论文发表百科

物理学中光的论文范文

发布时间:2024-07-04 22:38:31

物理学中光的论文范文

初中物理小论文范文摘 要:物理是一门历史悠久的自然学科。随着科技的发展,社会的进步,物理已渗入到人类生活的各个领域; 物理学存在于物理学家的身边;物理学也存在于同学们身边;在学习中,同学们要树立科学意识,大处着眼,小处着手,经历观察、思考、实践、创新等活动,逐步掌握科学的学习方法,训练科学的思维方式,不久你就会拥有科学家的头脑,为自己今后惊叹不已的发展,为今后美好的生活打下扎实的基础。关键词:物理 渗入 人类生活 各个领域 存在 物理学家 同学们 身边 科学意识 科学学习方法 科学思维方式物理是一门历史悠久的自然学科,物理科学作为自然科学的重要分支,不仅对物质文明的进步和人类对自然界认识的深化起了重要的推动作用,而且对人类的思维发展也产生了不可或缺的影响。从亚里士多德时代的自然哲学,到牛顿时代的经典力学,直至现代物理中的相对论和量子力学等,都是物理学家科学素质、科学精神以及科学思维的有形体现。随着科技的发展,社会的进步,物理已渗入到人类生活的各个领域。例如,光是找找汽车中的光学知识就有以下几点: 1. 汽车驾驶室外面的观后镜是一个凸镜 利用凸镜对光线的发散作用和成正立、缩小、虚像的特点,使看到的实物小,观察范围更大,而保证行车安全。 2. 汽车头灯里的反射镜是一个凹镜 它是利用凹镜能把放在其焦点上的光源发出的光反射成为平行光射出的性质做成的。 3. 汽车头灯总要装有横竖条纹的玻璃灯罩 汽车头灯由灯泡、反射镜和灯前玻璃罩组成。根据透镜和棱镜的知识,汽车头灯玻璃罩相当于一个透镜和棱镜的组合体。在夜晚行车时,司机不仅要看清前方路面的情况,还要还要看清路边持人、路标、岔路口等。透镜和棱镜对光线有折射作用,所以灯罩通过折射,根据实际需要将光分散到需要的方向上,使光均匀柔和地照亮汽车前进的道路和路边的景物,同时这种散光灯罩还能使一部分光微向上折射,以便照明路标和里程碑,从而确保行车安全。 4. 轿车上装有茶色玻璃后,行人很难看清车中人的面孔 茶色玻璃能反射一部分光,还会吸收一部分光,这样透进车内的光线较弱。要看清乘客的面孔,必须要从面孔反射足够强的光透射到玻璃外面。由于车内光线较弱,没有足够的光透射出来,所以很难看清乘客的面孔。 5. 除大型客车外,绝大多数汽车的前窗都是倾斜的 当汽车的前窗玻璃倾斜时,车内乘客经玻璃反射成的像在国的前上方,而路上的行人是不可能出现在上方的空中的,这样就将车内乘客的像与路上行人分离开来,司机就不会出现错觉。大型客车较大,前窗离地面要比小汽车高得多,即使前窗竖直装,像是与窗同高的,而路上的行人不可能出现在这个高度,所以司机也不会将乘客在窗外的像与路上的行人相混淆。 再如下面一个例子: 五香茶鸡蛋是人们爱吃的,尤其是趁热吃味道更美。细心的人会发现,鸡蛋刚从滚开的卤汁里取出来的时候,如果你急于剥壳吃蛋,就难免连壳带“肉”一起剥下来。要解决这个问题,有一个诀窍,就是把刚出锅的鸡蛋先放在凉水中浸一会,然后再剥,蛋壳就容易剥下来。 一般的物质(少数几种例外),都具有热胀冷缩的特性。可是,不同的物质受热或冷却的时候,伸缩的速度和幅度各不相同。一般说来,密度小的物质,要比密度大的物质容易发生伸缩,伸缩的幅度也大,传热快的物质,要比传热慢的物质容易伸缩。鸡蛋是硬的蛋壳和软的蛋白、蛋黄组成的,它们的伸缩情况是不一样的。在温度变化不大,或变化比较缓慢均匀的情况下,还显不出什么;一旦温度剧烈变化,蛋壳和蛋白的伸缩步调就不一致了。把煮得滚烫的鸡蛋立即浸入冷水里,蛋壳温度降低,很快收缩,而蛋白仍然是原来的温度,还没有收缩,这时就有一小部分蛋白被蛋壳压挤到蛋的空头处。随后蛋白又因为温度降低而逐渐收缩,而这时蛋壳的收缩已经很缓慢了,这样就使蛋白与蛋壳脱离开来,因此,剥起来就不会连壳带“肉”一起下来了。 明白了这个道理,对我们很有用处。凡需要经受较大温度变化的东西,如果它们是用两种不同材料合在一起做的,那么在选择材料的时候,就必须考虑它们的热膨胀性质,两者越接近越好。工程师在设计房屋和桥梁时,都广泛采用钢筋混凝土,就是因为钢材和混凝土的膨胀程度几乎完全一样,尽管春夏秋冬的温度不同,也不会产生有害的作用力,所以钢筋混凝土的建筑十分坚固。 另外,有些电器元件却是用两种热膨胀性质差别很大的金属制成的。例如,铜片的热膨胀比铁片大,把铜片和铁片钉在一起的双金属片,在同样情况下受热,就会因膨胀程度不同而发生弯曲。利用这一性质制成了许多自动控制装置和仪表。日光灯的“启动器”里就有小巧的双金属片,它随着温度的变化,能够自动屈伸,起到自动开启日光灯的作用。 这样的例子举不胜举,物理是一门实用性很强的科学,与工农业生产、日常生活有着极为密切的联系。物理规律本身就是对自然现象的总结和抽象。 谈到物理学,有些同学觉得很难;谈到物理探究,有同学觉得深不可测;谈到物理学家,有同学更是感到他们都不是凡人。诚然,成为物理学家的人的确屈指可数,但只要勤于观察,善于思考,勇于实践,敢于创新,从生活走向物理,你就会发现:其实,物理就在身边。正如马克思说的:“科学就是实验的科学,科学就在于用理性的方法去整理感性材料”。物理不但是我们的一门学科,更重要的,它还是一门科学。 物理学存在于物理学家的身边。勤于观察的意大利物理学家伽利略,在比萨大教堂做礼拜时,悬挂在教堂半空中的铜吊灯的摆动引起了他极大的兴趣,后来反复观察,反复研究,发明了摆的等时性;勇于实践的美国物理学家富兰克林,为认清“天神发怒”的本质,在一个电闪雷鸣、风雨交加的日子,冒着生命危险,利用司空见惯的风筝将“上帝之火”请下凡,由此发明了避雷针;敢于创新的英国科学家亨利 阿察尔去邮局办事。当时身旁有位外地人拿出一大版新邮票,准备裁下一枚贴在信封上,苦于没有小刀。找阿察尔借,阿察尔也没有。这位外地人灵机一动,取下西服领带上的别针,在邮票的四周整整齐齐地刺了一圈小孔,然后,很利落地撕下邮票。外地人走了,却给阿察尔留下了一串深深的思考,并由此发明了邮票打孔机,有齿纹的邮票也随之诞生了;古希腊阿基米德发现阿基米德原理;德国物理学家伦琴发现X射线;……研究身边的琐事并有大成就的物理学家的事例不胜枚举。 物理学也存在于同学们身边。学了测量的初步知识,同学们纷纷做起了软尺。有位同学别出心裁,用透明胶把制好的牛皮纸软尺包扎好,这样更牢固。然后,用大大卷泡泡糖的包装盒作为软尺的外壳,在盒的中心利用铁丝做一摇柄中心轴,软尺的末端固定在轴上,这样一个可以收拾并反复使用的卷尺诞生了。同时,这位同学受软尺自作的启示,用实验解决了一道习题:用软尺测量物体长度时,若把软尺拉长些,测量值是偏大还是偏小?他做了这样一个模拟实验:在白纸上画一条直线,标上刻度,然后用透明胶粘贴,再扯下来,便做成了“软尺”,用“软尺”不仅找到了上题的答案,而且还清楚地看到分度值变大了,知其然,并知其所以然;学了电学的有关知识后,同学们对蚯蚓能承受的最大电压进行了探究:当给它加上的电压时,蚯蚓迅速分泌粘液,且奋力挣扎,从瓶内跳出瓶外。当给它加上3V的电压时,蚯蚓被电为两截;有同学在测量“、”的小灯泡的功率,并研究其发光情况时,不满足于给灯泡加上的电压,而是用自己早已准备好的小灯泡做破坏性实验,不断加大灯泡两端的电压,直至电压高达9V、灯泡灯丝烧断,才停止探究;有同学在学习蒸发的知识时,不厌其烦地座在桌旁观察相同的两滴水(其中一滴水滩开),进行聚精会神地观察,然后进行分析、对比,得出影响蒸发的因素;……同学们捕捉身边的琐事进行探究的事例屡见不鲜。 身边的事物是取之不尽的,对与现实生活联系很紧密的物理学科来说,更是时时会用到的,用身边的事例去解释和总结物理规律,学生听起来熟悉,接受起来也就容易了。只要时时留意,经常总结,就会不断发现有利于物理教学的事物,丰富我们的课堂,活跃教学气氛,简化概念和规律。新课标告诉我们“义务教育阶段的物理课程应贴近学生生活,符合学生认知特点,激发并保持学生的学习兴趣,通过探索物理现象,揭示隐藏其中的物理规律,并将其应用于生产生活实际,培养学生终身的探索乐趣、良好的思维习惯和初步的科学实践能力。” 今天,人类所有的令人惊叹不已的科学技术成就,如克隆羊、因特网、核电站、航空技术等,无不是建立在早年的科学家们对身边琐事进行观察并研究的基础上的。在学习中,同学们要树立科学意识,大处着眼,小处着手,经历观察、思考、实践、创新等活动,逐步掌握科学的学习方法,训练科学的思维方式,不久你就会拥有科学家的头脑,为自己今后惊叹不已的发展,为今后美好的生活打下扎实的基础。

