论文发表百科

电化学研究论文

发布时间:2024-07-04 17:10:48

电化学研究论文

1990年以来发表的论文(Eng.):新世纪1. Surface-modified Graphite as an improved intercalating Anode for Lithium ion Batteries,, , e l,Electrochem. & Solid State Lett. , 6 (2003).A30-A332. Possible use of ferrocyanide as a redox additive for prevention of electrolyte decomposition in overcharged nickel batteries, Electrochem. Acta, (2003)3. Temperature Effects on the Electrodeposition of Zinc, u, e l ,J. Electrochem. Soc., 150 (2003) . Hydrogen production from catalyzed hydrolysis of sodium borohydride solution using nickel boride catalyst,, e l,Int. J. Hydrogen Energy 28 (2003)10955. A Mechanistic Study of Electrocatalytic Reduction of Oxygen on Manganese Dioxides in Alkaline Aqueous Solution, Y. L. Cao, H. X. Yang*, X. P. Ai, and L .F .Xiao, J. Electroanal. Chem.,(2003) ,6. Structural and electrochemical characterization of calcium zincate mechanochemically synthesized as rechargeable anodic materials,, H. Yang, X. Ai, J. Yu and Y. Cao, J. Appl. Electrochem., 33(2003)6077. A study of calcium zincate as negative electrode materials for secondary batteries, u, l, J. Power Sources, 103 (2001) 938. Effects of Anions on the Zinc Electrodeposition onto Glassy-Carbon Electrode, u, e l,, Russ. J. Electrochemistry, 38 (2002) . Modeling and prediction for discharge lifetime of battery systems using hybrid evolutionary algorithms, , J. Yu et al., Computer and Chem., 25(2001)251上世纪10. The influences of organic additives on Zinc electrocrystallization from KCl solution, u, , , l, J. Electrochem. Soc., 146 (1999)178911. A new approach to the estimation of electrocrystallization parameters, J. Electroanal. Chem., 474 (1999)6912. Preparation and characterization of LiNiO2 synthesized from Ni(OH)2 and , , , u, i, J. Power Souces, 79(1999)25613. A study of LiMn2O4 synthesized from LiCO3 and MnCO3, u, i, , i, J. Power Sources, 74(1998)24014. The kinetic study on the electrolytic hydrogenation of nitrobenzene on the hydrogen-storage alloy electrode, S. Lu, i, u, iu, , J. Electroanal. Chem., 457(1998)14915. Initial activation of hydrogen storage alloy electrode by chemical modification, J. Rare earth metals, S. Lu, i, u, iu, u, . Rare Earths,16( 4), 307(1998)16. Effects of lanthanum and neodymium hydroxides on secondary alkaline zinc electrode, J. L. Zhou, Y. H. Zhou , H. X. Yang , J. Power sources, 69,(1997)16917. Polypyridine complexes of iron used as redox shuttles for overcharge protection of secondary lithium batteries. C. S. Cha , X. P. Ai, and H. X. Yang , J. Power Sources , 54, (1995)25518. In-situ ESR study on electrochemical lithium intercalation into petrulum coke , L. Zhuang, J. Lu, X. Ai, H. Yang , J. Electroanal. Chem. , 397, (1995)31519. Powder Microelectrodes, C. S. Cha, C. M. Li , H. X. Yang , P. F. Liu , J. Electroanal. Chem. , 368, (1994)4720. Electrochemical and structural studies of the composite MnO2 cathode doped with metal oxides , H. X. Yang, X. P. Ai , M .Lei ,S. X. Li , J. Power sources , 43-44, (1993)53321. Recent advances in experimental methods applied to lithium battery researches , J. Power Sources , C. S. Cha , H. X. Yang, J. Power sources , 43-44, (1993). Fractal structure structure of colloidal silver and its effects on SERS intensities of crystal violet , Chinese Chem. Letters, 3, (1992)91923. The observation of enhanced RAMAN scattering of gaseous molecules by Hg microdroplets, Chinese Chem. Letters, 2, (1991)54924. A novel optically transparent thin layer electrode for in situ IR spectroelectrochemistry , Chinese Chem. Letters, 2, (1991)25. Fiber optic thin-layer electrode cell for in situ transmission spectro- electrochemistry , Chinese Chem. Letters, 2, (1991)329 1990年以来发表的论文(中文):21世纪1. 联苯用作锂离子电池过充保护剂的研究, 肖利芬, 艾新平, 曹余良, 杨汉西, 电化学, 9(1), 23(2003)2. 塑料化聚合物电解质的导电性质, 艾新平,董全峰,杨汉西, 电池,32(S1), 48(2002)3. 尖晶石型ZnMn_2O_4的合成及其电化学行为, 李升宪,李保旗,杨汉西,艾新平, 电池,32, 3( 2002)4. 锌酸钙的制备与电化学性能研究, 喻敬贤,杨汉西,朱晓明,艾新平, 电池, 31(2) 65(2001)5. 圆柱型锌空气电池研究, 李升宪,周贵茂,艾新平,杨汉西, 电化学,6(3), 341(2000).6. 塑料化薄膜锂离子电池的制造技术, 艾新平,洪昕林,董全峰,李升宪,杨汉西, 电化学, 6(2), 193(2000)上世纪90年代7. LiMn2O4正极在高温下性能衰退现象的研究, 胡晓宏,杨汉西,艾新平,李升宪,洪昕林, 电化学, 5(2), 224(1999)8. 纳米光亮镀锌层的结构研究, 喻敬贤,陈永言,黄清安,杨汉西, 高等学校化学学报,20(1),107 (1999)9. 添加剂对锌结晶行为的影响及参数的演化优化, 化学学报, 57,953(1999)10. 锡基非晶态材料的化学合成及其嵌锂性能的初步研究, 刘立,杨汉西,孙聚堂,艾新平, 电化学,4(4), 362 (1998)11. 石墨负极锂嵌碳机理的研究, 周震涛,黄静,汪国杰,艾新平,杨汉西,, 华南理工大学学报(自然科学版) 1998年07期12. 贮氢合金用作有机加氢反应新型催化剂研究进展, 卢世刚,杨汉西,杨聪智, 化学通报 12, 1(1998)13. 电阻应变法用于密封电池内压变化的动态检测, 杨汉西, 胡容辉,艾新平,杨聪智,李升宪, 电化学, 4(3), 318(1998)14. 薄膜塑料锂离子电池的初步研究, 董全峰, 杨汉西, 艾新平, 胡晓宏,李升宪, 电化学, 4(1), 9(1998)15. 电化学制备Ni-Cu/Cu超晶格多层膜, 喻敬贤,陈永言,黄清安,杨汉西, 武汉大学学报(自然科学版) 1998年06期16. 氢气在贮氢合金电极上析出反应机理的研究, 卢世刚,李群,刘庆国,路春,党兵,杨汉西, 电化学,4(3),265 (1998)17. 非水介质中Zn-MnO_2的可充性研究, 李保旗,杨汉西,李升宪,杜米芳,艾新平, 电化学,3(3), 277 (1997)18. 泡沫镍的电沉积制备技术, 何细华,胡蓉晖,杨汉西,左正忠, 电化学,2(1), 66 (1996)19. 微电极定量方法评价贮氢合金的电化学性质, 胡蓉晖,杨汉西,刘金成,李升宪,查全性, 电化学,2(4), 391(1996)20. 贮氢合金电极的活化方法和作用机理研究, 胡蓉晖,杨汉西,卢世刚,李升宪,刘金城,杨聪智, 电化学,2(2), 170 (1996)21. 电沉积泡沫铜, 何细华,左正忠,杨汉西, 材料保护 1996年11期22. 无氟微酸性体系镀铅研究, 何细华,左正忠,杨汉西, 电镀与环保 1995年05期23. 贮氢合金用作硝基苯电解加氢的催化电极研究, 卢世刚,杨汉西,王长发, 电化学, 1(1), 15(1995)24. 金属氢化物-镍电池充电过程消气反应研究, 刘金城, 杨汉西, 胡蓉辉, 吴锋, 电源技术, 19(4), 1(1995)25. 超薄层红外光透电解池的设计和应用, 肖以金,杨汉西,查全性,, 分析化学 1994年02期26. 电化学石英晶体微天平对银电极氧化还原过程的研究, 陈胜利, 吴秉亮, 杨汉西, 高等学校化学学报, 15(1), 103(1994)27. 炭材料作为储锂负极的研究, 杨汉西, 雷鸣,李升宪,艾新平, 应用化学, 10(1), 113(1993)28. Li/SOCl2 电池的拉曼光谱电化学研究, 钟发平, 杨汉西, 查全性等, 高等化学学报, 14, 265(1993)29. 简易多功能光谱电化学池的设计, 肖以金, 杨汉西, 冯之刚, 伏亚萍, 光谱学与光谱分析, 13(6), 103(1993)30. 激光拉曼光谱的光纤采样技术, 钟发平, 吴国帧, 杨汉西等, 光谱学与光谱分析, 13(6), 29(1993)31. 甲基吡啶电氧化过程的表面增强RAMAN光谱研究, 钟发平, 杨汉西, 查全性, 化学学报, 51, 273(1993)32. 阴极限制型Li/SOCl2电池过放电产物的热分析, 肖以金, 杨汉西, 查全性, 应用化学, 10(3), 54(1993)33. C60 电化学还原的稳态性质研究,杨汉西, 肖以金, 朱凌等, 物理化学学报, 8, 580(1992)34. 微型拉曼电解池现场研究硫酰氯的电化学还原, 钟发平, 杨汉西, 徐知三, 查全性, 物理化学学报, 8, 266(1992)35. 锌离子在λ-MnO2中的电化学嵌入, 吴智远, 杜米芳, 杨汉西等, 应用化学, 9(2), 99(1992)36. 锂电化学嵌入尖晶石二氧化锰研究, 吴智远, 杨汉西, 石中等, 电池, 22(1), 13(1992)37. 锂离子电池炭负极研究, 杨汉西, 艾新平, 雷鸣, 李升宪, 电源技术, 5, 2(1992)38. MnO2作为二次锂电池阴极材料研究, 李升宪, 杨汉西, 吴智远, 汪振道, 电源技术, 4, 7(1991)39. AA-型Li/λ-MnO2 二次电池研究, 李升宪, 杨汉西, 吴智远等, 电池,21(5), 10(1991)40. 锂/硫酰氯电池体系的初步研究, 杨汉西,钟发平, 汪振道等, 电源技术, 2, 5(1990)41. 大功率锂/亚硫酰氯电池高效炭阴极研究, 汪振道, 杨汉西, 范玉章, 雷鸣, 电源技术, 1, 3(1990)

