论文发表百科

高温超导材料研究论文

发布时间:2024-07-02 22:22:36

高温超导材料研究论文

具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。 特性 超导材料和常规导电材料的性能有很大的不同。主要有以下性能。①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 基本临界参量 有以下 3个基本临界参量。①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为。到1987年,临界温度最高值已提高到100K左右。②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic称为临界电流密度,以Jc表示。 超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=)起,直到1986年以前,人们发现的最高的 Tc才达到(Nb3Ge,1973)。1986年瑞士物理学家.米勒和联邦德国物理学家.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。 分类 超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶瓷。①超导元素:在常压下有28种元素具超导电性,其中铌(Nb)的Tc最高,为。电工中实际应用的主要是铌和铅(Pb,Tc=),已用于制造超导交流电力电缆、高Q值谐振腔等。② 合金材料: 超导元素加入某些其他元素作合金成分, 可以使超导材料的全部性能提高。如最先应用的铌锆合金(Nb-75Zr),其Tc为,Hc为特。继后发展了铌钛合金,虽然Tc稍低了些,但Hc高得多,在给定磁场能承载更大电流。其性能是Nb-33Ti,Tc=,Hc=特;Nb-60Ti,Tc=,Hc=12特()。目前铌钛合金是用于7~8特磁场下的主要超导磁体材料。铌钛合金再加入钽的三元合金,性能进一步提高,Nb-60Ti-4Ta的性能是,Tc=,Hc=特();Nb-70Ti-5Ta的性能是,Tc=,Hc=特。③超导化合物:超导元素与其他元素化合常有很好的超导性能。如已大量使用的Nb3Sn,其Tc=,Hc=特。其他重要的超导化合物还有V3Ga,Tc=,Hc=24特;Nb3Al,Tc=,Hc=30特。④超导陶瓷:20世纪80年代初,米勒和贝德诺尔茨开始注意到某些氧化物陶瓷材料可能有超导电性,他们的小组对一些材料进行了试验,于1986年在镧-钡-铜-氧化物中发现了Tc=35K的超导电性。1987年,中国、美国、日本等国科学家在钡-钇-铜氧化物中发现Tc处于液氮温区有超导电性,使超导陶瓷成为极有发展前景的超导材料。 应用 超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。但要实际应用超导材料又受到一系列因素的制约,这首先是它的临界参量,其次还有材料制作的工艺等问题(例如脆性的超导陶瓷如何制成柔细的线材就有一系列工艺问题)。到80年代,超导材料的应用主要有:①利用材料的超导电性可制作磁体,应用于电机、高能粒子加速器、磁悬浮运输、受控热核反应、储能等;可制作电力电缆,用于大容量输电(功率可达10000MVA);可制作通信电缆和天线,其性能优于常规材料。②利用材料的完全抗磁性可制作无摩擦陀螺仪和轴承。③利用约瑟夫森效应可制作一系列精密测量仪表以及辐射探测器、微波发生器、逻辑元件等。利用约瑟夫森结作计算机的逻辑和存储元件,其运算速度比高性能集成电路的快10~20倍,功耗只有四分之一。 1911年,荷兰物理学家昂尼斯(1853~1926)发现,水银的电阻率并不象预料的那样随温度降低逐渐减小,而是当温度降到附近时,水银的电阻突然降到零。某些金属、合金和化合物,在温度降到绝对零度附近某一特定温度时,它们的电阻率突然减小到无法测量的现象叫做超导现象,能够发生超导现象的物质叫做超导体。超导体由正常态转变为超导态的温度称为这种物质的转变温度(或临界温度)TC。现已发现大多数金属元素以及数以千计的合金、化合物都在不同条件下显示出超导性。如钨的转变温度为,锌为,铝为,铅为。超导体得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用。人们一直在探索高温超导体,从1911年到1986年,75年间从水银的4.2K提高到铌三锗的23.22K,才提高了19K。 1986年,高温超导体的研究取得了重大的突破。掀起了以研究金属氧化物陶瓷材料为对象,以寻找高临界温度超导体为目标的“超导热”。全世界有260多个实验小组参加了这场竞赛。 1986年1月,美国国际商用机器公司设在瑞士苏黎世实验室科学家柏诺兹和缪勒首先发现钡镧铜氧化物是高温超导体,将超导温度提高到30K;紧接着,日本东京大学工学部又将超导温度提高到37K;12月30日,美国休斯敦大学宣布,美籍华裔科学家朱经武又将超导温度提高到40.2K。 1987年1月初,日本川崎国立分子研究所将超导温度提高到43K;不久日本综合电子研究所又将超导温度提高到46K和53K。中国科学院物理研究所由赵忠贤、陈立泉领导的研究组,获得了48.6K的锶镧铜氧系超导体,并看到这类物质有在70K发生转变的迹象。2月15日美国报道朱经武、吴茂昆获得了98K超导体。2月20日,中国也宣布发现100K以上超导体。3月3日,日本宣布发现123K超导体。3月12日中国北京大学成功地用液氮进行超导磁悬浮实验。3月27日美国华裔科学家又发现在氧化物超导材料中有转变温度为240K的超导迹象。很快日本鹿儿岛大学工学部发现由镧、锶、铜、氧组成的陶瓷材料在14℃温度下存在超导迹象。高温超导体的巨大突破,以液态氮代替液态氦作超导制冷剂获得超导体,使超导技术走向大规模开发应用。氮是空气的主要成分,液氮制冷机的效率比液氦至少高10倍,所以液氮的价格实际仅相当于液氦的1/100。液氮制冷设备简单,因此,现有的高温超导体虽然还必须用液氮冷却,但却被认为是20世纪科学上最伟大的发现之一。超导科学研究 1.非常规超导体磁通动力学和超导机理 主要研究混合态区域的磁通线运动的机理,不可逆线性质、起因及其与磁场和温度的关系,临界电流密度与磁场和温度的依赖关系及各向异性。超导机理研究侧重于研究正常态在强磁场下的磁阻、霍尔效应、涨落效应、费米面的性质以及T

德国的科学家声称他们达成了一项有关超导的里程碑。根据他们的论文,这些德国人在有记录以来的最高温度下实现了无电阻的电路:温度“高达”250开尔文,或者零下23摄氏度(零下华氏度)。

“超导”最早于1911年被发现,是一种神奇的物理现象。通常,电流在电路中总会遇上点阻力——就和空气会对运动物体产生阻力差不多。

材料的导电性越高,电阻就越小,电流就可以在其中通过得越顺畅。

但有些材料会在低温环境下出现一些奇怪的状况。材料的电阻会在低温下降到零,电流在其中流动毫不受限。这种零电阻的状态与迈斯纳效应结合起来就是超导了。而这个“迈斯纳效应”指的是当材料低于那个关键的温度时对磁场的排斥现象。

所谓的“室温超导”,指的是找到一种能在零度以上出现超导现象的材料,对于科学家们来说,这绝对是毕生追求的目标。如果真能够实现,室温超导绝对会是电器效率的革命。会极大的增加供电网络、高速数据传输和电动机的效率,而这还只是它潜应用场景的冰山一角。