物理还要写论文,天呐!

关于光的本性问题很早就引起了人们的关注。微粒说1638年,法国数学家皮埃尔·伽森荻(Pierre Gassendi)提出物体是由大量坚硬粒子组成的。并在1660年出版的他所著的书中涉及到了他对于光的观点,也认为光也是由大量坚硬粒子组成的。牛顿随后对于伽森荻的这种观点进行研究,他根据光的直线传播规律、光的偏振现象,最终于1675年提出假设,认为光是从光源发出的一种物质微粒,在均匀媒质中以一定的速度传播。微粒说很容易解释光的直进性和反射现象,因为粒子与光滑平面发生碰撞的反射定律与光的反射定律相同。然而微粒说在解释一束光射到两种介质分界面处会同时反射和折射,以及几束光交叉相遇后彼此毫不妨碍的继续向前传播等现象时,却发生了很大困难。波动说罗伯特·胡克在1685年发表的《显微术》一书中,认为光是一种振动,发光体的每一振动在介质中向各个方向传播。胡克初步建立了波面和波线的概念,并把波面的思想用于对光的折射和薄膜颜色的研究。惠更斯(Christian Huygens)著《论光》更明确地提出了光是一种波动的主张,他认为光是一种介质的运动,该运动从介质的一部分以有限速度依次地向其他部分传播,他把光的传播方式与声音在空气中的传播作比较。波动说很容易能够解释微粒说不能解释的两个问题。水波可以同时发生反射和折射,并且水波的反射和折射规律和光完全相同。湖面上的激烈水波能够自由的互相穿过,通过一个窗口能够同时听到窗外几个人讲话的声音,这些都是人们熟知的波的现象。然而,早期的波动说缺乏定量的数学严密性,也缺乏对波动特性的足够说明,仍然摆脱不了几何光学的观念。同时,惠更斯所提出的波动说是把光比作像“水波”一样的机械波,即机械波的传播需要依靠介质,而光却能在真空中(即无介质)传播。牛顿并不是在根本上否认光的波动性,事实上正是牛顿首先提出了光在本质上是一种周期过程的观点,他还多次提到光可能是一种振动并与声波作对比。然而从他的著作《光学》的其他部分来看,他还是倾向于光的微粒说。突出的例子是从光的微粒说出发,根据机械粒子遵守的力学规律来解释光的反射定律和折射定律,并得出了光密介质中的光速要大于光疏介质中的光速这一与事实不符的结论。英国物理学家托马斯·杨(1773年 – 1829年)用干涉实验证明了光的波动性由于牛顿在学术界有很高的声望,致使微粒说在其后的100多年里一直占着主导地位,而波动说却发展得很慢。同时,如果要证明光具有波动性,必须设法显示出光具有干涉现象,而干涉现象的产生必须得到两列相干光,然而要得到两列相干光在当时是很困难的。直到1801年英国物理学家托马斯·杨(Thomas Young)终于用干涉实验证明了光的波动性。详见杨氏双缝干涉实验电磁说到19世纪中期,光的波动性已经得到公认,然而当时人们只了解在介质中传播的机械波,认为光波也是一种机械波。而任何机械波的传播都依靠介质,光却能在真空中传播。从太阳和其他恒星所发出的光,是通过什么介质传播过来的呢?为了说明光传播的这个问题,人们便假设在宇宙空间中到处充满着一种特殊的物质,这种物质被称作以太,光便是通过“以太”来进行传播。为了解释光波的各种性质,对于“以太”这个概念又进一步提出了种种假设。譬如,“以太”的密度极小,却具有较大的弹性等。由于对“以太”性质种种假设间存在明显的矛盾,人们很难相信存在这种物质。而为证明“以太”存在的各种实验也都以失败而告终。1846年,法拉第发现在磁场的作用下,偏振光的振动面会发生改变。这一重要的发现,表明光和电磁现象间存在着某种联系,同时将人们的目光转移到了电磁现象来考虑。19世纪60年代,麦克斯韦在研究电磁场理论时预见了电磁波的存在。同时指出电磁波是一种横波,电磁波的传播速度等于光速。麦克斯韦通过电磁波与光波的相似性质,提出假设,认为光波是一种电磁波。20多年后,赫兹用实验证实了电磁波的存在,测得电磁波的传播速度的确与光速相同,同时电磁波也能够产生反射、折射、干涉、衍射、偏振等现象,从实验中证明了光是一种电磁波。光子说光的电磁说使光的波动理论发展到相当完美的地步。但是,还是在赫兹用实验证实光的电磁说的时候,就已经发现了光电效应这一现象,而这一发现也使光的电磁说遇到了无法克服的困难。1905年爱因斯坦提出光量子论,运用光子的概念解释了光电效应。