简单的就定义开头呗,写写电化学在现实生活中的应用情况,简单介绍介绍。仅供参考哈

第4章 电化学原理及应用 5课时 教学目标及基本要求 1. 明确原电池及相关的概念。了解电极的分类,了解电极电势的概念。 2. 能用能斯特方程式进行有关计算。能应用电极电势的数据判断氧化剂、还原剂的相对强弱及氧化还原反应自发进行的方向和程度。 3. 了解摩尔吉布斯自由能变与原电池电动势,标准摩尔吉布斯自由能变与氧化还原反应平衡常数的关系。 4. 了解电解、电镀、电抛光的基本原理,了解它们在工程上的应用。了解金属腐蚀及防护原理。 教学重点 1. 原电池符号的书写 2. 影响电极电势的因素 3. 电极电势与吉布斯的关系 4. 电极电势的应用 教学难点 1. 电极类型 2. 能斯特方程及相关计算 3. 应用电极电势判断氧化剂、还原剂的相对强弱 本章教学方式(手段)及教学过程中应注意的问题 本章采用多媒体结合板书的方式进行教学。 在教学过程中注意 1. 原电池的设计 2. 浓度、酸度对电极电势的影响 3. 电极电势的应用 主要教学内容 原电池(Electrochemical cell) 任何自发进行的氧化还原 (oxidation-reduction) 反应,只要设计适当,都可以设计成原电池 用以产生电流。 原电池的结构与工作原理 Zn(s)+Cu2+(aq)=Zn2+(aq)+Cu(s) 负极 Zn(s) → Zn2+(aq)+2e-(Oxidation) 正极 Cu 2+(aq)+2e-→ Cu(s) (Reduction) 总反应: Zn(s)+ Cu2+(aq) → Zn2+(aq)+ Cu(s) 原电池的符号(图式) (cell diagram) 表示 : 如铜 - 锌原电池 , : Zn ∣ ZnSO 4(c1) ┊┊ CuSO 4(c2) ∣ Cu 规定: (1) 负极 (anode) 在左边,正极 (Cathode) 在右边,按实际顺序从左至右依次排列出各个相的组成及相态; (2) 用单实竖线 表示相界面 , 用双虚竖线 表示盐桥; (3) 溶液注明浓度,气体注明分压; (4) 若溶液中含有两种离子参加电极反应, 可用逗号隔开,并加上惰性电极. 电极类型 按氧化态、还原态物质的状态分类: 第一类电极: 元素与含有这种元素离子的溶液一起构成的电极。 (1) 金属──金属离子电极: Zn 2+| Zn ;Cu 2+| Cu ;Ni 2+| Ni (2) 气体 —— 离子电极: H + |H2(g) | Pt 2H + + 2e-= H 2(g) Cl -| Cl2(g) | PtCl2(g) + 2e-=2Cl - 第二类电极: (1) 金属──金属难溶盐电极: 甘汞电极: Cl -|Hg2Cl 2(s)| Hg Hg 2Cl 2(s) + 2e-= 2 Hg (s) + 2 Cl- 银-氯化银电极: Cl -| AgCl(s) | Ag AgCl(s) + e-= Ag (s) + Cl- (2) 金属──难溶金属氧化物电极: 锑 — 氧化锑电极: H ,H2O(g) | Sb2O 2(s) |Sb Sb 2O 2(s) + 6 H+ + 6 e-= 2Sb +3H2O(g) 第三类电极 : 氧化还原电极: MnO 4-,Mn 2+| Pt 2 MnO4-+ 16H+ + 10e-→ 2Mn2++8H2O 电极电势 + 双电层理论 原电池能够产生电流说明在电池的两个电极之间有电势差,构成原电池的两个电极各自具有不同的电势。 -Z+ M(s) - Ze --> M (aq ) 在金属表面与附近溶液间形成双电层,产生电势差。 每一个电极的电势称为电极电势 。 电极电势的测量 电极电势是强度性质。同时不能测定电极电势的绝对值,只能用电位差计测出两电极电势的差值。 通常选择标准氢电极作为比较的标准,规定标准氢电极电势为零。 标准氢电极的组成如图 将镀有铂黑的铂片浸入 c (H +)=的溶液中,通入压力为 100kPa 的纯氢气流,使氢气冲打铂片并建立平衡: 2H +(aq )+2e-H 2(g ) 标准氢电极表示为: H +() │ H2(100kPa) │ Pt 并规定,标准氢电极电势恒为零。记为 ; =0V 测定其他电极的标准电极电势时,可将标准态的待测电极与标准氢电极组成原电池,测定原电池的电动势,即可确定电极的标准电极电势 E (电极) E Θ= E Θ( 正 )- E Θ( 负 ) 例 E θ(Cu2+/ Cu ) 的测量 Pt|H2(g, 105Pa)|H+()|| Cu2+()|Cu 测出 E θ= Θ E = E (Cu/ Cu ) - E (H/ H2) E (Cu/ Cu ) = E + E (H/ H2) = - 0 = ( 电极电势的测定 ) θ 2+ θ θ + θθ2+θ+ 由于氢标准电极携带不便,常用饱和甘汞电极来代替。饱和甘汞电极由糊状的 Hg 2Cl 2和 KCl 饱和溶液组成。表示为 Cl -( 饱和 )| Hg2Cl 2(s)|Hg 电极反应 : Hg2Cl 2 (s)+2e-2Hg+2Cl 时 E{ Hg2Cl 2 (s)/Hg }= 附表 11 列出了标准电极电势 电极电势的影响因素 (1) Nernst 方程式 非标准状态下的电极电势不仅与电极自身的组成有关,还与所处的条件有关 ( 温度,浓度 , pH 值等 ). 电极反应通式: aO+ze-bR 热力学研究表明 , 非标准态下的电极电势为 : - E (electrode) = E -1 -1 (electrode) + () R= ; T-K; z- 电极反应中电子的化学计量数 ; F= 96485C .mol 简化式 : -1 E( 电极 )= E ( 电极 )+ () 应用 Nernst 方程式应注意: 1)浓度以化学计量数为指数 2)纯 l 、 s 物质的浓度不列入方程中: 例: Cu (s ) +2Ag+(aq)=2Ag(s)+Cu2+ (aq) 3) 气体用相对分压 , 浓度用相对浓度 - 例: O 2(g)+2H2O(l)+4e←→4OH 4) 有 H 或 OH 参与反应,应列入 Nernst 方程中 MnO 4-/Mn2+电对 MnO 4 (aq)+8H(aq)+5e←→Mn(aq)+4H2 O(l) -+ 2+ + - 5) E ( O/R )的 值与电极反应方程式书写无关 例,计算 OH -浓度为 ·dm -3时,氧的电极电势 [P(O2)=100Kpa T=] 解: O 2(g)+2H2O(l)+4e←→4OH- (aq) =·dm -3时 = = 电极反应写成: 1/2 O2(g)+H2O(l)+2e=2OH- (aq) 从上可知, 电极电势 与反应式书写无关 (2) Nernst 方程式讨论: • c(O) ——氧化态一侧各物质浓度的乘积 c(R ) ——还原态一侧各物质浓度的乘积 • 固体、纯液体( H 2O )不列入方程式中 • • • • 改变物质的浓度可以改变电极电势的大小 电极物质自身浓度发生变化 溶液的酸度发生变化 生成沉淀使电极物质浓度发生变化 • 生成配合物使电极物质浓度发生变化 例 计算 Cr 2O 72-/Cr3+电对在 pH=1 和 pH=6 是的电极电势。 时,设 c(Cr2O 7)=c (Cr) 1mol·dm 。 2-+3+ 解: Cr 2O 7+14H+6e-= 2Cr+ 7H2O 2-3+ -3 E(Cr2O 7/Cr) = E(Cr2O 7/Cr) + () lg= () lg {c( H+) /cθ} 14 = - 当 pH=1 时, E(Cr2O 72-/Cr3+) = 当 pH=6 时, E(Cr2O 7/Cr) = 可见:含氧酸及含氧酸盐的电极电势极大地受酸度的影响。 电动势电极电势 E 与 的关系 ) 等于原电池可做的最大功 W max. 2-3+ 2-3+θ2-3+ 在等温等压下,吉布斯自由能的减小 (- - 即 : = W max =QE=z () FE () 若过程处于标准状态,则 , 电极电势的应用 (1)比较氧化剂和还原剂的相对强弱 . () 越小, Re 还原强 若 Ox/Re 在标态下: 越大, Ox 氧化性强 /V 电极反应 例:电对 标准电极电势 Sn 4+/Sn2++ Sn4++2e←→Sn2+ Cu 2+/ Cu + Cu2++2e←→Cu Fe 3+/Fe2++ Fe3++e←→Fe2+ 最大 Fe 3+是最强氧化剂 最小 Sn 2+是最强还原剂 •判断反应发生的方向 任一反应判据:ΔG 而 ΔG = - zFE ≤ 0 而 z > 0 F > 0 反应自发性的判据为: E > 0 自发 即: E (正) > E(负) 反应自发 例: pH= 介质中判断下列反应进行的方向 2MnO 4-(aq)+16H+(aq)+10Cl-(aq) = 2Mn2+(aq)+5Cl2(g)+8H2O(l) 解:已知: = + 假设其反应正向进行,则 Cl 2/Cl作负极, MnO 4/Mn为正极 MnO 4-+8H+(aq)+5e = Mn2++4H2 O(l) --2+ = + 故 Cl 2/Cl-应为正极; 所以,反应逆向进行 • 氧化还原进行程度的判断 () 例:由标准钴电极与标准氯电极组成原电池测得其电动势为 . 此时钴电极为负极。已知 = 问 (1) =? (2) 反应方向 . (3) =? (4) 当 [Co2+]= mol·dm -3时 E= ? 