论文发表百科

不等式毕业论文英文文献

发布时间:2024-07-08 11:47:41

不等式毕业论文英文文献

Just as an equation is a mathematical expression that compares two values equal to one another, an "inequality" compares two values that are not equivalent. Just as certain equations are more complicated than others to solve, so some inequalities require you to work multiple steps before you find your solution. Generally speaking, working these steps is not difficult but requires patience and attention to detail on your part. If you perform even one step incorrectly, your final answer will be wrong.

不懂 ,与你的主题有关

一般情况下来说,这一类的参考文献一定是非常著名而权威的文学作品,这样的参考才更具有公认性和价值,所以在使用的时候一定要注意仔细区分。不同的事物都具有自己不同的特点,我们一定要采用合理而清晰的语言,跟别人沟通交流,才可以正确地,发挥它的价值以及实用性。提高沟通能力的方法:1、面带笑容,语态温和所有人都喜欢和面带笑容、语态温和的人谈话,因为他们能从这个人的讲话中听出一种亲切感。当跟你聊天的人一直面带笑容时,你是不是会感到一种舒坦;当他的说话语气让你很舒服时,你是不是就有和他继续说下去的冲动。2、言谈举止要有礼貌与人说话的时候,一定要注意自己的言行。正所谓君子有礼,要想跟别人有效地进行交谈,就要学会有礼貌地与人相处,让别人对你产生好感!3、同一个话题不要将太久即便是两个人都喜欢的话题,也不要一直在这个话题上不停交流意见,时间长了会让对方感觉到厌烦。4、不要谈论别人的伤心事如果你知道对方最近有什么比较不好的事情,一定不要在交谈过程中提到此事,否则会引起对方的反感和难受。5、找到共同话题古人说,话不投机半句多,意思就是要与人有效交流,就要找到投机的人,也就是有共同话题的人。所以,跟别人有效交流的重点在于共同话题。6、说话不要带脏字有很多人平日里说话不注意,养成了一些不好的说话习惯,了解他的人觉得没啥,可是遇到不了解情况的,听到他说话有比较脏的口头禅,就会对这个人做出不好的评价。7、勇敢承认错误在交流过程中,如果自己出现问题,或者提出的看法不合理,要主动向对方提出抱歉,勇敢的承认自己的错误,比如说“我错了,是我考虑不周。”等话,都很不错的。8、事先亮出自己的想法每个人交谈都是具有一定目的性的,在于对方进行交谈的时候,为了提高双方交谈的效率,一定要首先亮出自己的想法和看法,让对方明白。

The Derivative of a Regular Type is its Type of One-Hole Contexts

by Conor McBride

在附件里,自己看吧。

[1] 熊斌. Schur不等式和H�lder不等式及其应用[J]. 数学通讯, 2005,(15) [2] 段志强. 一个不等式的妙用[J]. 数学通讯, 2004,(17) [3] 赵国松, 张晓东. 一个Cordon型不等式[J]. 许昌学院学报, 2004,(05) [4] 刘宁超. of multiply from i=1 to n (ai+bi) ≥{n~1/[ multiply from i=1 to n (ai)] +n~1/[multiply from i=1 to n (bi)]}~n的证明推广及应用[J]. 阜阳师范学院学报(自然科学版), 1997,(03) [5] 佟成军. 一个不等式的加强及证明[J]. 数学通讯, 2006,(07) [6] 曾峰. 一个不等式的证明及应用[J]. 中学课程辅导(初二版), 2005,(02) [7] 黄长风. 联想证明不等式[J]. 数学教学研究, 2005,(03) [8] 李歆. 不等式a~2+b~2≥2ab的几个推论及应用[J]. 中学生数学, 2005,(05) [9] 方辉. 浅谈哥西不等式的应用[J]. 黄山学院学报, 1997,(01) [10] 孔小波, 孙文迪. 权方和不等式的改进及其姊妹不等式[J]. 数学通报, 2008,(11)

不等式证明英文文献论文

Just as an equation is a mathematical expression that compares two values equal to one another, an "inequality" compares two values that are not equivalent. Just as certain equations are more complicated than others to solve, so some inequalities require you to work multiple steps before you find your solution. Generally speaking, working these steps is not difficult but requires patience and attention to detail on your part. If you perform even one step incorrectly, your final answer will be wrong.