初中物理论文光学实验

光的色散

买一个凸透镜,测出焦距,将凸透镜放在刻度尺旁,在凸透镜放上光屏和蜡烛,移动它们,记录象的大小于距离的关系

光学成像物理是一门历史悠久的自然学科,物理科学作为自然科学的重要分支,不仅对物质文明的进步和人类对自然科学认识的深化起了重要的推动作用,而且对人类的思维发展也产生了不可或缺的影响。随着科学技术的发展,社会的进步,物理已渗透到人类生活的各个领域。 在汽车上,驾驶室外面的观后镜是一个凸面镜利用凸面镜对光线的发散作用和成正立,缩小的虚像的特点,使看到的实物小,观察范围更大,而保证行车安全。汽车头灯里的反射镜是一个凹面镜。它是利用凹面镜能把放在其焦点上的光源发出的光反射成平行光射出的性质做的。 轿车上装有太阳膜,行人很难看清车中人的面孔,太阳膜能反射一部分光,还会吸收一部分光,这样透进车内的光线较弱。要看清乘客的面孔,必须要从面孔放射足够的光头到玻璃外面。由于车内光线较弱,没有足够的光透出来,所以很难看清乘客的面孔。 当汽车的前窗玻璃倾斜时,反射成的像在过的前上方的空中的,这样就将车内乘客的像与路上行人分离开来,司机就不会出现错觉。大型客车较大,前窗离地面要比小汽车高得多,及时前窗竖直装,像是与窗同高的,而路上的行人不可能出现在这个高度上,所以司机也不会将乘客在窗外的相遇路上的行人相混淆。 人们利用凸透镜成像的原理,在投影机的镜头上装了一块凸透镜,让原本很小的底片一下子变大了许多,让我们看着很方便。照相机的镜头也是用一个凸透镜,人们通过调节暗箱的长度,来控制照的范围的大小,使我们的生活更加的多姿多彩。现在,人类所有令人惊叹的科学技术成就,如克隆羊、因特网、核电站、航天技术等,无不是建立在早期的科学家们对身边琐事进行观察并研究的基础上的,在学习中,同学们要树立科学意识,大处着眼、小处着手,经历观察、思考、实践、创新等活动,逐步掌握科学的学习方法,训练科学的思维方式,不久你就会拥有科学家的头脑,为自己今后惊叹不已的发展,为今后美好的甚或打下坚实的基础。

由上式可知,像的大小h跟物体的大小H、物体到小孔的距离L1、像到小孔的距离L2有关。 ①研究像的大小跟物体到小孔的距离的关系 方法:不改变物体(蜡烛)大小,不改变光屏(像)到小孔的距离L2,减小物体到小孔的距离L1。 结果:像的大小h增大。 结论:像的大小跟物体到小孔的距离有关。 在物体大小和光屏(像)到小孔的距离一定时,物体到小孔的距离越小,像越大。 ②研究像的大小跟光屏(像)到小孔的距离的关系 方法:不改变物体(蜡烛)大小,不改变物体到小孔的距离L1,增大光屏(像)到小孔的距离L2。 结果:像的大小h增大。 结论:像的大小跟光屏(像)到小孔的距离有关。在物体大小和物体到小孔的距离一定时,光屏(像)到小孔的距离越大,像越大。 ③研究像的大小跟物体大小的关系 方法:不改变物体到小孔的距离L1,不改变光屏(像)到小孔的距离L2。 换用另一支已点燃的长蜡烛。 结果:像的大小h增大。 结论:像的大小跟物体的大小有关。在物、像到小孔的距离一定时,物体越大,像越大。