解: Co+Cl2==Co2++ 2Cl- • = – 如 E (+) > E (-) 则反应 自发 而 (3) (正 ) = > (负) = – ∴ 正向自发 (4) = 化学电源 干电池 (1)锌锰干电池 负极: 锌片(锌皮) 正极: MnO 2、石墨棒(碳棒) 电解质: NH 4Cl 、 ZnCl 2、淀粉 电极反应 负极: Zn - 2e-= Zn 正极: MnO 2+ 2 NH4+ +2e-→ Mn2O 3+ 2NH3+ H2O 总反应: Zn + MnO2+ 2 NH4+→ Zn2++ Mn2O 3+ 2NH3+H2O 电池符号 Zn │ ZnCl2、 NH 4Cl │ MnO2, C 碱性锌锰电池: Zn │ ZnCl2、 KOH │ MnO2, C 电压: (2) 锌汞电池 负极: Zn (汞齐) 正极: HgO 、碳粉 电解质: 饱和 ZnO 、 KOH 糊状物 电极反应 负极: Zn (汞齐) + 2 OH→ ZnO + H2O + 2e 正极: HgO + H2O +2e-→ Hg +2OH- 总反应: Zn (汞齐) + HgO → ZnO + Hg 电池符号: Zn (汞齐) │ KOH ( 糊状,含饱和 ZnO) │ HgO (C ) 电压: 蓄电池 铅蓄电池 负极: Pb-Sb 格板中填充海绵状 Pb 正极: Pb-Sb 格板的孔穴中填充 PbO2 电解质:稀硫酸(30% 密度: .cm-3) --2+ 放电时的电极反应 负极 (Pb 极 ) : Pb + SO4 = PbSO4+ 2e( 氧化 ) 正极(PbO 2极): PbO 2+ 4H++ SO42- + 2e-= PbSO4+ 2H2O (还原) 总反应: PbO 2+ Pb + 2H2SO 4= 2 PbSO4+ 2H2O 充电时的电极反应 负极 (Pb 极 ) : PbSO 4+ 2e-= Pb + SO42- 正极(PbO 2极): PbSO 4+ 2H2O = PbO2+ 4H+ + SO42- + 2e- 2-- 总反应: 2 PbSO4+ 2H2O = PbO2+ Pb + 2H2SO 4 电动势: 新型燃料电池和高能电池 • 燃料电池 还原剂(燃料): H 2联氨( NH 2-NH 2) CH 3OH CH 4—— 负极 氧化剂 : O 2空气 —— 正极 电极材料: 多孔碳、多孔镍, Pt Pd Ag 等贵金属(催化剂) 电解质: 碱性、酸性、固体电解质、高分子等 碱性氢 — 氧燃料电池 负极(燃料极) —— 多孔碳或多孔镍(吸附H 2) 正极(空气极) —— 多孔性银或碳电极(吸附O 2) 电解液 ——30%KOH 溶液,置于正负极之间。 电池符号: (C ) Ni │ H2│ KOH (30%) │ O2│ Ag (C) 电池反应: 负极 2H 2+ 4OH-= 4H2O + 4e-(氧化) 正极 O 2+ 2H2O + 4e-= 4OH-(还原) 总反应 2H 2+ O2= 2H2O 电动势: (2) 高能电池 —— 具有高―比能量‖和高―比功率‖的电池 比能量、比功率 —— 按电池的单位质量或单位体积计算的电池所能提供的电能和功率。 锂电池 E Θ ( Li + /Li ) = Li —MnO 2非水电解质电池 : 负极 —— 片状金属 Li 正极 ——MnO 2 电解质 ——LiClO 4+ 混合有机溶剂(碳酸丙烯脂 + 二甲氧基乙烷) 隔膜 —— 聚丙烯 电池符号: Li │ LiClO4│ MnO2│ C 电池反应: 负极 Li = Li+ e 正极 MnO 2+ Li++ e-= LiMnO2 总反应 Li + MnO2= LiMnO2 电池的电动势: 电解 + - 电解现象 将直流电通过电解液使电极上发生氧化还原反应的过程叫电解。借助电流引起化学变化,将电能转变为化学能的装置,叫做电解池。电解池中与外界电源的负极相接的极叫做阴极,和外界电源正极相接的极叫做阳极,电子从电源负极流出,进入电解池的阴极,经电解质,由电解池的阳极流回电源的正极。在电解中正离子向阴极移动,负离子向阳 极移动,阴极上发生还原反应,阳极上发生氧化反应。 电解池是把电能转变成化学能的装置。 非自发 : Cu +2Cl =Cu(s)+Cl2 (q) = kJ·mol -1 >>0 • 分解电压 分解电压——使电解顺利进行所必需的最小外加电压。 产生分解电压的原因: 在电解过程进行时 , 电极上产物与电解池溶液组成原电池 , 其电动势与外加电源的电势方向相反 , 这种电动势称为反电动势。 例如 , 用 Pt 作惰性导体电解 ·dm -3 NaOH 溶液,阳极上析出 O 2 , 阴极上析出氢, O 2 和 H 2 组成电池 : Pt ︱ H 2 (g) ︱ NaOH(·dm -3 ) ︱ O 2(g) ︱ Pt 电池的电动势与工作电池的电动势 E w 正相反。 正极: 2H 2 O + O2 ((g) + 4e = 4OH 负极: 2H 2 = H+ + 4e - 电池反应: 2H 2 (g) + O2(g) =2 H2 O 理论分解电压的计算 理论上,分解电压应等于电解池两极的反电动势,故称理论分解电压 E 理分 。 E(+)=E (O2 /OH- ) = Eθ(O2 /OH- ) +() lg(P(O2 )/ Pθ)/ {c( OH- )/cθ}4 = () lg(1 / )4 = E(-)=E (H+/ H2 ) = Eθ(H+/ H2 ) +() lg{c(H+)/cθ} 4 /{( P(O2 )/ Pθ)} 2 -134 = 0+ () lg(10 ) = -0 .77V E 理分 = E(+) - E(-) = -()= • 超电势 某一电流密度下的电极电势与平衡电势之差的绝对值称该电极的超电势,有时也叫超电压,符号 η 。 阳极超电势 η (阳)=E(阳) ﹣ E(阳, 平) 阴极超电势 η( 阴 )=E(阴 , 平) ﹣ E(阴 ) --2+ - 根据产生超电势的原因不同,超电势又分浓差超电势,化学超电势,电阻超电势等等。 浓差极化 发生电极反应时,电极表面附近溶液浓度与主体溶液浓度不同所产生的现象称为极化。 可通过增大电极面积,减小电流密度,提高溶液温度,加速搅拌来减小浓差极化。 电化学极化 主要由电极反应动力学因素决定。由于分步进行的反应速度由最慢的反应所决定,即克服活化能要求外加电压比可逆电动势更大反应才能发生。 电镀 电镀是应用电解的原理将一种金属镀到另一种金属表面的过程。 阴极——被镀件(铜棒) 电镀 阳极——镀层金属(Zn 片) 电解液——含有欲镀金属的盐溶液。(一般不选用简单离子的盐溶液,会使镀层粗糙、厚薄不匀。) 以镀锌为例,电镀液为: ZnO + NaOH +添加剂 ZnO + NaOH + H 2O=Na2 [Zn(OH)4 ] [Zn(OH)4]2-= Zn2+ + 4OH - 配离子的形成,降低了 Zn 2+ 的浓度,使金属锌在镀件上析出的过程中有了一个适宜的速率,可得到紧密光滑的镀层。两极的主要反应为: 阴极: Zn + 2e = Zn 阳极: Zn - 2e = Zn2+ 电抛光及电解加工 • 电抛光: 电抛光是金属表面精加工的方法之一。 原理:在电解过程中,利用金属表面上凸出部分的溶解速率大于金属表面凹入部分的溶解速率,从而使金属表面平滑光亮。 阴极——铅板 电抛光 阳极——欲抛光工件(钢铁) 2+ 电解液:磷酸+硫酸+铬酐(CrO 3) 电抛光时铁因氧化而发生溶解 阳极: Fe - 2e = Fe2+ 产生的 Fe 与溶液中的 Cr 2O 7发生氧化 - 还原反应: 6Fe 2+ + Cr 2O 72-+ 14H + = 6Fe3+ + 2Cr 3+ + 7H 2 O Fe 3+ 又进一步与溶液中的 HPO 42- 、 SO 42- 形成 Fe 2 (HPO4) 3和 Fe 2 (SO4) 3,由于阳极附近盐浓度不断增加,在金属表面形成一种粘性薄膜,且分布不均匀。凸起部分薄膜较薄,凹入部分薄膜较厚,因而阳极表面各处的电阻有所不同,凸起部分电阻较小,电流密度较大;这2+2- 样就使凸起部分比凹入部分溶解得快,于是粗糙的平面逐渐得以平整。 阴极主要反应: Cr 2O 7+ 14H + 6e = 2Cr + 7H 2 O 2H + +2e- = H2 2-+-3+ ( 2 )电解加工:利用电解方法,使作为阳极的金属材料在电解过程中部分区域适当溶解,让其几何形状满足预定的要求。特点两极间距较小。 电化学课件动画( 电解加工) 阳极氧化 阳极氧化过程的应用: 装饰、修饰、防腐 阳极氧化膜的特点: 厚度均匀、结合牢 阳极: 2Al + 6OH- =Al2O 3 + H2O + 6e- 4OH - = 2H2 O + O2 (g) + 4e- 阴极: 2H + + 2e - = H2 金属腐蚀与防护 化学腐蚀与电化学腐蚀 • 化学腐蚀 由金属与介质直接起化学反应而造成的腐蚀称为化学腐蚀。 影响化学腐蚀的因素有:温度、压力等。 • 电化学腐蚀 由于电化学作用而引起的腐蚀称为电化学腐蚀。 1) 析氢腐蚀 析氢——在 酸性介质中,腐蚀过程中有 H 2析出。 以钢铁的析氢腐蚀为例: 电化学反应为:阳极(Fe ): Fe - 2e = Fe2+ Fe + OH = Fe(OH)2 阴极(杂质): 2H + +2e- = H2 总反应: Fe + 2H 2O = Fe(OH)2+ H 2 电化学课件动画 ( 析氢腐蚀) 2) 吸氧腐蚀 吸氧——在中性及弱酸性介质中,由于溶解氧的作用而引起的腐蚀。 电化学反应为:阳极(Fe ): 2Fe - 4e = 2Fe2+ 阴极(杂质): O 2(g)+2H2O(l)+4e = 4OH (aq) 总反应: 2Fe+ O2(g)+2H2O = 2Fe(OH)2 例:在铁钉中部紧绕铜丝,放在含有 K 3[Fe(CN)6] 和酚酞的胨胶中,形成腐蚀电池。其中铜丝为 阴 极,其电极反应为 O 2(g)+2H2O(l)+4e = 4OH- (aq) (吸氧),故铜丝附近显 红 色;铁钉为 阳 极,其电极反应为 Fe -2e = Fe 2+ ,铁钉附近显兰绿色,这是由于生成了 Fe 3[Fe(CN)6]2。 电化学课件动画 ( 吸氧腐蚀) 3) 氧浓差腐蚀 由于在不同部位 O 2浓度差而引起的腐蚀。 当金属插入水或泥沙中时,由于与含 O 2量不同的液体接触,各部分电极的 E (电极)不一样, O 2电极的 E (电极)与 O 2的分压有关。 由电极反应方程式: O 2(g)+2H2O(l)+4e = 4OH(aq) 在溶液中,O 2浓度小的地方,E (O 2/OH-)小,成为阳极,金属发生氧化而溶解腐蚀;O 2浓度大的地方,E (O 2/OH-)大,成为阴极,却不会被腐蚀; 图片 4) 生物腐蚀 由于细菌及藻类、贝壳等生物体的活动和新陈代谢而引起的对金属的腐蚀破坏。 与土壤、天然水、海水、石油产品等接触的金属容易发生。 由于生物体摄取食物而加速金属的腐蚀。 生物体的新陈代谢加速金属的腐蚀。 由于生物体耗氧而引起差异充气腐蚀 金属腐蚀的防护 选择恰当的金属材料: 覆盖保护层法: 在金属表面覆盖一层保护层,以断绝金属与外界物质接触,达到耐腐蚀的效果。(油脂、油漆、搪瓷、塑料、电镀金属、氧化成致密的氧化膜) 阴极保护法: 牺牲阳极方法 外加阴极电流 缓蚀剂: 无机缓蚀剂——中性,碱性介质(重铬酸盐) 有机缓蚀剂——酸性介质中(乌洛托品) 作业 :P109-111 1, (3),4, 7, 9, 11 - -2+-