不懂 ,与你的主题有关

[1] 熊斌. Schur不等式和H�lder不等式及其应用[J]. 数学通讯, 2005,(15) [2] 段志强. 一个不等式的妙用[J]. 数学通讯, 2004,(17) [3] 赵国松, 张晓东. 一个Cordon型不等式[J]. 许昌学院学报, 2004,(05) [4] 刘宁超. of multiply from i=1 to n (ai+bi) ≥{n~1/[ multiply from i=1 to n (ai)] +n~1/[multiply from i=1 to n (bi)]}~n的证明推广及应用[J]. 阜阳师范学院学报(自然科学版), 1997,(03) [5] 佟成军. 一个不等式的加强及证明[J]. 数学通讯, 2006,(07) [6] 曾峰. 一个不等式的证明及应用[J]. 中学课程辅导(初二版), 2005,(02) [7] 黄长风. 联想证明不等式[J]. 数学教学研究, 2005,(03) [8] 李歆. 不等式a~2+b~2≥2ab的几个推论及应用[J]. 中学生数学, 2005,(05) [9] 方辉. 浅谈哥西不等式的应用[J]. 黄山学院学报, 1997,(01) [10] 孔小波, 孙文迪. 权方和不等式的改进及其姊妹不等式[J]. 数学通报, 2008,(11)