大学物理光学的论文参考文献

摘 要:介绍了电磁学计算方法的研究进展和状态,对几种富有代表性的算法做了介绍,并比较了各自的优势和不足,包括矩量法、有限元法、时域有限差分方法以及复射线方法等。 关键词:矩量法;有限元法;时域有限差分方法;复射线方法 1 引 言 1864年Maxwell在前人的理论(高斯定律、安培定律、法拉第定律和自由磁极不存在)和实验的基础上建立了统一的电磁场理论,并用数学模型揭示了自然界一切宏观电磁现象所遵循的普遍规律,这就是著名的Maxwell方程。在11种可分离变量坐标系求解Maxwell方程组或者其退化形式,最后得到解析解。这种方法可以得到问题的准确解,而且效率也比较高,但是适用范围太窄,只能求解具有规则边界的简单问题。对于不规则形状或者任意形状边界则需要比较高的数学技巧,甚至无法求得解析解。20世纪60年代以来,随着电子计算机技术的发展,一些电磁场的数值计算方法发展起来,并得到广泛地应用,相对于经典电磁理论而言,数值方法受边界形状的约束大为减少,可以解决各种类型的复杂问题。但各种数值计算方法都有优缺点,一个复杂的问题往往难以依靠一种单一方法解决,常需要将多种方法结合起来,互相取长补短,因此混和方法日益受到人们的重视。 本文综述了国内外计算电磁学的发展状况,对常用的电磁计算方法做了分类。2 电磁场数值方法的分类 电磁学问题的数值求解方法可分为时域和频域2大类。频域技术主要有矩量法、有限差分方法等,频域技术发展得比较早,也比较成熟。时域法主要有时域差分技术。时域法的引入是基于计算效率的考虑,某些问题在时域中讨论起来计算量要小。例如求解目标对冲激脉冲的早期响应时,频域法必须在很大的带宽内进行多次采样计算,然后做傅里叶反变换才能求得解答,计算精度受到采样点的影响。若有非线性部分随时间变化,采用时域法更加直接。另外还有一些高频方法,如GTD,UTD和射线理论。 从求解方程的形式看,可以分为积分方程法(IE)和微分方程法(DE)。IE和DE相比,有如下特点:IE法的求解区域维数比DE法少一维,误差限于求解区域的边界,故精度高;IE法适合求无限域问题,DE法此时会遇到网格截断问题;IE法产生的矩阵是满的,阶数小,DE法所产生的是稀疏矩阵,但阶数大;IE法难以处理非均匀、非线性和时变媒质问题,DE法可直接用于这类问题〔1〕。3 几种典型方法的介绍 有限元方法是在20世纪40年代被提出,在50年代用于飞机设计。后来这种方法得到发展并被非常广泛地应用于结构分析问题中。目前,作为广泛应用于工程和数学问题的一种通用方法,有限元法已非常著名。 有限元法是以变分原理为基础的一种数值计算方法。其定解问题为: 应用变分原理,把所要求解的边值问题转化为相应的变分问题,利用对区域D的剖分、插值,离散化变分问题为普通多元函数的极值问题,进而得到一组多元的代数方程组,求解代数方程组就可以得到所求边值问题的数值解。一般要经过如下步骤: ①给出与待求边值问题相应的泛函及其变分问题。 ②剖分场域D,并选出相应的插值函数。 ③将变分问题离散化为一种多元函数的极值问题,得到如下一组代数方程组:其中:Kij为系数(刚度)矩阵;Xi为离散点的插值。 ④选择合适的代数解法解式(2),即可得到待求边值问题的数值解Xi(i=1,2,…,N) (2)矩量法 很多电磁场问题的分析都归结为这样一个算子方程〔2〕: L(f)=g(3)其中:L是线性算子,f是未知的场或其他响应,g是已知的源或激励。 在通常的情况下,这个方程是矢量方程(二维或三维的)。如果f能有方程解出,则是一个精确的解析解,大多数情况下,不能得到f的解析形式,只能通过数值方法进行预估。令f在L的定义域内被展开为某基函数系f1,f2,f3,…,fn的线性组合:其中:an是展开系数,fn为展开函数或基函数。 对于精确解式(2)通畅是无限项之和,且形成一个基函数的完备集,对近似解,将式 (2)带入式(1),再应用算子L的线性,便可以得到: m=1,2,3,…此方程组可写成矩阵形式f,以解出f。矩量法就是这样一种将算子方程转化为矩阵方程的一种离散方法。 在电磁散射问题中,散射体的特征尺度与波长之比是一个很重要的参数。他决定了具体应用矩量法的途径。如果目标特征尺度可以与波长比较,则可以采用一般的矩量法;如果目标很大而特征尺度又包括了一个很大的范围,那么就需要选择一个合适的离散方式和离散基函数。受计算机内存和计算速度影响,有些二维和三维问题用矩量法求解是非常困难的,因为计算的存储量通常与N2或者N3成正比(N为离散点数),而且离散后出现病态矩阵也是一个难以解决的问题。这时需要较高的数学技巧,如采用小波展开,选取合适的小波基函数来降维等〔3〕。 (3)时域有限差分方法 时域有限差分(FDTD)是电磁场的一种时域计算方法。传统上电磁场的计算主要是在频域上进行的,这些年以来,时域计算方法也越来越受到重视。他已在很多方面显示出独特的优越性,尤其是在解决有关非均匀介质、任意形状和复杂结构的散射体以及辐射系统的电磁问题中更加突出。FDTD法直接求解依赖时间变量的麦克斯韦旋度方程,利用二阶精度的中心差分近似把旋度方程中的微分算符直接转换为差分形式,这样达到在一定体积内和一段时间上对连续电磁场的数据取样压缩。电场和磁场分量在空间被交叉放置,这样保证在介质边界处切向场分量的连续条件自然得到满足。在笛卡儿坐标系电场和磁场分量在网格单元中的位置是每一磁场分量由4个电场分量包围着,反之亦然。 这种电磁场的空间放置方法符合法拉第定律和安培定律的自然几何结构。因此FDTD算法是计算机在数据存储空间中对连续的实际电磁波的传播过程在时间进程上进行数字模拟。而在每一个网格点上各场分量的新值均仅依赖于该点在同一时间步的值及在该点周围邻近点其他场前半个时间步的值。这正是电磁场的感应原理。这些关系构成FDTD法的基本算式,通过逐个时间步对模拟区域各网格点的计算,在执行到适当的时间步数后,即可获得所需要的结果。 在上述算法中,时间增量Δt和空间增量Δx,Δy和Δz不是相互独立的,他们的取值必须满足一定的关系,以避免数值不稳定。这种不稳定表现为在解显式 差分方程时随着时间步的继续计算结果也将无限制的67增加。为了保证数值稳定性必须满足数值稳定条件:其中:(对非均匀区域,应选c的最大值)〔4〕。 用差分方法对麦克斯韦方程的数值计算还会在网格中引起所模拟波模的色散,即在FDTD网格中数字波模的传播速度将随波长、在网格中的传播方向以及离散化的情况而改变。这种色散将导致非物理原因引起的脉冲波形的畸变、人为的各向异性及虚拟的绕射等,因此必须考虑数值色散问题。如果在模拟空间中采用大小不同的网格或包含不同的介质区域,这时网格尺寸与波长之比将是位置的函数,在不同网格或介质的交界面处将出现非物理的绕射和反射现象,对此也应该进行定量的研究,以保证正确估计FDTD算法的精度。在开放问题中电磁场将占据无限大空间,而由于计算机内存总是有限的,只能模拟有限空间,因此差分网格在某处必将截断,这就要求在网格截断处不引起波的明显反射,使对外传播的波就像在无限大空间中传播一样。这就是在截断处设置吸收边界条件,使传播到截断处的波被边界吸收而不产生反射,当然不可能达到完全没有反射,目前已创立的一些吸收边界条件可达到精度上的要求,如Mur所导出的吸收边界条件。 (4)复射线方法 复射线是用于求解波场传播和散射问题的一种高频近似方法。他根据几何光学理论和几何绕射理论的分析方法和计算公式,在解析延拓的复空间中求解复射线轨迹和场的振幅和相位,从而直接得出局部不均匀波(凋落波)的传播和散射规律〔5〕。复射线方法是包括复射线追踪、复射线近轴近似、复射线展开以及复绕射线等处理技术在内的一系列处理方法的统称。其共同特点在于:通过将射线参考点坐标延拓到复空间而建立了一个简单而统一的实空间中波束/射线束(Bundle ofrays)分析模型;通过费马原理及其延拓,由基于复射线追踪或复射线近轴近似的处理技术,构造了射线光学架构下有效的鞍点场描述方法等。例如,复射线追踪法将射线光学中使用的射线追踪方法和场强计算公式直接地解析延拓到复空间,利用延拓后的复费马原理进行复射线搜索,从而求出复射线轨迹和复射线场。这一方法的特点在于可以基于射线光学方法有效地描述空间中波束的传播,因此,提供了一类分析波束传播的简便方法。其不足之处是对每一个给定的观察点必须进行一次二维或四维的复射线轨迹搜索,这是一个十分花费时间的计算机迭代过程。4 几种方法的比较和进展 将有限元法移植到电磁工程领域还是二十世纪六七十年代的事情,他比较新颖。有限元法的优点是适用于具有复杂边界形状或边界条件、含有复杂媒质的定解问题。这种方法的各个环节可以实现标准化,得到通用的计算程序,而且有较高的计算精度。但是这种方法的计算程序复杂冗长,由于他是区域性解法,分割的元素数和节点数较多,导致需要的初始数据复杂繁多,最终得到的方程组的元数很大,这使得计算时间长,而且对计算机本身的存储也提出了要求。对电磁学中的许多问题,有限元产生的是带状(如果适当地给节点编号的话)、稀疏阵(许多矩阵元素是0)。但是单独采用有限元法只能解决开域问题。用有限元法进行数值分析的第一步是对目标的离散,多年来人们一直在研究这个问题,试图找到一种有效、方便的离散方法,但由于电磁场领域的特殊性,这个问题一直没有得到很好的解决。问题的关键在于一方面对复杂的结构,一般的剖分方法难于适用;另一方面,由于剖分的疏密与最终所形成的系数矩阵的存贮量密切相关,因而人们采用了许多方法来减少存储量,如多重网格法,但这些方法的实现较为困难〔6〕。 网格剖分与加密是有限元方法发展的瓶颈之一,采用自适应网格剖分和加密技术相对来说可以较好地解决这一问题。自适应网格剖分根据对场量分布求解后的结果对网格进行增加剖分密度的调整,在网格密集区采用高阶插值函数,以进一步提高精度,在场域分布变化剧烈区域,进行多次加密。 这些年有限元方法的发展日益加快,与其他理论相结合方面也有了新的进展,并取得了相当应用范围的成果,如自适应网格剖分、三维场建模求解、耦合问题、开域问题、高磁性材料及具有磁滞饱和非线性特性介质的处理等,还包括一些尚处于探索阶段的工作,如拟问题、人工智能和专家系统在电磁装置优化设计中的应用、边基有限元法等,这些都使得有限元方法的发展有了质的飞跃。 矩量法将连续方程离散化为代数方程组,既适用于求解微分方程,又适用于求解积分方程。他的求解过程简单,求解步骤统一,应用起来比较方便。然而 77他需要一定的数学技巧,如离散化的程度、基函数与权函数的选取,矩阵求解过程等。另外必须指出的是,矩量法可以达到所需要的精确度,解析部分简单,可计算量很大,即使用高速大容量计算机,计算任务也很繁重。矩量法在天线分析和电磁场散射问题中有比较广泛地应用,已成功用于天线和天线阵的辐射、散射问题、微带和有耗结构分析、非均匀地球上的传播及人体中电磁吸收等。 FDTD用有限差分式替代时域麦克斯韦旋度方程中的微分式,得到关于场分量的有限差分式,针对不同的研究对象,可在不同的坐标系中建模,因而具有这几个优点,容易对复杂媒体建模,通过一次时域分析计算,借助傅里叶变换可以得到整个同带范围内的频率响应;能够实时在现场的空间分布,精确模拟各种辐射体和散射体的辐射特性和散射特性;计算时间短。但是FDTD分析方法由于受到计算机存储容量的限制,其网格空间不能无限制的增加,造成FDTD方法不能适用于较大尺寸,也不能适用于细薄结构的媒质。因为这种细薄结构的最小尺寸比FDTD网格尺寸小很多,若用网格拟和这类细薄结构只能减小网格尺寸,而这必然导致计算机存储容量的加大。因此需要将FDTD与其他技术相结合,目前这种技术正蓬勃发展,如时域积分方程/FDTD方法,FDTD/MOM等。FDTD的应用范围也很广阔,诸如手持机辐射、天线、不同建筑物结构室内的电磁干扰特性研究、微带线等〔7〕。 复射线技术具有物理模型简单、数学处理方便、计算效率高等特点,在复杂目标散射特性分析等应用领域中有重要的研究价值。典型的处理方式是首先将入射平面波离散化为一组波束指向平行的复源点场,通过特定目标情形下的射线追踪、场强计算和叠加各射线场的贡献,可以得到特定观察位置处散射场的高频渐进解。目前已运用复射线分析方法对飞行器天线和天线罩(雷达舱)、(加吸波涂层)翼身结合部和进气道以及涂层的金属平板、角形反射器等典型目标散射特性进行了成功的分析。尽管复射线技术的计算误差可以通过参数调整得到控制,但其本身是一种高频近似计算方法,由于入射波场的离散和只引入鞍点贡献,带来了不可避免的计算误差。总的来说复射线方法在目标电磁散射领域还是具有独特的优势,尤其是对复杂目标的处理。5 结 语 电磁学的数值计算方法远远不止以上所举,还有边界元素法、格林函数法等,在具体问题中,应该采用不同的方法,而不应拘泥于这些方法,还可以把这些方法加以综合应用,以达到最佳效果。 电磁学的数值计算是一门计算的艺术,他横跨了多个学科,是数学理论、电磁理论和计算机的有机结合。原则上讲,从直流到光的宽频带范围都属于他的研究范围。为了跟上世界科技发展的需要,应大力进行电磁场的并行计算方法的研究,不断拓广他的应用领域,如生物电磁学、复杂媒质中的电磁正问题和逆问题、医学应用、微波遥感应用、非线性电磁学中的混沌与分叉、微电子学和纳米电子学等。参考文献〔1〕 文舸一.计算电磁学的进展与展望〔J〕.电子学报,1995,23(10):62-69.〔2〕 刘圣民.电磁场的数值方法〔M〕.武汉:华中理工大学出版社,1991.〔3〕 张成,郑宏兴.小波矩量法求解电磁场积分方程〔J〕.宁夏大学学报(自然科学版),2000,21(1):76-79. 〔4〕 王长清.时域有限差分(FD-TD)法〔J〕.微波学报,1989,(4):8-18.〔5〕 阮颖诤.复射线理论及其应用〔M〕.成都:电子工业出版社,1991.〔6〕 方静,汪文秉.有限元法和矩量法结合分析背腔天线的辐射特性〔J〕.微波学报,2000,16(2):139-143.〔7〕 杨永侠,王翠玲.电磁场的FDTD分析方法〔J〕.现代电子技术,2001,(11):73-74.〔8〕 洪伟.计算电磁学研究进展〔J〕.东南大学学RB (自然科学版),2002,32(3):335-339.〔9〕 王长清,祝西里.电磁场计算中的时域有限差分法〔M〕.北京:北京大学出版社,1994.〔10〕 楼仁海,符果行,袁敬闳.电磁理论〔M〕.成都:电子科技大学出版社,1996. 现代电子技术