高中化学电化学研究论文

细说电解质溶液的导电性电解质溶液导电是因为有自由移动的离子,所以总的说来,离子浓度越高,离子所带的电荷越多,其溶液的导电性就越强。一、强、弱电解质溶液导电性的比较1.物质浓度相同的强、弱电解质溶液,由于弱电解质是部分电离,离子浓度低,此时强电解质溶液的导电性强。因此在相同浓度、相同温度下,做导电能力的对比实验就可以判断强弱电解质。2.强电解质溶液的导电性不一定比弱电解质溶液的导电性强,如:常温下,10克醋酸与10克硫酸钡分别加入100克水中配成的溶液中,醋酸的导电性强。因为硫酸钡难溶于水,只有极小部分溶于水,但溶于水的部分全部发生电离,所以硫酸钡溶液的导电性差,但硫酸钡是强电解质。 3.电解质导电一般要溶于水,如固体氯化钠、纯硫酸是不能导电的。4.物质溶于水形成的溶液能导电,该物质不一定是电解质,如Cl2、SO2的水溶液导电,但SO2是非电解质,Cl2既不是电解质又不是非电解质。二、影响电解质溶液导电性的因素1.加其它电解质①一般来说,强电解质溶液中加强电解质,导电能力变化不大,如氯化钠溶液中加硝酸钾,但氢氧化钡溶液中加硫酸或硫酸铜时,在增加电解质的过程中会出现难导电的极点,因为它们能相互反应生成沉淀和难电离物质,出现极点后,继续增加电解质,溶液的导电性又会增强。②一般来说,弱电解质溶液中加弱电解质,导电能力变化不大,如醋酸溶液中冰醋酸,但氨水中加冰醋酸时,溶液的导电性会显著增强,因为它们相互反应生成强电解质醋酸铵;亚硫酸溶液中加入氢硫酸时,溶液的导电性会显著减弱,因为它们相互反应生成弱电解质水和单质硫。③强电解质溶液中加弱电解质,导电能力变化不大。④弱电解质溶液中加强电解质,导电能力显著增强。 2.加水稀释:一般来说,加水稀释电解质溶液的导电性是减弱的,但浓醋酸在加水稀释时,有一段时间内导电性会略为增强,因为浓醋酸的电离度很小,加水后的一段时间内,醋酸电离度的增加是主要变化,溶液体积增加是次要变化。3.升高温度:一般来说,电解质溶液升高温度时,导电能力增强,因为温度高离子运动速率大,其中弱电解质溶液如醋酸溶液变化尤为明显,但不会是温度越高,导电能力越强,因为高温时,弱电解质可能会挥发。值得注意的是,金属的导电性随着温度的升高而减弱,因为温度高时电阻大。4.亚硫酸溶液中通氯气,导电能力增强,亚硫酸溶液露置于空气中一段时间后,导电性也增强,因为亚硫酸具有还原性,与氯气、氧气反应生成硫酸等。

作者: Raymond George Klaus Hassmann【摘要】燃料电池具有非同寻常的性能: 电效率可达60%以上,而且可以在带着部分负荷运行的情况下进行维修,除了有低比率碳氧化物排放外几乎没有任何有害的排放物。文章介绍按温度划分的4种主要燃料电池(PEMFC、PAFC、MCFC和SOFC)的性能,重点介绍高温固体氧化物燃料电池(SOFC)的应用及其发展前景。 With demonstration projects fuel cells are Well uder way toward penetrating the power market,covering a wide range of application.This paper introduces the main four types of fuel cells which are PEMFC,PAFC,MCFC and SOFC.Then it puts the emphasis on SOFC and its application market. 燃料电池是通过由电解液分隔开的2个电极中间的燃料(如天然气、甲醇或纯净氢气)的化学反应直接产生出电能。与汽轮发电机生产的电能相比,燃料电池具有非同寻常的特性:它的电效率可达60%以上,可以在带部分负荷运行的情况下进行维修,而且除了排放低比率碳氧化物外,几乎没有任何其他的有害排放物。1 燃料电池的分类 目前研制的燃料电池技术在运行温度上有不同的类型,从比室温略高直到高达1000℃的范围。大多数工业集团公司的注意力集中在以下4种主要类型上:(1)运行温度在60-80℃之间的聚合物电解液隔膜型燃料电池(PEMFC);(2)运行温度在160-220℃之间的磷酸类燃料电池(PAFC);(3)运行温度在620-660℃之间的熔融碳酸盐类燃料电池(MCFC);(4)运行温度在880-1000℃之间的固体氧化物燃料电池(SOFC)。 可以将这些类型的燃料电池划分为低温型(100℃及以下)、中温型(约200℃左右)及高温型(600-l000℃)燃料电池。 表1简要地列出了各种类型燃料电池的性能。中温型和高温型燃料电池适于用在静止式装置上,而低温型燃料电池对于静止装置和移动式装置都适用。 实用装置的功率容量差别也很大,可以给笔记本电脑及移动电话供电(数以W计),也可以给居民住宅(数kW)或是分散的电热设备和动力设备(数百KW到数MW)供电。 最适于用来驱动汽车的是低温型燃料电池。 根据使用期限成本进行的经济性比较结果表明,就发电成本而言,SOFC型燃料电池要PEM型低30%。这个结果是根据SOFC型燃料电池的电效率比PEM型的高,这2种燃料电池最终都可以达到l000美元/KW的投资成本这一假设条件而推导出来的。 2 高温燃科电池 高温型燃料电池具有许多适于在静止式装置上使用的特性。但是在高温型燃料电池产生出电能之前需要较长的加热过程,因而这种技术不能应用于要求在短时间内频繁起动的各种实用装置。此外,高温型燃料电池还具有以下特点: (1)不需要使用贵金属来催化电化学反应。一般情况下使用陶瓷材料。 (2)对CO完全没有限制。CO参加到电化学反应过程并像H2一样被氧化。 (3)对燃料表现出高度灵活性。可以给这类燃料电池发电设备供应天然气,天然气在设备内部被转换成H2和CO。这意味着无需任何外部燃料,从而大大简化了发电设备的平衡问题。 (4)高温可以将燃气轮机连接到该系统上,在这种情况下,燃料电池发电设备是在300kPa压力下运行,并在不考虑燃气轮机输出的情况下将燃料电池的功率密度提高约20%,因此使总的电效率提高10%,可成倍地降低使用期限成本。 (5)较高的运行温度也为排热提供了更多的灵活性。在电效率达60%或更高水平的联合循环系统中可限制废热排放,而在单循环下则会排放出更多的热量。 MCFC和SOFC是这类高温型燃料电池的2种技术。它们使用的材料不同。MCFC是在一只陶瓷容器中放入液态的金属碳酸盐作为电解液,如果没有采取防止电极老化的措施,燃料电他的使用寿命会受到影响。 在MCFC中电化学反应是由CO3离子引发的。MCFC采用的是颊型电池,和SOFC型的管形设计方案相比,这种颊型电他的功率密度要稍微高一些。这在成本上要比SOFC型装置优越。但在另一方面,由于SOFC所用的陶瓷材料非常稳定,可以用在950-1000℃范围内,所以SOFC装置在抗老化性能上更具优越性。到目前为止,所有的长期电池试验和正在运行的试验性机组都表明SOFC型装置的使用寿命可以达到70 000-80 000h,是MCFC型的2倍。 MCFC和SOFC 2种技术在进行100-250kW功率范围的单循环现场试验中,成本都有大幅度的下降。目前在MCFC开发上占有主导地位的是美国的Fuel Cell Energy公司及其在德国的授权单位MTU,日本的Ishikawajima-Harima重工(IHI)和三菱公司等。而Siemens Westinghouse在SOFC开发上处于领先水平。3 中温型燃料电池 目前磷酸类燃料电池(PAFC)是具有最先进技术的燃料电池。80年代,IFC(国际燃料电池公司)决定对其前期商业化生产线进行投资,制造和销售200kW的PAFC装置,并将其投入市场。东芝公司在80年代末就已经努力使PAFC技术进入商用市场。从此,PAFC技术就一直在静止燃料电池的市场中占据着显赫的位置。迄今为止,全球已经安装了150多套PAFC燃料电池装置。 研究表明,这种燃料电池未能实现市场商业化的原因大致有以下几方面: (1)电效率最高为40%,超过维修期限后会降到35%甚至更低水平。通常情况下设备的使用期限不超过20 000运行h。 (2)有些试验性的设备(如东芝公司管理的1套11MW设备未能达到顶期的性能水平。 (3)美国和日本政府大幅度削缩用于PAFC技术研究和开发的投资。 (4)从迄今积累的经验及在改善设计参数和降低产品成本方面的潜力来看,让PAFC技术成功地跻身于当今的市场中的可能性是极低的。4 SOFC在配电市场方面的潜力 Siemens Westinghouse公司根据对市场的分析,决定采取必要的措施加快SOFC技术进入市场的步伐。预计在2003-2004年提供第l批产品,进入商业性生产前的试验阶段,装置容量从目前的2MW扩大到15MW。 北美和欧洲被认为是SOFC燃料电池技术最有希望的市场。Hagler Bailly公司和西门子公司对功率范围为250 kW-l MW的市场进行了调查,结果表明到2005年SOFC燃料电池的市场容量为每年10000MW。北美和欧洲几乎各占50%。考虑到北美洲用户的结构和他们的需求,在北美洲各类小型发电机组的总容量在2010年可能达到每年约1000MW,其中600MW可能是燃料电池发电装置。在各种类型的燃料电池中,SOFC的市场份额约占40%,到2010年在北美洲SOFC的全年销售额将达到亿美元。 在竞争日益激烈的配电市场中的另一个获胜者是微型燃气轮机,主要是作为备用电源或辅助电源。由于SOFC和微型燃气轮机的特性适于不同的应用场所,SOFC效率高但投资成本也高,而微型燃气轮机成本低但效率也低,因而这2种技术不会产生市场上竞争。而往复式发动机会逐渐失去其在市场中的份额。 欧洲电网要比北美洲电网强大得多,欧洲电网强化了集中的大型发电厂的作用。因此在北美洲经常出现的分散式电热设备和动力装置的供电质量和供电可靠性问题在欧洲是不突出的。但另一方面,在欧洲对能量储存更为敏感。 此外,一些国家政府将颁布新的规程和法律及新的能源价格,预计欧洲各国之间市场份额会有重大差异。在有些情况下这个过程会给SOFC用于配电装置起到一定的促进作用。此外,欧洲的自由化近程落后于北美洲。因此,市场预测结果会有很大程度的不确定性。5 SOFC技术应用的扩展 使用天然气作为燃料的SOFC是车载式装置,其扩展应用可有以下几种形式:(1)家庭应用:新一代燃料电池将是扁平管型的,其功率密度是目前所用圆柱型燃料电池技术的2倍,因而将制造出5kW的燃料电池装置。这种设计方案是可行的,在配电市场中可以替代圆柱型燃料电池。(2)l0MW以上的系统装置:很显然,只要SOFC技术占有了功率范围在250-10MW的市场,那么下一步最必然的是要争取占有l0MW以上更大规模发电设备的市场。通过把更多SOFC链接起来便能实现这个目标,也满足了高效率低成本的要求。20MW级规模燃料电池的电效率已经接近甚至超过70%。(3)用液态燃料运行:使用天然气作为燃料将SOFC的应用局限在靠近天然气供气网的区域内,从而使这项新技术的应用受到限制。因此存在着让SOFC使用液态燃料的迫切要求。因此,应与大型石油公司合作进行该课题的研究开发,选择一种适宜的液体燃料并设计出最适于使用这种新燃料的SOFC发电装置,以便为边远的用户服务。 (4)C02的分离:Shell公司和 Siemens Westinghouse公司正在共同研制一种能将CO2从完全反应后的燃料中分离的SOFC设飞方案。例如,当把其装在用于回收油的平台上时,可以把CO2用泵压到地下储层中,这不但可省去CO2的排放税,还可提高原油的产出量。 (5)综合性应用:CO2分离装置可能是点火的火花装置,它使得SOFC在一种封闭且可再生的能量循环中成为关键性部件。经过-段时间,SOFC能产生出热量和电力,例如用于大型暖房的设施中,SOFC装置产生的C02可用来加快植物的生长。而任何一种农作物收获后的剩余有机物都可以转化为气体供给SOFC作燃料。

