完成以下的使命,开展如下的崭新业务:安装自动驾驶装置,安装自动全球导航系统,安装全球定位系统,安装通过隧道时候的惯性制导系统和立体图像识别处理系统,使他,自动开回去啊。快递公司、物流公司、铁路运输、汽车运输、船舶航运,都规定严格禁止在被运输的电动车内部保存电池!!!只有这种工程技术手段,才能够连同电池一起,将电动车以最高的速度送往目的地。你再在车里安装全球传输的视频监控装置,远程人工辅助驾驶,全球网络刷卡付费充电,在当地寻找充电资源,通过卫星网络联络。在车辆上面安装太阳能发电板,安装风力发电设备,安装车辆制动过程再生能源发电后对车辆上化学电源、超级电容器充电的装置,远途对车辆中的电池进行充电。安装高压放电装置,安装激光武器,安装机械臂膀,拥有自卫防护能力,防盗和防抢劫车辆。风雨兼程、日夜兼程、马不停蹄、长途跋涉、勇往直前、直奔目标而去!老外都被你惊叹,这是中国国防军事综合实力的体现,你的壮举,必将被全球各个主要的新闻机构重点报道!!!中国人,真牛!!!!!!!!!!!!!!!!!!!!!!!引领世界前进的步伐!!!!以后,国际航空界要强迫、硬性规定、法案、提案、法令,乘客要有权使用专用的紧急广播通信设备,能够在最后的时候,乘客各自呼唤亲人,机组人员无权干预。通过贯穿机身外壁的线路,发送信号到外界的卫星、地面接收设备、附近空中飞行的民航飞机、附近水面航行的商船,用于应急发送机上紧急情况,客机的空间位置、空间姿态,播报各位乘客的遗嘱,传输飞机坠落和迫降的过程。对于部分乘客,有语音、动作、有呼吸、心电等遥测功能。要强制卫星、地面接收设备、空中飞行的民航飞机、水面航行的商船,强制要求安装对应频道的接收和记录设备,保障全球无盲区。在飞机的客舱内,在乘客区域,要分散固定几个发送装置,几个发送装置,同时提出人工启动的请求,才开通发送装置,并且对于启动装置的乘客,自动开始录像、录音,便于事后追溯来源,处置恶意操作。发送装置自带备用电源,发送装置外部,有可以方便启封的装置,防止恶意启动骚扰。通过国际相关的法律和法规,将这种通信装备,列为客机的法定标准配置。这是客机的适航规章标准。也就是实现,立即指导救援和和搜救工作,不要等待打捞和分析黑盒子的漫长时间。至于现在争论的实时发送客机飞行数据容量大、占据带宽、客户拥挤等困难,只是在起飞、降落过程中全程发送,在巡航过程之中,主要是在空中姿态和速度矢量、高度、环境、发动机工况等等异常的时候,才自动发送,以此来减少发送的重复周期和信息量。你自己亲自去做最好的拖把。那就要用俺亲自制造的拖把,用浸过水的拖把,自动巡航室内全部的地面,无遗漏地,在住宅内拖地,自动间隔,将拖把送去水桶中清洗,然后自动甩干。再继续自动去拖地。你若需要,请向裘5援5平提出申请,只有她批准了,你就能够获得欧洲、美国、日本都没有生产过的自动装置,即使是中国煤老板、中国首富、沙特阿拉伯的富豪,都望尘莫及!!!!网上和商店里面全都是垃圾货,整个市场都是如此。俺家是用自制的全不锈钢结构的,非人体动力的脱水装置,其不锈钢材料厚度1毫米到2毫米,整机不锈钢材料重量超过4公斤,绝对厚重,耐用,寿命几十年以上,可以方便地更换动力源,还有更加安全、绝对高端的结构,可以制造出来,供西方工业发达国家有钱人收藏。中国的生产企业,你们咋就不做点结实耐用的产品,尽在那里做偷工减料到极限的垃圾货???!!!嘿嘿,本地的报社,都不予以报道,这其实是有钱人,有地位的家庭,才能够使用的奢侈品。大批量生产的全不锈钢结构,用薄的不锈钢材料冲压成型,不锈钢材料的重量也就一公斤以下,出售的底价是,连同不锈钢水桶的整机也就150元,到200元,比不少塑料桶的装置还要便宜。这就是中国的国民素质大体现,理工科的大学生和研究生,做的是精密机械制造“尖端”课题,“研究”的是先进运动控制理论,天天面对的是“高性能”工业控制,眼睁睁地看着自己的自行车被连续盗窃,也做不出像样的自行车防盗锁。那些富有的、知名的中国企业家,自己家里也是依靠市场上采购的垃圾货,根本不会运用自己企业的生产设备进行制造,仅仅知道去模仿台湾的产品。这种装置,欧美日还没有生产呢,国际市场上采购不到!!那些富豪自己的高档进口轿车,也是从市场上采购的防盗装置,他们有几亿身家,也做不出高性能的汽车动力装置,只知道山寨拼装方式的“改装和升级”。其实,低端的电动全不锈钢结构的拖把旋转脱水装置,出厂价大约是150元到200元,高端的电动全不锈钢结构的拖把旋转脱水装置,出厂价大约是500元。自己去制造最好的拖把和拖把甩水装置。已经通知花都市政府、清远市政府、佛山市政府,是否安排生产和出口,是他们的决定。从“精英、富豪、博导、院士、高级工程师、总工程师、董事长”家里的装修和日用品的自行施工与制造比例,和是否具备超越欧美日现在产品的功能、可靠性和技术性能,就能够清楚地反映出这个国家的基础素质、基本的工业制造能力、国防实力、空间技术实力。这些制造工作,一样能够运用到高精尖的制造装备,精深的制造工艺,顶尖的基础材料。到市场上去采购和聘请民工来服务,包括那些航天工业的“高级技工”的技艺,都是一样的垃圾!!!!!现在中国的制造业都是卖苦力,薄利多销,十分艰辛。发大财的都是那些个淘宝商人、超市、商贸部门,他们过手就价格翻番!!所以嘛,中国军工企业的高级工程师、中国航天企业的总工程师,他们家里自己的日用品都是垃圾中的垃圾,即使是进口欧美日的产品,其中一样有许多设计和制造缺陷,他们无法识别,掌控着进口高级精密加工设备却无能力改进。这是基础工业水平和道德水平的问题。一般地说,旋转拖把头,只要更换棉纱线就可以了,固定棉纱线塑料盘是可以反复使用的,如果用防锈的金属材质,则是半永久性寿命的。关键是旋转拖把杆内的结构和杆身的材质差,材料单薄,寿命极端地短,浪费地球不可再生的资源,如果要修理,割开后,得使用进口的不锈钢焊接机器才能重新封接,手工是无法重新焊接的。现在的脚踏旋转机构,工作期限也是很短的,塑料桶的寿命也是十分短暂的。一般地统计,只要两套现有的垃圾旋转拖把桶和旋转拖把的零售价格,就可以制造出耐用几十年的不锈钢材质硬件系统,这个总金额也就是500元人民币以下。现在的旋转拖把是高度浪费不可再生的资源,用垃圾货来某私利,寿命短,无法回收,太无耻了。手机在电瓶车上充电可以吗?220伏的手机充电器在64伏、24伏特的电瓶车上充电可以吗?220伏的手机充电器在12伏特的汽车上充电可以吗?你所需要的装置,就是充电器的额定输入电源电压,从交流电网的220V,到直流蓄电池的24V,以至汽车的标准供电电源电压12V,如此宽广的范围,都能够自动适应啊,这是俺的基本功,没有难度。提问者采纳的回答,十分肤浅,现在的博导也基本上如此了。从整体上来看,中国大量生产各种开关电源,其中一个应用领域,就是充电器,其中核心的集成电路芯片,基本上都是原装进口的,也有生产开关电源的企业,为了降低成本,而用国产的仿制芯片,在市场上的低端产品上有一点市场罢了。从开关电源熟练的工程技术人员来分析,他们对这个问题的回答,是要更换脉冲变压器,供电电源电压不同,脉冲变压器的铁氧体磁芯的尺寸和气间隙不变,只是初级绕组的圈数不同而已,具体要实际对比测试、实验后,反复修改,才能够实际应用。而全面回答这个提问的答案,首先是要制造宽输入电源电压的开关电源,以中国制造开关电源高端的工程技术人员的能力,他们是建议采用既有调节振荡频率、又有调节脉冲占空比的芯片,这种芯片,国内也有仿制。大多数的开关电源芯片是调节脉冲占空比的芯片。而这个提问的实质上难题,是无论何种芯片,芯片从电源取得的起始启动电流的电路有难度。以国内外的标准设计,是用一个电阻来取得芯片起始启动电流,而这个电阻,如果要适应如此宽的输入电源电压范围,这个电阻的阻值,是按照最低输入电源电压来确定的,而在输入电源电压最高的时候,这个电阻上的功率消耗极其高,整个装置的效率低,可靠性差,温升高。如果用电容器的容抗限流,可以降低损耗,又无法应用于直流电源输入的要求,而且,电容器在高压条件下工作,存在被击穿短路的几率,可靠性差。这就是高性能、高效率、高可靠性、微功耗电路的设计技巧,是航天领域、军事工业领域的基本功。中国各种级别的工业集团都是没有这个能力,摸不到这个门槛地啦。俺早就分别从两个不同的途径,圆满地制造了相关的装置,投入实际应用多年。因为俺在改革开发前,就完全使用国产的分立半导体器件,实现了输入电源交流电压有效值220V,峰值功率上千瓦,宽范围的调频、调宽开关电源,完成了按照国际电工组织IEEE标准要求的测试工作。

