论文发表百科

黎曼毕业论文

发布时间:2024-07-05 17:19:14

黎曼毕业论文

具体回答如下:

du∂u/∂x=∂v/∂y

∂u/∂x=2y=∂v/∂y

v=y^2+c*g(x)

由g(0)=-i

可得c*g(x)=-1

v=y^2-1

f(z)=2(x-1)y+i*(y^2-1)

若函数f(z)在点z0不解析,但在z0任一邻域内总有f(z)的解析点,z0为f(z)的奇点。单连通域内解析函数的环路积分为0。复连通域内,解析函数的广义环路积分(即包括内外边界,内边界取顺时针为正)为0。解析函数的导函数仍然是解析函数。

解析函数的发展历史:

解析函数作为一类比较特殊的复变函数。200多年来,其核心定理“柯西-黎曼”方程组一直被数学界公认是不能分开的。王见定发现,尽管解析函数已形成比较完善的理论并得到多方面的应用,但自然界能够满足“柯西-黎曼”方程组条件的现象很少,使解析函数的应用受到较大的限制。

由此,寻找把“柯西-黎曼”方程组分开的途径,并在1981年以《半解析函数》为题撰写毕业论文。先后得出了一系列描述半解析函数特性的重要定理。

具体回答如下:

du∂u/∂x=∂v/∂y

∂u/∂x=2y=∂v/∂y

v=y^2+c*g(x)

由g(0)=-i

可得c*g(x)=-1

v=y^2-1

f(z)=2(x-1)y+i*(y^2-1)

扩展资料:

若函数f(z)在点z0不解析,但在z0任一邻域内总有f(z)的解析点,z0为f(z)的奇点。

单连通域内解析函数的环路积分为0。复连通域内,解析函数的广义环路积分(即包括内外边界,内边界取顺时针为正)为0。解析函数的导函数仍然是解析函数。

设p为不是常数的复系数多项式,假设p没有复数根,则1/p是C上的解析函数。并且当z →∞时,p(z)→∞,或1/p→0,因此1/p是C上的有界解析函数,依据Liouville定理,任何这样的函数都是常函数。

这个很简单, 代入科西-里曼条件就好了.结果是f(z)=2(x-1)y + i * (y^2-(x-1)^2)

黎曼猜想的毕业论文

黎曼猜想至今尚未被成功证明。

2018年9月,迈克尔·阿蒂亚声明证明黎曼猜想,将于9月24日海德堡获奖者论坛上宣讲。9月24日,迈克尔·阿蒂亚贴出了他证明黎曼假设(猜想)的预印本,但这一证明的正确性尚待验证。

起源:

黎曼猜想是波恩哈德·黎曼1859年提出的,这位数学家于1826年出生在当时属于汉诺威王国的名叫布列斯伦茨的小镇。1859年,黎曼被选为了柏林科学院的通信院士。

作为对这一崇高荣誉的回报,他向柏林科学院提交了一篇题为“论小于给定数值的素数个数”的论文。这篇只有短短八页的论文就是黎曼猜想的“诞生地”。

以上内容参考:百度百科—— 黎曼猜想

对于现在降低激素带来的影响是非常巨大的,而且这个猜想一旦被证实的话,对于后续的发展以及数学方面的一些解答,多见会带来巨大的影响力。

技术进行更好的提升,而且能够通过这样的方式去提高我国的机床量,也能够通过这样的模式去提高我国的世界地位。

黎曼猜想是关于黎曼ζ函式ζ(s)的零点分布的猜想,由数学家黎曼于1859年提出。希尔伯特在第二届国际数学家大会上提出了20世纪数学家应当努力解决的23个数学问题,被认为是20世纪数学的制高点,其中便包括黎曼假设。现今克雷数学研究所悬赏的世界七大数学难题中也包括黎曼猜想。

与费尔马猜想时隔三个半世纪以上才被解决,哥德巴赫猜想历经两个半世纪以上屹立不倒相比,黎曼猜想只有一个半世纪的纪录还差得很远,但它在数学上的重要性要远远超过这两个大众知名度更高的猜想。黎曼猜想是当今数学界最重要的数学难题。目前有讯息指奈及利亚教授奥派耶米伊诺克(OpeyemiEnoch)成功解决黎曼猜想,然而克雷数学研究所既不证实也不否认伊诺克博士正式解决了这一问题。

在arxiv网站上有一篇文章指出 ,1932年德国数学家整理的黎曼遗稿中给出了黎曼猜想的证明。文章的作者根据手稿中的一个结论性公式,直接推导出来ζ(s)函式在矩形区域的零点全部落在临界线上。

黎曼猜想是黎曼1859年提出的,这位数学家于1826年出生在一座如今属于德国,当时属于汉诺瓦王国的名叫布列斯伦茨的小镇。1859年,黎曼被选为了柏林科学院的通信院士。作为对这一崇高荣誉的回报,他向柏林科学院提交了一篇题为"论小于给定数值的素数个数"的论文。这篇只有短短八页的论文就是黎曼猜想的"诞生地"。

黎曼那篇论文所研究的是一个数学家们长期以来就很感兴趣的问题,即素数的分布。素数是像2、5、19、137那样除了1和自身以外不能被其他正整数整除的数。这些数在数论研究中有着极大的重要性,因为所有大于1的正整数都可以表示成它们的乘积。从某种意义上讲,它们在数论中的地位类似于物理世界中用以构筑万物的原子。素数的定义简单得可以在中学甚至国小课上进行讲授,但它们的分布却奥妙得异乎寻常,数学家们付出了极大的心力,却迄今仍未能彻底了解。

黎曼论文的一个重大的成果,就是发现了素数分布的奥秘完全蕴藏在一个特殊的函式之中,尤其是使那个函式取值为零的一系列特殊的点对素数分布的细致规律有着决定性的影响。那个函式如今被称为黎曼ζ函式,那一系列特殊的点则被称为黎曼ζ函式的非平凡零点。

有意思的是,黎曼那篇文章的成果虽然重大,文字却极为简练,甚至简练得有些过分,因为它包括了很多"证明从略"的地方。而要命的是,"证明从略"原本是应该用来省略那些显而易见的证明的,黎曼的论文却并非如此,他那些"证明从略"的地方有些花费了后世数学家们几十年的努力才得以补全,有些甚至直到今天仍是空白。但黎曼的论文在为数不少的"证明从略"之外,却引人注目地包含了一个他明确承认了自己无法证明的命题,那个命题就是黎曼猜想。 黎曼猜想自1859年"诞生"以来,已过了一百五十多个春秋,在这期间,它就像一座巍峨的山峰,吸引了无数数学家前去攀登,却谁也没能登顶。

当然,如果仅从时间上比较的话,黎曼猜想的这个纪录跟费尔马猜想时隔三个半世纪以上才被解决,以及哥德巴赫猜想历经两个半世纪以上屹立不倒相比,还差得很远。但黎曼猜想在数学上的重要性却要远远超过这两个大众知名度更高的猜想。有人统计过,在当今数学文献中已有超过一千条数学命题以黎曼猜想(或其推广形式)的成立为前提。如果黎曼猜想被证明,所有那些数学命题就全都可以荣升为定理;反之,如果黎曼猜想被否证,则那些数学命题中起码有一部分将成为陪葬。一个数学猜想与为数如此众多的数学命题有着密切关联,这是极为罕有的。

