论文发表百科

矩阵可对角化论文开题报告

发布时间:2024-07-06 22:14:50

矩阵可对角化论文开题报告

这种老掉牙的课题写了干什么?前人已经研究的透彻不能再透彻了。既然写文章,搞研究就要真的做了点实质性的东西出来,否则只是浪费时间。

我觉得应该是相似对角化吧,具体的步骤是:1,求出一个矩阵的全部互异的特征值a1,a2……2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值你看行不?这就是我知道的,呵呵

理论上看,意义是明显的。相似是一种等价关系,对角化相当于对一类矩阵在相似意义下给出了一种简单的等价形式,这对理论分析是方便的。相似的矩阵拥有很多相同的性质,比如特征多项式,特征根,行列式……如果只关心这类性质,那么相似的矩阵可以看作没有区别的,这时研究一个一般的可对角化的矩阵,只要研究它的标准形式——一个对角矩阵就可以了。而对角矩阵是最简单的一类矩阵,研究起来非常方便。这个过程相当于在一个等价类中选取最顺眼的元素研究。另外,对角化突出了矩阵的特征值,而过度矩阵T反映了特征向量的信息,对角化过程的直观意义还是很明显的。再结合正交矩阵的概念,可以得到一些不平凡的结论,例如实对称矩阵总可以对角化。实践中的矩阵对角化作用也很大。别的不说,比如要算一个一般的3阶实对称矩阵A的n次幂,n较大时,按矩阵乘法定义去计算是相当繁琐的,计算复杂度呈指数型增长。但是如果把A可以对角化(实对称矩阵总是可以对角化的),写为=T^(-1)PT,P是对角阵。那么A^n=T^(-1)P^nT,P^n的计算是很简单的,只要把各特征值^n即可,此时计算A^n的复杂度几乎与n无关。以上纯属个人见解,仅供LZ参考:)

我也是差不多这个课题啊,我的是 矩阵可对角化的条件及对角化方法,有资料互相参考啊,是写开题报告么 ,从别处拷过来的 矩阵对角化在国内外已有一定的研究。早在十九世纪末,人们在研究行列式的性质和计算时,提出了对角矩阵的概念,由于计算机的发展,更是为矩阵对角化的应用开辟了广阔的前景,它经常出现在诸如可用于求解微分方程组,用于研究数理统计量的分布,还有用于研究集合曲面的标准形等不同的科技领域中,这就使得对角矩阵成为计算数学中应用及其广泛的矩阵。

论文矩阵可对角化的开题报告

A 是20啊,第一排的前后两个数一次差1,2,3,4,5,6,7.。。。。B=4啊,第二排的前后两个数之差是2

我觉得应该是相似对角化吧,具体的步骤是:1,求出一个矩阵的全部互异的特征值a1,a2……2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值你看行不?这就是我知道的,呵呵

1,求出一个矩阵的全部互异的特征值a1,a2……2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值

矩阵对角化有三种方法

1、利用特征值和特征向量将矩阵对角化

由于这种方法相对来说比较基础、简单、机械,一般教材都有详细介绍,这里用图示加以总结。

2、利用矩阵的初等变换将矩阵对角化

矩阵的初等变换

矩阵的初等行变换和初等列变换,统称矩阵的初等变换。下面的三种变换称为矩阵的初等行变换:

1 对调两行;

2 以数k≠0乘某一行的所有元素;

3 把某一行所有元素的k倍加到另一行对应的元素上去。

把上面定义中的“行”换成“列”,既得矩阵的初等列变换的定义。

如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A与B等价。

另外:分块矩阵也可以定义初等变换。

3、利用矩阵的乘法运算将矩阵对角化

矩阵乘法是一种高效的算法可以把一些一维递推优化到log( n ),还可以求路径方案等,所以更是一种应用性极强的算法。矩阵,是线性代数中的基本概念之一。一个m×n的矩阵就是m×n个数排成m行n列的一个数阵。由于它把许多数据紧凑的集中到了一起,所以有时候可以简便地表示一些复杂的模型。矩阵乘法看起来很奇怪,但实际上非常有用,应用也十分的广泛。

矩阵对角化问题研究论文

1,求出一个矩阵的全部互异的特征值a1,a2……2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值

我也是差不多这个课题啊,我的是 矩阵可对角化的条件及对角化方法,有资料互相参考啊,是写开题报告么 ,从别处拷过来的 矩阵对角化在国内外已有一定的研究。早在十九世纪末,人们在研究行列式的性质和计算时,提出了对角矩阵的概念,由于计算机的发展,更是为矩阵对角化的应用开辟了广阔的前景,它经常出现在诸如可用于求解微分方程组,用于研究数理统计量的分布,还有用于研究集合曲面的标准形等不同的科技领域中,这就使得对角矩阵成为计算数学中应用及其广泛的矩阵。