化学电池的发展研究论文

化学电池化学电池将化学能直接转变为电能的装置。主要部分是电解质溶液、浸在溶液中的正、负电极和连接电极的导线。依据能否充 电复原,分为原电池和蓄电池两种 化学电池的种类 化学电池按工作性质可分为:一次电池(原电池);二次电池(可充电电池);铅酸蓄电池。其中:一次电池可分为:糊式锌锰电池、纸板锌锰电池、碱性锌锰电池、扣式锌银电池、扣式锂锰电池、扣式锌锰电池、锌空气电池、一次锂锰电池等。二次电池可分为:镉镍电池、氢镍电池、锂离子电池、二次碱性锌锰电池等。铅酸蓄电池可分为:开口式铅酸蓄电池、全密闭铅酸蓄电池。 1.锌锰电池 锌二氧化锰电池(简称锌锰电池) 又称勒兰社(Leclanche)电池,是法国科学家勒兰社(Leclanche,1839-1882)于1868年发明的由锌(Zn)作负极,二氧化锰(MnO2)为正极,电解质溶液采用中性氯化铵(NH4Cl)、氧化锌(ZnCl2)的水溶液,面淀粉或浆层纸作隔离层制成的电池称锌锰电池,由于其电解质溶液通常制成凝胶状或被吸附在其它载体上而呈现不流动状态,故又称锌锰干电池。按使用隔离层区分为糊式和板式电池两种,板式又按电解质液不同分铵型和锌型电池纸板电池两种。 干电池用锌制筒形外壳作负极,位于中央的顶盖上有铜帽的石墨棒作正极,在石墨棒的周围由内向外依次是A:二氧化锰粉末(黑色)------用于吸收在正极上生成的氢气(以防止产生极化现象);B:用饱和了氯化铵和氯化锌的淀粉糊作为电解质溶液。 电极反应式为:负极(锌筒):Zn +– 2e === Zn(NH3)2Cl2↙+2H+ 正极(石墨):2NH4+ === 2NH3 ↑+ H2↑ H2O + 2MnO2 + 2e === 2MnOOH+ 2OH- 总反应:Zn + 2NH4Cl + 2MnO2 === Zn(NH3)2Cl2↙+2MnOOH 干电池的电压大约为,不能充电再生。 2.碱性锌锰电池 20世纪中期在锌锰电池基础上发展起来的,是锌锰电池的改进型。电池使用氢氧化钾(KOH)或氢氧化钠(NaOH)的水溶液做电解质液,采用了与锌锰电池相反的负极结构,负极在内为膏状胶体,用铜钉做集流体,正极在外,活性物质和导电材料压成环状与电池外壳连接,正、负极用专用隔膜隔开制成的电池。 3.铅酸蓄电池 1859年法国普兰特(Plante)发现,由正极板、负极板、电解液、隔板、容器(电池槽)等5个基本部分组成。用二氧化铅作正极活性物质,铅作负极活性物质,硫酸作电解液,微孔橡胶、烧结式聚氯乙烯、玻璃纤维、聚丙烯等作隔板制成的电池。 铅蓄电池可放电也可以充电,一般用硬橡胶或透明塑料制成长方形外壳(防止酸液的泄漏);设有多层电极板,其中正极板上有一层棕褐色的二氧化铅,负极是海绵状的金属铅,正负电极之间用微孔橡胶或微孔塑料板隔开(以防止电极之间发生短路);两极均浸入到硫酸溶液中。放电时为原电池,其电极反应为: 负极:Pb + SO42-- 2e === PbSO4 正极:PbO2 + 4H+ + SO42- + 2e === PbSO4 + 2H2O 总反应式为:Pb + PbO2 + 2H2SO4 ====== 2PbSO4 + 2H2O 当放电进行时,硫酸溶液的的浓度将不断降低,当溶液的密度降到 时应停止使用进行充电,充电时为电解池,其电极反应如下: 阳极:PbSO4 + 2H2O- 2e === PbO2 + 4H+ + SO42- 阴极:PbSO4 + 2e === Pb + SO42- 总反应式为:2PbSO4 + 2H2O ====== Pb + PbO2 + 2H2SO4 当溶液的密度升到时,应停止充电。 上述过程的总反应式为: 放电 Pb + PbO2 + 2H2SO4 ====== 2PbSO4 + 2H2O 充电 4.锌银电池 一般用不锈钢制成小圆盒形,圆盒由正极壳和负极壳组成,形似纽扣(俗称纽扣电池)。盒内正极壳一端填充由氧化银和石墨组成的正极活性材料,负极盖一端填充锌汞合金组成的负极活性材料,电解质溶液为KOH浓溶液。电极反应式如下: 负极:Zn + 2OH- -2e=== ZnO + H2O 正极:Ag2O + H2O + 2e === 2Ag + 2OH- 电池的总反应式为:Ag2O + Zn ====== 2Ag + ZnO 电池的电压一般为,使用寿命较长。 5.镉镍电池和氢镍以及金属氢化物镍电池 二者均采用氧化镍或氢氧化镍作正极,以氢氧化钾或氢氧化钠的水溶液作电解质溶液,金属镉或金属氢化物作负极。金属氢化物电池为20世纪80年代末,利用吸氢合金和释放氢反应的电化学可逆性发明制成,是小型二次电池主导产品。 6.锂电池 锂电池是一类以金属锂或含锂物质作为负极材料的化学电源的总称通称锂电池,分为一次锂电池和二次锂电池。 7.锂离子电池 指能使锂离子嵌入和脱嵌的碳材料代替纯锂作负极,锂的化合物作正极,混合电解液作电解质液制成的电池。锂离子电池是1990年有日本索尼公司研制出并首先实现产品化。国内外已商品化的锂离子电池正极是LiCoO2,负极是层状石墨,电池的电化学表达式为(—) C6▏1mol/L LiPF6-EC+DEC▏LiCoO2(+) 8.氢氧燃料电池 这是一种高效、低污染的新型电池,主要用于航天领域。其电极材料一般为活化电极,具有很强的催化活性,如铂电极、活性碳电极等。电解质溶液一般为40%的KOH溶液。电极反应式如下: 负极:2H2 + 4OH- -4e=== 4H2O 正极:O2 + 2H2O + 4e=== 4OH- 总反应式:2H2 + O2 === 2H2O 9.熔融盐燃料电池 这是一种具有极高发电效率的大功率化学电池,在加拿大等少数发达国家己接近民用工业化水平。按其所用燃料或熔融盐的不同,有多个不同的品种,如天然气、CO、---熔融碳酸盐型、熔融磷酸盐型等等,一般要在一定的高温下(确保盐处于熔化状态)才能工作。 下面以CO---Li2CO3 + Na2CO3---空气与CO2型电池为例加以说明: 负极反应式:2CO + 2CO32--4e === 4CO2 正极反应式:O2 + 2CO2 + 4e=== 2CO32- 总反应式为:2CO + O2 === 2CO2 该电池的工作温度一般为6500C 10.海水电池 1991年,我国科学家首创以铝---空气---海水为材料组成的新型电池,用作航海标志灯。该电池以取之不尽的海水为电解质,靠空气中的氧气使铝不断氧化而产生电流。其电极反应式如下: 负极:4Al – 12e === 4Al3+ 正极:3O2 + 6H2O + 12e === 12OH- 总反应式为:4Al + 3O2 + 6H2O === 4Al(OH)3 这种电池的能量比普通干电池高20---50倍! 新型化学电池 (1碱性氢氧燃料电池 这种电池用30%-50%KOH为电解液,在100°C以下工作。燃料是氢气,氧化剂是氧气。其电池图示为 (―)C|H2|KOH|O2|C(+) 电池反应为 负极 2H2 + 4OH―4e=4H2O 正极 O2 + 2H2O + 4e=4OH 总反应 2H2 + O2=2H2O 碱性氢氧燃料电池早已于本世纪60年代就应用于美国载人宇宙飞船上,也曾用于叉车、牵引车等,但其作为民用产品的前景还评价不一。否定者认为电池所用的电解质KOH很容易与来自燃料气或空气中的CO2反应,生成导电性能较差的碳酸盐。另外,虽然燃料电池所需的贵金属催化剂载量较低,但实际寿命有限。肯定者则认为该燃料电池的材料较便宜,若使用天然气作燃料时,它比唯一已经商业化的磷酸型燃料电池的成本还要低。 (2) 磷酸型燃料电池 它采用磷酸为电解质,利用廉价的炭材料为骨架。它除以氢气为燃料外,现在还有可能直接利用甲醇、天然气、城市煤气等低廉燃料,与碱性氢氧燃料电池相比,最大的优点是它不需要CO2处理设备。磷酸型燃料电池已成为发展最快的,也是目前最成熟的燃料电池,它代表了燃料电池的主要发展方向。目前世界上最大容量的燃料电池发电厂是东京电能公司经营的11MW美日合作磷酸型燃料电池发电厂,该发电厂自1991年建成以来运行良好。近年来投入运行的100多个燃料电池发电系统中,90%是磷酸型的。市场上供应的磷酸型发电系统类型主要有日本富士电机公司的50KW或100KW和美国国际燃料电池公司提供的200KW。 富士电机已提供了70多座电站,现场寿命超过10万小时。 磷酸型燃料电池目前有待解决的问题是:如何防止催化剂结块而导致表面积收缩和催化剂活性的降低,以及如何进一步降低设备费用。 化学电源的重大意义: 化学能转换为电能的原理的发现和各式各样电池装置的发明,是贮能和供能技术的巨大进步,是化学对人类的一项重大贡献,极大地推进了现代化的进程,改变了人们的生活方式,提高了人们的生活质量。