所以,这也是全世界无数实验室在努力研究的课题,不断有人声称搞出了更高温度的超导材料,但是却无法在其他人的实验中重现。

而高温超导的前一个记录,是由Eremets和他的团队使用硫化氢(对,就是那种有臭鸡蛋味儿的化合物)在15万兆帕的压力下实现的(作为参考,地球核心内部的压力大概在33万到36万兆帕之间)。

那些了解硫化氢的科学家们认为,这个结果是可信的。因为硫化氢是一种非常轻的材料,这意味着它的分子可以震动的比较快——意思就是温度比较高,而高压则是保证这些分子不会在这种震动中分散开来。

而今天说的这个新研究使用了一种不同的材料,叫做氢化镧(lanthanum hydride),而为了达成超导,德国人给它了17万兆帕的压力。今年早些时候,这个团队报告称他们使用这种材料在215开尔文(零下摄氏度/零下72华氏度)的温度下实现了超导,而就在几个月后的现在,他们又前进了一大步。

这个新的超导温度几乎是北极冬季平均温度的一半。

“这次的飞跃相比之前203开尔文的纪录提升了50开尔文。”研究者在他们的论文中写到,“这表明了在不久的将来,在高压条件下实现室温超导的可能性(大约273开尔文),也显示了在常压下实现超导的前景。”

目前,这个结果还没有被科学界验证,而论文也正在同行评议过程中。

据麻省理工学院技术评论(MIT Technology Review)报道,检验超导现象有三个标准,而这个科学团队只达成了其中两个:材料电阻在温度低于阈值时降至零,以及使用较重的同位素替换材料中的元素后,能够在超导温度观察到相应的电阻下降。

第三条标准就是上面说过的迈斯纳效应,这是超导的特征之一。随着材料越过临界温度并显示出超导性,它会对磁场表现出排斥现象。

上述团队还没有观察到这个现象,因为他们使用的样品太小了——远远小于他们磁力计的量程。然而,材料转变为超导状态时,对外部的磁场也会影响。这不算是个直接检测,但是研究人员已经能够观察到这种影响了。

这还不算是通过了迈斯纳效应检验,但看起来大有希望。我觉得很快会看到有能力的物理学家争先恐后地验证并重复这个团队的试验结果。

本文译自 ScienceAlert ,由译者 Freez Sun 基于创作共用协议(BY-NC)发布。

过渡金属原子的kagome晶格,为在几何受挫和非平凡能带拓扑存在的情况下,研究电子关联提供了一个激动人心的平台,并不断带来惊喜,在高鸿钧院士/汪自强教授《Nature》超导领域新发现后,来自美国波斯顿学院的Ilija Zeljkovic等研究者 同一天 报道了使用光谱成像扫描隧道显微镜发现一个新的kagome超导体CsV3Sb5中不同的对称破缺电子态作为温度的函数级联。相关论文以题为“Cascade of correlated electron states in a kagome superconductor CsV3Sb5”发表在Nature上。

论文链接:

由原子组成的量子固体排列在共享角三角形的晶格上(kagome晶格)是一个 探索 新的相关和拓扑电子现象的迷人游乐场。由于其固有的几何受挫,kagome系统预测具有一系列奇异的电子态,如键和电荷有序,自旋液相和手性超导等。到目前为止,大多数实验工作都集中在过渡金属kagome磁体上,例如Co3Sn2S2、FeSn和Fe3Sn2,其中不同形式的磁性主导了低温电子基态。在没有磁有序的情况下,电子关联在原则上有利于出现新的对称破缺电子态,但由于磁有序的趋势,这在许多现有的kagome材料中很难 探索 。

AV3Sb5 (A=K, Rb, Cs),是最近发现的一类不呈现可分辨磁序的kagome金属。这类材料已经在非平凡的拓扑环境中显示出了不寻常的电子行为,比如巨大的异常霍尔响应,源自于巨大的贝里曲率,以及kagome系统中罕见的超导现象。理论表明,AV3Sb5的能带结构具有非平凡的拓扑不变量,并结合显现的超导性,在铁基高 T c超导体家族中与拓扑金属形成有趣的平行关系。由于费米能级附近的van Hove奇点和费米表面的准一维区域造成的态密度大,也为在kagome晶格上寻找难以捉摸的相关态提供了理想的场所。虽然理论预测了kagome晶格电子结构的空间对称破缺的许多可能性,但它们的实验实现一直具有挑战性。

在这里,研究者利用光谱成像扫描隧道显微镜(SI-STM),在kagome超导体CsV3Sb5中发现了对称破缺相的级联与温度的函数关系,可检测为不同的电荷有序态和各向异性准粒子散射特征。这些相在正常状态下发展,并在超导 T c以下持续存在。实验证明,CsV3Sb5中的超导性,来自于本应破缺的旋转和平移对称的电子态,并与之共存。在远高于超导跃迁温度( T c~ K)的温度下,研究者揭示了一个具有2a0周期的三元电荷序,打破了晶格的平移对称性。当系统冷却到 T c时,研究者在费米能级上观察到一个显著的V型光谱缺口,并在超导跃变过程中持续破坏了六重旋转对称性。在微分电导图中,出现了额外的4a0单向电荷阶和强各向异性散射。后者可直接归因于钒kagome能带的轨道选择重正化。该实验揭示了可在kagome晶格上共存的复杂电子态,并提供了与高温超导体和扭曲双层石墨烯有趣的相似之处。

图1 表面表征。

图2 大尺度电子特性。

图3 低温下电荷有序。

图4 CsV3Sb5准粒子干涉(QPI)中旋转对称破缺的可视化研究。

未来的实验,应该通过更详细的温度、能量和掺杂相关的测量来解决不同相之间的竞争,同时也要寻找本征拓扑超导性和非平凡能带拓扑预计会出现的Majorana模式的证据。(文:水生)