值的等式和不等式的论文文献

看杨必成教授的专著

不等式理论简史及离散型Hilbert不等式[论文摘要]本文首先介绍了不等式理论发展的历史,然后引入了离散型Hilbert不等式,介绍了Hilbert不等式的一个初等证明,最后对Hilbert不等式的推广形式作了简要的总结。[关键词]不等式理论 Hilbert不等式初等证明 权函数[Abstract]In this passage,we introduce the history of inequality theory we introduce the Hilbert’s inequality with a primary the end,we make a summary of a series forms of Hilbert’s inequality.[Keywords]Theory of inequality Primary proof of Hilbert’s inequality Weight function 1 引 言 选题背景 众所周知,不等式理论在数学理论中占有重要地位,它渗透到数学的各个领域,因而有必要对不等式理论的发展历史有一个清晰的认识。Hilbert不等式提出以来,众多数学家给出了各种证明,本文介绍了一个初等证明。同时,总结了Hilbert不等式的各种推广形式。本文的主要内容本文的工作主要有三个方面:(1)、介绍不等式理论的发展历史(2)、介绍Hilbert不等式并给出了一个初等证明(3)、总结Hilbert的各种推广形式2 不等式理论简史和Hilbert不等式 不等式理论简史 数学不等式的研究首先从欧洲国家兴起, 东欧国家有一个较大的研究群体, 特别是原南斯拉夫国家。目前,对不等式理论感兴趣的数学工作者遍布世界各个国家。在数学不等式理论发展史上有两个具有分水岭意义的事件,分别是: Chebycheff 在 1882 年发表的论文和 1928 年Hardy任伦敦数学会主席届满时的演讲;Hardy,Littlewood和 Plya的著作 Inequalities的前言中对不等式的哲学 (philosophy) 给出了有见地的见解: 一般来讲初等的不等式应该有初等的证明, 证明应该是“内在的”,而且应该给出等号成立的证明。A. 认为, 人们应该尽量陈述和证明不能推广的不等式. Hardy认为, 基本的不等式是初等的.自从著名数学家 G. H. Hardy,J. E. Littlewood和G. Plya的著作 Inequalities由Cambridge University Press于1934年出版以来, 数学不等式理论及其应用的研究正式粉墨登场, 成为一门新兴的数学学科, 从此不等式不再是一些零星散乱的、孤立的公式综合, 它已发展成为一套系统的科学理论。20 世纪 70 年代以来 , 国际上每四年在德国召开一次一般不等式 ( General Inequalities) 国际学术会议 , 并出版专门的会议论文集。不等式理论也是 2000 年在意大利召开的第三届世界非线性分析学家大会 (“The ThirdWorld Congress of Nonlinear Analyst s” ( WCNA - 2000) )的主题之一。2000 年和 2001 年在韩国召开的第六届和第七届非线性泛函分析和应用国际会议 ( InternationalConference on Nonlinear Functional Analysis andApplications) 与 2000 年在我国大连理工大学召开的ISAAC都将数学不等式理论作为主要的议题安排在会议日程之中。2001 年的不等式国际会议 IN EQUAL IT IES于 2001 年 7 月 9 日至 14 日在罗马尼亚 University of t heWest 召开。