最好在网上下载吧

分光计的调节及其棱镜折射率的测定研究与分析杨贵宏(08物理2班 200802050253)引言:我们的生活离不开阳光,通常我们认为阳光是一种单色光(单一波长的光)。其实,笼罩在我们周围的光线本身是复色光(由两种或两种以上的单色光组成的光线),他是由不同波长波线的单色光组成的。广义的说,具有周期性的空间结构或光学性能(如透射率、折射率)的衍射屏,统称光栅。光栅的种类很多,有透射光栅和反射光栅,有平面光栅和凹面光栅,有黑白光栅和正弦光栅,有一维光栅,二维光栅和三维光栅,等等。此次实验所使用的光栅是利用全息照相技术拍摄的全息透射光栅光栅的表面若被污染后不易清洗,使用时应特别注意。分光计是一种能精确测量角度的光学仪器,常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。由于该装置比较精密,控制部件较多而且复杂,所以使用时必须严格按照一定的规则和程序进行调整,以便测量出准确的结果。摘要: 分光计是一种能精确测量折射角的典型光学仪器,经常用来测量材料的折射率、色散率、光波波长和进行光谱观测等。由于该装置比较精密,控制部件较多而且操作复杂,所以使用时必须严格按照一定的规则和程序进行调整,方能获得较高精度的测量结果。关键词:分光计、棱镜、折射率Abstract: The spectrometer can accurately measure the angle of refraction is a typical optical instruments, often used to measure the material's refractive index, dispersion rate, wavelength, and spectral observations. As the more sophisticated devices, control components and operation are more complex, and therefore must be used strictly in accordance with certain rules and procedures to adjust to get the high precision measurement : spectrometer, prism, the refractive index二、实验目的: 1、了解分光计结构,学会正解调节和使用分光计的方法; 2、用分光计测量三棱镜的顶角; 3、学会用最小偏向角法测量三棱镜的折射率。三、实验仪器:分光计主要由五个部件组成:三角底座,平行光管、望远镜、刻度圆盘和载物台。图中各调节装置的名称及作用见表1。 图 1分光计基本结构示意图表1 分光计各调节装置的名称和作用代号 名称 作用1 狭缝宽度调节螺丝 调节狭缝宽度,改变入射光宽度2 狭缝装置 3 狭缝装置锁紧螺丝 松开时,前后拉动狭缝装置,调节平行光。调好后锁紧,用来固定狭缝装置。4 平行光管 产生平行光5 载物台 放置光学元件。台面下方装有三个细牙螺丝7,用来调整台面的倾斜度。松开螺丝8可升降、转动载物台。6 夹持待测物簧片 夹持载物台上的光学元件7 载物台调节螺丝(3只) 调节载物台台面水平8 载物台锁紧螺丝 松开时,载物台可单独转动和升降;锁紧后,可使载物台与读数游标盘同步转动9 望远镜 观测经光学元件作用后的光线10 目镜装置锁紧螺丝 松开时,目镜装置可伸缩和转动(望远镜调焦);锁紧后,固定目镜装置11 阿贝式自准目镜装置 可伸缩和转动(望远镜调焦)12 目镜调焦手轮 调节目镜焦距,使分划板、叉丝清晰13 望远镜光轴仰角调节螺丝 调节望远镜的俯仰角度14 望远镜光轴水平调节螺丝 调节该螺丝,可使望远镜在水平面内转动15 望远镜支架 16 游标盘 盘上对称设置两游标17 游标 分成30小格,每一小格对应角度 1’18 望远镜微调螺丝 该螺丝位于图14-1的反面。锁紧望远镜支架制动螺丝 21 后,调节螺丝18,使望远镜支架作小幅度转动19 度盘 分为360°,最小刻度为半度(30′),小于半度则利用游标读数20 目镜照明电源 打开该电源20,从目镜中可看到一绿斑及黑十字21 望远镜支架制动螺丝 该螺丝位于图14-1的反面。锁紧后,只能用望远镜微调螺丝18使望远镜支架作小幅度转动22 望远镜支架与刻度盘锁紧螺丝 锁紧后,望远镜与刻度盘同步转动23 分光计电源插座 24 分光计三角底座 它是整个分光计的底座。底座中心有沿铅直方向的转轴套,望远镜部件整体、刻度圆盘和游标盘可分别独立绕该中心轴转动。平行光管固定在三角底座的一只脚上25 平行光管支架 26 游标盘微调螺丝 锁紧游标盘制动螺丝27后,调节螺丝26可使游标盘作小幅度转动27 游标盘制动螺丝 锁紧后,只能用游标盘微调螺丝26使游标盘作小幅度转动28 平行光管光轴水平调节螺丝 调节该螺丝,可使平行光管在水平面内转动29 平行光管光轴仰角调节螺丝 调节平行光管的俯仰角四、实验原理:三棱镜如图1 所示,AB和AC是透光的光学表面,又称折射面,其夹角 称为三棱镜的顶角;BC为毛玻璃面,称为三棱镜的底面。图2三棱镜示意图 1.反射法测三棱镜顶角 如图2 所示,一束平行光入射于三棱镜,经过AB面和AC面反射的光线分别沿 和 方位射出, 和 方向的夹角记为 ,由几何学关系可知: 图3反射法测顶角2.最小偏向角法测三棱镜玻璃的折射率假设有一束单色平行光LD入射到棱镜上,经过两次折射后沿ER方向射出,则入射光线LD与出射光线ER间的夹角 称为偏向角,如图3所示。 图4最小偏向角的测定转动三棱镜,改变入射光对光学面AC的入射角,出射光线的方向ER也随之改变,即偏向角 发生变化。沿偏向角减小的方向继续缓慢转动三棱镜,使偏向角逐渐减小;当转到某个位置时,若再继续沿此方向转动,偏向角又将逐渐增大,此位置时偏向角达到最小值,测出最小偏向角 。可以证明棱镜材料的折射率 与顶角 及最小偏向角的关系式为 实验中,利用分光镜测出三棱镜的顶角 及最小偏向角 ,即可由上式算出棱镜材料的折射率 。实验内容与步骤:1.分光计的调整(分光计结构如右图所示) 在进行调整前,应先熟悉所使用的分光计中下列螺丝的位置: ①目镜调焦(看清分划板准线)手轮; ②望远镜调焦(看清物体)调节手轮(或螺丝);③调节望远镜高低倾斜度的螺丝;④控制望远镜(连同刻度盘)转动的制动螺丝;⑤调整载物台水平状态的螺丝;⑥控制载物台转动的制动螺丝;⑦调整平行光管上狭缝宽度的螺丝;⑧调整平行光管高低倾斜度的螺丝; 图5 ⑨平行光管调焦的狭缝套筒制动螺丝。(1)目测粗调。将望远镜、载物台、平行光管用目测粗调成水平,并与中心轴垂直(粗调是后面进行细调的前提和细调成功的保证)。(2)用自准法调整望远镜,使其聚焦于无穷远。①调节目镜调焦手轮,直到能够清楚地看到分划板"准线"为止。 ②接上照明小灯电源,打开开关,可在目镜视场中看到如图4所示的“准线”和带有绿色小十字的窗口。 图6目镜视场 ③将双面镜按图5所示方位放置在载物台上。这样放置是出于这样的考虑:若要调节平面镜的俯仰,只需要调节载物台下的螺丝a1或a2即可,而螺丝a3的调节与平面镜的俯仰无关。图7平面镜的放置  ④沿望远镜外侧观察可看到平面镜内有一亮十字,轻缓地转动载物台,亮十字也随之转动。但若用望远镜对着平面镜看,往往看不到此亮十字,这说明从望远镜射出的光没有被平面镜反射到望远镜中。我们仍将望远镜对准载物台上的平面镜,调节镜面的俯仰,并转动载物台让反射光返回望远镜中,使由透明十字发出的光经过物镜后(此时从物镜出来的光还不一定是平行光),再经平面镜反射,由物镜再次聚焦,于是在分划板上形成模糊的像斑(注意:调节是否顺利,以上步骤是关键)。然后先调物镜与分划板间的距离,再调分划板与目镜的距离使从目镜中既能看清准线,又能看清亮十字的反射像。注意使准线与亮十字的反射像之间无视差,如有视差,则需反复调节,予以消除。如果没有视差,说明望远镜已聚焦于无穷远。 (3)调整望远镜光轴,使之与分光计的中心轴垂直。 平行光管与望远镜的光轴各代表入射光和出射光的方向。为了测准角度,必须分别使它们的光轴与刻度盘平行。刻度盘在制造时已垂直于分光计的中心轴。因此,当望远镜与分光计的中心轴垂直时,就达到了与刻度盘平行的要求。具体调整方法为:平面镜仍竖直置于载物台上,使望远镜分别对准平面镜前后两镜面,利用自准法可以分别观察到两个亮十字的反射像。如果望远镜的光轴与分光计的中心轴相垂直,而且平面镜反射面又与中心轴平行,则转动载物台时,从望远镜中可以两次观察到由平面镜前后两个面反射回来的亮十字像与分划板准线的上部十字线完全重合,如图6(c)所示。若望远镜光轴与分光计中心轴不垂直,平面镜反射面也不与中心轴相平行,则转动载物台时,从望远镜中观察到的两个亮十字反射像必然不会同时与分划板准线的上部十字线重合,而是一个偏低,一个偏高,甚至只能看到一个。这时需要认真分析,确定调节措施,切不可盲目乱调。重要的是必须先粗调:即先从望远镜外面目测,调节到从望远镜外侧能观察到两个亮十字像;然后再细调:从望远镜视场中观察,当无论以平面镜的哪一个反射面对准望远镜,均能观察到亮十字时,如从望远镜中看到准线与亮十字像不重合,它们的交点在高低方面相差一段距离如图6(a)所示。