新材料技术渗透现代生活与信息技术、生物技术一样,材料科学技术上的每一次革新都会引起生产技术的革命,加速社会发展,带来社会生产和生活方式上的变化。新材料比传统材料性能更为优异。目前,世界上的新材料品种正以每年大约5%的速度在增长。漫步市民中心区的新材料专业展馆,纳米材料、超导材料、特殊功能材料,新材料琳琅满目,让人应接不暇。超导材料应用商机无限北京有色金属研究总院展区内,除了一辆簇新的镍氢动力电池试验车抢人眼之外,展台上正在进行的高温超导磁悬浮教学演示也吸引了众多饶有兴趣的参展者。一内含超导材料的圆柱状金属块上,是一重达30公斤的永久磁铁。工作人员把零下196摄氏度的液态氮倒入中空的磁铁后,磁铁立马悬浮起来。只须轻轻一推,磁铁就开始了不停地旋转。据了解,其最大悬浮力可达200公斤以上。另一边的磁悬浮运输模型展示,同样吸引了好奇的观众。内含超导材料的小车模型在注入液态氮后,给一点动力,就可在磁性轨道上悬浮运行。据介绍,高温超导材料在液态氮温度(零下196摄氏度)下即可呈现出超导性,即零电阻和抗磁性。由于悬浮状态下运动的物体没有接触磨擦,因而可以实现近乎无阻力的高速运动,可用于制作无磨擦轴承、飞轮储能装置以及磁悬浮车等。据参展的中科院物理所教授曹必松教授介绍,高温超导材料是二十世纪基础研究的一个极为重要的成果,目前,高温超导材料在微波应用上,已在通信、卫星、雷达与电子战系统等领域取得了重大突破。其中,在移动通信领域已初具全球性产业化态势。用超导薄膜制备的高温超导滤波器可以提高接收机的抗干扰能力、增加基站容量、扩大覆盖面积、改善通话质量,还可降低手机所需要的发射功率。目前,欧、美、日等国家和地区已开始了商业化运作。他说,高温超导微波子系统还可为卫星及军用武器装备带来革命性变化。使导弹制导精确、雷达探测能力增强,还可大幅度改善卫星有效载荷的性能。纳米技术全渗透新材料展馆中,纳米一词如今已不是一个神秘的概念。纳米技术在陶瓷、洁具、建材领域、防水材料、特殊材料,以及生物医药等领域上的广泛渗透,让参展者切切实实地感觉到纳米技术的亲和力。武汉理工大学科研处张大有教授告诉记者,学校此次带来的包括光电子材料技术与光纤传感器在内的五大类精品项目中,最受欢迎就是生物无机纳米粒子抑癌项目了。他说,见到相关报道后,很多人就是单冲着这个抑癌项目买票入场的。据介绍,研究表明,某些无机纳米粒子具有杀伤癌细胞的特异性。当这些无机纳米粒子小到纳米级时,即可进入癌细胞中,改变癌基因表达,阻止癌细胞的增殖,抑制癌细胞生长,对正常细胞影响轻微。细胞培养和动物实验发现,羟基磷灰石纳米粒子就具有杀伤癌细胞的特异性。纳米技术的进入,使广谱型新型抗癌药物出现成为可能,为癌症的治疗开辟出新的天地。据了解,目前该项目处于动物实验阶段,尚未进行临床实验。可即便如此,仍有很多参展者留下电话,有的甚至于愿意把自己患病的亲人用来做临床实验。

高温超导材料的研究进展论文

高温超导材料,是具有高临界转变温度(Tc)能在液氮温度条件下工作的超导材料。因主要是氧化物材料,故又称高温氧化物超导材料

品 名:超导陶瓷拼音:chao1dao3tao2ci2英文名称:superconductivity ceramics说明:具有超导性的陶瓷材料。其主要特性是在一定临界温度下电阻为零即所谓零阻现象。在磁场中其磁感应强度为零,即抗磁现象或称迈斯纳效应(Meissner effect)。高临界温度(90开以上)的超导陶瓷材料组成有YBa2Cu3O7-δ,Bi2Sr2Ca2Cu3O10,Tl2Ba2Ca2Cu3O10。超导陶瓷在诸如磁悬浮列车、无电阻损耗的输电线路、超导电机、超导探测器、超导天线、悬浮轴承、超导陀螺以及超导计算机等强电和弱电方面有广泛应用前景。奇异的超导陶瓷1973年,人们发现了超导合金――铌锗合金,其临界超导温度为,该记录保持了13年。1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧-钡-铜-氧)具有35K的高温超导性,打破了传统“氧化物陶瓷是绝缘体”的观念,引起世界科学界的轰动。此后,科学家们争分夺秒地攻关,几乎每隔几天,就有新的研究成果出现。1986年底,美国贝尔实验室研究的氧化物超导材料,其临界超导温度达到40K,液氢的“温度壁垒”(40K)被跨越。1987年2月,美国华裔科学家朱经武和中国科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的禁区(77K)也奇迹般地被突破了。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。从1986-1987年的短短一年多的时间里,临界超导温度竟然提高了100K以上,这在材料发展史,乃至科技发展史上都堪称是一大奇迹!高温超导材料的不断问世,为超导材料从实验室走向应用铺平了道路。

过渡金属原子的kagome晶格,为在几何受挫和非平凡能带拓扑存在的情况下,研究电子关联提供了一个激动人心的平台,并不断带来惊喜,在高鸿钧院士/汪自强教授《Nature》超导领域新发现后,来自美国波斯顿学院的Ilija Zeljkovic等研究者 同一天 报道了使用光谱成像扫描隧道显微镜发现一个新的kagome超导体CsV3Sb5中不同的对称破缺电子态作为温度的函数级联。相关论文以题为“Cascade of correlated electron states in a kagome superconductor CsV3Sb5”发表在Nature上。

论文链接:

由原子组成的量子固体排列在共享角三角形的晶格上(kagome晶格)是一个 探索 新的相关和拓扑电子现象的迷人游乐场。由于其固有的几何受挫,kagome系统预测具有一系列奇异的电子态,如键和电荷有序,自旋液相和手性超导等。到目前为止,大多数实验工作都集中在过渡金属kagome磁体上,例如Co3Sn2S2、FeSn和Fe3Sn2,其中不同形式的磁性主导了低温电子基态。在没有磁有序的情况下,电子关联在原则上有利于出现新的对称破缺电子态,但由于磁有序的趋势,这在许多现有的kagome材料中很难 探索 。

AV3Sb5 (A=K, Rb, Cs),是最近发现的一类不呈现可分辨磁序的kagome金属。这类材料已经在非平凡的拓扑环境中显示出了不寻常的电子行为,比如巨大的异常霍尔响应,源自于巨大的贝里曲率,以及kagome系统中罕见的超导现象。理论表明,AV3Sb5的能带结构具有非平凡的拓扑不变量,并结合显现的超导性,在铁基高 T c超导体家族中与拓扑金属形成有趣的平行关系。由于费米能级附近的van Hove奇点和费米表面的准一维区域造成的态密度大,也为在kagome晶格上寻找难以捉摸的相关态提供了理想的场所。虽然理论预测了kagome晶格电子结构的空间对称破缺的许多可能性,但它们的实验实现一直具有挑战性。

在这里,研究者利用光谱成像扫描隧道显微镜(SI-STM),在kagome超导体CsV3Sb5中发现了对称破缺相的级联与温度的函数关系,可检测为不同的电荷有序态和各向异性准粒子散射特征。这些相在正常状态下发展,并在超导 T c以下持续存在。实验证明,CsV3Sb5中的超导性,来自于本应破缺的旋转和平移对称的电子态,并与之共存。在远高于超导跃迁温度( T c~ K)的温度下,研究者揭示了一个具有2a0周期的三元电荷序,打破了晶格的平移对称性。当系统冷却到 T c时,研究者在费米能级上观察到一个显著的V型光谱缺口,并在超导跃变过程中持续破坏了六重旋转对称性。在微分电导图中,出现了额外的4a0单向电荷阶和强各向异性散射。后者可直接归因于钒kagome能带的轨道选择重正化。该实验揭示了可在kagome晶格上共存的复杂电子态,并提供了与高温超导体和扭曲双层石墨烯有趣的相似之处。