1901年Helge von Koch指出,黎曼猜想与强条件的素数定理等价。

黎曼观察到,素数的频率紧密相关于一个精心构造的所谓黎曼zeta函式ζ()的性态。黎曼假设断言,方程ζ(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1,500,000,000个解验证过。

黎曼ζ 函式 ζ(s) 是级数表达式

在复平面上的解析延拓。

之所以要对这一表达式进行解析延拓, 是因为这一表达式只适用于复平面上 s 的实部 Re(s) > 1 的区域 (否则级数不收敛)。黎曼找到了这一表达式的解析延拓(当然黎曼没有使用 "解析延拓" 这样的现代复变函数论术语)。运用路径积分,解析延拓后的黎曼ζ 函式可以表示为:

这里我们采用的是历史文献中的记号, 式中的积分实际是一个环绕正实轴进行的围道积分(即从 +∞ 出发, 沿实轴上方积分至原点附近, 环绕原点积分至实轴下方, 再沿实轴下方积分至 +∞ ,而且离实轴的距离及环绕原点的半径均趋于 0),按照现代数学记号应记成:

其中积分路径C跟上面所述相同,环绕正实轴,可以形象地这样表示:

式中的 Γ 函式 Γ(s) 是阶乘函式在复平面上的推广, 对于正整数 s>1:Γ(s)=(s-1)!。可以证明, 这一积分表达式除了在 s=1 处有一个简单极点外在整个复平面上解析。这就是黎曼ζ 函式的完整定义。

运用上面的积分表达式可以证明,黎曼ζ 函式满足以下代数关系式:

从这个关系式中不难发现,黎曼ζ 函式在 s=-2n (n 为正整数) 取值为零 - 因为 sin(πs/2) 为零。复平面上的这种使黎曼ζ 函式取值为零的点被称为黎曼ζ 函式的零点。因此 s=-2n (n 为正整数)是黎曼ζ 函式的零点。这些零点分布有序、 性质简单, 被称为黎曼ζ 函式的平凡零点 (trivial zero)。除了这些平凡零点外,黎曼ζ 函式还有许多其它零点, 它们的性质远比那些平凡零点来得复杂, 被称为非平凡零点 (non-trivial zeros)。

黎曼猜想提出:

黎曼ζ 函式的所有非平凡零点都位于复平面上 Re(s)=1/2 的直线上。也即方程ζ(s)=0的解的实部都是1/2。

在黎曼猜想的研究中, 数学家们把复平面上 Re(s)=1/2 的直线称为 critical line(临界线)。运用这一术语,黎曼猜想也可以表述为:黎曼ζ 函式的所有非平凡零点都位于 critical line 上。

黎曼猜想由德国数学家黎曼(Bernard)于1859年提出,其中涉及了素数的分布,被认为是世界上最困难的数学题之一。荷兰三位数学家 de Lune, te及利用电子计算机来检验黎曼的假设,他们对最初的二亿个齐打函式的零点检验,证明黎曼的假设是对的,他们在1981年宣布他们的结果,他们还继续用电子计算机检验底下的一些零点。

1982年11月苏联数学家马帝叶雪维奇在苏联杂志《Kiberika》宣布,他利用电脑检验一个与黎曼猜想有关的数学问题,可以证明该问题是正确的,从而反过来可以支持黎曼的猜想很可能是正确的。

1975年美国麻省理工学院的莱文森在他患癌症去世前证明了No(T)>(T)。

1980年中国数学家楼世拓、姚琦对莱文森的工作有一点改进,他们证明了No(T)>(T)。

1932年发表的文章中 ,有下面这样一个公式:

文章 的作者根据这个公式的几何意义以及cos函式的零点性质,直接推导出来No(T)=N(T),即证明了区域内的零点全部落在临界线上。

从黎曼的遗稿 *** 整理出来四个公式,其中有三个公式在文献和教科书中经常出现 ,唯独上面这个公式,80多年来很少有文献提到它,就连 本人对于这个公式的作用也大惑不解。实际上,只要跳出解析数论来看黎曼手稿,就能清楚地看到,黎曼用复分析的几何思想严格的证明了现代所说的"黎曼猜想"。这也许是数学史上最大的冤案。

2016年11月17日,奈及利亚教授奥派耶米 伊诺克(Opeyemi Enoch)成功解决已存在156年的数学难题——黎曼猜想,获得100万美元(约合人民币630万元)的奖金。

2000年,美国克莱数学研究所(Clay Mathematics Institute)将黎曼猜想列为七大千年数学难题之一。

2018年9月,麦可·阿蒂亚声明证明黎曼猜想,将于9月24日海德堡获奖者论坛上宣讲,麦可·阿蒂亚贴出了他证明黎曼假设(猜想)的预印本。

2018年9月24日,德国海德堡,著名数学家阿蒂亚爵士(Michael Atiyah)在演讲时表示,自己已证明了黎曼猜想。

利用todd函式反证法,证明了所有零点都在临界线上。他公开了这篇研究论文,总共5页。在论文中,借助量子力学中的无量纲常数α(fine structure constant),阿蒂亚声称解决了复数域上的黎曼猜想。

阿蒂亚说他希望理解量子力学中的无量纲常数——精细结构常数。因为精细结构常数大约等于1/137,刻画的是电磁相互作用的强度。比如在氢原子中,我们大致可以说电子绕原子核的速度是1/137再乘上光速。

阿蒂亚指出,理解精细结构常数只是最初的动机。在这个过程中发展出来的数学方法却可以理解黎曼猜想。

最后,在论文的最后,阿蒂亚说,精细结构常数与黎曼猜想,用他的方法,已经被解决了。当然他只解决了复数域上的黎曼猜想,有理数域上的黎曼猜想,他还需要研究。另外,随着黎曼猜想被解决,阿蒂亚认为,bsd猜想也有希望被解决。当然,现在阿蒂亚认为,引力常数G是一个更难理解的常数。

在黎曼猜想中,我们看到非平凡零点的实部都等于1/2,这是一个让人很意外的常数。虽然我们可以从一个简单的对称关系中看出为什么会出现1/2。

1-s=s,所以 s=1/2

黎曼(Riemann,Gee Friedrich Bernhard,1826-1866,德国数学家)是黎曼几何的创始人。他在读博士学位期间,研究的是复变函式。他把通常的函式概念推广到多值函式,并引进了多叶黎曼曲面的直观概念。他的博士论文受到了高斯的赞扬,也是他此后十年工作的基础,包括:复变函数在Abel积分和 theta函式中的套用,函式的三角级数表示,微分几何基础等。

黎曼猜想是黎曼在 1859 年提出的。在证明素数定理的过程中,黎曼提出了一个论断:Zeta函式的零点都在直线Res(s) = 1/2上。他在作了一番努力而未能证明后便放弃了,因为这对他证明素数定理影响不大。但这一问题至今仍然未能解决,甚至于比此假设简单的猜想也未能获证。而函式论和解析数论中的很多问题都依赖于黎曼假设。在代数数论中的广义黎曼假设更是影响深远。若能证明黎曼假设,则可带动许多问题的解决。

黎曼积分与勒贝格积分毕业论文

勒贝格积分和黎曼积分的区别与联系论文开题报告我是全能的哦.