此时调整望远镜高低倾斜螺丝使差距减小为h/2,如图6(b)所示。再调节载物台下的水平调节螺丝,消除另一半距离,使准线的上部十字线与亮十字线重合,如图6(c)所示。之后,再将载物台旋转180o ,使望远镜对着平面镜的另一面,采用同样的方法调节。如此反复调整,直至转动载物台时,从平面镜前后两表面反射回来的亮十字像都能与分划板准线的上部十字线重合为止。这时望远镜光轴和分光计的中心轴相垂直,常称这种方法为逐次逼近各半调整法。图8亮十字像与分划板准线的位置关系 (4)调整平行光管 用前面已经调整好的望远镜调节平行光管。当平行光管射出平行光时,则狭缝成像于望远镜物镜的焦平面上,在望远镜中就能清楚地看到狭缝像,并与准线无视差。 ①调整平行光管产生平行光。取下载物台上的平面镜,关掉望远镜中的照明小灯,用钠灯照亮狭缝,从望远镜中观察来自平行光管的狭缝像,同时调节平行光管狭缝与透镜间的距离,直至能在望远镜中看到清晰的狭缝像为止,然后调节缝宽使望远镜视场中的缝宽约为1mm。 ②调节平行光管的光轴与分光计中心轴相垂直。望远镜中看到清晰的狭缝像后,转动狭缝(但不能前后移动)至水平状态,调节平行光管倾斜螺丝,使狭缝水平像被分划板的中央十字线上、下平分,如图7(a)所示。这时平行光管的光轴已与分光计中心轴相垂直。再把狭缝转至铅直位置,并需保持狭缝像最清晰而且无视差,位置如图7(b)所示。图9狭缝像与分划板位置 至此分光计已全部调整好,使用时必须注意分光计上除刻度圆盘制动螺丝及其微调螺丝外,其它螺丝不能任意转动,否则将破坏分光计的工作条件,需要重新调节。 2. 测量 在正式测量之前,请先弄清你所使用的分光计中下列各螺丝的位置:①控制望远镜(连同刻度盘)转动的制动螺丝;②控制望远镜微动的螺丝。(1)用反射法测三棱镜的顶角  如图2 所示,使三棱镜的顶角对准平行光管,开启钠光灯,使平行光照射在三棱镜的AC、AB面上,旋紧游标盘制动螺丝,固定游标盘位置,放松望远镜制动螺丝,转动望远镜(连同刻度盘)寻找AB面反射的狭缝像,使分划板上竖直线与狭缝像基本对准后,旋紧望远镜螺丝,用望远镜微调螺丝使竖直线与狭缝完全重合,记下此时两对称游标上指示的读数 、 。转动望远镜至AC面进行同样的测量得 、 。可得 三棱镜的顶角 为 重复测量三次取平均。(2) 棱镜玻璃折射率的测定 分别放松游标盘和望远镜的制动螺丝,转动游标盘(连同三棱镜)使平行光射入三棱镜的AC面,如图3 所示。转动望远镜在AB面处寻找平行光管中狭缝的像。然后向一个方向缓慢地转动游标盘(连同三棱镜)在望远镜中观察狭缝像的移动情况,当随着游标盘转动而向某个方向移动的狭缝像,正要开始向相反方向移动时,固定游标盘。轻轻地转动望远镜,使分划板上竖直线与狭缝像对准,记下两游标指示的读数,记为 、 ;然后取下三棱镜,转动望远镜使它直接对准平行光管,并使分划板上竖直线与狭缝像对准,记下对称的两游标指示的读数,记为 、 ,可得 重复测量三次求平均。用上式求出棱镜的折射。五、实验注意事项:1.望远镜、平行光管上的镜头,三棱镜、平面镜的镜面不能用手摸、揩。如发现有尘埃时,应该用镜头纸轻轻揩擦。三棱镜、平面镜不准磕碰或跌落,以免损坏。 2.分光计是较精密的光学仪器,要加倍爱护,不应在制动螺丝锁紧时强行转动望远镜,也不要随意拧动狭缝。 3.在测量数据前务须检查分光计的几个制动螺丝是否锁紧,若未锁紧,取得的数据会不可靠。 4.测量中应正确使用望远镜转动的微调螺丝,以便提高工作效率和测量准确度。 5.在游标读数过程中,由于望远镜可能位于任何方位,故应注意望远镜转动过程中是否过了刻度的零点。 6.调整时应调整好一个方向,这时已调好部分的螺丝不能再随便拧动,否则会造成前功尽弃。 7.望远镜的调整是一个重点。首先转动目镜手轮看清分划板上的十字线,而后伸缩目镜筒看清亮十字。 六、思考题:1. 分光计的调整有哪些要求?其检察的标准?答:①几何要求:“三垂直”。即载物小平台的平面,望远镜的主光轴、平行光管的主光轴均必须与分光计的中心轴垂直。②物理要求:“三聚焦”。即叉丝对目镜聚焦,望远镜对无穷远聚焦,狭缝对平行光管物镜聚焦。③检验三垂直的标准:“四平行”。即载物小平台平面、望远镜的主光轴、平行光管的主光轴和读数刻度盘四者相互平行。④检验三聚焦的标准:“三清晰”。即目镜中观察叉丝清晰,亮十字反回的像(绿十字)清晰,在望远镜中看到狭缝清晰。2. 即是重点又是难点内容的望远镜系统如何调整? 答:①目测粗调②打开小灯调节目镜,看清叉丝。③在载物台上放双平面镜(位置如胶片图所示,为什么?),调节物镜(仰俯角和伸缩)和载物台(螺钉),使双平面镜两面有绿十字像并清晰、无视差,此时望远镜已聚焦无穷远。④调整望远镜的光轴与分光计转轴垂直。使双平面镜两面有绿十字像。再用“减半逐步逼近法”使望远镜的光轴与分光计的中心轴垂直(对照胶片讲解,必要时示范讲解),即叉丝的像与调整叉丝完全重合。3. 平行光管如何调整?答:①用已调节好的望远镜作基准,调节平行光管下部仰俯螺钉,使其出射平行光。②调节平行光管的狭缝宽度(强调:不要损坏刀口!)③使平行光管光轴与分光计转轴垂直。使目镜中看到的水平和竖直的狭缝像均居中。 七、误差分析:在测量三棱镜折射率实验中,当调节分光计的平行光管光轴与望远镜光轴垂直于中心转轴后,由实验可知载物台平面的倾斜程度对最小偏向角的测量没影响,但顶角的测量随着载物台平面的倾斜程度不同,有着不同程度的影响。八、实验心得:1、提高了我们综合分析的能力,当面对一个问题时,首先要考虑怎样解决,既而开始考虑解决的具体方法,在实验前必须提前预习,把整个实验的原理,流程和注意的事项掌握清楚,这才能保证你实验既快又好的完成.在预习时要有目的,心中明白哪里里是实验的重点,哪里是必须注意的问题.设计实验步骤,并预测实验中可能出现的问题。对实验的每一个细节进行分析,尽可能的减小实验误差。这些都使我们初步培养了实验的素质和能力。 2、培养了实验中科学严谨的态度,尊重客观事实,对待任何实验都客观认真仔细。实验正式开始前,应该先清点下实验仪器和材料,并对其进行检查,以确保实验顺利进行.在动手前先将心中的实验知识对照一起过一遍再开始动手。实验过程更始需要很精细的态度和求实的态度。对每个步骤,每个细节都要留心。 3、养成了我们做事认真细致有耐心的习惯。在实验中,你必须有耐心,因为实验中每个变化都可能是细微的,必须集中精神才能去发现它,不可以急于求成。如果实验数据与正确数据相差过大时,应该把整个实验过程回想一下,对照每一步骤寻求问题所在,重新做一次。 4、悉了很多仪器的使用方法,在光学实验室良好的环境和设备的情况下,我们得到了很好的锻炼,对很多仪器的调试、测量,以及如何减小实验误差等,都有了很明确的认识。我想,这在我们以后的实验过程中会非常有用。 5、实验老师们的耐心讲解和对工作的认真态度给我留下了很深刻的印象。辅导我们实验的每一位老师,对工作都极其认真,在实验前,老师通常会给大家讲解下实验的注意事项,对于我们实验中出现的问题都给予耐心的讲解,而且,在我们实验进行中和实验结束后,老师们都启发我们思考实验的一些外延内容,这对我们将实验所进行的内容跟课本密切联系起来,将知识更充分地掌握。九、试验总结:首先:光学试验的仪器测量都十分精密,实验中一个很小的环节都有可能导致试验的失败,以“应用全反射临界角法测定三棱镜的折射率”为例,在实验过程中要注意分光仪在进行本次实验时已做过校正,因此时在测量时就应该注意,只能调节载物台倾斜度调节螺丝,而对于像平行光管倾斜度调节螺丝、望远镜倾斜度调节螺丝等就不应该再进行调节,否则将会导致实验失败。 第二:对于数据的处理,光学实验也有较高的要求,数据不但要求准确度高,精确度也要高,而且通常要记录多组数据,最后取平均。 第三:光学实验的测量仪器在进行测量时,通常要求一个稳定的实验环境,当有光源时,通常要在实验开始前先打开光源,这样在进行实验时,光源已经达到稳定。对于“全息照相”,对环境的稳定性要求更高,实验仪器都放在防震台上,在仪器排好光路后,要用手轻敲台面,看光路是否改变,在进行曝光前,更是要求室内实验人员不得大声说话,因为声波震动而引起的空气密度变化都有可能导致实验失败,在装片后还必须有一个使台面上各元件自然稳定的时间,即使干涉条纹稳定下来了,时间也不得少于3分钟。可以说这是我做过的六次实验中对稳定性要求最高的实验 第四:我始终认为做好实验预习是最重要的,在作实验前,通过预习,我们可以了解要做实验的原理及要使用的仪器的使用方法,这样在实验之前就已对试验有了大概的了解,然后在课堂上通过老师的讲解,可以迅速掌握仪器的使用方法,这样做起实验来才会得心应手,同时也可以减少因不了解实验仪器的使用方法而导致的实验失败,甚至是对仪器造成损坏,可以说做好实验预习是一举多得的事情。九、参考文献:[1]、普通物理实验3光学部分 高等教育出版社 杨述武、赵立竹等编 2008年版;[2]、大学物理实验 章世恒 主编 西南交通大学出版社 2009 年1月 ;[3]、大学物理实验教程(第2版) 何春娟 主编 西北工业大学出版社 2009年4月。