图1 表面表征。

图2 大尺度电子特性。

图3 低温下电荷有序。

图4 CsV3Sb5准粒子干涉(QPI)中旋转对称破缺的可视化研究。

未来的实验,应该通过更详细的温度、能量和掺杂相关的测量来解决不同相之间的竞争,同时也要寻找本征拓扑超导性和非平凡能带拓扑预计会出现的Majorana模式的证据。(文:水生)

具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。 特性 超导材料和常规导电材料的性能有很大的不同。主要有以下性能。①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 基本临界参量 有以下 3个基本临界参量。①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为。到1987年,临界温度最高值已提高到100K左右。②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic称为临界电流密度,以Jc表示。 超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=)起,直到1986年以前,人们发现的最高的 Tc才达到(Nb3Ge,1973)。1986年瑞士物理学家.米勒和联邦德国物理学家.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。 分类 超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶瓷。①超导元素:在常压下有28种元素具超导电性,其中铌(Nb)的Tc最高,为。电工中实际应用的主要是铌和铅(Pb,Tc=),已用于制造超导交流电力电缆、高Q值谐振腔等。② 合金材料: 超导元素加入某些其他元素作合金成分, 可以使超导材料的全部性能提高。如最先应用的铌锆合金(Nb-75Zr),其Tc为,Hc为特。继后发展了铌钛合金,虽然Tc稍低了些,但Hc高得多,在给定磁场能承载更大电流。其性能是Nb-33Ti,Tc=,Hc=特;Nb-60Ti,Tc=,Hc=12特()。目前铌钛合金是用于7~8特磁场下的主要超导磁体材料。铌钛合金再加入钽的三元合金,性能进一步提高,Nb-60Ti-4Ta的性能是,Tc=,Hc=特();Nb-70Ti-5Ta的性能是,Tc=,Hc=特。③超导化合物:超导元素与其他元素化合常有很好的超导性能。如已大量使用的Nb3Sn,其Tc=,Hc=特。其他重要的超导化合物还有V3Ga,Tc=,Hc=24特;Nb3Al,Tc=,Hc=30特。④超导陶瓷:20世纪80年代初,米勒和贝德诺尔茨开始注意到某些氧化物陶瓷材料可能有超导电性,他们的小组对一些材料进行了试验,于1986年在镧-钡-铜-氧化物中发现了Tc=35K的超导电性。1987年,中国、美国、日本等国科学家在钡-钇-铜氧化物中发现Tc处于液氮温区有超导电性,使超导陶瓷成为极有发展前景的超导材料。 应用 超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。但要实际应用超导材料又受到一系列因素的制约,这首先是它的临界参量,其次还有材料制作的工艺等问题(例如脆性的超导陶瓷如何制成柔细的线材就有一系列工艺问题)。到80年代,超导材料的应用主要有:①利用材料的超导电性可制作磁体,应用于电机、高能粒子加速器、磁悬浮运输、受控热核反应、储能等;可制作电力电缆,用于大容量输电(功率可达10000MVA);可制作通信电缆和天线,其性能优于常规材料。②利用材料的完全抗磁性可制作无摩擦陀螺仪和轴承。③利用约瑟夫森效应可制作一系列精密测量仪表以及辐射探测器、微波发生器、逻辑元件等。利用约瑟夫森结作计算机的逻辑和存储元件,其运算速度比高性能集成电路的快10~20倍,功耗只有四分之一。 1911年,荷兰物理学家昂尼斯(1853~1926)发现,水银的电阻率并不象预料的那样随温度降低逐渐减小,而是当温度降到附近时,水银的电阻突然降到零。某些金属、合金和化合物,在温度降到绝对零度附近某一特定温度时,它们的电阻率突然减小到无法测量的现象叫做超导现象,能够发生超导现象的物质叫做超导体。超导体由正常态转变为超导态的温度称为这种物质的转变温度(或临界温度)TC。现已发现大多数金属元素以及数以千计的合金、化合物都在不同条件下显示出超导性。如钨的转变温度为,锌为,铝为,铅为。超导体得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用。人们一直在探索高温超导体,从1911年到1986年,75年间从水银的4.2K提高到铌三锗的23.22K,才提高了19K。 1986年,高温超导体的研究取得了重大的突破。掀起了以研究金属氧化物陶瓷材料为对象,以寻找高临界温度超导体为目标的“超导热”。全世界有260多个实验小组参加了这场竞赛。 1986年1月,美国国际商用机器公司设在瑞士苏黎世实验室科学家柏诺兹和缪勒首先发现钡镧铜氧化物是高温超导体,将超导温度提高到30K;紧接着,日本东京大学工学部又将超导温度提高到37K;12月30日,美国休斯敦大学宣布,美籍华裔科学家朱经武又将超导温度提高到40.2K。 1987年1月初,日本川崎国立分子研究所将超导温度提高到43K;不久日本综合电子研究所又将超导温度提高到46K和53K。中国科学院物理研究所由赵忠贤、陈立泉领导的研究组,获得了48.6K的锶镧铜氧系超导体,并看到这类物质有在70K发生转变的迹象。2月15日美国报道朱经武、吴茂昆获得了98K超导体。2月20日,中国也宣布发现100K以上超导体。3月3日,日本宣布发现123K超导体。3月12日中国北京大学成功地用液氮进行超导磁悬浮实验。3月27日美国华裔科学家又发现在氧化物超导材料中有转变温度为240K的超导迹象。很快日本鹿儿岛大学工学部发现由镧、锶、铜、氧组成的陶瓷材料在14℃温度下存在超导迹象。高温超导体的巨大突破,以液态氮代替液态氦作超导制冷剂获得超导体,使超导技术走向大规模开发应用。氮是空气的主要成分,液氮制冷机的效率比液氦至少高10倍,所以液氮的价格实际仅相当于液氦的1/100。液氮制冷设备简单,因此,现有的高温超导体虽然还必须用液氮冷却,但却被认为是20世纪科学上最伟大的发现之一。超导科学研究 1.非常规超导体磁通动力学和超导机理 主要研究混合态区域的磁通线运动的机理,不可逆线性质、起因及其与磁场和温度的关系,临界电流密度与磁场和温度的依赖关系及各向异性。超导机理研究侧重于研究正常态在强磁场下的磁阻、霍尔效应、涨落效应、费米面的性质以及T