1,求出一个矩阵的全部互异的特征值a1,a2……

2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化

3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系

4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值

扩展资料:

判断方阵是否可相似对角化的条件:

(1)充要条件:An可相似对角化的充要条件是:An有n个线性无关的特征向量;

(2)充要条件的另一种形式:An可相似对角化的充要条件是:An的k重特征值满足n-r(λE-A)=k

(3)充分条件:如果An的n个特征值两两不同,那么An一定可以相似对角化;

(4)充分条件:如果An是实对称矩阵,那么An一定可以相似对角化。

【注】分析方阵是否可以相似对角化,关键是看线性无关的特征向量的个数,而求特征向量之前,必须先求出特征值。

掌握实对称矩阵的特征值和特征向量的性质

(1)不同特征值的特征向量一定正交

(2)k重特征值一定满足满足n-r(λE-A)=k

【注】由性质(2)可知,实对称矩阵一定可以相似对角化;且有(1)可知,实对称矩阵一定可以正交相似对角化。

会求把对称矩阵正交相似化的正交矩阵

【注】熟练掌握施密特正交化的公式;特别注意的是:只需要对同一个特征值求出的基础解系进行正交化,不同特征值对应的特征向量一定正交(当然除非你计算出错了会发现不正交)。

3、实对称矩阵的特殊考点:

实对称矩阵一定可以相似对角化,利用这个性质可以得到很多结论,比如:

(1)实对称矩阵的秩等于非零特征值的个数

这个结论只对实对称矩阵成立,不要错误地使用。

(2)两个实对称矩阵,如果特征值相同,一定相似,同样地,对于一般矩阵,这个结论也是不成立的。

实对称矩阵在二次型中的应用

使用正交变换把二次型化为标准型使用的方法本质上就是实对称矩阵的正交相似对角化。

交给我处理。

矩阵对角化的毕业论文

交给我处理。

一种吧!设所求矩阵为A,求出它的全部特征值,求(A-£E)x=0的基础解系,再两两正交单位化,得正交矩阵P,再求P-1AP=PTAP=^

我觉得应该是相似对角化吧,具体的步骤是:1,求出一个矩阵的全部互异的特征值a1,a2……2,对每个特征值,求特征矩阵a1I-A的秩,判断每个特征值的几何重数q=n-r(a1I-A),是否等于它的代数重数p,只要有一个不相等,A就不可 以相似对角化,否则, 就可以相似对角化3,当可以相似对角化时,对每个特征值,求方程组,(aiI-A)X=0的一个基础解系4,令P=这些基础解系,则P-1AP=diag(a1,a2,a3……),其中有qi个特征值你看行不?这就是我知道的,呵呵

课程论文选题参考1.《高等代数》课程学习感悟2.《高等代数》中的。。。。思想3.《高等代数》中的。。。。方法4.高等代数与解析几何的关联性5.高等代数有关理论的等价命题6.高等代数有关理论的几何描述7.高等代数有关理论的应用实例8.高等代数知识在有关课程学习中的应用9.数学软件在高等代数学习中的应用10.应用高等代数知识的数学建模案例11.高等代数理论在金融中的应用12.反例在高等代数中的应用13.行列式理论的应用性研究14.一些特殊行列式的应用15.行列式计算方法综述16.范德蒙行列式的一些应用17.线性方程组的应用;18.线性方程组的推广——从向量到矩阵19.关于向量组的极大无关组20.向量组线性相关与线性无关的判别方法21.线性方程组求解方法综述 22.求解线性方程组的直接法与迭代法23.向量的应用24.矩阵多项式的性质及应用25.矩阵可逆的若干判别方法26.矩阵秩的不等式的讨论(应用)27.关于矩阵的伴随矩阵28.矩阵运算在经济中的应用29.关于分块矩阵30.分块矩阵的初等变换及应用31.矩阵初等变换及应用32.矩阵变换的几何特征33.二次型正定性及应用34.二次型的化简及应用35.化二次型为标准型的方法36.矩阵对角化的应用37.矩阵标准形的思想及应用38.矩阵在各种变换下的不变量及其应用39.线性变换的应用40.特征值与特征向量的应用41.关于线性变换的若干问题42.关于欧氏空间的若干问题43.矩阵等价、合同、相似的关联性及应用44.线性变换的命题与矩阵命题的相互转换问题45.线性空间与欧氏空间46.初等行变换在向量空间Pn中的应用47.哈密顿-凯莱定理及其应用48.施密特正交化方法的几何意义及其应用49.不变子空间与若当标准型之间的关系50.多项式不可约的判别方法及应用51.二次型的矩阵性质与应用52.分块矩阵及其应用53.欧氏空间中的正交变换及其几何应用54.对称矩阵的性质与应用55.求两个子空间的交与和的维数和一个基的方法56.关于n维欧氏空间子空间的正交补57.求若当标准形的几种方法58.相似矩阵的若干应用59.矩阵相似的若干判定方法60.正交矩阵的若干性质61.实对称矩阵正定性的若干等价条件62.欧氏空间中正交问题的探讨63.矩阵特征根及其在解题中的应用64.矩阵的特征值与特征向量的应用65.行列式在代数与几何中的简单应用66.欧氏空间内积不等式的应用67.求标准正交基的若干方法研究68.高等代数理论在经济学中的应用69.矩阵中的最小二乘法70.常见线性空间与欧式空间的基与标准正交基的求法