作者: Raymond George Klaus Hassmann【摘要】燃料电池具有非同寻常的性能: 电效率可达60%以上,而且可以在带着部分负荷运行的情况下进行维修,除了有低比率碳氧化物排放外几乎没有任何有害的排放物。文章介绍按温度划分的4种主要燃料电池(PEMFC、PAFC、MCFC和SOFC)的性能,重点介绍高温固体氧化物燃料电池(SOFC)的应用及其发展前景。 With demonstration projects fuel cells are Well uder way toward penetrating the power market,covering a wide range of application.This paper introduces the main four types of fuel cells which are PEMFC,PAFC,MCFC and SOFC.Then it puts the emphasis on SOFC and its application market. 燃料电池是通过由电解液分隔开的2个电极中间的燃料(如天然气、甲醇或纯净氢气)的化学反应直接产生出电能。与汽轮发电机生产的电能相比,燃料电池具有非同寻常的特性:它的电效率可达60%以上,可以在带部分负荷运行的情况下进行维修,而且除了排放低比率碳氧化物外,几乎没有任何其他的有害排放物。1 燃料电池的分类 目前研制的燃料电池技术在运行温度上有不同的类型,从比室温略高直到高达1000℃的范围。大多数工业集团公司的注意力集中在以下4种主要类型上:(1)运行温度在60-80℃之间的聚合物电解液隔膜型燃料电池(PEMFC);(2)运行温度在160-220℃之间的磷酸类燃料电池(PAFC);(3)运行温度在620-660℃之间的熔融碳酸盐类燃料电池(MCFC);(4)运行温度在880-1000℃之间的固体氧化物燃料电池(SOFC)。 可以将这些类型的燃料电池划分为低温型(100℃及以下)、中温型(约200℃左右)及高温型(600-l000℃)燃料电池。 表1简要地列出了各种类型燃料电池的性能。中温型和高温型燃料电池适于用在静止式装置上,而低温型燃料电池对于静止装置和移动式装置都适用。 实用装置的功率容量差别也很大,可以给笔记本电脑及移动电话供电(数以W计),也可以给居民住宅(数kW)或是分散的电热设备和动力设备(数百KW到数MW)供电。 最适于用来驱动汽车的是低温型燃料电池。 根据使用期限成本进行的经济性比较结果表明,就发电成本而言,SOFC型燃料电池要PEM型低30%。这个结果是根据SOFC型燃料电池的电效率比PEM型的高,这2种燃料电池最终都可以达到l000美元/KW的投资成本这一假设条件而推导出来的。 2 高温燃科电池 高温型燃料电池具有许多适于在静止式装置上使用的特性。但是在高温型燃料电池产生出电能之前需要较长的加热过程,因而这种技术不能应用于要求在短时间内频繁起动的各种实用装置。此外,高温型燃料电池还具有以下特点: (1)不需要使用贵金属来催化电化学反应。一般情况下使用陶瓷材料。 (2)对CO完全没有限制。CO参加到电化学反应过程并像H2一样被氧化。 (3)对燃料表现出高度灵活性。可以给这类燃料电池发电设备供应天然气,天然气在设备内部被转换成H2和CO。这意味着无需任何外部燃料,从而大大简化了发电设备的平衡问题。 (4)高温可以将燃气轮机连接到该系统上,在这种情况下,燃料电池发电设备是在300kPa压力下运行,并在不考虑燃气轮机输出的情况下将燃料电池的功率密度提高约20%,因此使总的电效率提高10%,可成倍地降低使用期限成本。 (5)较高的运行温度也为排热提供了更多的灵活性。在电效率达60%或更高水平的联合循环系统中可限制废热排放,而在单循环下则会排放出更多的热量。 MCFC和SOFC是这类高温型燃料电池的2种技术。它们使用的材料不同。MCFC是在一只陶瓷容器中放入液态的金属碳酸盐作为电解液,如果没有采取防止电极老化的措施,燃料电他的使用寿命会受到影响。 在MCFC中电化学反应是由CO3离子引发的。MCFC采用的是颊型电池,和SOFC型的管形设计方案相比,这种颊型电他的功率密度要稍微高一些。这在成本上要比SOFC型装置优越。但在另一方面,由于SOFC所用的陶瓷材料非常稳定,可以用在950-1000℃范围内,所以SOFC装置在抗老化性能上更具优越性。到目前为止,所有的长期电池试验和正在运行的试验性机组都表明SOFC型装置的使用寿命可以达到70 000-80 000h,是MCFC型的2倍。 MCFC和SOFC 2种技术在进行100-250kW功率范围的单循环现场试验中,成本都有大幅度的下降。目前在MCFC开发上占有主导地位的是美国的Fuel Cell Energy公司及其在德国的授权单位MTU,日本的Ishikawajima-Harima重工(IHI)和三菱公司等。而Siemens Westinghouse在SOFC开发上处于领先水平。3 中温型燃料电池 目前磷酸类燃料电池(PAFC)是具有最先进技术的燃料电池。80年代,IFC(国际燃料电池公司)决定对其前期商业化生产线进行投资,制造和销售200kW的PAFC装置,并将其投入市场。东芝公司在80年代末就已经努力使PAFC技术进入商用市场。从此,PAFC技术就一直在静止燃料电池的市场中占据着显赫的位置。迄今为止,全球已经安装了150多套PAFC燃料电池装置。 研究表明,这种燃料电池未能实现市场商业化的原因大致有以下几方面: (1)电效率最高为40%,超过维修期限后会降到35%甚至更低水平。通常情况下设备的使用期限不超过20 000运行h。 (2)有些试验性的设备(如东芝公司管理的1套11MW设备未能达到顶期的性能水平。 (3)美国和日本政府大幅度削缩用于PAFC技术研究和开发的投资。 (4)从迄今积累的经验及在改善设计参数和降低产品成本方面的潜力来看,让PAFC技术成功地跻身于当今的市场中的可能性是极低的。4 SOFC在配电市场方面的潜力 Siemens Westinghouse公司根据对市场的分析,决定采取必要的措施加快SOFC技术进入市场的步伐。预计在2003-2004年提供第l批产品,进入商业性生产前的试验阶段,装置容量从目前的2MW扩大到15MW。 北美和欧洲被认为是SOFC燃料电池技术最有希望的市场。Hagler Bailly公司和西门子公司对功率范围为250 kW-l MW的市场进行了调查,结果表明到2005年SOFC燃料电池的市场容量为每年10000MW。北美和欧洲几乎各占50%。考虑到北美洲用户的结构和他们的需求,在北美洲各类小型发电机组的总容量在2010年可能达到每年约1000MW,其中600MW可能是燃料电池发电装置。在各种类型的燃料电池中,SOFC的市场份额约占40%,到2010年在北美洲SOFC的全年销售额将达到亿美元。 在竞争日益激烈的配电市场中的另一个获胜者是微型燃气轮机,主要是作为备用电源或辅助电源。由于SOFC和微型燃气轮机的特性适于不同的应用场所,SOFC效率高但投资成本也高,而微型燃气轮机成本低但效率也低,因而这2种技术不会产生市场上竞争。而往复式发动机会逐渐失去其在市场中的份额。 欧洲电网要比北美洲电网强大得多,欧洲电网强化了集中的大型发电厂的作用。因此在北美洲经常出现的分散式电热设备和动力装置的供电质量和供电可靠性问题在欧洲是不突出的。但另一方面,在欧洲对能量储存更为敏感。 此外,一些国家政府将颁布新的规程和法律及新的能源价格,预计欧洲各国之间市场份额会有重大差异。在有些情况下这个过程会给SOFC用于配电装置起到一定的促进作用。此外,欧洲的自由化近程落后于北美洲。因此,市场预测结果会有很大程度的不确定性。5 SOFC技术应用的扩展 使用天然气作为燃料的SOFC是车载式装置,其扩展应用可有以下几种形式:(1)家庭应用:新一代燃料电池将是扁平管型的,其功率密度是目前所用圆柱型燃料电池技术的2倍,因而将制造出5kW的燃料电池装置。这种设计方案是可行的,在配电市场中可以替代圆柱型燃料电池。(2)l0MW以上的系统装置:很显然,只要SOFC技术占有了功率范围在250-10MW的市场,那么下一步最必然的是要争取占有l0MW以上更大规模发电设备的市场。通过把更多SOFC链接起来便能实现这个目标,也满足了高效率低成本的要求。20MW级规模燃料电池的电效率已经接近甚至超过70%。(3)用液态燃料运行:使用天然气作为燃料将SOFC的应用局限在靠近天然气供气网的区域内,从而使这项新技术的应用受到限制。因此存在着让SOFC使用液态燃料的迫切要求。因此,应与大型石油公司合作进行该课题的研究开发,选择一种适宜的液体燃料并设计出最适于使用这种新燃料的SOFC发电装置,以便为边远的用户服务。 (4)C02的分离:Shell公司和 Siemens Westinghouse公司正在共同研制一种能将CO2从完全反应后的燃料中分离的SOFC设飞方案。例如,当把其装在用于回收油的平台上时,可以把CO2用泵压到地下储层中,这不但可省去CO2的排放税,还可提高原油的产出量。 (5)综合性应用:CO2分离装置可能是点火的火花装置,它使得SOFC在一种封闭且可再生的能量循环中成为关键性部件。经过-段时间,SOFC能产生出热量和电力,例如用于大型暖房的设施中,SOFC装置产生的C02可用来加快植物的生长。而任何一种农作物收获后的剩余有机物都可以转化为气体供给SOFC作燃料。

燃料电池的演化及发展探析摘要:对燃料电池的工作原理进行了详细的分析;对其演化过程进行了简述;对其最新技术进行了详细的研究;对国内燃料电池技术的发展提供了参考意见。关键词:燃料电池;碱性燃料电池;磷酸型燃料电池;熔融碳酸型燃料电池;固体氧化物燃料电池;直接醇类燃料电池;固体高分子膜燃料电池随着工业化过程的进一步加强,大气中二氧化碳的排放量和污染程度加剧,导致了温室效应越来越明显,因此环保问题引起了各国政府的重视。为此,绿色能源技术引起了各国的普遍关注,并且正在逐步成为一种趋势。经过了各方的互相协作和努力,燃料电池技术正日趋成熟。作为一项重要技术,从本质上讲,它是一种电化学的发电装置,等温地按电化学方式,直接将化学能转化为电能而不必经过热机过程,不受卡诺循环限制,因而能量转化效率高,且无噪音,无污染,因此正在成为理想的替代能源。1 燃料电池的演化过程1.1 燃料电池的演化过程燃料电池是一种新型的无污染、高效率汽车、游艇动力和发电设备,在本质上是一种能量转化装置。1839年,格罗夫发表了第一篇有关燃料电池研究的报告。1889年,蒙德和朗格尔采用了浸有电解质的多孔非传导材料为电池隔膜,一铂黑为电催化剂,以钻孔的铂或金片为电流收集器组装出燃料电池。但此后的一段时间里,奥斯卡尔德等人在探索燃料电池发电过程的实验都因为反映速度太慢而使实验没有成功。与此同时,热机研究却取得了突破性进展并成功运用而迅速发展。因此燃料电池技术在数十年内没能取得大的进展。直到1923年,由施密特提出了多孔气体扩散电极的概念,在此基础上,培根提出了双孔结构电池概念,并成功开发出中温度培根型碱性燃料电池。以此为基础,经过一系列发展,这项燃料电池技术得到了突飞猛进的发展。在20世纪60年代由普拉特一惠特尼公司研制出的燃料电池系统,并成功应用于宇航飞行,使得燃料电池进入了应用阶段。1.2 燃料电池的基本工作原理燃料电池是一种能量转化装置,它就是按电化学原理,即原电池工作原理,等温地把贮存在燃料和氧化剂中的化学能直接转化为电能,因而实际过程是氧化还原反应。从本质上说是水电解的一个“逆”装置。电解水过程中,通过外加电源将水电解,产生氢和氧;而在燃料电池中,则是氢和氧通过电化学反应生成水,并释放出电能。因此,燃料电池的基本结构与电解水装置是相类似的,它主要由4部分组成,即阳极、阴极、电解质和外部电路。其阳极为氢电极,阴极为氧电极。通常,阳极和阴极上都含有一定量的催化剂,目的是用来加速电极上发生的电化学反应。两极之间是电解质,电解质可分为碱性型、磷酸型、固体氧化物型、熔融碳酸盐型和质子交换膜型等类型。燃料电池的工作原理如下(以磷酸型或质子交换膜型为例):(1)氢气通过管道或导气板到达阳极;(2)在阳极催化剂的作用下,1个氢分子解离为2个氢离子,即质子,并释放出2个电子;(3)在电池的另一端,氧气(或空气)通过管道或导气板到达阴极,同时,氢离子穿过电解质到达阴极,电子通过外电路也到达阴极;(4)在阴极催化剂的作用下,氧与氢离子和电子发生反应生成水;与此同时,电子在外电路的连接下形成电流,通过适当连接可以向负载输出电能。1.3 燃料电池的特点由上所述可知,燃料电池在本质上是电化学转化装置,它能够通过电化学过程直接将化学能转化为电能和热能,因而具有如下优点:1)干净清洁。利于环保,可减少二氧化碳的排放;无噪音,并自给供水;2)高效。由于其转化过程没有经过热机过程,因此效率高。3)适用性。由于污染小,无噪音,可靠,可使用于终端用户,因而可减少各种损失,并节省设备投资。4)可调制性。由于它是组合的结构,因而可以调节,以满足需求。5)燃料多样性。由于燃料可以是氢气、天然气、煤气、沼气的功能碳氢化合物燃料。基于以上特点。燃料电池成为绿色能源技术发展的重点。成为本世纪最有发展前途的技术之一。2 国内外燃料电池的最新进展2.1 碱性燃料电池(AFC)AFC技术是第一代燃料电池技术,已经在20世纪60年代就成功地应用于航天飞行领域。它是最早开发的燃料电池技术。目前德国一家公司开发的AFC在潜艇动力实验上获得了成功。国内对AFC的研究工作是从20世纪60年代开始的,主要是集中在中科院的下属研究机构。武汉大学和中科院长春应化所在上世纪60年代中期即开始对AFC进行基础研究。上世纪70年代,由于航天工业的需求,天津电源研究所研制出lkW AFX2系统。与此同时,A型号(即以纯氢、纯氧为燃料和氧化剂)、B型号(即以N2H4分解气、空气氧为燃料和氧化剂)燃料电池系统也在中科院大连化物所研制成功。此外,其它的研究机构也都展开了对AFC的研究。2.2 磷酸型燃料电池(PAFC)PAFC也是第一代燃料电池技术,也是目前最为成熟的应用技术。已经进入了商业化应用和批量生产。目前美国、日本、欧洲各国已有100多台200KW 发电机组投入使用或在安装中,最长的已经运行了37000小时。因此已经证实了PAFC是高度可靠的电源。只是由于其成本太高,目前只能作为区域性电站来现场供电、供热。国内对PAFC的研究工作相对较少。尽管如此,在对PAFC的研究过程中仍进行了卓有成效的工作,取得了不俗成绩。如国内学者魏子栋等人在对氧化还原发应的电催化剂研究过程中发现了Fe、Co对Pt的锚定效应。2.3 熔融碳酸型燃料电池(MCF℃)MCFC是属于第二代燃料电池技术。目前对MCF℃ 的研究国家有美国、日本和西欧,主要是应用于设备发电,目前还处于试验阶段。美国对MCFC的研究单位有国际燃料电池公司和能源研究公司及M—C动力公司。而日本对MCFC的主要是NEIX)公司、电力公司、煤气公司和机电设备厂商组成的MCFC研究开发组。大坂工业技术研究所从1991年开始10kW的MCFC单电池的长期运行试验,到1995年l1月止,累计运行了4万小时,确证了MCFC实用化的可能。德国MTU宣布在MCFC技术方面取得了突破。由该公司开发出来的世界上最大的280kW 的单电池还在运行。国内对MCFC的研究是中科院大连化物所从1993年开始的。现在正处于组合电池的研究阶段。而经过多年的艰苦努力与创新突破,上海交通大学科研人员率先在国内成功进行了1~1.5l 的熔融碳酸型燃料电池(M ℃)发电实验,取得了在国外一些国家至少需要6年甚至10年左右时间才能获得的成果。参加项目评审的专家认为,它整体水平达到了当前国内领先水平、国际20世纪90年代初同类技术的先进水平。2.4 质子交换膜型燃料电池系统(PEMF℃)PEMFC是属于第三代燃料电池技术。20世纪60年代,美国就已将PEMFC应用于宇航飞行,但由于技术问题,使得在其发展过程中受到了影响。直到20世纪80年代,加拿大Ballad公司才展开对PEMFC的研究工作。并取得了突破性进展。目前开发出来的电池组合功率达到了1000W/L、700W/kg的指标,因此这一技术引起了各国的广泛关注。目前Ballad公司在这一技术领域处于领先地位。国内对PEMFC的研究是从20世纪70年代天津电源研究所展开一聚苯乙烯蟥酸膜为电解质的PEM—FC基础研究。但进展缓慢。而国外在这一领域发展较快。因此在90年代开展了PEMFC的跟踪研究。目前,在PEM 方面,国内技术在多个方面取得了突破,北京富原新技术开发总公司已出现了50W、75W、150W、5KW 等样机。而上海神力科技有限公司已研制出5KW,10KW 的大功率型质子交换墨燃料电池系统,这大大缩小了与世界先进水平的距离。