你好,这份开题帮助你

勒贝格积分与黎曼积分区别与联系:

黎曼积分以连续函数为前题,无限划分的是自变量,即积分变量的微差;

勒贝格积分以可测函数为前题,无限划分的是可测函数,即被积函数!

可测函数比连续函数更广泛,因此勒贝格积分不但包含了黎曼积分且适用范围更广!

勒贝格积分的出现源于概率论等理论中对更为不规则的函数的处理需要。黎曼积分无法处理这些函数的积分问题。因此,需要更为广义上的积分概念,使得更多的函数能够定义积分。同时,对于黎曼可积的函数,新积分的定义不应当与之冲突。

勒贝格积分就是这样的一种积分。 黎曼积分对初等函数和分段连续的函数定义了积分的概念,勒贝格积分则将积分的定义推广到测度空间里。

定义积分:

方法不止一种,各种定义之间也不是完全等价的。其中的差别主要是在定义某些特殊的函数:在某些积分的定义下这些函数不可积分,但在另一些定义之下它们的积分存在。然而有时也会因为教学的原因造成定义上的差别。最常见的积分定义是黎曼积分和勒贝格积分。

黎曼积分黎曼积分得名于德国数学家波恩哈德·黎曼,建立在函数在区间取样分割后的黎曼和之上。设有闭区间[a,b],那么[a,b]的一个分割是指在此区间中取一个有限的点列。

几何意义是相同的。但计算的方式有差别。就像数硬币。李曼积分是一个一个的数,勒贝格积分是把面值相同的分成一组,然后一组一组的数。

关于黎曼函数论文的题目

宇宙能量密度与黎曼ζ函数林文隆国立台湾师范大学物理系e-mail: 摘要宇宙之演化由宇宙能量密度来决定,当我们在计算相对论性粒子之能量密度时,总会伴随著出现黎曼ζ函数,其数值通常由查表得知.如此一来,对黎曼ζ函数并无深入了解且对所得结果较缺乏感觉.事实上宇宙能量密度之推导过程非常适合作为物理系高年级学生及研究生课外自学题材,其中串联著许多数学的方法及概念,包括无穷级数,黎曼ζ函数,傅立叶级数,复变函数,柏努利数,解析数论及混沌理论等.本文浅述其推导过程以供参考.一,前言 今日宇宙之辐射(即相对论性粒子)由 K 之宇宙背景光子及三代 K 之微中子所构成.而处於热平衡状态之早期宇宙除了光子和微中子外尚有大量其他相对论性粒子,由於它们系处於热平衡状态,其能量密度 ρ 可表示成相空间分布函数 之积分(我们采用自然单位,即 )(1)上式中 表粒子自旋之自由度, 为粒子之能量,即 . 分布函数则与粒子之自旋有关,自旋为整数之玻子(例如光子)(2)自旋为半整数之费米子(例如微中子)则(3)对相对论性粒子而言, , 故能量密度 ρ 可简化成(4)上式中玻子用减号,费米子用加号.底下我们首先讨论玻子能量密度如何计算.令(自然单位), , 则 ρ 可改写为(5)查表得方程式(5)中之积分式(6) 故(相对论性玻子) (7) 二,宇宙能量密度与黎曼ζ函数通常我们直接由查表得知 之数值,当我们深入探讨何以方程式(6)之定积分等於 时,将会发现这是一个非常有趣的数学问题.事实上它可表示成一个特殊的无穷级数称之为黎曼函数.首先将方程式(6)之分母展开(8)连续利用部份积分得(9) 故 (10)上式中ζ(4) 系 s = 4 之黎曼ζ函数ζ(s),其定义如下, s >1 (11)上式定义中之无穷级数只有当 s > 1 时方为收敛.其近似值可由无穷级数前几项之和得到,例如由前十项之和即可得到ζ(4)之有效数值至第四位 ζ(4) =….当s为偶数时, ζ(s) 之精确值可利用傅立叶级数求得.以ζ(4)为例,我们首先在 之范围求出 及 之傅立叶级数(12)(13)令 代入 之傅立叶级数即得(14)再用 代入 之傅立叶级数得(15)将ζ(2)值代入得 (16)故 (17)之值亦可由下法快速求得.设函数之傅立叶级数为(18)则 (19)上式在数学中称为帕斯维尔等式 (Parseval's identity), 在物理学则叫做能量定理 (energy theorem),因为其物理意义可解释为一个波之总能量等於其各傅立叶分量能量之和.令 并将其傅立叶级数展开之系数代入帕斯维尔等式得(20)故 (21)三,黎曼ζ函数与白努利函数黎曼ζ函数与白努利函数有密切关联,当 为偶数时, 之值亦可由白努利数求得.白努利函数 及白努利数 之定义如下(22)(23)换言之,白努利数 系 s 等於零时之白努利函数值(24)例如(25)(26)将方程式(23)连续微分得(27)又经由一些简单的运算可导出下列递推关系式 (recursion relations)(28)(29)上式中 (30)由方程式(27)即可求得 . 将此二值代入方程式(27),即可看出. 当 为已知时,利用递推关系式很容易求得 之值.例如用 代入方程式(29)得, 故 (31)再令 代入得, 故 (32)经由复变函数理论之解析延续 (analytic continuation), 由方程式(23)吾人得到下列泰勒级数(33)故 (34)上式中之系依反时针方向绕著原点之封闭路径,且 .将积分路径变形并利用馀数定理 (theorem of residues) 即可得到当 时(s odd) (35)(s even) (36)因此当为偶数时,我们得到柏努立数与黎曼ζ函数之关系如下(37)此关系式系由数学家欧拉 (Euler) 所发现.由此式很明显可看出当 ,.白努利数经常出现在数论 (number theory) 当中.且有一个数论方面的定理说(38)其中 为整数, 为质数.例如 (39)在许多超越函数的无穷级数展开都会用到白努利数.我们的目的则在利用方程式(37)求出黎曼ζ函数之值,例如将 代入即得 .四,费米子能量密度之计算一旦玻子能量密度之公式已知,费米子之能量密度可用下述之技巧快速导出.根据方程式(4)相对论性费米子之能量密度 ρ 可写为(40)其中 (41)将 及 之积分式相减得(42)令得 (43) 故 (44)即 (相对论性费米子) (45)方程式(44)很容易推广为(46)由此式可知当自旋自由度相同时,费米子数目密度等於玻子数目密度乘以.我们都知道早期宇宙之演化情形主要由各种相对论性粒子之能量密度及数目密度来决定,故将其公式整理如下:(47)(48)其中能量密度公式之ζ(4)已用精确值 代入,而数目密度中之ζ(3)之近似值为.五,黎曼ζ函数与解析数论黎曼函数ζ(s)在解析数论方面也扮演著一个很重要的角色,这是因为经由解析延续,成为复变数 s 之复函数,而数论中质数的渐进分布则与黎曼ζ函数等於零的复数根有直接的关系.黎曼曾提出一个有名的猜想 (Riemann's conjecture): 除了-2,-4,…等实数根之外,所有黎曼ζ函数有意义的根(指复数根)均落在 之临界线上 (critical line).黎曼猜想的证明十分困难, 1900 年在巴黎举行的第二届国际数学家会议,著名德国数学家希尔伯特 (David Hilbert) 提出23个重要而尚未解决的数学问题,他预测这些问题的研究将构成二十世纪数学的主流,希尔伯特所列的第八个问题就是黎曼猜想.可惜事隔一百年,黎曼猜想迄今仍未获得证明.不过研究显示至少最前面十五亿个根都满足黎曼的猜想,也就是说它们均落在临界线上.黎曼ζ函数不仅在解析数论方面扮演著重要的角色,最近的研究更显示出此函数在临界线上根的分布情形和混沌理论 (chaos) 有密切的关联.提到黎曼 (Georg Friedrich Bernhard Riemann, 1826-1866),这位十九世纪出生在德国汉诺瓦之数学家,人们总会联想到他在数学上另外两大贡献: 他在 1851 年的博士论文 "Foundations for a general theory of a complex variable" 中建立了复函数黎曼面 (Riemann surfaces) 之理论基础;及在 1854 年在哥廷根大学题为 "On the Hypothesis That Form the Foundations of Geometry" 的就职演讲,他建立了一门新数学即黎曼几何(Riemannian geometry),此为后来爱因斯坦研究广义相对论时之数学基础.可惜黎曼因得了肺病,英年早逝,否则其在数学上之贡献当不止於此.