历史上 , 华人数学家在不等式领域做出过重要贡献 ,包括华罗庚、樊畿、林东坡、徐利治、王忠烈、王兴华等老一代数学家。最近几年我国有许多数学工作者始终活跃在国际数学不等式理论及其应用的领域 , 他们在相关方面做出了独特的贡献 , 引起国内外同行的注意和重视。例如王挽澜教授、石焕南教授、杨必成教授、高明哲教授、张晗方教授、杨国胜教授等。20世纪80年代以来在中国大地上出现了持续高涨的不等式研究热潮。 20世纪80年代杨路等教授对几何不等式研究的一系列开创性工作,将我国几何不等式的研究推向高潮;在代数不等式方面,王挽澜教授对Fan ky不等式的深人研究达到国际领先水平。祁锋教授及其所领导的研究群体在平均不等式及其他不等式方面取得了大量而系统的前沿研究成果;对分析不等式,胡克教授于1981年发表在《中国科学》上的论文《一个不等式及其若干应用》[5],针对Holder不等式的缺陷提出一个全新的不等式,被美国数学评论称之为"一个杰出的非凡的新的不等式",现在称之为胡克(HK)不等式。胡克教授对这个不等式及其应用作了系统而深刻的研究。 目前我国关于数学不等式理论及其应用的研究也有较丰富的成果。例如匡继昌先生的专著《常用不等式》一书由于供不应求 , 在短短的几年内已经出版了第二版 ,重印过多次。对于数学专著来讲 , 这是少有的现象。第二本较有影响的专著是王松桂和贾忠贞合著的《矩阵论中不等式》。另外 , 国内还有一个不等式研究小组比较活跃 , 主办一个《不等式研究通讯》的内部交流刊物 , 数学家杨路先生任顾问。对Hilbert不等式,是由Hilbert 在他的积分方程的讲座中提出。 此后,许多著名数学家如Feier(1921),Framcis,Littlewood (1928),Hardy (1920),Hardy-Littlewood-Polya(1926),Mulhoand(1928,1931),Owen(1930),Polya和Szegb,Schur(1911),F. Wiener (1910)等都做出过贡献。为此,Hardy等在文献「1」中的第9x章中专门讨论Hilbert不等式及其类似情形和推广。 20世纪90年代以来,我国一大批学者如徐利治,杨必成教授等对Hilbert不等式及其类似情形和推广的研究取得了举世瞩目的成果。由于这些结果在理论和实际运用方面都有重要意义,引起一系列广泛研究,当中取得各式各样的进展,成果在众多报刊杂志上被发表。综上所述 , 数学不等式理论充满蓬勃生机、兴旺发达。 Hilbert不等式的初等证明 命题1 (Hilbert 不等式)如果 、 是平方可和实数列,则二重级数 是收敛的,且 (1)不等式严格成立,等式成立当且仅当 、 恒为零,(1)式中 是最优的。 命题一的证明须应用两个引理。 引理一 对每一个正数m,有 < 证明 设点(0,0),(0, ),( , )分别用C,Y, (n=0,1,2,•••)表示,S表示圆心在点C半径为 的从点 到Y 圆的面积, 是直线C 与过点 的竖线的交点(n=1,2,3,•••)。此外,设 表示扇形 C 的面积(如下 图1) 用 表示 的面积,于是,得到 =S= > = = • = > 因此, < .现在可以证明Hilbert不等式了。记 = 应用Schwarz不等式,得。以上应用了引理1,显然,最后不等式严格成立当且仅当序列 、 恒为零。往证 不能被比它小的常数代替。引理2 对每一个自然数m>1,有 > - 。证明 设 表示直线 和直线 (n=0,1,2,•••,m-1)的交点, 表示扇形 的面积(如下图2), 则显然有 = < = + = + = + 因此, > - 下证Hilbert不等式中的 是最优常数,考虑序列: = = ,当 时, = =0,当 > 时,这里k是自然数,则 + + (由引理2) -( )因此 - 因此, 是Hilbert不等式中的最优常数。至此完成了Hilbert不等式的初等证明。 