超级电容器的论文

纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。下面是我整理的纳米材料科技论文,希望你能从中得到感悟!

纳米材料综述

【摘要】 本文综述了纳米材料的发展、种类、结构特性、目前应用状况和相关的应用前景,并对我国和国际目前的研究水平和投入做了对比分析。

【关键词】 纳米、纳米技术、纳米材料、纳米结构

1 引言

著名科学家费曼于1959年所作的《在底部还有很大空间》的演讲中,以“由下而上的方法”出发,提出从单个分子甚至原子开始进行组装,以达到设计要求。他说道,“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”并预言,“当我们对细微尺寸的物体加以控制的话,将极大得扩充我们获得物性的范围。”[1]

1974年,科学家唐尼古奇最早使用纳米技术一词描述精密机械加工。1982年,科学家发明研究纳米的重要工具――扫描隧道显微镜,使人类首次在大气和常温下看见原子,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用。1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。[2]

2 纳米技术

纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。

3 纳米材料

纳米材料的概念

纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。从尺寸大小来说,通常产生物理化学性质显著变化的细小微粒的尺寸在微米以下,即100纳米以下。因此,颗粒尺寸在1~100纳米的微粒称为超微粒材料,也是一种纳米材料。

纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有10的9次方倍之巨,所以二者行为上将产生明显的差异。

纳米材料的分类

纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。

(1)纳米粉末

纳米粉末又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。可用于:高密度磁记录材料;吸波隐身材料;磁流体材料;防辐射材料;单晶硅和精密光学器件抛光材料;微芯片导热基片与布线材料;微电子封装材料;光电子材料;先进的电池电极材料;太阳能电池材料;高效催化剂;高效助燃剂;敏感元件;高韧性陶瓷材料(摔不裂的陶瓷,用于陶瓷发动机等);人体修复材料;抗癌制剂等。

(2)纳米纤维

纳米纤维指直径为纳米尺度而长度较大的线状材料。可用于:微导线、微光纤(未来量子计算机与光子计算机的重要元件)材料;新型激光或发光二极管材料等。静电纺丝法是目前制备无机物纳米纤维的一种简单易行的方法。

(3)纳米膜

纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于:气体催化(如汽车尾气处理)材料;过滤器材料;高密度磁记录材料;光敏材料;平面显示器材料;超导材料等。

(4)纳米块体

纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。主要用途为:超高强度材料;智能金属材料等。

4 纳米材料的应用

由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性[8]、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。

5 纳米材料的前景

纳米科学是一门将基础科学和应用科学集于一体的新兴科学,主要包括纳米电子学、纳米材料学和纳米生物学等。纳米材料的应用涉及到各个领域,21世纪将是纳米技术的时代。纳米科学技术的诞生,将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题,特别是能源、人类健康和环境保护等重大问题。

21世纪初的主要任务是依据纳米材料各种新颖的物理和化学特性,设计出各种新型的材料和器件。通过纳米材料科学技术对传统产品的改性,增加其高科技含量以及发展纳米结构的新型产品,目前已出现可喜的苗头,具备了形成21世纪经济新增长点的基础。纳米材料将成为材料科学领域一个大放异彩的明星展现在新材料、能源、信息等各个领域,发挥举足轻重的作用。随着其制备和改性技术的不断发展,纳米材料在精细化工和医药生产等诸多领域会得到日益广泛的应用。

6 结束语

纳米材料在21世纪高科技发展中占有重要地位。纳米材料由于其无可挑剔的优越性,已成为世界各国研究的热点。其应用已渗透到人类生活和生产的各个领域,促使许多传统产业得到改进。世界发达国家的政府都在部署未来10~15年有关纳米科技研究规划。我国对纳米材料的研究也取得了令世界瞩目的、具有前沿性的科技成果。纳米技术的开发,纳米材料的应用,推动了整个人类社会的发展,也给市场带来了巨大的商业机遇。

参考文献

[1]孙红庆.科技天地―计划与市场探索[M],2001/05

[2]肖建中.材料科学导论[M].北京:中国电力出版社,2001,43~50.

[3]吴润,谢长生.粉状纳米材料的表面研究进展与展望[J].材料导报.2000,14(10):43~46.

纳米材料与应用

摘要 :简要介绍了纳米材料的分类以及它的基本效应,讲解了纳米材料的特殊性能。分析了新型能源纳米材料中光电转换、热点转换、超级电容器及电池电极的纳米材料;环境净化纳米材料中的光催化、吸附、尾气处理等;较具体的讲述了纳米生物医药材料中纳米陶瓷材料、纳米碳材料、纳米高分子材料、纳米复合材料。

关键词 :纳米材料 性能 应用

纳米是一个长度单位,1nm=10ˉ9m。纳米材料是指在结构上具有纳米尺度调制特征的材料,纳米尺度一般是指1~100nm。当一种材料的结构进入纳米尺度特征范围时,其某个或某些性能会发生明显的变化。纳米尺度和性能的特异变化是纳米材料必须同时具备的两个基本特征。

按材质,纳米材料可分为纳米金属材料、纳米非金属材料、纳米高分子材料和纳米复合材料。其中纳米非金属材料又可细分为纳米陶瓷材料、纳米氧化物材料和其他非金属纳米材料。

悬浮于流体的纳米颗粒可大幅度提高流体的热导率及传热效果,例如在水中添加5%的铜纳米颗粒,热导率可以增大约倍,这对提高冶金工业的热效率有重要意义。纳米颗粒可表现出同质大块物体不同的光学特性,例如宽频带、强吸收、蓝移现象及新的发光现象,从而可用于发光反射材料、光通讯、光储存、光开光、光过滤材料、光导体发光材料、光学非线性元件、吸波隐身材料和红外线传感器等领域。

纳米颗粒在电学性能方面也出现了许多独特性。例如纳米金属颗粒在低温下呈现绝缘性,纳米钛酸铅、钛酸钡等颗粒由典型得铁电体变成了顺电体。可以利用纳米颗粒制作导电浆料、绝缘浆料、电极、超导体、量子器件、静电屏蔽材料压敏和非线性电阻及热电和介电材料等。纳米粒子的粒径小,表面原子所占比例很大,表面原子拥有剩余的化学键合力,表现出很强的吸附能力和很高的表面化学反应活性。新制备的金属粒子接触空气,能进行剧烈氧化反应或发光燃烧(贵金属除外)。

纳米材料还广泛应用于环境保护中,它具有能耗低、操作简便、反应条件温和、可减少二次污染等突出特点。纳米材料在生物学性能也有广泛应用,用纳米颗粒很容易将血样中极少的胎儿细胞分离出来,方法简便,成本低廉,并能准确判断胎儿细胞是否有遗传缺陷。人工纳米材料由于其所具有的独特性质能满足人类发展中的多样化需求,近年来获得迅速的发展。目前,越来越多的人工纳米材料已被投放市场,给人们的生活带来巨大的变化和进步。

来自美国加州大学洛杉矶分校和中国天津大学的研究人员们合作,将导电性能良好的碳纳米管和高容量的氧化钒编织成多孔的纤维复合材料,并将该复合材料应用到超级电容器的电极上,获得了新型的具有高能量密度和高循环稳定性的超级电容器。这种超级电容器是非对称的,包含复合材料的阳极和传统的阴极,以及有机的电解质。其中电极薄膜的厚度要比之前的报道高很多,可以达到100微米上,从而使其可以获得更高的能量密度。由于其制备过程与传统的锂离子电池和电容器的生产过程近似,研究人员们认为这种新型电容器的可以比较容易地投入大规模生产。同时,他们也相信该项研究成果向同行们展示了纳米复合材料在高能量、高功率电子设备中的应用前景。