高温超导的研究进展论文

物理学的发展,促进了科学技术的进步。现代物理学更成为高新技术的基础。1、在牛顿力学和万有引力定律的基础上发展起来的空间物理,能把宇宙飞船送上太空,使人类实现了飞天的梦想。也使中国人“九天揽月”成为可能。(2007年我们国家要登月,那时就是神州7号)。杨得伟是神州6号。(学完万有引力定律可窥一斑)2、带电粒子在电场磁场中的偏转的规律在科学技术中的应用。电视机显像管等。(学完带电粒子在电场磁场中的偏转会了解了。)刀。如核磁共振,超声波,X光机等。3、核物理的研究使放射线的应用成为可能。医疗上的放疗。在医疗上还有很多,如用于治疗脑瘤的4、20世纪初相对论和量子力学的建立,诞生了近代物理,开创了微电子技术的时代。半导体芯片。电子计算机。没有量子力学也就没有现代科技 。5、20世纪60年代,激光器诞生。激光物理的进展使激光在制造业、医疗技术和国防工业中的得到了广泛的应用。大家熟悉的微机光盘就是用激光读的。光导纤维等。6、20世纪80年代高温超导体的研究取得了重大突破,为超导体的实际应用开辟了道路。磁悬浮列车等。80年代,我国高温超导的研究走在世界的前列。7、20世纪90年代发展起来的纳米技术,使人们可以按照自己的需要设计并重新排列原子或者原子团,使其具有人们希望的特性。纳米材料的应用现是一个新兴的又应用很广泛的前沿技术。秦始皇兵马俑的色彩防脱。8、生命科学的发展也离不开物理学。脱氧核糖核酸(DNA)是存在于细胞核中的一种重要物质,它是储存和传递生命信息的物质基础。1953年生物学家沃森和物理学家克里克利用X射线衍射的方法在卡文迪许(著名实验物理学家)的实验室成功地测定了DNA的双螺旋结构。可以说物理学的发展,促进了各个领域科学技术的进步。使人类的生产和生活发生了翻天覆地的变化。物理学的发展引发了一次又一次的产业革命,推动着社会和人类文明的发展。可以说社会的每一次大的进步都与物理学的发展紧密相连。18世纪中叶,在热学发展的基础上发明并改进了蒸汽机。蒸汽机的广泛使用,促成了手工业向机械化的大生产的转变,并使陆上和海上的大规模的长途运输成为可能。大大推动了社会的发展。古人云:一日千里。火车、飞机的使用使每一个地球人实现了“一日千里”甚至日行万里的梦想。蒸汽机的使用是第一次产业革命。1840年,法拉弟发现了电磁感应现象,并逐渐形成了完整的电磁场理论。在此基础上发展起来的电力工业,使人类进入电气化的时代,给人类的生产和生活带来翻天覆地的变化。大家想想现在使用的电灯、电话、电视、微机等一切的电力设施就能体会了。这是第二次产业革命。20世纪70年代,微观物理方面取得重大突破,开创了微电子工业,使世界开始进入了以电子计算机应用为特征的信息时代。这是第三次产业革命。可以说社会的每一次巨大的进步都是在物理学发展的基础上完成的。没有物理学的发展就没有人类社会和文明的巨大进步

过渡金属原子的kagome晶格,为在几何受挫和非平凡能带拓扑存在的情况下,研究电子关联提供了一个激动人心的平台,并不断带来惊喜,在高鸿钧院士/汪自强教授《Nature》超导领域新发现后,来自美国波斯顿学院的Ilija Zeljkovic等研究者 同一天 报道了使用光谱成像扫描隧道显微镜发现一个新的kagome超导体CsV3Sb5中不同的对称破缺电子态作为温度的函数级联。相关论文以题为“Cascade of correlated electron states in a kagome superconductor CsV3Sb5”发表在Nature上。

论文链接:

由原子组成的量子固体排列在共享角三角形的晶格上(kagome晶格)是一个 探索 新的相关和拓扑电子现象的迷人游乐场。由于其固有的几何受挫,kagome系统预测具有一系列奇异的电子态,如键和电荷有序,自旋液相和手性超导等。到目前为止,大多数实验工作都集中在过渡金属kagome磁体上,例如Co3Sn2S2、FeSn和Fe3Sn2,其中不同形式的磁性主导了低温电子基态。在没有磁有序的情况下,电子关联在原则上有利于出现新的对称破缺电子态,但由于磁有序的趋势,这在许多现有的kagome材料中很难 探索 。

AV3Sb5 (A=K, Rb, Cs),是最近发现的一类不呈现可分辨磁序的kagome金属。这类材料已经在非平凡的拓扑环境中显示出了不寻常的电子行为,比如巨大的异常霍尔响应,源自于巨大的贝里曲率,以及kagome系统中罕见的超导现象。理论表明,AV3Sb5的能带结构具有非平凡的拓扑不变量,并结合显现的超导性,在铁基高 T c超导体家族中与拓扑金属形成有趣的平行关系。由于费米能级附近的van Hove奇点和费米表面的准一维区域造成的态密度大,也为在kagome晶格上寻找难以捉摸的相关态提供了理想的场所。虽然理论预测了kagome晶格电子结构的空间对称破缺的许多可能性,但它们的实验实现一直具有挑战性。

在这里,研究者利用光谱成像扫描隧道显微镜(SI-STM),在kagome超导体CsV3Sb5中发现了对称破缺相的级联与温度的函数关系,可检测为不同的电荷有序态和各向异性准粒子散射特征。这些相在正常状态下发展,并在超导 T c以下持续存在。实验证明,CsV3Sb5中的超导性,来自于本应破缺的旋转和平移对称的电子态,并与之共存。在远高于超导跃迁温度( T c~ K)的温度下,研究者揭示了一个具有2a0周期的三元电荷序,打破了晶格的平移对称性。当系统冷却到 T c时,研究者在费米能级上观察到一个显著的V型光谱缺口,并在超导跃变过程中持续破坏了六重旋转对称性。在微分电导图中,出现了额外的4a0单向电荷阶和强各向异性散射。后者可直接归因于钒kagome能带的轨道选择重正化。该实验揭示了可在kagome晶格上共存的复杂电子态,并提供了与高温超导体和扭曲双层石墨烯有趣的相似之处。

图1 表面表征。

图2 大尺度电子特性。

图3 低温下电荷有序。

图4 CsV3Sb5准粒子干涉(QPI)中旋转对称破缺的可视化研究。

未来的实验,应该通过更详细的温度、能量和掺杂相关的测量来解决不同相之间的竞争,同时也要寻找本征拓扑超导性和非平凡能带拓扑预计会出现的Majorana模式的证据。(文:水生)