第4章 电化学原理及应用 5课时 教学目标及基本要求 1. 明确原电池及相关的概念。了解电极的分类,了解电极电势的概念。 2. 能用能斯特方程式进行有关计算。能应用电极电势的数据判断氧化剂、还原剂的相对强弱及氧化还原反应自发进行的方向和程度。 3. 了解摩尔吉布斯自由能变与原电池电动势,标准摩尔吉布斯自由能变与氧化还原反应平衡常数的关系。 4. 了解电解、电镀、电抛光的基本原理,了解它们在工程上的应用。了解金属腐蚀及防护原理。 教学重点 1. 原电池符号的书写 2. 影响电极电势的因素 3. 电极电势与吉布斯的关系 4. 电极电势的应用 教学难点 1. 电极类型 2. 能斯特方程及相关计算 3. 应用电极电势判断氧化剂、还原剂的相对强弱 本章教学方式(手段)及教学过程中应注意的问题 本章采用多媒体结合板书的方式进行教学。 在教学过程中注意 1. 原电池的设计 2. 浓度、酸度对电极电势的影响 3. 电极电势的应用 主要教学内容 原电池(Electrochemical cell) 任何自发进行的氧化还原 (oxidation-reduction) 反应,只要设计适当,都可以设计成原电池 用以产生电流。 原电池的结构与工作原理 Zn(s)+Cu2+(aq)=Zn2+(aq)+Cu(s) 负极 Zn(s) → Zn2+(aq)+2e-(Oxidation) 正极 Cu 2+(aq)+2e-→ Cu(s) (Reduction) 总反应: Zn(s)+ Cu2+(aq) → Zn2+(aq)+ Cu(s) 原电池的符号(图式) (cell diagram) 表示 : 如铜 - 锌原电池 , : Zn ∣ ZnSO 4(c1) ┊┊ CuSO 4(c2) ∣ Cu 规定: (1) 负极 (anode) 在左边,正极 (Cathode) 在右边,按实际顺序从左至右依次排列出各个相的组成及相态; (2) 用单实竖线 表示相界面 , 用双虚竖线 表示盐桥; (3) 溶液注明浓度,气体注明分压; (4) 若溶液中含有两种离子参加电极反应, 可用逗号隔开,并加上惰性电极. 电极类型 按氧化态、还原态物质的状态分类: 第一类电极: 元素与含有这种元素离子的溶液一起构成的电极。 (1) 金属──金属离子电极: Zn 2+| Zn ;Cu 2+| Cu ;Ni 2+| Ni (2) 气体 —— 离子电极: H + |H2(g) | Pt 2H + + 2e-= H 2(g) Cl -| Cl2(g) | PtCl2(g) + 2e-=2Cl - 第二类电极: (1) 金属──金属难溶盐电极: 甘汞电极: Cl -|Hg2Cl 2(s)| Hg Hg 2Cl 2(s) + 2e-= 2 Hg (s) + 2 Cl- 银-氯化银电极: Cl -| AgCl(s) | Ag AgCl(s) + e-= Ag (s) + Cl- (2) 金属──难溶金属氧化物电极: 锑 — 氧化锑电极: H ,H2O(g) | Sb2O 2(s) |Sb Sb 2O 2(s) + 6 H+ + 6 e-= 2Sb +3H2O(g) 第三类电极 : 氧化还原电极: MnO 4-,Mn 2+| Pt 2 MnO4-+ 16H+ + 10e-→ 2Mn2++8H2O 电极电势 + 双电层理论 原电池能够产生电流说明在电池的两个电极之间有电势差,构成原电池的两个电极各自具有不同的电势。 -Z+ M(s) - Ze --> M (aq ) 在金属表面与附近溶液间形成双电层,产生电势差。 每一个电极的电势称为电极电势 。 电极电势的测量 电极电势是强度性质。同时不能测定电极电势的绝对值,只能用电位差计测出两电极电势的差值。 通常选择标准氢电极作为比较的标准,规定标准氢电极电势为零。 标准氢电极的组成如图 将镀有铂黑的铂片浸入 c (H +)=的溶液中,通入压力为 100kPa 的纯氢气流,使氢气冲打铂片并建立平衡: 2H +(aq )+2e-H 2(g ) 标准氢电极表示为: H +() │ H2(100kPa) │ Pt 并规定,标准氢电极电势恒为零。记为 ; =0V 测定其他电极的标准电极电势时,可将标准态的待测电极与标准氢电极组成原电池,测定原电池的电动势,即可确定电极的标准电极电势 E (电极) E Θ= E Θ( 正 )- E Θ( 负 ) 例 E θ(Cu2+/ Cu ) 的测量 Pt|H2(g, 105Pa)|H+()|| Cu2+()|Cu 测出 E θ= Θ E = E (Cu/ Cu ) - E (H/ H2) E (Cu/ Cu ) = E + E (H/ H2) = - 0 = ( 电极电势的测定 ) θ 2+ θ θ + θθ2+θ+ 由于氢标准电极携带不便,常用饱和甘汞电极来代替。饱和甘汞电极由糊状的 Hg 2Cl 2和 KCl 饱和溶液组成。表示为 Cl -( 饱和 )| Hg2Cl 2(s)|Hg 电极反应 : Hg2Cl 2 (s)+2e-2Hg+2Cl 时 E{ Hg2Cl 2 (s)/Hg }= 附表 11 列出了标准电极电势 电极电势的影响因素 (1) Nernst 方程式 非标准状态下的电极电势不仅与电极自身的组成有关,还与所处的条件有关 ( 温度,浓度 , pH 值等 ). 电极反应通式: aO+ze-bR 热力学研究表明 , 非标准态下的电极电势为 : - E (electrode) = E -1 -1 (electrode) + () R= ; T-K; z- 电极反应中电子的化学计量数 ; F= 96485C .mol 简化式 : -1 E( 电极 )= E ( 电极 )+ () 应用 Nernst 方程式应注意: 1)浓度以化学计量数为指数 2)纯 l 、 s 物质的浓度不列入方程中: 例: Cu (s ) +2Ag+(aq)=2Ag(s)+Cu2+ (aq) 3) 气体用相对分压 , 浓度用相对浓度 - 例: O 2(g)+2H2O(l)+4e←→4OH 4) 有 H 或 OH 参与反应,应列入 Nernst 方程中 MnO 4-/Mn2+电对 MnO 4 (aq)+8H(aq)+5e←→Mn(aq)+4H2 O(l) -+ 2+ + - 5) E ( O/R )的 值与电极反应方程式书写无关 例,计算 OH -浓度为 ·dm -3时,氧的电极电势 [P(O2)=100Kpa T=] 解: O 2(g)+2H2O(l)+4e←→4OH- (aq) =·dm -3时 = = 电极反应写成: 1/2 O2(g)+H2O(l)+2e=2OH- (aq) 从上可知, 电极电势 与反应式书写无关 (2) Nernst 方程式讨论: • c(O) ——氧化态一侧各物质浓度的乘积 c(R ) ——还原态一侧各物质浓度的乘积 • 固体、纯液体( H 2O )不列入方程式中 • • • • 改变物质的浓度可以改变电极电势的大小 电极物质自身浓度发生变化 溶液的酸度发生变化 生成沉淀使电极物质浓度发生变化 • 生成配合物使电极物质浓度发生变化 例 计算 Cr 2O 72-/Cr3+电对在 pH=1 和 pH=6 是的电极电势。 时,设 c(Cr2O 7)=c (Cr) 1mol·dm 。 2-+3+ 解: Cr 2O 7+14H+6e-= 2Cr+ 7H2O 2-3+ -3 E(Cr2O 7/Cr) = E(Cr2O 7/Cr) + () lg= () lg {c( H+) /cθ} 14 = - 当 pH=1 时, E(Cr2O 72-/Cr3+) = 当 pH=6 时, E(Cr2O 7/Cr) = 可见:含氧酸及含氧酸盐的电极电势极大地受酸度的影响。 电动势电极电势 E 与 的关系 ) 等于原电池可做的最大功 W max. 2-3+ 2-3+θ2-3+ 在等温等压下,吉布斯自由能的减小 (- - 即 : = W max =QE=z () FE () 若过程处于标准状态,则 , 电极电势的应用 (1)比较氧化剂和还原剂的相对强弱 . () 越小, Re 还原强 若 Ox/Re 在标态下: 越大, Ox 氧化性强 /V 电极反应 例:电对 标准电极电势 Sn 4+/Sn2++ Sn4++2e←→Sn2+ Cu 2+/ Cu + Cu2++2e←→Cu Fe 3+/Fe2++ Fe3++e←→Fe2+ 最大 Fe 3+是最强氧化剂 最小 Sn 2+是最强还原剂 •判断反应发生的方向 任一反应判据:ΔG 而 ΔG = - zFE ≤ 0 而 z > 0 F > 0 反应自发性的判据为: E > 0 自发 即: E (正) > E(负) 反应自发 例: pH= 介质中判断下列反应进行的方向 2MnO 4-(aq)+16H+(aq)+10Cl-(aq) = 2Mn2+(aq)+5Cl2(g)+8H2O(l) 解:已知: = + 假设其反应正向进行,则 Cl 2/Cl作负极, MnO 4/Mn为正极 MnO 4-+8H+(aq)+5e = Mn2++4H2 O(l) --2+ = + 故 Cl 2/Cl-应为正极; 所以,反应逆向进行 • 氧化还原进行程度的判断 () 例:由标准钴电极与标准氯电极组成原电池测得其电动势为 . 此时钴电极为负极。已知 = 问 (1) =? (2) 反应方向 . (3) =? (4) 当 [Co2+]= mol·dm -3时 E= ? 