通过先进碳材料的应用,综合了人造石墨和天然石墨做为锂离子电池负极材料活性物质的优点,克服了它们各自存在的缺点,是满足先进锂离子电池性能要求的新一代碳贮锂材料。具有下列优点:微观结构稳定性好,适合大电流充放电;表观性状相容性好,适合形成稳定的SEI膜;粒子形貌、粒径分布适应性强,适合不同的加工工艺要求。适用于先进锂离子电池(液态、聚合物)对下列性能的要求:更高的比能量(体积比、重量比);更高的比功率;更长的循环寿命;更低的使用成本。

应用纳米TiO2泡沫镍金属滤网及甲醛、氨、TVOC吸附改性活性炭等新材料,以及采用惯流风扇取代传统的离心风扇结构,提高空气净化器的性能。光催化泡沫镍金属滤网的特性;镍金属网是用特殊的工艺方式将金属镍制作成具有三维网状结构的金属滤网。它具有:空隙加大,一般大于96%;通透性好,流体通过阻力小;其实际面积比表观面积大很多倍的特性。镍金属网是将纳米级的TiO2以特殊工艺镶嵌在泡沫状镍金属网上,从而将光催化材料的杀菌、除臭、分解有机物的功能和镍的超稳定性很好的结合在一起。它有效的解决了其他光催化材料在使用中存在的有效受光面积小、流体和光催化材料接触面积小、气阻大以及因光催化材料在光催化作用下的强氧化性致使其附着基材易老化和光催化易脱落而使其寿命短的缺陷。活性炭改性工艺及增强性能;活性炭是一种多孔性的含碳物质,它具有高度发达的空隙构造,是一种优良的空气中异味吸附剂。

纳米TiO2具有巨大的比表面积,与废水中有机物更充分地接触,可将有机物最大限度地吸附在它的表面具有更强的紫外光吸收能力,因而具有更强的光催化降解能力可快速降息夫在其表面的有机物分解。此外,在汽车尾气催化的性能方面以及在空气净化中广泛应用。

常规陶瓷由于气孔、缺陷的影响,存在着低温脆性的缺点,它的弹性模量远高于人骨,力学相容性欠佳,容易发生断裂破坏,强度和韧性都还不能满足临床上的高要求,使它的应用受到一定的限制。而纳米陶瓷由于晶粒很小,使材料中的内在气孔或缺陷尺寸大大减少,材料不易造成穿晶断裂,有利于提高材料的断裂韧性;而晶粒的细化又同时使晶界数量大大增加,有助于晶粒间的滑移,使纳米陶瓷表现出独特的超塑性。许多纳米陶瓷在室温下或较低温度下就可以发生塑性变形。纳米陶瓷的超塑性是其最引入注目的成果。传统的氧化物陶瓷是一类重要的生物医学材料,在临床上已有多方面应用,主要用于制造人工骨、人工足关节、肘关节、肩关节、骨螺钉、人工齿,以及牙种植体、耳听骨修复体等等。

由碳元素组成的碳纳米材料统称为纳米碳材料。在纳米碳材料中主要包括纳米碳纤维、碳纳米管、类金刚石碳等;纳米碳纤维除了具有微米级碳纤维的低密度、高比模量、比强度、高导电性之外,还具有缺陷数量极少、比表面积大、结构致密等特点,这些超常特性和良好的生物相容性,使它在医学领域中有广泛的应用前景,包括使人工器官、人工骨、人工齿、人工肌腱在强度、硬度、韧性等多方面的性能显著提高;此外,利用纳米碳材料的高效吸附特性,还可以将它用于血液的净化系统,清除某些特定的病毒或成份。

目前,纳米高分子材料的应用已涉及免疫分析、药物控制释放载体、及介入性诊疗等许多方面。免疫分析作为一种常规的分析方法,在蛋白质、抗原、抗体乃至整个细胞的定量分析上发挥着巨大的作用。在特定的载体上,以共价结合的方式固定对应于分析对象的免疫亲和分子标识物,将含有分析对象的溶液与载体温育,通过显微技术检测自由载体量,就可以精确地对分析对象进行定量分析。在免疫分析中,载体材料的选择十分关键。纳米聚合物粒子,尤其是某些具有亲水性表面的粒子,对非特异性蛋白的吸附量很小,因此已被广泛地作为新型的标记物载体来使用。

近年来,组织工程成为一个崭新的研究领域,吸引了众多学科研究者的关注。在工程化的方法培养组织、器官的过程中,用于细胞种植、生长的支架材料是一个关键的因素,能否使种植的细胞保持活性和增殖能力,是支架材料应用的重要条件。据报道,将甲壳素按一定的比例加入到胶原蛋白中可以制成一种纳米结构的复合材料,与以往的胶原蛋白支架相比,其力学强度得到增强,孔径尺寸增大,表明这种具有纳米结构的复合材料作为细胞生长的三维支架,在力学、生物学方面有很大的优越性和应用潜力。在硬组织修复与替换的研究中,纳米复合材料也开始逐步显示出其优异的性能。用肽分子和两亲化合物的自组装可以得到一种类似细胞外基质的纤维状支架,这种纳米纤维可以引导羟基磷灰石的矿化,形成纳米结构的复合材料,研究发现,这种纳米复合材料内部的微观结构与自然骨中胶原蛋白/羟基磷灰石晶粒的排列结构一致。

参考文献:

[1] 陈飞. 浅谈纳米材料的应用[J]. 中小企业管理与科技(下旬刊). 2009(03)

[2] 张桂芳. 纳米材料应用与发展前景概述[J]. 黑龙江科技信息. 2009(16)

在材料学科上,要求学生掌握坚实宽广的基础理论和系统深入的专门知识,了解材料科学的发展前沿。下文是我为大家搜集整理的有关材料学的论文范文的内容,欢迎大家阅读参考!

论高电化学性能聚苯胺纳米纤维/石墨烯复合材料的合成

石墨烯是一种二维单原子层碳原子SP2杂化形成的新型碳材料,因其非凡的导电性和导热性、极好的机械强度、较大的比表面积等特性,引起了国内外研究者极大的关注.石墨烯已经被探索应用在电子和能源储存器件、传感器、透明导电电极、超分子组装以及纳米复合物[8]等领域中.而rGO因易聚集或堆叠而导致电容量较低(101 F/g)[9],这限制了其在超级电容器电极材料领域的应用.

另一方面,PANI作为典型的导电高分子之一,由于合成容易,环境稳定性好和导电性能可调等特性备受关注.具有纳米结构的导电材料,由于纳米效应不但能提高材料固有性能,并开创新的应用领域.PANI纳米结构的合成取得了许多的成果.PANI作为超级电容器电极材料因具有高的赝电容,其电容量甚至可高达3 407 F/g[10];然而,当经过多次充放电时PANI链因多次膨胀和收缩而降解导致其电容损失较大.碳材料具有高的导电性能和稳定的电化学性能,为了提高碳材料的电化学电容和PANI电化学性能的稳定性,人们把纳米结构的PANI与碳材料复合以期获得电容较高且稳定的超级电容器电极材料[11].

作为新型碳材料的石墨烯和PANI的复合引起了极大的关注[12].但是用Hummers法合成的GO直接与PANI复合构建PANI/GO复合电极因导电率低而必须还原GO,化学还原剂的加入虽然还原了部分GO而提高了导电性能,但也在一定程度上钝化了PANI [13],另外排除还原剂又对环境造成一定程度的污染.因而开拓一条简单且环境友好的制备PANI/rGO复合材料作为超级电容器的电极路线仍然是一个难题.

基于以上分析,首先使PANI和GO相互分散和组装,借助水热反应这一绿色环境友好的还原方法制备PANI/rGO复合材料,以期获得高性能的超级电容器电极材料.

1实验部分

原材料

苯胺(AR, 国药集团),经减压蒸馏后使用;氧化石墨烯(自制);过硫酸铵(APS, AR, 湖南汇虹试剂);草酸(OX, AR, 天津市永大化学试剂);十六烷基三甲基溴化铵(CTAB, AR, 天津市光复精细化工研究所).

的制备

PANIF的制备按我们先前提出的方法 [14],制备过程如下:把250 mL去离子水加入三口烧瓶后,依次加入 g CTAB, g 草酸以及 mL苯胺,在12 ℃水浴上搅拌8 h;随后,往上述溶液中一次性加入20 mL含苯胺等量的过硫酸铵水溶液,同样条件下使反应保持7 h.所制备的样品用大量去离子水洗涤至滤液为中性,随后30 ℃真空干燥24 h. 的制备

采用Hummers法制备GO,具体过程如下:向干燥的2 000 mL三口烧瓶(冰水浴)中加入10 g天然鳞片石墨(325目),加入5 g硝酸钠固体,搅拌下加入220 mL浓硫酸,10 min后边搅拌边加入30 g高锰酸钾,在冰水浴下搅拌120 min,再将三口烧瓶移至35 ℃水浴中搅拌180 min,然后向瓶中滴加460 mL去离子水,同时将水浴温度升至95 ℃,保持95 ℃搅拌60 min,再向瓶中快速滴加720 mL去离子水,10 min后加入80 mL双氧水,过10 min后趁热抽滤.将抽干的滤饼转移到烧杯中,加大约800 mL热水及200 mL浓盐酸,趁热抽滤,随后用大量去离子水洗涤直至中性.所得产品边搅拌边超声12 h后5 000 r/min下离心10 min,得氧化石墨烯溶液.

复合材料制备

按照一定比例将含一定量的PANIF液与一定量的 mg/mL 的GO溶液混合,使混合液总体积为30 mL, GO在混合液中的最终浓度为 mg/ mL,磁力搅拌10 min后,将混合液转移到含50 mL聚四氟乙烯内衬的反应釜中进行水热反应,在180 ℃保温3 h;待反应釜自然冷却至室温后取出,用去离子水洗涤产物直至洗液无色后,于60 ℃真空干燥24 h,待用.按照上述步骤制备的PANIF与GO的质量比分别为5,10以及15,相应命名为PAGO5,PAGO10和PAGO15,对应的PANIF质量为75 mg,150 mg和225 mg.

仪器与表征

用日本日立公司S4800场发射扫描电镜(SEM)分析样品的形貌;样品经与KBr混合压片后,用Nicolet 5700傅立叶红外光谱仪进行红外分析;用德国Siemens公司Xray衍射仪进行XRD分析;电化学性能测试使用上海辰华CHI660c电化学工作站.