关于光的本性问题很早就引起了人们的关注。微粒说1638年,法国数学家皮埃尔·伽森荻(Pierre Gassendi)提出物体是由大量坚硬粒子组成的。并在1660年出版的他所著的书中涉及到了他对于光的观点,也认为光也是由大量坚硬粒子组成的。牛顿随后对于伽森荻的这种观点进行研究,他根据光的直线传播规律、光的偏振现象,最终于1675年提出假设,认为光是从光源发出的一种物质微粒,在均匀媒质中以一定的速度传播。微粒说很容易解释光的直进性和反射现象,因为粒子与光滑平面发生碰撞的反射定律与光的反射定律相同。然而微粒说在解释一束光射到两种介质分界面处会同时反射和折射,以及几束光交叉相遇后彼此毫不妨碍的继续向前传播等现象时,却发生了很大困难。波动说罗伯特·胡克在1685年发表的《显微术》一书中,认为光是一种振动,发光体的每一振动在介质中向各个方向传播。胡克初步建立了波面和波线的概念,并把波面的思想用于对光的折射和薄膜颜色的研究。惠更斯(Christian Huygens)著《论光》更明确地提出了光是一种波动的主张,他认为光是一种介质的运动,该运动从介质的一部分以有限速度依次地向其他部分传播,他把光的传播方式与声音在空气中的传播作比较。波动说很容易能够解释微粒说不能解释的两个问题。水波可以同时发生反射和折射,并且水波的反射和折射规律和光完全相同。湖面上的激烈水波能够自由的互相穿过,通过一个窗口能够同时听到窗外几个人讲话的声音,这些都是人们熟知的波的现象。然而,早期的波动说缺乏定量的数学严密性,也缺乏对波动特性的足够说明,仍然摆脱不了几何光学的观念。同时,惠更斯所提出的波动说是把光比作像“水波”一样的机械波,即机械波的传播需要依靠介质,而光却能在真空中(即无介质)传播。牛顿并不是在根本上否认光的波动性,事实上正是牛顿首先提出了光在本质上是一种周期过程的观点,他还多次提到光可能是一种振动并与声波作对比。然而从他的著作《光学》的其他部分来看,他还是倾向于光的微粒说。突出的例子是从光的微粒说出发,根据机械粒子遵守的力学规律来解释光的反射定律和折射定律,并得出了光密介质中的光速要大于光疏介质中的光速这一与事实不符的结论。英国物理学家托马斯·杨(1773年 – 1829年)用干涉实验证明了光的波动性由于牛顿在学术界有很高的声望,致使微粒说在其后的100多年里一直占着主导地位,而波动说却发展得很慢。同时,如果要证明光具有波动性,必须设法显示出光具有干涉现象,而干涉现象的产生必须得到两列相干光,然而要得到两列相干光在当时是很困难的。直到1801年英国物理学家托马斯·杨(Thomas Young)终于用干涉实验证明了光的波动性。详见杨氏双缝干涉实验电磁说到19世纪中期,光的波动性已经得到公认,然而当时人们只了解在介质中传播的机械波,认为光波也是一种机械波。而任何机械波的传播都依靠介质,光却能在真空中传播。从太阳和其他恒星所发出的光,是通过什么介质传播过来的呢?为了说明光传播的这个问题,人们便假设在宇宙空间中到处充满着一种特殊的物质,这种物质被称作以太,光便是通过“以太”来进行传播。为了解释光波的各种性质,对于“以太”这个概念又进一步提出了种种假设。譬如,“以太”的密度极小,却具有较大的弹性等。由于对“以太”性质种种假设间存在明显的矛盾,人们很难相信存在这种物质。而为证明“以太”存在的各种实验也都以失败而告终。1846年,法拉第发现在磁场的作用下,偏振光的振动面会发生改变。这一重要的发现,表明光和电磁现象间存在着某种联系,同时将人们的目光转移到了电磁现象来考虑。19世纪60年代,麦克斯韦在研究电磁场理论时预见了电磁波的存在。同时指出电磁波是一种横波,电磁波的传播速度等于光速。麦克斯韦通过电磁波与光波的相似性质,提出假设,认为光波是一种电磁波。20多年后,赫兹用实验证实了电磁波的存在,测得电磁波的传播速度的确与光速相同,同时电磁波也能够产生反射、折射、干涉、衍射、偏振等现象,从实验中证明了光是一种电磁波。光子说光的电磁说使光的波动理论发展到相当完美的地步。但是,还是在赫兹用实验证实光的电磁说的时候,就已经发现了光电效应这一现象,而这一发现也使光的电磁说遇到了无法克服的困难。1905年爱因斯坦提出光量子论,运用光子的概念解释了光电效应。