超导是物理学中最迷人的宏观量子现象之一,而高温超导体则是超导物质中的一种族类,在现实中已经取得了实际应用,开始为人类造福。这种高温超导体具有一般的结构特征以及相对上适度间隔的铜氧化物平面,它们平时也被称作铜氧化物超导体,以类似层状结晶结构呈现,也就是立体的三维构造。铜氧化物高温超导体具有形式多样的三维层状晶体结构,是迄今为止发现的所有铜基超导体的晶体结构均含有相同的铜氧结构单元。二维高温超导体研究最近取得了一些新进展,这些揭示高温超导机理方面取得的新进展,是由中国科学技术大学教授陈仙辉最近与复旦大学物理学系张远波课题组合作而成。物理学家的研究方法是尝试用最简洁的模型来揭示世界本源规律。所以理论物理学家在研究高温超导机理时,主要基于铜氧面结构单元建立二维理论模型。因此,在实验上验证出含有铜氧结构单元单层的二维超导体是否与相应的大块晶体具有等同的超导电性和正常态物理意义重大。研究团队经过多年的探索和尝试,成功获得单层的铋2212超导体,实验中发现,该单层铜基超导体和相应的块体铜基超导体具有完全相同的超导转变温度和反常的正常态行为。这些结果为高温超导体二维理论模型提供了坚实的实验基础,也为高温超导体的实验研究开辟出了崭新思路。所以说,高温超导体并不是大多数人眼中认为的高达几百几千的高温,我们所提到的温度只是相对原来超导所需的超低温高许多。而在人类所研究的超导中温度中算提高非常多,所以称之为高温超导体。

超导材料的研究与进展论文

具有在一定的低温条件下呈现出电阻等于零以及排斥磁力线的性质的材料。现已发现有28种元素和几千种合金和化合物可以成为超导体。 特性 超导材料和常规导电材料的性能有很大的不同。主要有以下性能。①零电阻性:超导材料处于超导态时电阻为零,能够无损耗地传输电能。如果用磁场在超导环中引发感生电流,这一电流可以毫不衰减地维持下去。这种“持续电流”已多次在实验中观察到。②完全抗磁性:超导材料处于超导态时,只要外加磁场不超过一定值,磁力线不能透入,超导材料内的磁场恒为零。③约瑟夫森效应:两超导材料之间有一薄绝缘层(厚度约1nm)而形成低电阻连接时,会有电子对穿过绝缘层形成电流,而绝缘层两侧没有电压,即绝缘层也成了超导体。当电流超过一定值后,绝缘层两侧出现电压U(也可加一电压U),同时,直流电流变成高频交流电,并向外辐射电磁波,其频率为,其中h为普朗克常数,e为电子电荷。这些特性构成了超导材料在科学技术领域越来越引人注目的各类应用的依据。 基本临界参量 有以下 3个基本临界参量。①临界温度:外磁场为零时超导材料由正常态转变为超导态(或相反)的温度,以Tc表示。Tc值因材料不同而异。已测得超导材料的最低Tc是钨,为。到1987年,临界温度最高值已提高到100K左右。②临界磁场:使超导材料的超导态破坏而转变到正常态所需的磁场强度,以Hc表示。Hc与温度T 的关系为Hc=H0[1-(T/Tc)2],式中H0为0K时的临界磁场。③临界电流和临界电流密度:通过超导材料的电流达到一定数值时也会使超导态破态而转变为正常态,以Ic表示。Ic一般随温度和外磁场的增加而减少。单位截面积所承载的Ic称为临界电流密度,以Jc表示。 超导材料的这些参量限定了应用材料的条件,因而寻找高参量的新型超导材料成了人们研究的重要课题。以Tc为例,从1911年荷兰物理学家H.开默林-昂内斯发现超导电性(Hg,Tc=)起,直到1986年以前,人们发现的最高的 Tc才达到(Nb3Ge,1973)。1986年瑞士物理学家.米勒和联邦德国物理学家.贝德诺尔茨发现了氧化物陶瓷材料的超导电性,从而将Tc提高到35K。之后仅一年时间,新材料的Tc已提高到100K左右。这种突破为超导材料的应用开辟了广阔的前景,米勒和贝德诺尔茨也因此荣获1987年诺贝尔物理学奖金。 分类 超导材料按其化学成分可分为元素材料、合金材料、化合物材料和超导陶瓷。①超导元素:在常压下有28种元素具超导电性,其中铌(Nb)的Tc最高,为。电工中实际应用的主要是铌和铅(Pb,Tc=),已用于制造超导交流电力电缆、高Q值谐振腔等。② 合金材料: 超导元素加入某些其他元素作合金成分, 可以使超导材料的全部性能提高。如最先应用的铌锆合金(Nb-75Zr),其Tc为,Hc为特。继后发展了铌钛合金,虽然Tc稍低了些,但Hc高得多,在给定磁场能承载更大电流。其性能是Nb-33Ti,Tc=,Hc=特;Nb-60Ti,Tc=,Hc=12特()。目前铌钛合金是用于7~8特磁场下的主要超导磁体材料。铌钛合金再加入钽的三元合金,性能进一步提高,Nb-60Ti-4Ta的性能是,Tc=,Hc=特();Nb-70Ti-5Ta的性能是,Tc=,Hc=特。③超导化合物:超导元素与其他元素化合常有很好的超导性能。如已大量使用的Nb3Sn,其Tc=,Hc=特。其他重要的超导化合物还有V3Ga,Tc=,Hc=24特;Nb3Al,Tc=,Hc=30特。④超导陶瓷:20世纪80年代初,米勒和贝德诺尔茨开始注意到某些氧化物陶瓷材料可能有超导电性,他们的小组对一些材料进行了试验,于1986年在镧-钡-铜-氧化物中发现了Tc=35K的超导电性。1987年,中国、美国、日本等国科学家在钡-钇-铜氧化物中发现Tc处于液氮温区有超导电性,使超导陶瓷成为极有发展前景的超导材料。 应用 超导材料具有的优异特性使它从被发现之日起,就向人类展示了诱人的应用前景。但要实际应用超导材料又受到一系列因素的制约,这首先是它的临界参量,其次还有材料制作的工艺等问题(例如脆性的超导陶瓷如何制成柔细的线材就有一系列工艺问题)。到80年代,超导材料的应用主要有:①利用材料的超导电性可制作磁体,应用于电机、高能粒子加速器、磁悬浮运输、受控热核反应、储能等;可制作电力电缆,用于大容量输电(功率可达10000MVA);可制作通信电缆和天线,其性能优于常规材料。②利用材料的完全抗磁性可制作无摩擦陀螺仪和轴承。③利用约瑟夫森效应可制作一系列精密测量仪表以及辐射探测器、微波发生器、逻辑元件等。利用约瑟夫森结作计算机的逻辑和存储元件,其运算速度比高性能集成电路的快10~20倍,功耗只有四分之一。 1911年,荷兰物理学家昂尼斯(1853~1926)发现,水银的电阻率并不象预料的那样随温度降低逐渐减小,而是当温度降到附近时,水银的电阻突然降到零。某些金属、合金和化合物,在温度降到绝对零度附近某一特定温度时,它们的电阻率突然减小到无法测量的现象叫做超导现象,能够发生超导现象的物质叫做超导体。超导体由正常态转变为超导态的温度称为这种物质的转变温度(或临界温度)TC。现已发现大多数金属元素以及数以千计的合金、化合物都在不同条件下显示出超导性。如钨的转变温度为,锌为,铝为,铅为。超导体得天独厚的特性,使它可能在各种领域得到广泛的应用。但由于早期的超导体存在于液氦极低温度条件下,极大地限制了超导材料的应用。人们一直在探索高温超导体,从1911年到1986年,75年间从水银的4.2K提高到铌三锗的23.22K,才提高了19K。 1986年,高温超导体的研究取得了重大的突破。掀起了以研究金属氧化物陶瓷材料为对象,以寻找高临界温度超导体为目标的“超导热”。全世界有260多个实验小组参加了这场竞赛。 1986年1月,美国国际商用机器公司设在瑞士苏黎世实验室科学家柏诺兹和缪勒首先发现钡镧铜氧化物是高温超导体,将超导温度提高到30K;紧接着,日本东京大学工学部又将超导温度提高到37K;12月30日,美国休斯敦大学宣布,美籍华裔科学家朱经武又将超导温度提高到40.2K。 1987年1月初,日本川崎国立分子研究所将超导温度提高到43K;不久日本综合电子研究所又将超导温度提高到46K和53K。中国科学院物理研究所由赵忠贤、陈立泉领导的研究组,获得了48.6K的锶镧铜氧系超导体,并看到这类物质有在70K发生转变的迹象。2月15日美国报道朱经武、吴茂昆获得了98K超导体。2月20日,中国也宣布发现100K以上超导体。3月3日,日本宣布发现123K超导体。3月12日中国北京大学成功地用液氮进行超导磁悬浮实验。3月27日美国华裔科学家又发现在氧化物超导材料中有转变温度为240K的超导迹象。很快日本鹿儿岛大学工学部发现由镧、锶、铜、氧组成的陶瓷材料在14℃温度下存在超导迹象。高温超导体的巨大突破,以液态氮代替液态氦作超导制冷剂获得超导体,使超导技术走向大规模开发应用。氮是空气的主要成分,液氮制冷机的效率比液氦至少高10倍,所以液氮的价格实际仅相当于液氦的1/100。液氮制冷设备简单,因此,现有的高温超导体虽然还必须用液氮冷却,但却被认为是20世纪科学上最伟大的发现之一。超导科学研究 1.非常规超导体磁通动力学和超导机理 主要研究混合态区域的磁通线运动的机理,不可逆线性质、起因及其与磁场和温度的关系,临界电流密度与磁场和温度的依赖关系及各向异性。超导机理研究侧重于研究正常态在强磁场下的磁阻、霍尔效应、涨落效应、费米面的性质以及T