电极制备和电化学性能测试:将活性物质(PANIF或PANIF/rGO)、乙炔黑以及PTFE按照质量比85∶10∶5混合形成乳液,将其均匀地涂在不锈钢集流体上,在10 MPa压力下压片,之后烘干得工作电极.在电化学性能测试过程中,使用饱和甘汞电极(SCE)作为参比电极,铂片(Pt)作为对电极,在三电极测试体系中使用1 M H2SO4作为电解液进行电化学测试,电势窗为~.

比电容计算依据充放电曲线,按式(1)[15]计算:

Cs=iΔtΔVm.(1)

式中:i代表电流,A;Δt代表放电时间,s;ΔV代表电势窗,V;m代表活性物质质量,g.

2结果与讨论

形貌表征

图1为PANIF和PAGO10形貌的SEM图.低倍的SEM(图1(a))显示所制备PANIF为大面积的纳米纤维网络;高倍的图1(b)清晰地显现该3D纳米纤维网络结构含许多交联点.PANIF和PAGO10混合液经过水热反应后,从低倍的SEM(图1(c))可以看出,PAGO10复合物具有交联孔状结构;提高观察倍数(图1(d)和图1(e))后可以发现样品中rGO 与PANIF共存;而高倍的图1(d)清晰地显示出了rGO与PANIF紧密结合,且合成的褶皱rGO因层数较少而能观察到其遮盖的PANIF.从图1可知:成功合成了大面积的PANIF以及互相均匀分散的PANIF/rGO复合材料.

分析

图2为PANIF,GO以及PAGO10 3种样品的FTIR图.图2中a曲线在1 581 cm-1,1 500 cm-1,1 305 cm-1,1 144 cm-1,829 cm-1等波数处展现的尖锐峰为PANI的特征峰,它们分别对应醌式结构中C=C双键伸缩振动、苯环中C=C双键伸缩振动、C-N伸缩振动峰、共轭芳环C=N伸缩振动、对位二取代苯的C-H面外弯曲振动.图2中b曲线为GO的红外谱图,在3 390 cm-1, 1 700 cm-1的峰分别对应-COOH中的O-H,C=O键振动,1 550~1 050 cm-1范围内的吸收峰代表COH/ COC中的C-O振动[16],可以看出,GO中存在大量的含氧官能团.图2中c曲线为PAGO10复合物红外吸收谱图,与GO,PANIF谱图比较, 可以发现PAGO10中的GO特征峰不太明显而PANI的特征峰全部出现,这个结果归结于GO含量少以及GO经水热反应后形成了rGO,另外也表明水热反应对PANI品质无大的影响.

电化学性能分析

图4为样品的CV曲线,其中图4(a)为不同样品在1 mV/s扫描速率下的CV图,可以看出,4个样品均出现明显的氧化还原峰,这归因于PANI掺杂/脱掺杂转变,表明PANIF以及复合物显示出优良的法拉第赝电容特性.图4(b)为PAGO10在不同扫描速率下的CV曲线,由图可知PAGO10电极的比电容随着扫描速率减小而稳步增加,在扫描速率为1 mV/s时,PAGO10电极的比电容为 F/g.

图5为PANI,PAGO5,PAGO10和PAGO15的充放电曲线以及交流阻抗图.图5(a)为电流密度为1 A/g时样品的放电曲线图,由图可知:4种样品均有明显的氧化还原平台,这与前述CV分析中的结果相吻合.根据充放电曲线,借助式(1),计算了4种样品在不同电流密度下的比电容,结果如图5(b)所示,很明显,相同电流密度下PAGO10比电容最大,当电流密度为1 A/g时,其比电容为517 F/g,这个结果表明PAGO10的电化学性能明显优于PANI/石墨烯微球和3D PANI/石墨烯有序纳米材料(电流密度为 A/g时,比电容分别为 261和495 F/g)[18-19], 而PANIF比电容最小,仅为378 F/g;且在10 A/g电流密度下PAGO10的比电容仍保持在356 F/g 左右,这表明PAGO10电极具有优异的倍率性能.该复合材料比电容以及倍率性能得到极大提高源于rGO与PANIF两组分间的协同效应.在充放电过程中连接在PANIF间的rGO为电子转移提供了高导电路径;同时,紧密连接在rGO上的PANIF有效阻止水热还原过程中石墨烯的团聚,增加了电极/电解质接触面积,从而提高了PANIF的利用率而使得容量增加. 为了更清晰地了解所制备材料的电子转移特点以及离子扩散路径,对样品进行了交流阻抗测试,图5(c)为4个样品的Nyquist图.从图5(c)可知:在高频区、低频区均分别具有阻抗弧半圆、频响直线.在高频区,电荷转移电阻Rct大小顺序为RPAGO5

值说明rGO的加入提高了电极材料的导电性.在低频区,直线形状反映了样品电化学过程均受扩散控制,并且PAGO5所展现的直线斜率最大,说明其电容行为最接近理想电容,即频响特性最好,这也是源于rGO的加入提高了材料导电性以及复合物的独特微观结构.

氧化还原反应的发生,导致PANIF具有十分高的赝电容,但由于在大电流充放电过程中高分子链重复膨胀和收缩,导致其循环稳定性差而限制了其实际应用.为此,对ANIF和PAGO10进行循环稳定性分析.图6显示,PAGO10在5 A/g电流密度下经过1 000次充放电后,电容保持率为77%,而不含rGO的PANIF电极在2 A/g电流密度下充放电1 000次电容保持率仅为,这个结果表明PANIF循环稳定性较差;另外,rGO的加入形成的PANIF/rGO紧密的连接,降低了PANI链在充放电过程中的膨胀与收缩,使得链段不容易脱落或者断裂,从而PAGO10具有出色的循环稳定性.

3结论

采用自组装的方法,经水热反应,制备了PANIF/rGO复合电极材料.研究发现,rGO与PANIF紧密连接;而且,当PANIF与GO质量比为10∶1时,复合材料展现了最佳的电化学性能,当电流密度为1和10 A/g时,其比电容分别为517, 356 F/g.从上可知:合成的PAGO10具有高的比电容、较好的倍率性能和稳定性能,从而有望作为超级电容器电极材料在实践中应用.

浅谈水泥窑用新型环保耐火材料的研制及应用

1 概述

随着新型干法水泥生产技术在我国的迅速普及,我国水泥工业得到飞速发展,2012年,水泥总产量达亿吨,占世界总产量55%左右。在20世纪六、七十年代,镁铬质耐火材料因具有良好的挂窑皮和抗水泥熟料的化学侵蚀性能,而被广泛应用于新型干法水泥窑的烧成带[1],并取得了良好的使用效果,但由于镁铬砖在使用过程中砖内的Cr2O3组分与窑气、窑料中的碱、硫等相结合,形成有毒的Cr6+化合物[2]。再加上原燃料中所带入的硫,碱与硫共存时形成另一种水溶性Cr6+有毒性致癌物质:R2(Cr,S)O4。水泥窑在正常运转中,其窑衬中镁铬砖内的一部分Cr6+化合物随着窑气和粉尘外逸,飘落在厂区及周边环境中,造成厂区大气的污染; 另一部分则残留在拆下的废砖中,废弃的残砖一遇到水就会造成地下水的污染;更直接的危害是在水泥窑折砖和检修作业时,窑气和碎砖粉尘中的Cr+6会给现场人员造成毒害,据有关专家论证,Cr6+腐蚀皮肤,使人易患上大骨病,进而致癌。因此,镁铬质耐火材料作为水泥窑内衬会对环境和人类造成长期污染和公害。

发达工业国家在水源、环境和卫生方面有着一系列配套的规范,其中德国对水泥厂预防“铬公害”的规定最普遍,执行也是最严格的,具体内容如表1所示:

我国于1988年4月颁布国家标准GB3838-88,对地面水中Cr6+含量进行明确规定,如表2所示:

这就使得水泥企业在使用镁铬砖做水泥窑内衬投入的环保费用加大,特别是用过镁铬残砖处理费用非常昂贵,因此,水泥窑用耐火材料无铬化是必然的发展趋势。

2 水泥窑烧成带新型环保耐火材料的研制

研制思路

目前,用于水泥回转窑烧成带的无铬环保耐火材料主要有镁白云石砖和镁铝尖晶石砖。镁白云石砖对水泥熟料具有良好的化学相容性和优良的挂窑皮性,但是抗热震性差,抗水化性差;镁铝尖晶石砖具有良好的抗热震性和抗侵蚀性,但是挂窑皮性差[3,4]。镁砖中引入铁铝尖晶石制成的第二代新型环保耐火材料―新型环保耐火材料,结构韧性好,抗碱盐及水泥熟料侵蚀能力强,具有良好的挂窑皮性能,在烧成带能有效延长使用寿命,是目前适合我国国情的新一代水泥窑烧成带用无铬耐火材料。但该产品的关键是铁铝尖晶石原料的合成、加入量、加入方式及有关工艺条件对制品性能的影响。

试验与研究

铁铝尖晶石的合成。铁铝尖晶石是一种自然界少有的矿物,化学分子式为FeAl2O4,其中含和。铁铝尖晶石为立方体结构,二价阳离子占据四面体位置,三价阳离子填充在由氧离子构成的面心立方中。其理论密度为,莫氏硬度为。要形成铁铝尖晶石,必须保证氧化亚铁(FeO或FeOn)是处于其稳定存在的条件下。只有在FeO能稳定存在的区域内,才能保证与Al2O3形成的化合物是FeO? Al2O3尖晶石,而在FeO稳定存在的区域以外的条件下,铁的氧化物与Al2O3作用得到的产物很难说是FeO?Al2O3尖晶石,而可能是含有大量或主要是Fe2O3-Al2O3的固溶体[5]。FeOn- Al2O3的系相图如图1所示:

为了得到高质量的合成铁铝尖晶石,我们特聘请了欧洲知名耐材专家进行专业技术指导,经过大量试验,掌握了烧结合成铁铝尖晶石的关键技术,为生产达到国际水平的新型环保耐火材料打下了良好的基础。在生产中把FeO与Al2O3按一定比例混合均匀后压制成荒坯,在保证“FeO”稳定存在的气氛下,经高温烧成,制得FeO? Al2O3尖晶石含量为97%以上的烧结铁铝尖晶石。产品衍射如图2所示:

原料与制品的性能 ①原料的选择。根据我们的生产经验,结合水泥窑烧成带对耐火材料的要求,我们选用优质镁砂、合成尖晶石为原料,并加入特殊添加剂来强化制品的性能,研制生产出第二代无铬镁尖晶石砖―新型环保耐火材料。所用原料理化指标如表3所示。②制品的性能。将原料破碎成所需的粒度,采用四级配料,经强力混碾、高压成型、高温烧成。产品的显微结构见图3,产品理化指标与国外同类产品对比情况如表4所示。

铁铝尖晶石对制品性能的影响 ①铁铝尖晶石加入量对制品耐压强度的影响。从图4可以看出:随着铁铝尖晶石增加制品的耐压强度呈现出先升后降的趋势,这是由于铁铝尖晶石与镁砂互溶的结果,铁铝尖晶石的加入量在10%时,制品的强度达到最大值。②铁铝尖晶石加入形式对制品抗热震性能的影响。从实验结果表5可以看出:以颗粒形式加入铁铝尖晶石制品的抗热震性比以细粉形式加入铁铝尖晶石制品相对较好。