解: Co+Cl2==Co2++ 2Cl- • = – 如 E (+) > E (-) 则反应 自发 而 (3) (正 ) = > (负) = – ∴ 正向自发 (4) = 化学电源 干电池 (1)锌锰干电池 负极: 锌片(锌皮) 正极: MnO 2、石墨棒(碳棒) 电解质: NH 4Cl 、 ZnCl 2、淀粉 电极反应 负极: Zn - 2e-= Zn 正极: MnO 2+ 2 NH4+ +2e-→ Mn2O 3+ 2NH3+ H2O 总反应: Zn + MnO2+ 2 NH4+→ Zn2++ Mn2O 3+ 2NH3+H2O 电池符号 Zn │ ZnCl2、 NH 4Cl │ MnO2, C 碱性锌锰电池: Zn │ ZnCl2、 KOH │ MnO2, C 电压: (2) 锌汞电池 负极: Zn (汞齐) 正极: HgO 、碳粉 电解质: 饱和 ZnO 、 KOH 糊状物 电极反应 负极: Zn (汞齐) + 2 OH→ ZnO + H2O + 2e 正极: HgO + H2O +2e-→ Hg +2OH- 总反应: Zn (汞齐) + HgO → ZnO + Hg 电池符号: Zn (汞齐) │ KOH ( 糊状,含饱和 ZnO) │ HgO (C ) 电压: 蓄电池 铅蓄电池 负极: Pb-Sb 格板中填充海绵状 Pb 正极: Pb-Sb 格板的孔穴中填充 PbO2 电解质:稀硫酸(30% 密度: .cm-3) --2+ 放电时的电极反应 负极 (Pb 极 ) : Pb + SO4 = PbSO4+ 2e( 氧化 ) 正极(PbO 2极): PbO 2+ 4H++ SO42- + 2e-= PbSO4+ 2H2O (还原) 总反应: PbO 2+ Pb + 2H2SO 4= 2 PbSO4+ 2H2O 充电时的电极反应 负极 (Pb 极 ) : PbSO 4+ 2e-= Pb + SO42- 正极(PbO 2极): PbSO 4+ 2H2O = PbO2+ 4H+ + SO42- + 2e- 2-- 总反应: 2 PbSO4+ 2H2O = PbO2+ Pb + 2H2SO 4 电动势: 新型燃料电池和高能电池 • 燃料电池 还原剂(燃料): H 2联氨( NH 2-NH 2) CH 3OH CH 4—— 负极 氧化剂 : O 2空气 —— 正极 电极材料: 多孔碳、多孔镍, Pt Pd Ag 等贵金属(催化剂) 电解质: 碱性、酸性、固体电解质、高分子等 碱性氢 — 氧燃料电池 负极(燃料极) —— 多孔碳或多孔镍(吸附H 2) 正极(空气极) —— 多孔性银或碳电极(吸附O 2) 电解液 ——30%KOH 溶液,置于正负极之间。 电池符号: (C ) Ni │ H2│ KOH (30%) │ O2│ Ag (C) 电池反应: 负极 2H 2+ 4OH-= 4H2O + 4e-(氧化) 正极 O 2+ 2H2O + 4e-= 4OH-(还原) 总反应 2H 2+ O2= 2H2O 电动势: (2) 高能电池 —— 具有高―比能量‖和高―比功率‖的电池 比能量、比功率 —— 按电池的单位质量或单位体积计算的电池所能提供的电能和功率。 锂电池 E Θ ( Li + /Li ) = Li —MnO 2非水电解质电池 : 负极 —— 片状金属 Li 正极 ——MnO 2 电解质 ——LiClO 4+ 混合有机溶剂(碳酸丙烯脂 + 二甲氧基乙烷) 隔膜 —— 聚丙烯 电池符号: Li │ LiClO4│ MnO2│ C 电池反应: 负极 Li = Li+ e 正极 MnO 2+ Li++ e-= LiMnO2 总反应 Li + MnO2= LiMnO2 电池的电动势: 电解 + - 电解现象 将直流电通过电解液使电极上发生氧化还原反应的过程叫电解。借助电流引起化学变化,将电能转变为化学能的装置,叫做电解池。电解池中与外界电源的负极相接的极叫做阴极,和外界电源正极相接的极叫做阳极,电子从电源负极流出,进入电解池的阴极,经电解质,由电解池的阳极流回电源的正极。在电解中正离子向阴极移动,负离子向阳 极移动,阴极上发生还原反应,阳极上发生氧化反应。 电解池是把电能转变成化学能的装置。 非自发 : Cu +2Cl =Cu(s)+Cl2 (q) = kJ·mol -1 >>0 • 分解电压 分解电压——使电解顺利进行所必需的最小外加电压。 产生分解电压的原因: 在电解过程进行时 , 电极上产物与电解池溶液组成原电池 , 其电动势与外加电源的电势方向相反 , 这种电动势称为反电动势。 例如 , 用 Pt 作惰性导体电解 ·dm -3 NaOH 溶液,阳极上析出 O 2 , 阴极上析出氢, O 2 和 H 2 组成电池 : Pt ︱ H 2 (g) ︱ NaOH(·dm -3 ) ︱ O 2(g) ︱ Pt 电池的电动势与工作电池的电动势 E w 正相反。 正极: 2H 2 O + O2 ((g) + 4e = 4OH 负极: 2H 2 = H+ + 4e - 电池反应: 2H 2 (g) + O2(g) =2 H2 O 理论分解电压的计算 理论上,分解电压应等于电解池两极的反电动势,故称理论分解电压 E 理分 。 E(+)=E (O2 /OH- ) = Eθ(O2 /OH- ) +() lg(P(O2 )/ Pθ)/ {c( OH- )/cθ}4 = () lg(1 / )4 = E(-)=E (H+/ H2 ) = Eθ(H+/ H2 ) +() lg{c(H+)/cθ} 4 /{( P(O2 )/ Pθ)} 2 -134 = 0+ () lg(10 ) = -0 .77V E 理分 = E(+) - E(-) = -()= • 超电势 某一电流密度下的电极电势与平衡电势之差的绝对值称该电极的超电势,有时也叫超电压,符号 η 。 阳极超电势 η (阳)=E(阳) ﹣ E(阳, 平) 阴极超电势 η( 阴 )=E(阴 , 平) ﹣ E(阴 ) --2+ - 根据产生超电势的原因不同,超电势又分浓差超电势,化学超电势,电阻超电势等等。 浓差极化 发生电极反应时,电极表面附近溶液浓度与主体溶液浓度不同所产生的现象称为极化。 可通过增大电极面积,减小电流密度,提高溶液温度,加速搅拌来减小浓差极化。 电化学极化 主要由电极反应动力学因素决定。由于分步进行的反应速度由最慢的反应所决定,即克服活化能要求外加电压比可逆电动势更大反应才能发生。 电镀 电镀是应用电解的原理将一种金属镀到另一种金属表面的过程。 阴极——被镀件(铜棒) 电镀 阳极——镀层金属(Zn 片) 电解液——含有欲镀金属的盐溶液。(一般不选用简单离子的盐溶液,会使镀层粗糙、厚薄不匀。) 以镀锌为例,电镀液为: ZnO + NaOH +添加剂 ZnO + NaOH + H 2O=Na2 [Zn(OH)4 ] [Zn(OH)4]2-= Zn2+ + 4OH - 配离子的形成,降低了 Zn 2+ 的浓度,使金属锌在镀件上析出的过程中有了一个适宜的速率,可得到紧密光滑的镀层。两极的主要反应为: 阴极: Zn + 2e = Zn 阳极: Zn - 2e = Zn2+ 电抛光及电解加工 • 电抛光: 电抛光是金属表面精加工的方法之一。 原理:在电解过程中,利用金属表面上凸出部分的溶解速率大于金属表面凹入部分的溶解速率,从而使金属表面平滑光亮。 阴极——铅板 电抛光 阳极——欲抛光工件(钢铁) 2+ 电解液:磷酸+硫酸+铬酐(CrO 3) 电抛光时铁因氧化而发生溶解 阳极: Fe - 2e = Fe2+ 产生的 Fe 与溶液中的 Cr 2O 7发生氧化 - 还原反应: 6Fe 2+ + Cr 2O 72-+ 14H + = 6Fe3+ + 2Cr 3+ + 7H 2 O Fe 3+ 又进一步与溶液中的 HPO 42- 、 SO 42- 形成 Fe 2 (HPO4) 3和 Fe 2 (SO4) 3,由于阳极附近盐浓度不断增加,在金属表面形成一种粘性薄膜,且分布不均匀。凸起部分薄膜较薄,凹入部分薄膜较厚,因而阳极表面各处的电阻有所不同,凸起部分电阻较小,电流密度较大;这2+2- 样就使凸起部分比凹入部分溶解得快,于是粗糙的平面逐渐得以平整。 阴极主要反应: Cr 2O 7+ 14H + 6e = 2Cr + 7H 2 O 2H + +2e- = H2 2-+-3+ ( 2 )电解加工:利用电解方法,使作为阳极的金属材料在电解过程中部分区域适当溶解,让其几何形状满足预定的要求。特点两极间距较小。 电化学课件动画( 电解加工) 阳极氧化 阳极氧化过程的应用: 装饰、修饰、防腐 阳极氧化膜的特点: 厚度均匀、结合牢 阳极: 2Al + 6OH- =Al2O 3 + H2O + 6e- 4OH - = 2H2 O + O2 (g) + 4e- 阴极: 2H + + 2e - = H2 金属腐蚀与防护 化学腐蚀与电化学腐蚀 • 化学腐蚀 由金属与介质直接起化学反应而造成的腐蚀称为化学腐蚀。 影响化学腐蚀的因素有:温度、压力等。 • 电化学腐蚀 由于电化学作用而引起的腐蚀称为电化学腐蚀。 1) 析氢腐蚀 析氢——在 酸性介质中,腐蚀过程中有 H 2析出。 以钢铁的析氢腐蚀为例: 电化学反应为:阳极(Fe ): Fe - 2e = Fe2+ Fe + OH = Fe(OH)2 阴极(杂质): 2H + +2e- = H2 总反应: Fe + 2H 2O = Fe(OH)2+ H 2 电化学课件动画 ( 析氢腐蚀) 2) 吸氧腐蚀 吸氧——在中性及弱酸性介质中,由于溶解氧的作用而引起的腐蚀。 电化学反应为:阳极(Fe ): 2Fe - 4e = 2Fe2+ 阴极(杂质): O 2(g)+2H2O(l)+4e = 4OH (aq) 总反应: 2Fe+ O2(g)+2H2O = 2Fe(OH)2 例:在铁钉中部紧绕铜丝,放在含有 K 3[Fe(CN)6] 和酚酞的胨胶中,形成腐蚀电池。其中铜丝为 阴 极,其电极反应为 O 2(g)+2H2O(l)+4e = 4OH- (aq) (吸氧),故铜丝附近显 红 色;铁钉为 阳 极,其电极反应为 Fe -2e = Fe 2+ ,铁钉附近显兰绿色,这是由于生成了 Fe 3[Fe(CN)6]2。 电化学课件动画 ( 吸氧腐蚀) 3) 氧浓差腐蚀 由于在不同部位 O 2浓度差而引起的腐蚀。 当金属插入水或泥沙中时,由于与含 O 2量不同的液体接触,各部分电极的 E (电极)不一样, O 2电极的 E (电极)与 O 2的分压有关。 由电极反应方程式: O 2(g)+2H2O(l)+4e = 4OH(aq) 在溶液中,O 2浓度小的地方,E (O 2/OH-)小,成为阳极,金属发生氧化而溶解腐蚀;O 2浓度大的地方,E (O 2/OH-)大,成为阴极,却不会被腐蚀; 图片 4) 生物腐蚀 由于细菌及藻类、贝壳等生物体的活动和新陈代谢而引起的对金属的腐蚀破坏。 与土壤、天然水、海水、石油产品等接触的金属容易发生。 由于生物体摄取食物而加速金属的腐蚀。 生物体的新陈代谢加速金属的腐蚀。 由于生物体耗氧而引起差异充气腐蚀 金属腐蚀的防护 选择恰当的金属材料: 覆盖保护层法: 在金属表面覆盖一层保护层,以断绝金属与外界物质接触,达到耐腐蚀的效果。(油脂、油漆、搪瓷、塑料、电镀金属、氧化成致密的氧化膜) 阴极保护法: 牺牲阳极方法 外加阴极电流 缓蚀剂: 无机缓蚀剂——中性,碱性介质(重铬酸盐) 有机缓蚀剂——酸性介质中(乌洛托品) 作业 :P109-111 1, (3),4, 7, 9, 11 - -2+-