超导体又称为超导材料,指在某一温度下,电阻为零的导体。超导体不仅具有零电阻的特性,另一个重要特征是完全抗磁性。超导现象是指材料在低于某一温度时,电阻变为零的现象。 应用:如超导线材、超导带材、超导薄膜、复合超导体等。 发展前景:今后将进一步根据应用需求不断优化工艺和提高材料的性能水平,特别是围绕中国聚变工程实验堆(CFETR)、超级质子对撞机(SPPC)和国内MRI市场发展需求,形成与国内需求相匹配的生产能力。专家们认为,还可用超导材料制成超导电磁炮、超导火箭发射架、超导磁力仪、超导陀螺仪、超导雷达天线、超导接收机和超导卫星等等。可见超导材料的发展前景是极其诱人的

关于超导体的研究,班门弄斧一下,研究人员可以往这个思路去研究一下,就是在莫种半导体的表面镀莫种金属或者合金,然后利用接触面,横向导电。

过渡金属原子的kagome晶格,为在几何受挫和非平凡能带拓扑存在的情况下,研究电子关联提供了一个激动人心的平台,并不断带来惊喜,在高鸿钧院士/汪自强教授《Nature》超导领域新发现后,来自美国波斯顿学院的Ilija Zeljkovic等研究者 同一天 报道了使用光谱成像扫描隧道显微镜发现一个新的kagome超导体CsV3Sb5中不同的对称破缺电子态作为温度的函数级联。相关论文以题为“Cascade of correlated electron states in a kagome superconductor CsV3Sb5”发表在Nature上。

论文链接:

由原子组成的量子固体排列在共享角三角形的晶格上(kagome晶格)是一个 探索 新的相关和拓扑电子现象的迷人游乐场。由于其固有的几何受挫,kagome系统预测具有一系列奇异的电子态,如键和电荷有序,自旋液相和手性超导等。到目前为止,大多数实验工作都集中在过渡金属kagome磁体上,例如Co3Sn2S2、FeSn和Fe3Sn2,其中不同形式的磁性主导了低温电子基态。在没有磁有序的情况下,电子关联在原则上有利于出现新的对称破缺电子态,但由于磁有序的趋势,这在许多现有的kagome材料中很难 探索 。

AV3Sb5 (A=K, Rb, Cs),是最近发现的一类不呈现可分辨磁序的kagome金属。这类材料已经在非平凡的拓扑环境中显示出了不寻常的电子行为,比如巨大的异常霍尔响应,源自于巨大的贝里曲率,以及kagome系统中罕见的超导现象。理论表明,AV3Sb5的能带结构具有非平凡的拓扑不变量,并结合显现的超导性,在铁基高 T c超导体家族中与拓扑金属形成有趣的平行关系。由于费米能级附近的van Hove奇点和费米表面的准一维区域造成的态密度大,也为在kagome晶格上寻找难以捉摸的相关态提供了理想的场所。虽然理论预测了kagome晶格电子结构的空间对称破缺的许多可能性,但它们的实验实现一直具有挑战性。

在这里,研究者利用光谱成像扫描隧道显微镜(SI-STM),在kagome超导体CsV3Sb5中发现了对称破缺相的级联与温度的函数关系,可检测为不同的电荷有序态和各向异性准粒子散射特征。这些相在正常状态下发展,并在超导 T c以下持续存在。实验证明,CsV3Sb5中的超导性,来自于本应破缺的旋转和平移对称的电子态,并与之共存。在远高于超导跃迁温度( T c~ K)的温度下,研究者揭示了一个具有2a0周期的三元电荷序,打破了晶格的平移对称性。当系统冷却到 T c时,研究者在费米能级上观察到一个显著的V型光谱缺口,并在超导跃变过程中持续破坏了六重旋转对称性。在微分电导图中,出现了额外的4a0单向电荷阶和强各向异性散射。后者可直接归因于钒kagome能带的轨道选择重正化。该实验揭示了可在kagome晶格上共存的复杂电子态,并提供了与高温超导体和扭曲双层石墨烯有趣的相似之处。

图1 表面表征。

图2 大尺度电子特性。

图3 低温下电荷有序。

图4 CsV3Sb5准粒子干涉(QPI)中旋转对称破缺的可视化研究。

未来的实验,应该通过更详细的温度、能量和掺杂相关的测量来解决不同相之间的竞争,同时也要寻找本征拓扑超导性和非平凡能带拓扑预计会出现的Majorana模式的证据。(文:水生)