Hilbert不等式的推广 Hilbert提出不等式 (1) (2)后,Hardy把这些结果扩展,他得出了如下不等式 (3) (4)在这里, , 0, + =1,且p q>1。不等式(3)(4)被成为Hardy-Hilbert重级数不等式,且等号成立当且仅当 、 恒为零。多年以来,很多数学家对Hilbert不等式进行了研究,得到了一系列的成果。下面简单回顾一下这些研究的历程。先介绍在Hilbert最原始的不等式基础上取得的成果,然后再展示在Hardy-Hilbert不等式上的一系列成就。1990年, et al仔细分析Hardy最初的方法技术,引入一个权函数w(n)= ,得到了改进后的不等式: (5)不久,Hsu和王把权函数精简为 ,寻找能使式(5)成立θ的最大可能值的问题被提及。稍后, Hsu和高明哲使用不同方法得出θ的下确界,θ=接着得到了θ的上确界λ(λ=),从而使问题得到解开。至于不等式(2),高明哲作了改进, w(n)= (n)>0(n=1,2,…)。然后高应用了Euler公式对权函数w作出估计:w(n)≤ ,θ=17/20类似地,在Hardy-Hilbert不等式上得到一些新结果。在研究Hardy-Hilbert不等式(3)的过程中,含参数n的求和式的值被估算,如 同是1990年,Hsu和Guo率先引入权函数: 不等式(3)拓展为 然后,权函数被Hsu和高明哲改进为 ,两年以后,高再给出权函数的精确形式: 再不久,杨和高得到 的一个下界,也就意味着,在权函数方面取得一个更好的结果: c是Euler常数,而(1-c)被证明为使不等式成立的最佳常数,高明哲证明了 的一个上界是: ρ(t)=t-[t]-1/2而 被估计为 若 > ,不等式不再成立,问题得到完全解开。有关不等式(4),杨必成得到如下较好的结果: ,r=p,q,c是常数。1998年,杨必成和Debnath给出了另一形式的带权函数的Hardy-Hilbert不等式: 除了上面所述以外,杨还有以下结果: 若把s(n,r)在上述表达式变为 ,会得到另一些结果.21世纪初,谭立通过引入一个形如 的权系数改进了不等式(3),若, 那么, 当中=ln2-13/48+/1920(0<<1),它是与r无关的最佳常数。并得到下面推论:设 ,当q充分大时,有 当中 引进适当的参数会使学习和研究对象更具概括性,也是常用的一种方法。在此部分,总结一下具广义性的含参数形式的Hilbert不等式.最近,就关于离散形式的Hilbert不等式,杨必成先引入参数A,B及λ从而不等式(1)得以拓展,他建立了如下新的不等式: < A,B>0,0<λ≤2,B(p,q)是beta函数而常数 是最佳,杨更得到如下结果: < A,B,C>0, ,0<λ≤2, 也被证明为最佳。对不等式(4),杨和Debnath给出一个推广: < ,常数 = 为最佳,其中,2-min(p,q)< 2,B(m,n)是beta函数。最近,匡继昌和Debnath给出一般形式的Hardy-Hilbert不等式: , p>1,1/p+1/q=1,1/2<min(p,q),K(x,y)是非负次数为-t(t>0)的齐次函数。若在(0,+∞)上有四阶连续微商,当n=1,2,3,4, ,当m=0,1,y+ <+ =p,q那么 < ,其中 = >0,r=p,q。更新的是,考虑不等式(3)和(4),杨和Debnath建立了含参数A,B,λ的新不等式: 常数因子3 为最佳。特别的,(1) λ=1,A,B>0 (2) λ=2,A,B>0 (3) 2-min{p,q}<λ≤2,A=B=1, 以上的常数因子都是最佳。以另外方式引入参数λ,杨得出以下结果: 常数因子π/(λsinπ/p)为最佳。特别地,(1) λ=1, (2) p=q=λ=2, 以上不等式的常数因子都是最佳。再新,匡继昌建立一个新的Hilbert不等式的一般形式 1/p+1/q=1,对每个正整数N<+∞,N=+∞,定义: 若1