是因为这个猜想没有任何的理论依据,而且是架空于量子力学之上的,需要用到很多的公式计算。

下面这样定义的函数称为黎曼函数: R(x)=0,如果x=0,1或(0,1)内的无理数; R(x)=1/q,如果x=p/q(p/q为即约真分数),即x为(0,1)内的有理数; 此函数是一个特殊函数,由德国数学家黎曼发现提出,在高等数学中被广泛应用,在很多情况下可以作为反例来验证某些函数方面的待证命题。 此函数在微积分中有着重要应用。 1826年9月17日,黎曼生于德国北部汉诺威的布雷塞伦茨村,父亲是一个乡村的穷苦牧师。他六岁开始上学,14岁进入大学预科学习,19岁按其父亲的意愿进入哥廷根大学攻读哲学和神学,以便将来继承父志也当一名牧师。 由于从小酷爱数学,黎曼在学习哲学和神学的同时也听些数学课。当时的哥廷根大学是世界数学的中心之一,—些著名的数学家如高斯、韦伯、斯特尔都在校执教。黎曼被这里的数学教学和数学研究的气氛所感染,决定放弃神学,专攻数学。 1847年,黎曼转到柏林大学学习,成为雅可比、狄利克莱、施泰纳、艾森斯坦的学生。1849年重回哥廷根大学攻读博士学位,成为高斯晚年的学生。 l851年,黎曼获得数学博士学位;l854年被聘为哥廷根大学的编外讲师;1857年晋升为副教授;1859年接替去世的狄利克雷被聘为教授。 因长年的贫困和劳累,黎曼在1862年婚后不到一个月就开始患胸膜炎和肺结核,其后四年的大部分时间在意大利治病疗养。1866年7月20日病逝于意大利,终年39岁。 黎曼是世界数学史上最具独创精神的数学家之一。黎曼的著作不多,但却异常深刻,极富于对概念的创造与想象。黎曼在其短暂的一生中为数学的众多领域作了许多奠基性、创造性的工作,为世界数学建立了丰功伟绩。 复变函数论的奠基人 19世纪数学最独特的创造是复变函数理论的创立,它是18世纪人们对复数及复函数理论研究的延续。1850年以前,柯西、雅可比、高斯、阿贝尔、维尔斯特拉斯已对单值解析函数的理论进行了系统的研究,而对于多值函数仅有柯西和皮瑟有些孤立的结论。 1851年,黎曼在高斯的指导下完成题为《单复变函数的一般理论的基础》的博士论文,后来又在《数学杂志》上发表了四篇重要文章,对其博士论文中思想的做了进一步的阐述,一方面总结前人关于单值解析函数的成果,并用新的工具予以处理,同时创立多值解析函数的理论基础,并由此为几个不同方向的进展铺平了道路。 柯西、黎曼和维尔斯特拉斯是公认的复变函数论的主要奠基人,而且后来证明在处理复函数理论的方法上黎曼的方法是本质的,柯西和黎曼的思想被融合起来,维尔斯特拉斯的思想可以从柯西—黎曼的观点推导出来。 在黎曼对多值函数的处理中,最关键的是他引入了被后人称“黎曼面”的概念。通过黎曼面给多值函数以几何直观,且在黎曼面上表示的多值函数是单值的。他在黎曼面上引入支点、横剖线、定义连通性,开展对函数性质的研究获得一系列成果。 经黎曼处理的复函数,单值函数是多值函数的待例,他把单值函数的一些已知结论推广到多值函数中,尤其他按连通性对函数分类的方法,极大地推动了拓扑学的初期发展。他研究了阿贝尔函数和阿贝尔积分及阿贝尔积分的反演,得到著名的黎曼—罗赫定理,首创的双有理变换构成19世纪后期发展起来的代数几何的主要内容。 黎曼为完善其博士论文,在结束时给出其函数论在保形映射的几个应用,将高斯在1825年关于平面到平面的保形映射的结论推广到任意黎曼面上,并在文字的结尾给出著名的黎曼映射定理。 黎曼几何的创始人 黎曼对数学最重要的贡献还在于几何方面,他开创的高维抽象几何的研究,处理几何问题的方法和手段是几何史上一场深刻的革命,他建立了一种全新的后来以其名字命名的几何体系,对现代几何乃至数学和科学各分支的发展都产生了巨大的影响。 1854年,黎曼为了取得哥廷根大学编外讲师的资格,对全体教员作了一次演讲,该演讲在其逝世后的两年(1868年)以《关于作为几何学基础的假设》为题出版。演讲中,他对所有已知的几何,包括刚刚诞生的非欧几何之一的双曲几何作了纵贯古今的概要,并提出一种新的几何体系,后人称为黎曼几何。 为竞争巴黎科学院的奖金,黎曼在1861年写了一篇关于热传导的文章,这篇文章后来被称为他的“巴黎之作”。文中对他1854年的文章作了技术性的加工,进一步阐明其几何思想。该文在他死后收集在1876年他的《文集》中。 黎曼主要研究几何空间的局部性质,他采用的是微分几何的途径,这同在欧几里得几何中或者在高斯、波尔约和罗巴切夫斯基的非欧几何中把空间作为一个整体进行考虑是对立的。黎曼摆脱高斯等前人把几何对象局限在三维欧几里得空间的曲线和曲面的束缚,从维度出发,建立了更一般的抽象几何空间。 黎曼引入流形和微分流形的概念,把维空间称为一个流形,维流形中的一个点可以用个可变参数的一组特定值来表示,而所有这些点的全体构成流形本身,这个可变参数称为流形的坐标,而且是可微分的,当坐标连续变化时,对应的点就遍历这个流形。 黎曼仿照传统的微分几何定义流形上两点之间的距离、流形上的曲线、曲线之间的夹角。并以这些概念为基础,展开对维流形几何性质的研究。在维流形上他也定义类似于高斯在研究一般曲面时刻划曲面弯曲程度的曲率。他证明他在维流形上维数等于三时,欧几里得空间的情形与高斯等人得到的结果是一致的,因而黎曼几何是传统微分几何的推广。 黎曼发展了高斯关于一张曲面本身就是一个空间的几何思想,开展对维流形内蕴性质的研究。黎曼的研究导致另一种非欧几何——椭圆几何学的诞生。 在黎曼看来,有三种不同的几何学。它们的差别在于通过给定一点做关于定直线所作平行线的条数。如果只能作一条平行线,即为熟知的欧几里得几何学;如果一条都不能作,则为椭圆几何学;如果存在一组平行线,就得到第三种几何学,即罗巴切夫斯基几何学。黎曼因此继罗巴切夫斯基以后发展了空间的理论,使得一千多年来关于欧几里得平行公理的讨论宣告结束。他断言,客观空间是一种特殊的流形,预见具有某种特定性质的流形的存在性。这些逐渐被后人一一予以证实。 由于黎曼考虑的对象是任意维数的几何空间,对复杂的客观空间有更深层的实用价值。所以在高维几何中,由于多变量微分的复杂性,黎曼采取了一些异于前人的手段使表述更简洁,并最终导致张量、外微分及联络等现代几何工具的诞生。爱因斯坦就是成功地以黎曼几何为工具,才将广义相对论几何化。