超导材料论文6000字

自1911年初次发现超导电现象以来,由于它的一系列异乎寻常的性质,长期以来成为物理学家致力于寻找新的超导体和提高超导临界温度Tc,并为此做了大量的研究工作,取得了巨大的,令人可喜的成绩.目前人们已经看到了广阔的超导电性的应用前景,高温超导技术被认为是21世纪十大高新技术之一.一、 材料的研究进展:在19世纪末,随着低温技术的发展,科学家注意到纯金属的电阻随温度降低而减小的现象。1911年,荷兰物理学家卡莫林.昂内斯()在莱顿(Leiden)实验室研究在极低温度下各种金属电阻变化时,首先发现水银(Hg)在时电阻突然为零的现象(称为超导电性),揭开了超导研究的序幕.昂内斯由于1980年液化了氦和1911年超导现象的研究,获得了1913年度诺贝尔物理学奖.此后科学家们经过七十余年的努力,直到1986年初,已发现并制造出了解上千种超导材料,同时把金属及其合金超导材料的临界温度Tc(出现超导现象的温度)从提高到(1973年发现的NB3Ge化合物的Tc=,直到1985年一直保持着最高临界温度的记录),平均每年只获得的进展,然而在1986年却发生了突破.1986年1月,IBM苏黎世实验室的德国人贝德诺尔兹()瑞士人米勒()宣布发现可能达到Tc=35K的镧钡铜氧化物超导体,从而在世界范围内,立即掀起一股探索超导材料的热潮,他俩也因为发现了高温超导体而获得了1987年诺贝尔物理学奖.自此以后,在高临界温度下超导体的研究方面进展较快,取得了一系列突破性的进展,美国、日本等许多国家在高温超导发展中也作出了卓越的贡献.

关于超导体的研究,班门弄斧一下,研究人员可以往这个思路去研究一下,就是在莫种半导体的表面镀莫种金属或者合金,然后利用接触面,横向导电。

新材料技术渗透现代生活与信息技术、生物技术一样,材料科学技术上的每一次革新都会引起生产技术的革命,加速社会发展,带来社会生产和生活方式上的变化。新材料比传统材料性能更为优异。目前,世界上的新材料品种正以每年大约5%的速度在增长。漫步市民中心区的新材料专业展馆,纳米材料、超导材料、特殊功能材料,新材料琳琅满目,让人应接不暇。超导材料应用商机无限北京有色金属研究总院展区内,除了一辆簇新的镍氢动力电池试验车抢人眼之外,展台上正在进行的高温超导磁悬浮教学演示也吸引了众多饶有兴趣的参展者。一内含超导材料的圆柱状金属块上,是一重达30公斤的永久磁铁。工作人员把零下196摄氏度的液态氮倒入中空的磁铁后,磁铁立马悬浮起来。只须轻轻一推,磁铁就开始了不停地旋转。据了解,其最大悬浮力可达200公斤以上。另一边的磁悬浮运输模型展示,同样吸引了好奇的观众。内含超导材料的小车模型在注入液态氮后,给一点动力,就可在磁性轨道上悬浮运行。据介绍,高温超导材料在液态氮温度(零下196摄氏度)下即可呈现出超导性,即零电阻和抗磁性。由于悬浮状态下运动的物体没有接触磨擦,因而可以实现近乎无阻力的高速运动,可用于制作无磨擦轴承、飞轮储能装置以及磁悬浮车等。据参展的中科院物理所教授曹必松教授介绍,高温超导材料是二十世纪基础研究的一个极为重要的成果,目前,高温超导材料在微波应用上,已在通信、卫星、雷达与电子战系统等领域取得了重大突破。其中,在移动通信领域已初具全球性产业化态势。用超导薄膜制备的高温超导滤波器可以提高接收机的抗干扰能力、增加基站容量、扩大覆盖面积、改善通话质量,还可降低手机所需要的发射功率。目前,欧、美、日等国家和地区已开始了商业化运作。他说,高温超导微波子系统还可为卫星及军用武器装备带来革命性变化。使导弹制导精确、雷达探测能力增强,还可大幅度改善卫星有效载荷的性能。纳米技术全渗透新材料展馆中,纳米一词如今已不是一个神秘的概念。纳米技术在陶瓷、洁具、建材领域、防水材料、特殊材料,以及生物医药等领域上的广泛渗透,让参展者切切实实地感觉到纳米技术的亲和力。武汉理工大学科研处张大有教授告诉记者,学校此次带来的包括光电子材料技术与光纤传感器在内的五大类精品项目中,最受欢迎就是生物无机纳米粒子抑癌项目了。他说,见到相关报道后,很多人就是单冲着这个抑癌项目买票入场的。据介绍,研究表明,某些无机纳米粒子具有杀伤癌细胞的特异性。当这些无机纳米粒子小到纳米级时,即可进入癌细胞中,改变癌基因表达,阻止癌细胞的增殖,抑制癌细胞生长,对正常细胞影响轻微。细胞培养和动物实验发现,羟基磷灰石纳米粒子就具有杀伤癌细胞的特异性。纳米技术的进入,使广谱型新型抗癌药物出现成为可能,为癌症的治疗开辟出新的天地。据了解,目前该项目处于动物实验阶段,尚未进行临床实验。可即便如此,仍有很多参展者留下电话,有的甚至于愿意把自己患病的亲人用来做临床实验。

超导体气体液化问题是19世纪物理的热点之一。1894年荷兰莱顿大学实验物理学教授卡麦林·昂内斯建立了著名的低温试验室。1908年昂内斯成功地液化了地球上最后一种“永久气体”———氦气,并且获得了接近绝对零度(零下摄氏度,标为OK)的低温:。——。(相当于零下摄氏度)。为此,朋友们风趣地称他为“绝对零度先生”。这样低的温度为超导现象的发现提供了有力保证。经过多次实验,1911年昂内斯发现:汞的电阻在。左右的低温度时急剧下降,以致完全消失(即零电阻)。1913年他在一篇论文中首次以“超导电性”一词来表达这一现象。由于“对低温下物质性质的研究,并使氦气液化”方面的成就,昂内斯获1913年诺贝尔物理学奖。“超导电性”现象被发现之后,引起了各国科学家的关注和研究,并寄于很大期望。通过研究,人们发现:所有超导物质,如钛、锌、铊、铅、汞等,当温度降至临界温度(超导转变温度)时,皆显现出某些共同特征:(1)电阻为零,一个超导体环移去电源之后,还能保持原有的电流。有人做过实验,发现超导环中的电流持续了二年半而无显著衰减;(2)完全抗磁性。这一现象是1933年德国物理学家迈斯纳等人在实验中发现的,只要超导材料的温度低于临界温度而进入超导态以后,该超导材料便把磁力线排斥体外,因此其体内的磁感应强度总是零。这种现象称为“迈斯纳效应”。超导电性的本质究竟是什么。一开始人们便从实验和理论两个方面进行探索。不少著名科学家为此负出了巨大努力。然而直到50年人才获得了突破性的进展,“BCS”理论的提出标志着超导电性理论现代阶段的开始。

相关百科
热门百科
首页
发表服务