[1] 熊斌. Schur不等式和H�lder不等式及其应用[J]. 数学通讯, 2005,(15) [2] 段志强. 一个不等式的妙用[J]. 数学通讯, 2004,(17) [3] 赵国松, 张晓东. 一个Cordon型不等式[J]. 许昌学院学报, 2004,(05) [4] 刘宁超. of multiply from i=1 to n (ai+bi) ≥{n~1/[ multiply from i=1 to n (ai)] +n~1/[multiply from i=1 to n (bi)]}~n的证明推广及应用[J]. 阜阳师范学院学报(自然科学版), 1997,(03) [5] 佟成军. 一个不等式的加强及证明[J]. 数学通讯, 2006,(07) [6] 曾峰. 一个不等式的证明及应用[J]. 中学课程辅导(初二版), 2005,(02) [7] 黄长风. 联想证明不等式[J]. 数学教学研究, 2005,(03) [8] 李歆. 不等式a~2+b~2≥2ab的几个推论及应用[J]. 中学生数学, 2005,(05) [9] 方辉. 浅谈哥西不等式的应用[J]. 黄山学院学报, 1997,(01) [10] 孔小波, 孙文迪. 权方和不等式的改进及其姊妹不等式[J]. 数学通报, 2008,(11)

故事是这样的 以前在各大学校里都流传着这么一个恐怖故事 说是A校有不干净的东西 每当十五的时候 学校门口的鲁迅像的眼睛就会动 所有教学楼都会停电 楼梯会从原来的13阶变成14阶 实验室的水龙头放出来的水会变成红色 还有1楼尽头的那个厕所只要有人进去了就再也出不来了 于是 一群不信邪的孩子们约好15那天去探险 晚上12点 他们准时来到了那所学校的门口 鲁迅像的眼睛望着左边 他们记下了 生怕出来的时候记不得有没有动过 他们来到了教室 打开开关 咦 不是亮着的么? “人。”一个男孩发出抱怨 “再看看吧。” 来到了楼梯口 “1 2 3...13没错阿 是13阶阿?” 孩子们有点怀疑传说的真实性了 于是他们又来到了实验室 水龙头打开了 白花花的水流了出来 “真没劲阿 我们白来了!” 刚开始的刺激感都消去了一半。 最后 他们来到了那个厕所 女孩子虽然口上说不相信 可是还是不敢进去 于是让刚刚很拽地说不怕的小C进去 看了表 1点整 2分钟后 男生出来了 “切 都是人的” 孩子们不欢而散。 出门时 一个看门人发现了他们 喝斥他们怎么可以那么晚还在学校逗留。孩子们撒腿就跑 小B特地注意了一下门口的石像 没错 眼睛还是朝左看得 “人的”他嘀咕了一声 “喂 小B么?小C昨天晚上和你们一起出去玩 怎么还没回来?”第二天早上 小C的妈妈打电话过来询问。 小C也没有去学校上课 孩子们隐约感到不对了 于是 他们将晚上的探险之事告诉了老师和家长 大家在大人的陪同下回到了那个学校。 “什么? 我们的鲁迅像的眼睛一直是朝右看的阿。”校长听了孩子们的叙述 不可思议的说。 “可是我们昨天来的时候是朝左看的阿” 出门一看 果然 是朝右看得... “可是昨天的确有电阿” “昨天我们这里全区停电...你们怎么开得灯?” “还有楼梯!”孩子们迅速跑到楼梯口 “1 2 3...12?” “我们的楼梯一直是12阶的。” “不可能!!!” “还有实验室”一个孩子提醒道 “对 实验室” 一行人来到实验室 就在昨天他们开过的那个水龙头下 有一摊暗红色的痕迹。 “是血迹。” “那...小C昨天还去过那个厕所...”大家都感到了一阵莫名的恐惧 “走 我们去看看”校长也意识到了事情的严重性 ... 推开门... 小C的尸体赫然出现在大家的眼前 因为惊恐而睁大的双眼 被割断的喉管血淋淋的 内脏散落在已经干掉的水池里... “阿...”小C的妈妈当场昏了过去 几个老师马上冲出去呕吐... 小B也被吓得目瞪口呆 在他晕过去的前一秒钟 他瞥见小C的手表 指针停在了1点... 就是小C进去的那个时候... 顺便说一下 他们去探险的那天晚上 并没有门卫... 将此贴转向5个以上的论坛不会魔鬼缠身且能实现一个愿望 。 不回帖者晚上凌晨过后往往.....不好意思,我也处于无奈