现在,黎曼几何已成为现代理论物理必备的数学基础。 微积分理论的创造性贡献 黎曼除对几何和复变函数方面的开拓性工作以外,还以其对l9世纪初兴起的完善微积分理论的杰出贡献载入史册。 18世纪末到l9世纪初,数学界开始关心数学最庞大的分支——微积分在概念和证明中表现出的不严密性。波尔查诺、柯西、阿贝尔、狄利克莱进而到维尔斯特拉斯,都以全力的投入到分析的严密化工作中。黎曼由于在柏林大学从师狄利克莱研究数学,且对柯西和阿贝尔的工作有深入的了解,因而对微积分理论有其独到的见解。 1854年黎曼为取得哥廷根大学编外讲师的资格,需要他递交一篇反映他学术水平的论文。他交出的是《关于利用三角级数表示一个函数的可能性的》文章。这是一篇内容丰富、思想深刻的杰作,对完善分析理论产生深远的影响。 柯西曾证明连续函数必定是可积的,黎曼指出可积函数不一定是连续的。关于连续与可微性的关系上,柯西和他那个时代的几乎所有的数学家都相信,而且在后来50年中许多教科书都“证明”连续函数一定是可微的。黎曼给出了一个连续而不可微的著名反例,最终讲清连续与可微的关系。 黎曼建立了如现在微积分教科书所讲的黎曼积分的概念,给出了这种积分存在的必要充分条件。 黎曼用自己独特的方法研究傅立叶级数,推广了保证博里叶展开式成立的狄利克莱条件,即关于三角级数收敛的黎曼条件,得出关于三角级数收敛、可积的一系列定理。他还证明:可以把任一条件收敛的级数的项适当重排,使新级数收敛于任何指定的和或者发散。 解析数论跨世纪的成果 19世纪数论中的一个重要发展是由狄利克莱开创的解析方法和解析成果的导入,而黎曼开创了用复数解析函数研究数论问题的先例,取得跨世纪的成果。 1859年,黎曼发表了《在给定大小之下的素数个数》的论文。这是一篇不到十页的内容极其深到的论文,他将素数的分布的问题归结为函数的问题,现在称为黎曼函数。黎曼证明了函数的一些重要性质,并简要地断言了其它的性质而未予证明。 在黎曼死后的一百多年中,世界上许多最优秀的数学家尽了最大的努力想证明他的这些断言,并在作出这些努力的过程中为分析创立了新的内容丰富的新分支。如今,除了他的一个断言外,其余都按黎曼所期望的那样得到了解决。 那个未解决的问题现称为“黎曼猜想”,即:在带形区域中的一切零点都位于去这条线上(希尔伯特23个问题中的第8个问题),这个问题迄今没有人证明。对于某些其它的域,布尔巴基学派的成员已证明相应的黎曼猜想。数论中很多问题的解决有赖于这个猜想的解决。黎曼的这一工作既是对解析数论理论的贡献,也极大地丰富了复变函数论的内容。 组合拓扑的开拓者 在黎曼博士论文发表以前,已有一些组合拓扑的零散结果,其中著名的如欧拉关于闭凸多面体的顶点、棱、面数关系的欧拉定理。还有一些看起来简单又长期得不到解决的问题:如哥尼斯堡七桥问题、四色问题,这些促使了人们对组合拓扑学(当时被人们称为位置几何学或位置分析学)的研究。但拓扑研究的最大推动力来自黎曼的复变函数论的工作。 黎曼在1851年他的博士论文中,以及在他的阿贝尔函数的研究里都强调说,要研究函数,就不可避免地需要位置分析学的一些定理。按现代拓扑学术语来说,黎曼事实上已经对闭曲面按亏格分类。值得提到的是,在其学位论文中,他说到某些函数的全体组成(空间点的)连通闭区域的思想是最早的泛函思想。 比萨大学的数学教授贝蒂曾在意大利与黎曼相会,黎曼由于当时病魔缠身,自身已无能力继续发展其思想,把方法传授给了贝蒂。贝蒂把黎曼面的拓扑分类推广到高维图形的连通性,并在拓扑学的其他领域作出杰出的贡献。黎曼是当之无愧的组合拓扑的先期开拓者。 代数几何的开源贡献 19世纪后半叶,人们对黎曼研究阿贝尔积分和阿贝尔函数所创造的双有理变换的方法产生极大的兴趣。当时他们把代数不变量和双有理变换的研究称为代数几何。 黎曼在1857年的论文中认为,所有能彼此双有理变换的方程(或曲面)属于同一类,它们有相同的亏格。黎曼把常量的个数叫做“类模数”,常量在双有理变换下是不变量。“类模数”的概念是现在“参模”的特殊情况,研究参模上的结构是现代最热门的领域之一。 著名的代数几何学家克莱布什后来到哥廷根大学担任数学教授,他进一步熟悉了黎曼的工作,并对黎曼的工作给予新的发展。虽然黎曼英年早逝,但世人公认,研究曲线的双有理变换的第一个大的步骤是由黎曼的工作引起的。 在数学物理、微分方程等其他领域的丰硕成果 黎曼不但对纯数学作出了划时代的贡献,他也十分关心物理及数学与物理世界的关系,他写了一些关于热、光、磁、气体理论、流体力学及声学方面的有关论文。他是对冲击波作数学处理的第一个人,他试图将引力与光统一起来,并研究人耳的数学结构。他将物理问题抽象出的常微分方程、偏微分方程进行定论研究得到一系列丰硕成果。 黎曼在1857年的论文《对可用高斯级数表示的函数的理论的补充》,及同年写的一个没有发表而后收集在其全集中的一个片断中,他处理了超几何微分方程和讨论带代数系数的阶线性微分方程。这是关于微分方程奇点理论的重要文献。 19世纪后半期,许多数学家花了很多精力研究黎曼问题,然而都失败了,直到1905年希尔伯特和Kellogg借助当时已经发展了的积分方程理论,才第一次给出完全解。 黎曼在常微分方程理论中自守函数的研究上也有建树,在他的1858~1859年关于超几何级数的讲义和1867年发表的关于极小正曲面的一篇遗著中,他建立了为研究二阶线性微分方程而引进的自守函数理论,即现在通称的黎曼——许瓦兹定理。 在偏微分方程的理论和应用上,黎曼在1858年~1859年论文中,创造性的提出解波动方程初值问题的新方法,简化了许多物理问题的难度;他还推广了格林定理;对关于微分方程解的存在性的狄里克莱原理作了杰出的工作,…… 黎曼在物理学中使用的偏微分方程的讲义,后来由韦伯以《数学物理的微分方程》编辑出版,这是一本历史名著。 不过,黎曼的创造性工作当时未能得到数学界的一致公认,一方面由于他的思想过于深邃,当时人们难以理解,如无自由移动概念非常曲率的黎曼空间就很难为人接受,直到广义相对论出现才平息了指责;另一方面也由于他的部分工作不够严谨,如在论证黎曼映射定理和黎曼—罗赫定理时,滥用了狄利克雷原理,曾经引起了很大的争议。 黎曼的工作直接影响了19世纪后半期的数学发展,许多杰出的数学家重新论证黎曼断言过的定理,在黎曼思想的影响下数学许多分支取得了辉煌成就。