电化学前沿研究论文

测定可逆电池的电动势在物理化学实验中占有重要的地位(应用十分广泛。如平衡常数、活度系数、解离常数、溶解度、络合常数、溶液中离子的活度以及某些热力学函数的改变量等(均可通过电池电动势的测定来求得。本实验通过测定不同温度下电池的电动势(求算化学反应的热力学函数变化值。 电池的电动势不能直接用伏特计来测量(因为电池与伏特计相接后(便成了通路(有电流通过(发生化学变化、电极被极化、溶液浓度改变、电池电势不能保持稳定。且电池本身有内阻(伏特计所量得的电位降不等于电池的电动势。利用对消法!又叫补偿法,可是我们在电池无电流!或极小电流,通过时(测得其二级的静态电势(这时的电位降即为该电池的平衡电势(此时电池反应是在接近可逆条件下进行的。因此(对消法测电池电势的过程是一个趋近可逆过程的例子。

近日,电子 科技 大学材料与能源学院夏川教授以第一作者和共同通讯作者身份在国际著名期刊Nature Chemistry (《自然–化学》)上发表题为“General synthesis of single-atom catalysts with high metal loading using graphene quantum dots”的研究论文。该研究开发了一套高载量过渡金属单原子材料的普适性合成策略,实现了高达 40 wt.% 或 at.% 的高过渡金属原子负载,比目前报道的单原子负载量提升了几倍甚至数十倍。 该工作由电子 科技 大学、加拿大光源和美国莱斯大学三个单位共同合作完成。材料与能源学院的夏川教授为论文第一作者和通讯作者,美国莱斯大学的汪淏田教授和加拿大光源的胡永峰教授为论文通讯作者。该合作团队在电催化材料研究和电化学反应器设计领域建立了坚实的基础,并取得了丰硕的研究成果。 过渡金属单原子材料具有极高的原子利用率、独特的电子结构以及明晰且可调的配位结构,在各种电催化过程中展现出优异的活性。但常规单原子材料中金属原子密度较低(通常小于5 wt.%或1 at.%),大大限制了其整体催化性能及工业应用前景,因此发展出高载量过渡金属单原子材料普适性合成策略至关重要。现有“自上而下”和“自下而上”工艺对提高合成单原子材料的金属负载量有很大的局限(图1, a-b)。以碳材料负载的单原子为例,现有的“自上而下”方法通过在碳材料载体表面制造缺陷,然后通过缺陷稳定单原子。然而,无法精确调控缺陷尺寸导致缺陷位点的数目极大地受到限制,而且当金属负载量提高时,容易在大尺寸的缺陷位处形成团簇。“自下而上”方法则使用金属和有机物前驱体(如金属有机框架、金属-卟啉分子、金属-有机小分子)热解碳化的方式获得负载金属单原子的碳材料。在金属负载量过大时,金属原子之间将因为没有足够的隔离空间而导致热解过程中团簇或者颗粒的产生。 鉴于此,该团队发展了区别于现有“自上而下”和“自下而上”工艺的单原子催化材料制备方法(图1c),以突破单原子负载量的限制。该团队创新性地使用比表面大、热稳定性高的石墨烯量子点作为碳基底,对其进行-NH2基团修饰,使其对金属离子具有高配位活性。引入金属离子后可得到以金属离子作为节点、功能化石墨烯量子点作为结构单元的交联网络,最后热解即可得到高载量的金属单原子材料。相较于传统“自上而下”和“自下而上”的单原子催化剂合成方法,该研究报道的方法既保证了高含量金属离子初始锚定时的高分散性又能有效抑制后续热解过程基底烧结重构引起的金属原子团聚。 XAFS、HADDF-STEM等多种表征手段证明,由该法制得的负载型金属单原子催化材料在保证金属原子单分散的同时还能实现远超现有文献报道水平的金属载量。借助该方法,该团队成功制备出质量分数高达(原子分数为)的Ir单原子催化材料(图2),该负载量相较于文献报道的Ir单原子最高载量提升了数倍。 另外,该合成策略还具有普适性,能够用于制备其他贵金属或非贵金属的高载量金属单原子催化材料。例如,在碳基底材料上,Pt单原子的负载量最高可达 wt.%,Ni单原子负载量可达15 wt.%(图3)。 夏川,电子 科技 大学材料与能源学院教授,国家青年人才。研究方向为基于新能源的电催化、电合成、电化学生物合成,致力于实现碳平衡的能量与物质循环。在“液体燃料与基础化学品现场合成”这一特色方向开展了深入、系统的研究,在反应器与催化剂设计领域均取得丰硕成果,共发表学术论文50余篇,授权美国专利3项,H因子34,引用5200余次。近五年来,以第一作者/通讯作者身份在Science、Nat. Energy、Nat. Catal.、Nat. Chem.等国内外高水平期刊共发表论文20余篇,其中ESI高被引论文9篇,热点论文2篇。