毕业论文不等式解法

论文研究般较宽泛领域看定性研究与定量研究;取材面看实证研究(实际调查案例析基础)与文献归纳等;析手看归纳、演绎与比较析等等要看专业专业运用研究

我这里有一份“等”对“不等”的启示 对于解集非空的一元二次不等式的求解,我们常用“两根之间”、“两根之外”这类简缩语来说明其结果,同时也表明了它的解法.这是用“等”来解决“不等”的一个典型例子.从表面上看,“等”和“不等”是对立的,但如果着眼于“等”和“不等”的关系,会发现它们之间相互联系的另一面.设M、N是代数式,我们把等式M=N叫做不等式M<N,M≤N,M>N、M≥N相应的等式.我们把一个不等式与其相应的等式对比进行研究,发现“等”是“不等”的“界点”、是不等的特例,稍微深入一步,可以从“等”的解决来发现“不等”的解决思路、方法与技巧.本文通过几个常见的典型例题揭示“等”对于“不等”在问题解决上的启示. � 1.否定特例,排除错解 �解不等式的实践告诉我们,不等式的解区间的端点是它的相应等式(方程)的解或者是它的定义区间的端点(这里我们把+∞、-∞也看作端点).因此我们可以通过端点的验证,否定特例,排除错解,获得解决问题的启示. �例1 满足sin(x-π/4)≥1/2的x的集合是(). ��A.{x|2kπ+5π/12≤x≤2kπ+13π/12,k∈Z} ��B.{x|2kπ-π/12≤x≤2kπ+7π/12,k∈Z} ��C.{x|2kπ+π/6≤x≤2kπ+5π/6,k∈Z} ��D.{x|2kπ≤x≤2kπ+π/6,k∈Z}∪{2kπ+5π/6≤(2k+1)π,k∈Z}(1991年三南试题) �分析:当x=-π/12、x=π/6、x=0时,sin(x-π/4)<0,因此排除B、C、D,故选A. �例2 不等式 +|x|/x≥0的解集是(). ��A.{x|-2≤x≤2} ��B.{x|- ≤x<0或0<x≤2} ��C.{x|-2≤x<0或0<x≤2} ��D.{x|- ≤x<0或0<x≤ } � 分析:由x=-2不是原不等式的解排除A、C,由x=2是原不等式的一个解排除D,故选B. �这两道题若按部就班地解来,例1是易错题,例2有一定的运算量.上面的解法省时省力,但似有“投机取巧”之嫌.选择题给出了三误一正的答案,这是问题情景的一部分.而且是重要的一部分.我们利用“等”与“不等”之间的内在联系,把目光投向解区间的端点,化繁为简,体现了具体问题具体解决的朴素思想,这种“投机取巧”正是抓住了问题的特征,体现了数学思维的敏捷性和数学地解决问题的机智.在解不等式的解答题中,我们可以用这种方法来探索结果、验证结果或缩小探索的范围. �例3 解不等式loga(1-1/x)>1.(1996年全国高考试题) �分析:原不等式相应的等式--方程loga(1-1/x)=1的解为x=1/(1-a)(a≠1是隐含条件).原不等式的定义域为(1,+∞)∪(-∞,0).当x→+∞或x→-∞时,loga(1-1/x)→0,故解区间的端点只可能是0、1或1/(1-a).当0<a<1时,1/(1-a)>1,可猜测解区间是(1,1/(1-a));当a>1时,1/(1-a)<0,可猜测解区间是(1/(1-a),0).当然,猜测的时候要结合定义域考虑. �上面的分析,可以作为解题的探索,也可以作为解题后的回顾与检验.如果把原题重做一遍视为检验,那么一则费时,对考试来说无实用价值,对解题实践来说也失去检验所特有的意义;二则重做一遍往往可能重蹈错误思路、错误运算程序的复辙,费时而于事无补.因此,抓住端点探索或检验不等式的解,是一条实用、有效的解决问题的思路. �2.诱导猜想,发现思路 �当我们证明不等式M≥N(或M>N、M≤N、M<N)时,可以先考察M=N的条件,基本不等式都有等号成立的充要条件,而且这些充要条件都是若干个正变量相等,这就使我们的思考有了明确的目标,诱导猜想,从而发现证题思路.这种思想方法对于一些较难的不等式证明更能显示它的作用. �例4 设a、b、c为正数且满足abc=1,试证:1/a3(b+c)+1/b3(c+a)+1/c3(a+b)≥3/2.(第36届IMO第二题) �分析:容易猜想到a=b=c=1时,原不等式的等号成立,这时1/a3(b+c)=1/b3(c+a)=1/c3(a+b)=1/2.考虑到“≥”在基本不等式中表现为“和”向“积”的不等式变换,故想到给原不等式左边的每一项配上一个因式,这个因式的值当a=b=c=1时等于1/2,且能通过不等式变换的运算使原不等式的表达式得到简化. �1/a3(b+c)+(b+c)/4bc≥ =1/a, �1/b3(a+c)+(a+c)/4ca≥1/b, �等号不一定成立而启迪我们对问题进一步探索的典型例子是1997年全国高考(理科)第22题: �例8 甲、乙两地相距S千米(km),汽车从甲地匀速行驶到乙地,速度不得超过c千米/小时(km/h).已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/小时)的平方成正比,比例系数为b,固定部分为a元. �Ⅰ.把全程运输成本y(元)表示为速度v(千米/小时)的函数,并指出这个函数的定义域; �Ⅱ.为了使全程运输成本最小,汽车应以多大的速度行驶? �分析:y=aSv+bSv,v∈(0,c〕,由y≥2S 当且仅当aS/v=bSv,即当v= 时等号成立得,当v= 时y有最小值.这是本题的正确答案吗?那就得考虑v= 是否一定成立.当 ≤c时可以,但 是有可能大于c的.这就引发了我们进行分类讨论的动机,同时也获得分类的标准. �综上所述,“等”是不等式问题中一道特殊的风景,从“等”中寻找问题解决的思路,本质上是特殊化思想在解题中的应用.