黎曼猜想具体内容:黎曼猜想,即素数的分布最终归结为所谓的黎曼ζ函数的零点问题.黎曼在1859年在论文《在给定大小之下的素数个数》中做出这样的猜想:ζ(z)函数位于0≤x≤1之间的全部零点都在ReZ=1/2之上,即零点的实部都是1/2,这至今仍是未解决的问题。

黎曼猜想是关于黎曼函数(s)的零点分布的猜想,由数学家黎曼于1859年提出。希尔伯特在第二届国际数学家大会上提出了20世纪数学家应当努力解决的23个数学问题,被认为是20世纪数学的制高点,其中便包括黎曼假设。现今克雷数学研究所悬赏的世界七大数学难题中也包括黎曼猜想。

与费尔马猜想时隔三个半世纪以上才被解决,哥德巴赫猜想历经两个半世纪以上屹立不倒相比,黎曼猜想只有一个半世纪的纪录还差得很远,但它在数学上的重要性要远远超过这两个大众知名度更高的猜想。

黎曼猜想是当今数学界最重要的数学难题。

素数在自然数中的分布问题在纯粹数学和应用数学上都是很重要的问题。素数在自然数域中分布并没有一定规则。黎曼发现素数出现的频率与所谓黎曼ζ函数紧密相关。黎曼函数的非平凡零点都在线 \operatorname z = \frac 上。

现在已经验证了最初的1,500,000,000个解,猜想都是正确的。但是否对所有解是正确的,却没有证明,随着费马最后定理的获证,黎曼猜想作为最困难的数学问题的地位更加突出。

黎曼假设、庞加莱猜想、霍奇猜想、波奇和斯温纳顿―戴尔猜想、纳威厄―斯托克斯方程、杨―米尔理论、P对NP问题被称为21世纪七大数学难题。

拉曼光谱毕业论文

这个问题啊 应该有人做过吧 那就献出来喽

巴基斯坦有一位诺贝尔奖级别的物理学家,印度也有一位,他就是拉曼。不过长得没有巴基斯坦那位物理学家帅气。

不过他是第一个正确解释海水为什么那么蓝的科学家。往下看就知道为什么了。

拉曼(Sir Chandrasekhara Venkata Raman, 1888(戊子年)-1970)。印度物理学家,又译喇曼。因光散射方面的研究工作和拉曼效应的发现,获得了1930年度的诺贝尔物理学奖。于1970年逝世,享年82岁。

1930年诺贝尔物理学奖授予印度加尔各答大学的拉曼,以表彰他研究了光的散射和发现了以他的名字命名的定律。

拉曼是印度人,是第一位获得诺贝尔物理学奖的亚洲科学家。拉曼还是一位教育家,他从事研究生的培养工作,并将其中很多优秀人材输送到印度的许多重要岗位。

拉曼1888年11月7日出生于印度南部的特里奇诺波利。父亲是一位大学数学、物理教授,自幼对他进行科学启蒙教育,培养他对音乐和乐器的爱好。

他天资出众,16岁大学毕业,以第一名获物理学金奖。19岁又以优异成绩获硕士学位。1906年,他仅18岁,就在英国著名科学杂志《自然》发表了论文,是关于光的衍射效应的。由于生病,拉曼失去了去英国某个著名大学作博士论文的机会。独立前的印度,如果没有取得英国的博士学位,就意味着没有资格在科学文化界任职。但会计行业是当时唯一例外的行业,不需先到英国受训。于是拉曼就投考财政部以谋求一份职业,结果获得第一名,被授予了总会计助理的职务。

拉曼在财政部工作很出色,担负的责任也越来越重,但他并不想沉浸在官场之中。他念念不忘自己的科学目标,把业余时间全部用于继续研究声学和乐器理论。加尔各答有一所学术机构,叫印度科学教育协会,里面有实验室,拉曼就在这里开展他的声学和光学研究。经过十年的努力,拉曼在没有高级科研人员指导的条件下,靠自己的努力作出了一系列成果,也发表了许多论文。

1917年加尔各答大学破例邀请他担任物理学教授,使他从此能专心致力于科学研究。他在加尔各答大学任教十六年期间,仍在印度科学教育协会进行实验,不断有学生、教师和访问学者到这里来向他学习、与他合作,逐渐形成了以他为核心的学术团体。许多人在他的榜样和成就的激励下,走上了科学研究的道路。其中有著名的物理学家沙哈()和玻色()。这时,加尔各答正在形成印度的科学研究中心,加尔各答大学和拉曼小组在这里面成了众望所归的核心。1921年,由拉曼代表加尔各答大学去英国讲学,说明了他们的成果已经得到了国际上的认同。