大学物理论文激光焊接

开题报告主要包括以下几个方面:(一)课题名称(二)课题研究的目的、意义(三)国内外研究现状、水平和发展趋势(四)课题研究的理论依据(五)课题主要研究内容、方法(六)研究工作的步骤(七)课题参加人员的组成和专长(八)现有基础(九)经费估算(三)国内外研究现状、水平和发展趋势就是本课题有没有人研究,研究达到什么水平、存在什么不足以及正在向什么方向发展等。开题报告写这些内容一方面可以论证本课题研究的地位和价值,另一方面也说明课题研究人员对本课题研究是否有较好的把握。我们进行任何科学研究,必须对该问题的研究现状有清醒的了解,这在第一部分已经谈到(五)课题研究的理论依据

毕业论文格式题目一、前言:1.钛镍合金和不锈钢的应用现状 2.激光焊接的应用现状 3. 激光焊接在钛镍合金和不锈钢上应用的的不足之处4.针对不足提出本论文研究内容。二、试验:1.试验材料,包括成分、力学性能 2.激光器参数,包括激光种类、波长、功率、保护气体种类等3.焊前处理方法(表面打磨,去油脂等)4.试验检测方法:组织观察(光学显微镜、扫描电镜、电子探针等)力学性能测试(拉伸、冲击等试验,硬度、标准件尺寸)三、结果与讨论1.不同焊接参数条件下焊接表面形貌、背面形貌:(参数包括:激光功率、离焦量、焊接速度、保护气体流量、激光波形等,如果脉冲激光还有频率影响)2.不同焊接参数接头横截面形貌3.微观组织观察不同焊接参数条件下晶粒尺寸、相组成、缺陷分析、硬度等(光学显微镜、扫描电镜、硬度计)4.力学性能(拉伸、冲击等结果,三个试件取平均值5断口分析:断裂方式,端口形貌(扫描电镜)四、结论五、参考文献六、致谢

1.研究的问题 2.假设 3.研究计划 4.实验材料准备 5.观察过程和实验记录 6.实验结果分析 7.研究结论.

激光焊接在这个社会运用很广,极大程度的帮企业或者个体提升了效益,

激光焊接与其它焊接技术相比,激光焊接的主要优点是:

1、速度快、深度大、变形小。

2、能在室温或特殊条件下进行焊接,焊接设备装置简单。

3、可焊接难熔材料如钛、石英等,并能对异性材料施焊,效果良好。

4、激光聚焦后,功率密度高,在高功率器件焊接时,深宽比可达5:1,最高可达10:1。

5、可进行微型焊接。激光束经聚焦后可获得很小的光斑,且能精确定位,可应用于大批量自动化生产的微、小型工件的组焊中。(最小光斑可以到)

6、可焊接难以接近的部位,施行非接触远距离焊接,具有很大的灵活性。

7、激光束易实现光束按时间与空间分光,能进行多光束同时加工及多工位加工,为更精密的焊接提供了条件。

但是,激光焊接也存在着一定的局限性:

1、要求焊件装配精度高,且要求光束在工件上的位置不能有显著偏移。这是因为激光聚焦后光斑尺雨寸小,焊缝窄,为加填充金属材料。若工件装配精度或光束定位精度达不到要求,很容易造成焊接缺憾。

2、激光器及其相关系统的成本较高,一次性投资较大。

激光焊接原理:

大学物理光电论文题目

我大学毕业论文写的是<< 电动助力转向系统中传动机构的运动学和动力学分析与比较>>,如果只是一般性论文,建议写<<生活中的物理 >>,<<世纪之交谈物理学发展的方向>>,<<物理学前沿问题探索>>之类的较广泛的题目,这样比较容易,相关资料也比较好找

哥们,北理的吧,我也在写这个,艹,真球蛋疼

狠啊,直接把小论文题给发了

孩子你太狠了。我汗颜。

相关百科
热门百科
首页
发表服务