从教学上看,引导学生注视不等式问题中的“等”,是教会学生发现问题、提出问题,从而分析问题、解决问题的契机. �1/c3(a+b)+(a+b)/4ab≥1/c, �将这三个等式相加可得 �1/a3(b+c)+1/b3(c+a)+1/c3(a+b)≥1/a+1/b+1/c-(1/4)〔(b+c)/bc+(c+a)/ca+(a+b)/ab〕=(1/2)(1/a+1/b+1/c)≥(3/2) =3/2,从而原不等式获证. �这道题看似不难,当年却使参赛的412名选手中有300人得0分.上述凑等因子的思路源于由等号的成立条件而产生的猜想,使思路变得较为自然,所用的知识是一般高中生所熟知的.再举二例以说明这种方法有较大的适用范围. �例5 设a,b,c,d是满足ab+bc+cd+da=1的正实数,求证:a3/(b+c+d)+b3/(a+c+d)+c3/(a+b+d)+d3/(a+b+c)≥1/3.(第31届IMO备选题) �证明:a3/(b+c+d)+a(b+c+d)/9≥(2/3)a2, �b3/(a+c+d)+b(a+c+d)/9≥(2/3)b2, �c3/(a+b+d)+c(a+b+d)/9≥(2/3)c2, �d3/(a+b+c)+d(a+b+c)/9≥(2/3)d2. �∴ a3/(b+c+d)+b3/(a+c+d)+c3/(a+b+d)+d3/(a+b+c)≥(2/3)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da+ac+bd) �=(5/9)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da)+(1/9)(a2+c2-2ac+b2+d2-2bd) �≥(5/9)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da)≥(5/9)(ab+bc+cd+da)-(2/9)(ab+bc+cd+da)=(1/3)(ab+bc+cd+da)=1/3. �当a=b=c=d=1/2时,原不等式左边的四个项都等于1/12,由此出发凑“等因子”.对于某些中学数学中的常见问题也可用这种方法解决,降低问题解决对知识的要求. �例6 设a,b,c,d∈R+,a+b+c+d=8,求M= + + + 的最大值. �分析:猜想当a=b=c=d=2时M取得最大值,这时M中的4个项都等于3.要求M的最大值,需将M向“≤”的方向进行不等变换,由此可得3 ≤(3+4a+1)/2=2a+2,3 ≤2b+2,3 ≤2c+2,3 ≤2d+2.于是3M≤2(a+b+c+d)+8=24,∴M≤8.当且仅当a=b=c=d时等号成立,所以M的最大值为8. �当然,例6利用平方平均数不小于算术平均数是易于求解的,但需要高中数学教材外的知识.利用较少的知识解决较多的问题,是数学自身的追求,而且从教学上考虑,可以更好地培养学生的数学能力.先有猜想,后有设计,再有证法,也是数学地思考问题的基本特征. �3.引发矛盾,启迪探索 �在利用基本不等式求最大值或最小值时,都必须考虑等号能否取得,这不仅是解题的规范要求,而且往往对问题的解决提供有益的启示.特别当解题的过程似乎顺理成章,但等号成立的条件却发生矛盾或并不一定成立.这一新的问题情景将启迪我们对问题的进一步探索. �例7 设a,b∈R+,2a+b=1,则2 -4a2-b2有(). ��A.最大值1/4� B.最小值1/4 ��C.最大值( -1)/2� D.最小值( -1)/2 � 分析:由4a2+b2≥4ab,得原式≤2 -4ab=-4( )2+2 =-4( -1/4)2+1/4≤1/4.若不对不等变换中等号成立的条件进行研究,似已完成解题任务,而且觉得解题过程颇为自然,但若研究一下等号成立的条件,则出现了矛盾:要使4a2+b2≥4ab中的等号成立,则应有2a=b=1/2,这时 = /4≠1/4,第二个“≤”中的等号不能成立.这一矛盾使我们感觉到解题过程的错误,促使我们另辟解题途径.事实上,原式=2 -(2a+b)2+4ab=4ab+2 -1,而由1=2a+b≥2 得0< ≤ /4,ab≤1/8,∴原式≤ /2+1/2-1=( -1)/2,故选�C. 本文来自论文大学网

春风又绿江南岸,明月何时照我还?

不等式问题论文文献

给你推荐两个:1、《建立不等式的方法》(王挽澜著),2、《不等式》(哈代-李特伍德-波利亚著 越民义译)

看杨必成教授的专著

目:积分不等式的证明及应肯定知道的确

Just as an equation is a mathematical expression that compares two values equal to one another, an "inequality" compares two values that are not equivalent. Just as certain equations are more complicated than others to solve, so some inequalities require you to work multiple steps before you find your solution. Generally speaking, working these steps is not difficult but requires patience and attention to detail on your part. If you perform even one step incorrectly, your final answer will be wrong.

不懂 ,与你的主题有关

相关百科
热门百科
首页
发表服务