1934年,拉曼和其他学者一起创建了印度科学院,并亲任院长。1947年,又创建拉曼研究所。他在发展印度的科学事业上立下了丰功伟绩。拉曼抓住分子散射这一课题是很有眼力的。在他持续多年的努力中,显然贯穿着一个思想,这就是:针对理论的薄弱环节,坚持不懈地进行基础研究。拉曼很重视发掘人才,从印度科学教育协会到拉曼研究所,在他的周围总是不断涌现着一批批赋有才华的学生和合作者。就以光散射这一课题统计,在三十年中间,前后就有66名学者从他的实验室发表了377篇论文。他对学生谆谆善诱,深受学生敬仰和爱戴。拉曼爱好音乐,也很爱鲜花异石。他研究金刚石的结构,耗去了他所得奖金的大部分。晚年致力于对花卉进行光谱分析。在他80寿辰时,出版了他的专集:《视觉生理学》。拉曼喜爱玫瑰胜于一切,他拥有一座玫瑰花园。拉曼1970年逝世,享年82岁,按照他生前的意愿火葬于他的花园里。

在X射线的康普顿效应发现以后,海森堡曾于1925年预言:可见光也会有类似的效应。1928年,喇曼在《一种新的辐射》一文中指出:当单色光定向地通过透明物质时,会有一些光受到散射。散射光的光谱,除了含有原来波长的一些光以外,还含有一些弱的光,其波长与原来光的波长相差一个恒定的数量。这种单色光被介质分子散射后频率发生改变的现象,称为并合散射效应,又称为喇曼效应。这一发现,很快就得到了公认。英国皇家学会正式称之为“20年代实验物理学中最卓越的三四个发现之一”。

喇曼效应为光的量子理论提供了新的证据。频率为ν0的单色光入射到介质里会同时发生两种散射过程:一种是频率不变(ν=ν0)的散射,即瑞利散射,是由入射光量子与散射分子的弹性碰撞引起的;另一种是频率改变(ν=ν0±νR)的散射,即喇曼散射,其中νR称为喇曼频率。散射光频率的改变是由于入射光量子与散射分子之间发生了能量交换,交换的能量(hνR)由散射分子的振动或转动能级决定。后人研究表明,喇曼效应对于研究分子结构和进行化学分析都是非常重要的。

拉曼效应是如何发现的?

拉曼效应(Raman scattering),也称拉曼散射,1928年由印度物理学家拉曼发现,指光波在被散射后频率发生变化的现象。1930年诺贝尔物理学奖授予当时正在印度加尔各答大学工作的拉曼(Sir Chandrasekhara Venkata Raman,1888——1970),以表彰他研究了光的散射和发现了以他的名字命名的定律。

在光的散射现象中有一特殊效应,和X射线散射的康普顿效应类似,光的频率在散射后会发生变化。频率的变化决定于散射物质的特性。这就是拉曼效应,是拉曼在研究光的散射过程中于1928年发现的。在拉曼和他的合作者宣布发现这一效应之后几个月,苏联的兰兹伯格()和曼德尔斯坦()也独立地发现了这一效应,他们称之为联合散射。拉曼光谱是入射光子和分子相碰撞时,分子的振动能量或转动能量和光子能量叠加的结果,利用拉曼光谱可以把处于红外区的分子能谱转移到可见光区来观测。因此拉曼光谱作为红外光谱的补充,是研究分子结构的有力武器。

1921年夏天,航行在地中海的客轮“纳昆达”号()上,有一位印度学者正在甲板上用简便的光学仪器俯身对海面进行观测。他对海水的深蓝色着了迷,一心要追究海水颜色的来源。这位印度学者就是拉曼。他正在去英国的途中,是代表了印度的最高学府——加尔各答大学,到牛津参加英联邦的大学会议,还准备去英国皇家学会发表演讲。这时他才33岁。对拉曼来说,海水的蓝色并没有什么稀罕。他上学的马德拉斯大学,面对本加尔(Bengal)海湾,每天都可以看到海湾里变幻的海水色彩。事实上,他早在16岁(1904年)时,就已熟悉著名物理学家瑞利用分子散射中散射光强与波长四次方成反比的定律(也叫瑞利定律)对蔚蓝色天空所作的解释。不知道是由于从小就养成的对自然奥秘刨根问底的个性,还是由于研究光散射问题时查阅文献中的深入思考,他注意到瑞利的一段话值得商榷,瑞利说:“深海的蓝色并不是海水的颜色,只不过是天空蓝色被海水反射所致。”瑞利对海水蓝色的论述一直是拉曼关心的问题。他决心进行实地考察。于是,拉曼在启程去英国时,行装里准备了一套实验装置:几个尼科尔棱镜、小望远镜、狭缝,甚至还有一片光栅。望远镜两头装上尼科尔棱镜当起偏器和检偏器,随时都可以进行实验。他用尼科尔棱镜观察沿布儒斯特角从海面反射的光线,即可消去来自天空的蓝光。这样看到的光应该就是海水自身的颜色。结果证明,由此看到的是比天空还更深的蓝色。他又用光栅分析海水的颜色,发现海水光谱的最大值比天空光谱的最大值更偏蓝。可见,海水的颜色并非由天空颜色引起的,而是海水本身的一种性质。拉曼认为这一定是起因于水分子对光的散射。他在回程的轮船上写了两篇论文,讨论这一现象,论文在中途停靠时先后寄往英国,发表在伦敦的两家杂志上。

拉曼返回印度后,立即在科学教育协会开展一系列的实验和理论研究, 探索 各种透明媒质中光散射的规律。许多人参加了这些研究。这些人大多是学校的教师,他们在休假日来到科学教育协会,和拉曼一起或在拉曼的指导下进行光散射或其它实验,对拉曼的研究发挥了积极作用。七年间他们共发表了大约五六十篇论文。他们先是考察各种媒质分子散射时所遵循的规律,选取不同的分子结构、不同的物态、不同的压强和温度,甚至在临界点发生相变时进行散射实验。1922年,拉曼写了一本小册子总结了这项研究,题名《光的分子衍射》,书中系统地说明了自己的看法。在最后一章中,他提到用量子理论分析散射现象,认为进一步实验有可能鉴别经典电磁理论和光量子1923年4月,他的学生之一拉玛纳桑()第一次观察到了光散射中颜色改变的现象。实验是以太阳作光源,经紫色滤光片后照射盛有纯水或纯酒精的烧瓶,然后从侧面观察,却出乎意料地观察到了很弱的绿色成份。拉玛纳桑不理解这一现象,把它看成是由于杂质造成的二次辐射,和荧光类似。因此,在论文中称之为“弱荧光”。然而拉曼不相信这是杂质造成的现象。如果真是杂质的荧光,在仔细提纯的样品中,应该能消除这一效应。

在以后的两年中,拉曼的另一名学生克利希南()观测了经过提纯的65种液体的散射光,证明都有类似的“弱荧光”,而且他还发现,颜色改变了的散射光是部分偏振的。众所周知,荧光是一种自然光,不具偏振性。由此证明,这种波长变化的现象不是荧光效应。