矩阵可对角化的条件论文答辩稿

一个特征值只能有一个特征向量,(非重根)又一个重根,那么有可能有两个线性无关的特征向量,也有可能没有两个线性无关的特征向量(只有一个)。不可能多于两个。

如果有两个,则可对角化,如果只有一个,不能对角化;矩阵可对角化的条件:有n个线性无关的特征向量;这里不同的特征值,对应线性无关的特征向量。重点分析重根情况,n重根如果有n个线性无关的特征向量,则也可对角化。

特征值和特征向量数学概念

若σ是线性空间V的线性变换,σ对V中某非零向量x的作用是伸缩:σ(x)=aζ,则称x是σ的属于a的特征向量,a称为σ的特征值。位似变换σk(即对V中所有a,有σk(a)=kα)使V中非零向量均为特征向量,它们同属特征值k;而旋转角θ(0<θ<π)的变换没有特征向量。可以通过矩阵表示求线性变换的特征值、特征向量。

以上内容参考:百度百科-特征值和特征向量

可相似对角化的充分必要条件是:n阶方阵存在n个线性无关的特征向量。

推论:如果这个n阶方阵有n个不同的特征值,那么矩阵必然存在相似矩阵。

如果阶n方阵存在重复的特征值,每个特征值的线性无关的特征向量的个数恰好等于该特征值的重复次数。

可对角化矩阵和映射在线性代数中有重要价值,因为对角矩阵特别容易处理:它们的特征值和特征向量是已知的,并通过简单的提升对角元素到同样的幂来把一个矩阵提升为它的幂。

矩阵对角化的条件:

有个线性无关的特征向量,可对角化矩阵是线性代数和矩阵论中重要的一类矩阵。如果一个方块矩阵A相似于对角矩阵,也就是说,如果存在一个可逆矩阵P使得P1AP是对角矩阵,则它就被称为可对角化的。

如果V是有限维度的向量空间,则线性映射T:V→V被称为可对角化的,如果存在V的一个基,T关于它可被表示为对角矩阵。对角化是找到可对角化矩阵或映射的相应对角矩阵的过程。

任意两个3阶矩阵A,B相似的方法:

1、先求特征多项式,f(λ)=|λE-A|,g(λ)=|λE-B|。

2、若f(λ)≠g(λ)则矩阵A,B不相似。

3、若f(λ)=g(λ),且有3个不同根,则矩阵A,B相似。

4、若f(λ)=g(λ),且有2个不同根,即,f(λ)=g(λ)=(λ-a)^2(λ-b),(aE-A)(bE-A)=(aE-B)(bE-B)=0, 则矩阵A,B相似。

实对称阵的特征值都是实数,所以n阶阵在实数域中就有n个特征值(包括重数),并且实对称阵的每个特征值的重数和属于它的无关的特征向量的个数是一样的,从而n阶矩阵共有n个无关特征向量,所以可对角化。

判断方阵是否可相似对角化的条件:

(1)充要条件:An可相似对角化的充要条件是:An有n个线性无关的特征向量;

(2)充要条件的另一种形式:An可相似对角化的充要条件是:An的k重特征值满足n-r(λE-A)=k;

(3)充分条件:如果An的n个特征值两两不同,那么An一定可以相似对角化;

(4)充分条件:如果An是实对称矩阵,那么An一定可以相似对角化。

扩展资料

结论:

1、实对称矩阵的秩等于非零特征值的个数,这个结论只对实对称矩阵成立,不要错误地使用。

2、两个实对称矩阵,如果特征值相同,一定相似,同样地,对于一般矩阵,这个结论也是不成立的。

3、实对称矩阵在二次型中的应用

使用正交变换把二次型化为标准型使用的方法本质上就是实对称矩阵的正交相似对角化。

参考资料来源:百度百科-实对称矩阵

相关百科
热门百科
首页
发表服务