产品的性能

结构韧性好、热震稳定性优良。新型环保耐火材料在烧成及使用过程中Fe2+离子扩散进入周边的氧化镁基质中,同时部分Mg2+离子扩散进入铁铝尖晶石颗粒,与铁铝尖晶石分解残留的氧化铝反应生成镁铝尖晶石,这一活化效应使制品在烧成或使用过程中,内部形成大量的微裂纹,重要的是铁铝尖晶石的分解过程、Fe2+离子和Mg2+离子的相互扩散在高温下持续进行,使得MgO-FeAl2O4耐

火材料在整个高温使用过程中,可以形成大量的微裂纹,这些微裂纹的存在有利于缓冲热应力、提高制品的结构柔韧性和热震稳定性。

强度高。从制品显微结构可以看出:制品内部铁铝尖晶石与高纯镁砂互溶,结构非常均匀致密,晶粒发育良好,颗粒与基质间通过晶间尖晶石相连接,结合良好,明显的提高了砖的密度和高温强度。

具有良好的粘挂窑皮性能。在使用过程中,制品中的Fe2O3与Al2O3都易与水泥熟料中的CaO反应生成C2F、C4AF等低熔点矿物,该矿物具有一定的粘度,可牢固粘附在新型环保耐火材料的热面,形成稳定的窑皮。我们把新型环保耐火材料和直接结合镁铬砖分别制成40mm×40mm×60mm样块,用90%水泥生料+5%煤粉+5%K2SO4,压制成Φ30×10mm圆饼,把圆饼放在两个样块中间,放入电炉内加热,温度升到1500℃,保温3小时,冷却后测其抗折强度,二者基本相同。由此可见,新型环保耐火材料粘挂窑皮性能优良。

产品的应用

新型环保耐火材料自2012年研制成功投放市场以来,通过河北鹿泉曲寨水泥公司、宁夏瀛海天琛水泥公司、内蒙古哈达图水泥公司、陕西尧柏水泥集团、北方水泥集团、河南锦荣水泥公司、新疆天基水泥公司、安阳湖波水泥公司等二十多家大型水泥企业2500t/d、5000t/d、6500t/d水泥窑烧成带应用,寿命周期均达到12个月以上,受到用户认可。

3 结论

成果简介

本文,浙江大学王树荣教授团队在《ChemElectroChem》期刊 发表名为“Preparation of Nitrogen and Sulfur Co-doped and Interconnected Hierarchical Porous Biochar by Pyrolysis of Mantis Shrimp in CO2 Atmosphere for Symmetric Supercapacitors”的论文, 研究以螳螂虾壳为原料,CO2为活化剂,通过一步热解活化制备多种N、O、S自掺杂生物质碳材料(MSCs)。

通过控制热解温度来调节碳材料的物理和化学性质。在这项研究中,MSCs 材料的最大比表面积 (SSA) 和孔体积分别为 m 2  g -1和 3  g -1在 700 C 时达到。此外,在表征试验中发现,氮和硫等杂原子已成功引入碳微观结构中。 MSC-750含有高达的N和的S ,虽然SSA只有 时,6MKOH对称超级电容器在1Ag-1下的比电容在所有样品中达到最大值 -1,这是由于其高含量的杂原子官能团产生的赝电容。

图文导读

图1、(a)–(d) 分别为样品 MSC-600、650、700 和 750 的 SEM 图像;(e) 和 (f) MSC-700 和 MSC-750 在高倍率下的形态学图像。

图2、(a)–(b) MSC-750的TEM图像;(c)–(i) MSC-750选定区域的TEM-EDS图像。

图3、(a) MSCs的拉曼光谱和 (b)XRD图。

图4、MSC的电化学性能

图5、(a) 奈奎斯特曲线;(b) 比电容的虚部(C“,vs 频率);(c)-(f) 两个串联的硬币型超级电容器分别用于点亮白色和红色 LED。

小结

通过二氧化碳一步热解活化螳螂虾壳制备多元素共掺杂多孔生物质活性炭材料,并将其应用于对称超级电容器。这些结果表明MSC-750是一种很有前景的超级电容器电极材料,为水产品的高附加值加工利用开辟了新途径。

文献:

电化学研究的发展趋势论文

简单说,是三大方面:1、能源问题:将化学能直接转换成电能,如氢氧燃料电池,将氢氧之间转移的电子按照设定的路线流动,直接形成电流,效率高,无污染。而且还可以开发多次充电的电池,解决能源危机问题。2、根据能斯特方程,可以将化学品的浓度信号,转变为电信号,因此可以将自动控制,计算机网络控制应用于化学过程,通过各种传感器,可以对不同的信号进行转换。对化工厂的自动控制,保证工艺实施,实现质量与安全有保证,具有重要的意义。3、利用电化学方便调整电压,实现某些选择性很强的化学反应的实现,如将乙二醛氧化为乙醛酸,很难选择合适的 氧化剂,工艺条件很难控制,但是通过电化学手段,通过电压的调整,很容易实现工业化生产。本人知识面有限,其实电化学的应用还有很多,我熟悉的,只有这些。供参考。

电化学储能电站通过化学反应进行电池正负极的充电和放电,实现能量转换。传统电池技术以铅酸电池为代表,由于其对环境危害较大,已逐渐被锂离子、钠硫等性能更高、更安全环保的电池所替代。电化学储能的响应速度较快,基本不受外部条件干扰,但投资成本高、使用寿命有限,且单体容量有限。随着技术手段的不断发展,电化学储能正越来越广泛地应用到各个领域,尤其是电动汽车和电力系统中。

近年电化学储能装机规模快速发展 主要以锂电池为主

2018年是中国电化学储能发展史的分水岭。一方面是因为电化学储能累积装机功率规模首次突破GW,另一方面是因为电化学储能呈现爆发式增长,新增电化学储能装机功率规模高达,对比2017年新增功率规模,同比增长316%。截至2019年底,中国电化学储能市场累积装机功率规模为,同比增长。

根据CNESA于2020年6月3日发布的《储能产业研究白皮书2020》数据,截至2019年底,中国已投运储能项目累计装机规模,其中电化学储能的累计装机规模位列第二,为,同比增长。在各类电化学储能技术中,锂离子电池的累计装机规模最大,为。

区域竞争-广东领先

2019年,我国新增投运的电化学储能项目主要分布在28个省市区中(含港、澳、台地区),装机规模排名前十位的省市区分别是:广东、江苏、湖南、新疆、青海、北京、安徽、山西、浙江和河南,这十个省市区的新增规模合计占2019年我国新增总规模的。

企业竞争-宁德时代突出

根据CNESA于2020年6月3日发布的《储能产业研究白皮书2020》数据,2019年,宁德时代独家供应电池的鲁能海西州多能互补集成优化示范工程储能电站正式投运;与星云股份、石正平、福建合志谊岑成立福建时代星云科技有限公司;与Powin Energy签订电芯供货合同和科士达共同出资2亿元成立储能业务公司。2019年全年,宁德时代储能装机排名从2018年的第二名升至第一名,装机量较第二名多出2倍。

电化学储能有望保持50%的增速发展

据前瞻保守估计,2020年国内电化学储能市场将继续稳步发展,预计累计装机规模可达到。“十四五”期间,随着更多利好政策的发布,电化学储能应用的支持力度将逐步加大,市场规模不断增加,年复合增长率(2020-2025)将保持在55%左右,到预计到2025年年底,电化学储能的市场装机规模将超过24GW。

据前瞻乐观估计,2020年电化学储能在保持稳步发展的同时,还将落地一些2019年规划的、受政策影响而未建设的项目,累计装机规模将达到3092MW。“十四五”期间,充分考虑各类直接或间接政策的支持,年复合增长率(2020-2025)有望超过65%,预计到2025年年底,电化学储能的市场装机规模将接近38GW。

—— 以上数据来源于前瞻产业研究院《中国储能电站行业市场前瞻与投资规划分析报告》

初期阶段,方法原理的建立1801年,发现金属的电解作铜和银的定性分析方法.1834年 发表关于电的实验研究论文,提出Faraday定律Q=年提出能斯特方程.1922年,,创立极谱学.1925年,志方益三制作了第一台极谱仪.1934年提出扩散电流方程.(Id = k C)电分析方法体系的发展与完善电分析成为独立方法分支的标志是什么呢 就是上述三大定量关系的建立.50 年代,极谱法灵敏度,和电位法pH测定传导过程没有很好解决. 固体电子线路出现,从仪器上开始突破,克服充电电流的问题,方波极谱,1952 提出方波极谱.1966年和 提出单晶(LaF3)作为F— 选择电极,膜电位理论建立完善.其它分析方法,催化波和溶出法等的发展,主要从提高灵敏度方面作出贡献.时间和空间上体现快,小 与大 .(1)化学修饰电极(chemically modified electrodes)(2)生物电化学传感器(Biosensor)(3)光谱一电化学方法 ( Electrospectrochemistry)(4)超微电极(Ultramicroelectrodes)(5)另一个重要内容是微型计算机的应用,使电分析方法产生飞跃. 1.已知电极反应Ag+ + e- Ag的 为,电极 反应Ag2C2O4+2e- 2Ag+C2O42-的标准电极电位为,求Ag2C2O4的溶度积常数.解 提示:标准电极电位 是电对Ag+/Ag在化学反应:2Ag++ C2O42- Ag2C2O4平衡时,[C2O42-]=1mol·L-1的电极电位.根据能斯特方程: = E Ag+,Ag =+[Ag+] ==已知 =,令[C2O42-]=1得到(ksp/1)1/2lgKsp=×2/ × 10-112.计算AgCl+e Ag+Cl-电极反应的标准电极电位( EAgCl,Ag =,氯化银的Ksp=×10-10)解 提示:标准电极电位是指电极反应中个组分活度等于1时的电极电位.本题中,Ag和AgCl是固体,活度是常数,作为1.故只要计算出[Cl-]=1时银电极的电极电位,就是该电极反应的标准电极电位.根据能斯特方程,银电极的电极电位为:+[Ag+]由于Cl-与Ag+发生沉淀反应,沉淀平衡为:Ag++ Cl-= AgCl↓当溶液中[Cl-]=1mol·L-1时,可求得Ag+浓度:[Ag+]=Ksp/ [Cl-]= Ksp于是得到:= E Ag+,Ag= + Ksp=(×10-10)=. KMnO4在酸性溶液中发生电极反应:其标准电极电位为.已知试问:PH=2时,KMnO4能否氧化Br-和I-,当PH=6时,能否氧化Br-和I-.解 设[MnO4-]=[Mn2+]得到:当PH=2时,故KMnO4可以氧化Br-和I-当PH=6时,故KMnO4可以氧化I-,但不能氧化Br-1.浓度均为1*10-6mol /L的硫,镍离子,对氯化银晶体膜电极的干扰程度,硫 镍(填>,=或<.已知:KCl,Br=KCl,S)(南开大学2002年)2.活动载体膜电极的敏感膜是( )A 晶体膜 B 固态无机物C 固态有机物 D 液态有机化合物(南开大学2001年)3.氨气敏电极是以氯化铵作为缓冲溶液,指示电极可选用( )A Ag-AgCl电极 B 晶体膜氯电极C 氨电极 D pH玻璃电极(南开大学2003年)4.制造晶体膜电极时,常用氯化银晶体掺加硫化银后一起压制成敏感膜,加入硫化银是为了( )A.提高电极的灵敏度 B. 提高电极的选择性C.降低电极的内阻 D.延长电极的使用寿命5. pH玻璃电极膜电位的产生是由于:(A)膜内外电子转移 (B)氢离子得电子(C)氢氧根失电子(D)溶液中和玻璃膜水化层的氢离子的交换作用(郑州大学2002年)6.用钙离子选择电极测定*10-4 mol/L CaCl2溶液的活度,若溶液中存在的NaCl.计算:(1).由于NaCl的存在所引起的相对误差是多少 (已知KCa2+.Na+ = )(2)欲使钠离子造成的误差减少至2%,允许NaCl的最高浓度是多少