拉曼和他的学生们想了许多办法研究这一现象。他们试图把散射光拍成照片,以便比较,可惜没有成功。他们用互补的滤光片,用大望远镜的目镜配短焦距透镜将太阳聚焦,试验样品由液体扩展到固体,坚持进行各种试验。

与此同时,拉曼也在追寻理论上的解释。1924年拉曼到美国访问,正值不久前.康普顿发现X射线散射后波长变长的效应,而怀疑者正在挑起一场争论。拉曼显然从康普顿的发现得到了重要启示,后来他把自己的发现看成是“康普顿效应的光学对应”。拉曼也经历了和康普顿类似的曲折,经过六七年的 探索 ,才在1928年初作出明确的结论。拉曼这时已经认识到颜色有所改变、比较弱又带偏振性的散射光是一种普遍存在的现象。他参照康普顿效应中的命名“变线”,把这种新辐射称为:“变散射”(modified scattering)。拉曼又进一步改进了滤光的方法,在蓝紫滤光片前再加一道铀玻璃,使入射的太阳光只能通过更窄的波段,再用目测分光镜观察散射光,竟发现展现的光谱在变散射和不变的入射光之间,隔有一道暗区。

就在1928年2月28日下午,拉曼决定采用单色光作光源,做了一个非常漂亮的有判决意义的实验。他从目测分光镜看散射光,看到在蓝光和绿光的区域里,有两根以上的尖锐亮线。每一条入射谱线都有相应的变散射线。一般情况,变散射线的频率比入射线低,偶尔也观察到比入射线频率高的散射线,但强度更弱些。

不久,人们开始把这一种新发现的现象称为拉曼效应。1930年,美国光谱学家武德()对频率变低的变散射线取名为斯托克斯线;频率变高的为反斯托克斯线。

拉曼发现反常散射的消息传遍世界,引起了强烈反响,许多实验室相继重复,证实并发展了他的结果。1928年关于拉曼效应的论文就发表了57篇之多。科学界对他的发现给予很高的评价。拉曼是印度人民的骄傲,也为第三世界的科学家作出了榜样,他大半生处于独立前的印度,竟取得了如此突出的成就,实在令人钦佩。特别是拉曼是印度国内培养的科学家,他一直立足于印度国内,发愤图强,艰苦创业,建立了有特色的科学研究中心,走到了世界的前列。

应用生物技术很多题目的,之前也没空写,还是同事介绍的莫’文网,相当快速的说,才几天功夫基于融资目标的江苏生物技术企业创业成长期资本运营研究丙烯酰胺类水凝胶的溶胀特性及其在生物技术中的应用研究现代生物技术的伦理问题探析生物技术和专利保护范围发展生物技术产业的关键问题及其对策现代生物技术知识产权保护研究生物技术发明的权属保护与国际协调山葵提取物抑制胆管癌细胞的研究及由此引发出的《现代生物技术》教学的新观点生物技术产业企业的融资渠道与方法重庆市生物技术产业竞争力综合评价及提升研究利用生物技术防治甘蔗糖厂蔗饭问题的基础研究(一)生物医药领域投资机会的选择农业生物技术产业风险投资项目评估北京中恒有限公司投资参股北京金可生物技术有限公司案例我国生物经济发展的现状分析及对策生物技术在烤烟烟叶发酵过程中的作用生物技术与BLUP法在肉羊育种中的应用研究转基因生物技术损害赔偿制度探讨实物期权在新兴生物技术管理中的应用纳米生物技术治疗肝癌:p53-白蛋白纳米粒的制备和转染的研究转基因动物专利及其相关研究江苏省十一五医药生物技术重点领域选择研究辽宁省生物技术产业综合评价及发展模式生物技术产业的发展NBIC会聚技术的社会影响与发展对策与研究

生物各种组织和细胞都由蛋白质、核酸、脂类等生物分子组成,生物分子由于电子偶极矩化学键不同,因此每一种生物分子在生物光谱学上都有其特征性的振动谱带。细胞内生物分子成分和(或)构象发生变化,就会引起振动谱带精细的改变,而生物光谱技术如红外光谱技术、拉曼光谱技术可以精确检测和评价这些微观的变化,从而反映组织或细胞的生物分子的特征性变化。不同的生物光谱学技术,虽然其工作原理不尽相同,但都具有快速、客观、无创、重现性好等优点。由于生物光谱实验通常将采集涵盖复杂生物化学信息数据集的成百上千个图谱,而且这些图谱存在着很多的重叠性或只是细微的差异,因此对其图谱的分析最好应用多变量分析的方法,如主成份分析和/或线性判别分析。多变量分析不仅对原始数据进行了降维,判别组间差异,而且能够容易鉴别获取波数相关的生物标记物,如糖原含量、脂质含量、蛋白质构象变化和磷酸化作用以及DNA/RNA的结构改变。当前,与环境致癌物相关的肿瘤发病率呈不断上升趋势,准确地检测环境致癌物的人群暴露浓度以及研究其作用致癌机理,是预防和治疗癌症的重要任务之一。苯并芘是环境污染物中一种前畸变和前致癌物,是多环芳烃类化学物的典型代表。传统上,遗传毒性的短期评价实验通常检测的是高剂量(≥μmol/L)化学物的毒性,但根据这些实验结果发现的生物学效应,如何外推到与人群暴露背景水平相一致的低剂量污染物引起的生物学效应仍然是不明确的。因此,探讨能够有效评价低剂量环境化学物的毒性及其毒理学机制的方法是非常迫切的。本研究应用衰减全反射-傅立叶变换红外光谱技术探讨和研究低剂量苯并芘(最低剂量低至nmol/L级别)对不同周期(S期和Go/G,期)的靶细胞的生物学改变和其毒作用机理。正常组织生长的生物分子特征变化的研究,不仅能更好地深入理解组织成分结构-功能关系,也会为组织的病理改变的研究、疾病的预防与治疗提供更深的认识。本研究还同时利用衰减全反射-傅立叶变换红外光谱和拉曼光谱技术研究在鸡胚胎10-18天期间,以每间隔1天的短时间点内,持续追踪角膜生长、透明化过程中生物分子的微观改变。因此,不仅能够为更好地理解角膜生长过程中的结构-功能关系,也会为生物光谱技术用于正常组织学和病理学的研究提供新的视角。因此,本研究运用生物光谱技术(衰减全反射-傅立叶变换红外光谱和/或拉曼光谱技术)及对图谱的多变量分析方法探讨细胞损伤和正常组织发生的生物分子特征性变化,为探讨和评价细胞和组织的微观变化提供新的手段和视角。目的衰减全反射-傅立叶变换红外光谱(ATR-FTIR)是一种通过无创性方式,鉴别研究细胞生物分子特征性变化的全新技术方法。本研究运用ATR-FTIR光谱技术以及多变量分析研究不同剂量的B[a]P对不同周期的MCF-7乳腺癌细胞生化分子的影响。

相关百科
热门百科
首页
发表服务