中文电子期刊的发展

杂志,亦称期刊,是一种定期或不定期的连续性的出版物。它的显著特点是每期的栏目、版式大致相同,栏目的名称也相对固定;每期以年、月顺序编号或按卷、期编号顺序出版。从内容上看,可分为专业性和综合性两种。电子杂志,则是近年来随着计算机事业的迅速发展,特别是由于计算机跨入多媒体世界而出现的一种新型出版物。这种新型出版物就其内容而言,也具有上述纸读杂志的属性,是有固定栏目、按顺序连续出版的刊物。但是,由于它借以存在的载体发生了根本的变化,已不再是普通的凸版纸、胶版纸,而变成了磁盘或光盘,这就使得电子杂志与一般的纸读杂志相比,具有无可比拟的优越性。首先,电子杂志是机读杂志,它可以借助计算机惊人的运算速度和海量存储,极大地提高信息量;其次,在计算机特有的查询功能的帮助下,它使人们在信息的海洋中快速找寻所需内容成为可能;再者,电子杂志在内容的表现形式上,是声、图、像并茂,人们不仅可以看到文字、图片,还可以听到各种音效,看到活动的图像,总之,可以使人们受到多种感官的感受。加上电子杂志中极其方便的电子索引、随机注释,更使得电子杂志具有信息时代的特征。但由于受各种条件的限制,电子杂志目前在国内尚处于起步阶段,大约于1993年在深圳由海天电子图书公司首次开发成功。值得一提的是,电子杂志在各种传媒系统(如电视系统)和计算机网络的出现,已经打破了以往的发行、传播形式,也打破了人们传统的时、空观念,它将会更加贴近人们的生活,更加密切人与人之间思想、感情的交流,更好地满足新时代人们对文化生活的更高要求。作为媒体的互联网将取代传统的报纸、杂志甚至电视台,按照这个辈分关系,电子杂志又算怎么回事呢?说实话,直到现在我还是难以说清到底什么是电子杂志。2月11日晚上,傲志公司总经理张春晖和北方区代表韩朝豫过来,在博客吧侃电子杂志;第二天,郑治又约了一批IPTV方面的朋友到逐鹿茶社,通信世界总编项立刚、中国数字电视杂志总编包冉是传统杂志媒体,话题同样涉及到杂志和电子杂志,最终印象最深的是,电子杂志与普通互联网业务相比,最大的区别在于,电子杂志能收钱,而互联网是免费的。隐约想起互联网刚开始盛行时候的一个说法,互联网是报纸、杂志之后的新兴媒体,甚至有人说,作为媒体的互联网将取代传统的报纸、杂志甚至电视台,按照这个辈分关系,电子杂志又算怎么回事呢?项立刚说,目前为止,互联网虽然正在迎来第二春,但还是一个不成熟的婴儿,将以广告营生的门户网站们拖出烧钱泥潭的,是几乎与互联网业务无关的电信增值业务,直到现在,以免费为特色的互联网如何盈利依然是个难题,互联网公司盈利并没有解决互联网业务本身盈利模式的问题。张春晖最得意的是,他们提供电子杂志就象卖一本普通的纸质杂志一样,是收费的,终结了互联网信息服务就是免费传统概念。大家谈到上世纪九十年代中期,互联网刚开始普及的时候,如果互联网是要先花钱才能浏览的话,今天的互联网将是什么样?肯定不会象今天这么繁荣,但盈利肯定也不会如此困难,满眼都是免费的互联网,想赚钱真的不容易。电子杂志,有些具有特殊的格式,需要专门的客户端来阅读,这虽然有图像清晰度等方面的原因外,实际上更多的是为了突破了互联网的消费模式,既然是杂志,看嘛,拿钱来!电子杂志完全可以采取通用互联网格式来传递的,但培养用户花钱习惯却是互联网从业者要做的头等大事。年前,精品购物指南的大圣讲了日本时尚类报纸的发行特色,说到,日本类似精品购物的时尚报纸,除了有公共版面之外,还有和不同街区相适合的不同版面,假如这是在北京,意味着在王府井买的报纸和在中关村买的报纸,有一部分是不一样的,而不一样的部分通常是与具体地点相关联的部分,比如:中村村的报纸会介绍知春路口的一家水煮鱼店,而王府井的报纸就介绍东方广场的一家川菜馆。目前,大多数报纸的做法是把覆盖全城的各种信息全部集中到一份报纸中,多达上百个页码的报纸,对于一个具体地区的阅读者,大部分信息没有意义,如果采用分地区提供不同版面的杂志投递模式,在几乎不影响信息传递效果的情况下,版面可以大幅下降,这对于国内大部分赔本印刷的时尚杂志来说,无疑是一个天大的好消息。看上去分地区投递的报纸,实际上需要非常复杂的控制流程,并不是一件容易的事情,但我们已经看到了一个好的开端。更牛的报纸将来可能是这样,早餐的时候,你通过互联网、手机等设定你要的报纸内容,下到楼门口,属于你个人的报纸已经送达。报纸的个性化是电子杂志思路的延伸,并打破纸质、电子等阅览方式限制,实现服务无处不在的理念。新媒体的互联网,朝着抹平传统媒体的界线的方向发展,报纸、杂志、电视趋向于己于单一的网络传播,而电子杂志却倾向于一份内容依据使用者的使用场景“多态”呈现。

电子期刊(Electronic Journal),有的称为电子出版物、网上出版物。就广义而言,任何以电子形式存在的期刊皆可称为电子期刊,涵盖通过联机网络可检索到的期刊和以CD-ROM形式发行的期刊。电子期刊已经进入第三代,和电子杂志一样,以flash为主要载体独立于网站存在。电子期刊是一种非常好的媒体表现形式,它兼具了平面与互联网两者的特点,电子期刊延展性强,未来可移植到PDA、MOBILE、MP4、PSP及 TV(数字电视、机顶盒)等多种个人终端进行阅读。 首先,电子期刊是机读杂志,它可以借助计算机惊人的运算速度和海量存储,极大地提高信息量;其次,在计算机特有的查询功能的帮助下,它使人们在信息的海洋中快速找寻所需内容成为可能;再者,电子期刊在内容的表现形式上,是声、图、像并茂,人们不仅可以看到文字、图片,还可以听到各种音效,看到活动的图像。总之,可以使人们受到多种感官的感受。加上电子期刊中极其方便的电子索引、随机注释,更使得电子期刊具有信息时代的特征。值得一提的是,电子期刊在各种传媒系统(如电视系统)和计算机网络的出现,已经打破了以往的发行、传播形式,也打破了人们传统的时、空观念,它将会更加贴近人们的生活,更加密切人与人之间思想、感情的交流,更好地满足新时代人们对文化生活的更高要求。 电子期刊杂志制作软件iebook超级精灵2011是目前使用率最高的电子期刊(电子商刊、画册、杂志)制作软件,是全球首家融入互联网终端、手机移动终端和数字电视终端三维整合传播体系的专业电子期刊杂志(商刊、画册)制作推广系统。革命性采用国际前沿的构件化设计理念,整合电子杂志的制作工序,将部分相似工序进行构件化设计,使得软件使用者可重复使用、高效率合成标准化的电子杂志;同时软件中建立构件化模版库,自带多套精美Flash动画模版及Flash页面特效,软件使用者通过更改图文、视频即可实现页面设计,自由组合、呈现良好制作效果;操作简单方便,可协助软件使用者轻松制作出集高清视频、音频、Flash动画、图文等多媒体效果于一体的电子期刊杂志(商刊、画册)。ie视窗系统的操作界面风格更切合用户习惯,让用户操作简单易学,迅速掌握使用。适合专业广告、设计及网络制作公司或者企业个人使用。iebook超级精灵可以直接生成四种传播版本,独立EXE文件或者直接web在线版本直接浏览。生成的杂志不需要任何阅读器或插件就可直接观看。iebook超级精灵占据电子商刊、画册制作软件90%以上的垄断市场份额,典型案例和客户有中国国家地理杂志《行天下》、《瑞丽》电子杂志、腾讯网《人物周刊》电子期刊、网易、阿里巴巴、中国广告网、广东省广告有限公司、广东黑马广告、中国银行软件中心、广州黄埔海关、中国邮政广东省分公司、吉利汽车等。 电子期刊通常以如下两种方式发行。一种是由印刷版期刊发行商自行发行。这种发行商通常是较大的或发展较快的发行商。它们直接通过Internet发行其期刊的电子版,不需要任何中介。发行商对电子期刊从内容到版面都具有完全的控制权。另一种发行方式是通过中介服务机构,或称代理商发行。更多的发行商选择这种省心省力的发行方式。提供这种服务的代理商将许多来自不同发行商的刊物整合到统一的界面和检索系统中。它们往往在电子版面的设计,技术的更新和应用上有着很大的主动性和优势。用户通常也直接向代理商申请订阅并获得电子期刊的使用权。

首先,电子杂志是机读杂志,它可以借助计算机惊人的运算速度和海量存储,极大地提高信息量;其次,在计算机特有的查询功能的帮助下,它使人们在信息的海洋中快速找寻所需内容成为可能;再者,电子杂志在内容的表现形式上,是声、图、像并茂,人们不仅可以看到文字、图片,还可以听到各种音效,看到活动的图像。总之,可以使人们受到多种感官的感受。加上电子杂志中极其方便的电子索引、随机注释,更使得电子杂志具有信息时代的特征。但由于受各种条件的限制,电子杂志在国内尚处于起步阶段,大约于1993年在深圳由海天电子图书公司首次开发成功。值得一提的是,电子杂志在各种传媒系统(如电视系统)和计算机网络的出现,已经打破了以往的发行、传播形式,也打破了人们传统的时、空观念,它将会更加贴近人们的生活,更加密切人与人之间思想、感情的交流,更好地满足新时代人们对文化生活的更高要求。

相关百科
热门百科
首页
发表服务