“该工作凸显了界面工程在全陶瓷电化学器件中的关键作用, 可帮助质子陶瓷电化学电池快速进军可持续能源基础领域 ,例如在受间歇性太阳能和风能发电影响的电网中,利用季节性储能的核热和电力驱动进行化学燃料生产,以及二氧化碳的捕获和利用。”对于自己近期发表在 Nature 的论文,美国爱达荷国家实验室吴巍博士表示。

对于该成果的应用前景,他说:“就改良后的电化学电池而言,高性能 PCEC(质子导体电池,Protonic ceramic fuel cell)使我们能够将高温电解水制氢的工作温度降低到 350 C。这个过程可以为许多‘清洁和绿色氢气’的应用打开大门。更重要的是, 该技术在与当前几个重要的工业过程(包括氨生产和二氧化碳减排)在相同的温度范围内运行 。匹配这些温度将加快该技术在现有行业中的采用。”

就界面工程技术而言,此次报道的技术可以广泛运用放到固态电化学器件当中,比如全固态锂电池。全固态锂电是前沿的锂电池技术,各个国家都在花大力气研发之中,界面润湿问题是它最主要的瓶颈之一。而酸处理技术可以有效改善全固态电池的界面润湿性能,从而提高其性能和稳定性。

正因为应用性极强,也让他对此次成果的商业孵化充满信心:“ 我们接下去的研究计划是两个方面, 一个是整合现有的一系列制备技术,将电化学器件扩大化、模块化、甚至商业化。另一方面是进一步拓展和深化与其他高校、研究机构在化学品电化学合成以及工业减碳等方向上的合作。”

350 下工作良好,数百小时内几乎没有性能衰减

据介绍,他和合作者在实验中证明, 酸处理电池在 600 C 下每面积产生的氢气比任何以前的电池都要多 150% ,并且在 350 C 下工作良好,在数百小时内几乎没有性能衰减。这种方法可以很容易地扩展和集成,用于大型电池和电池堆的制造。

马里兰州能源创新研究所材料创新中心主任胡良兵教授说,他没有参与这项工作,但其评价称:“作者报告了一种令人惊讶的,简单其极其高效的表面处理方式,以显着改善界面,将电池性能提升到‘卓越’程度。

4 月 20 日,相关论文以《酸蚀刻法活化质子陶瓷膜电池电解质表面》(Revitalizing interface in protonic ceramic cells by acid etch)为题发表在 Nature 上。

据吴巍介绍,可再生能源包括风能、太阳能、潮汐能等,给 社会 提供了越来越多的清洁电力。但这些可再生能源的一大特征是不稳定,随天气波动明显。所以 清洁电能一般首先要进行存储。

利用蓄电池进行电力存储的时间也非常有限,成本也很高。将这些清洁电能生产氢气和其他有机化学品和燃料,是另一种电能存储方式,即电能转化成化学能。

众所周知,氢气是一种绿色燃料,部分原因是当它燃烧时,产物仅仅是水。然而,纯氢没有天然来源。今天我们所用的氢气是绝大部分是通过蒸汽重整碳氢化合物(如天然气)获得的。这个过程需要碳氢原料气体并产生碳副产品,这使得它不太适合可持续生产。

因此,开发更高效的新型电化学电池, 比如固体氧化物燃料电解电池,可以实现低碳,甚至无碳排放的分布式发电和氢气化学品。全世界的科学家也一直在研发主要用于氢气生成的电化学电池。这些电池产生的氢气也可以用作热,车辆,化学生产或其他应用的燃料。

但前提是,科学家必须克服一系列材料和制备上的挑战,包括如何使电池更高效、更稳定、制造成本更低廉。

说到这里,吴巍做了个简短的科普: 电化学电解电池主要有三种类型 。

第一种类型在室温下工作,如质子交换膜电池。它们的主要问题是效率偏低,需要铂金等稀有金属。

第二种类型在 700ºC 以上的高温下运行,比如氧离子导体电池。它们有较高的电解效率,但金属在高温下很容易被氧化或者和其他元素反应形成腐蚀,从而设备需要严格的的密封和绝缘技术。

第三种类型,PCEC 是更具潜力的电化学电池解决方案。正如可充电电池使用化学来储存电力以供以后使用一样,PCEC 可以将多余的电力和水转化为氢气。PCEC 也可以反向运行,将氢气转化为电能。该技术使用称为钙钛矿的晶体材料,这些材料价格低廉,能够在很宽的温度范围内工作。与此同时,PCEC 主要的运行区间在 300 至 600ºC,进一步降低了运行和制造成本。

理论上说,质子导体具有高导电性和低活化能,PCEC 的性能自然会很优越。然而,吴巍和合作者长期观察到它们的表现低于理论模拟的预期。他和美国爱达荷国家实验室的同事们自 2017 年以来一直致力于了解其中的原因。

其表示:”经过抽丝剥茧一样的实验设计和观察, 我们发现质子(带正电的氢原子)在电极/电解质界面上的传输是问题所在 。具体来说,电极和电解质的结合不够理想。随后,我们在电池制备过程中,额外增加了一个简单的酸处理步骤,实现了电极与电解质的紧密结合,从而实现更有效的离子传输。”

经过一系列详细的表征,其发现酸处理增加了电极和电解质之间的接触面积。增加的表面积使得电极和电解质之间更紧密的键合,从而允许质子更有效地传输。此外,电池在某些极端条件下的稳定性也显着提高。

显著提高电池的性能、以及热力学和电化学稳定性

更详细地说, 论文的核心要点在于,质子陶瓷膜电化学电池有望在 350 以下运行。 虽然电解质的高质子导电性已经被证明,但由于未知的原因,它不能充分应用于电化学全电池中。在该研究中,吴巍等人揭示,这些问题起源于高温二次处理的氧电极-电解质界面之间的接触不良。

该研究证明了一种简单的酸处理,可以有效地修复高温二次处理的电解质表面,从而使氧电极和电解质之间产生反应性键合,提高电化学性能和稳定性。

此方法可以实现低至 350  C 的优异的质子陶瓷膜燃料电池性能,并能维持 600  C 时峰值功率密度为 瓦每平方厘米,450  C 时为 650 毫瓦每平方厘米,350  C 为 300 毫瓦每平方厘米,而在 和 600  C 下的稳定电解操作与电流密度则超过 安培每平方厘米。

据悉, 质子陶瓷膜燃料/电解电池(PCFCs/PCECs)以其高效性和零排放性,有望在中温(300-600 )应用领域实现化学能与电能可逆转换 。

它们的关键成分之一是钙钛矿结构的氧化物电解质,由于较小的活化能,其高质子电导率能够实现比基于氧离子导体的固体氧化物燃料/电解电池(SOFCs/SOECs)更低的温度运行。

然而, 仍存在一些与电解质相关的挑战限制了 PCFC/PCEC 的应用 。首先,尽管烧结体电解质显示出高质子电导率(例如,在 500 时>10mS cm 1),电化学电池中的欧姆电阻大于仅从体离子电导率估计的理论值,且具有“未知的来源”。这种不一致性被认为是由于氧电极和电解质之间的接触不良所致。其次,氧电极-电解质界面在力学性能上较弱,会导致层离和其他形式的损耗,特别是在高电流密度的电解电池循环下。

要知道,质子陶瓷膜燃料/电解电池通常是首先在高温 T1 下烧结氢电极-电解质双层结构,然后在氧电极层上丝网印刷或喷漆,然后在较低的温度 T2 下二次烧结。

然而,质子陶瓷膜电解质难以致密化,该过程需要高温烧结。虽然似乎与 400-600 C 下的全电池性能无关,但吴巍等人认为低真实接触面积和高界面阻抗与低速率质量输运导致的烧结性差具有相同的根源。

事实上,T2 烧结的情况更糟(大约 1000 C):多孔氧电极必须扩散键合到已经充分退火的电解质表面(以单晶基底上的受限烧结为极端类比),T2 也必须足够低,从而避免多孔氧电极的粗糙化并允许气体输运和催化作用。

考虑到以上情况, 该团队提出了一种酸处理方法,在与氧电极结合之前活化修复高温退火电解质表面 。他们证明,这种方法可以完全恢复电化学电池中的理论质子电导率,并显著提高电池的性能以及热力学和电化学稳定性。

吴巍说,该项目从立项到成果发表,离不开所有团队成员的共同配合和付出。这项工作由三个单位合作完成,包括爱达荷国家实验室、麻省理工学院和内布拉斯加大学。团队之间每周都保持着视频会议沟通,遇到问题大家即时分享,讨论和研究对策。

和绝大多数科研工作一样,从观点提出到实现会遇到种种挑战和难题。很多时候,努力也不一定有回报。“我们只能尽自己所学、所能,依靠集体的力量来解决科学难题, 剩下的交给运气。这个工作有一定的成果,我们都很开心,运气这次站在了我们这边。”他说。

-End-

支持:王贝贝

参考: 1、Bian, W., Wu, W., Wang, B. et al. Revitalizing interface in protonic ceramic cells by acid etch. Nature 604, 479–485 (2022).

电化学腐蚀研究论文

查一下资料,首先把化学腐蚀和电化学腐蚀解释一下,弄明白,然后再把防止腐蚀的方法展开写一下差不多字说就够了。

在网站上找了一份,希望对你有帮助。一电化学腐蚀原理�1.腐蚀电池(原电池或微电池)金属的电化学腐蚀是金属与介质接触时发生的自溶解过程。在这个过程中金属被氧化,所释放的电子完全为氧化剂消耗,构成一个自发的短路电池,这类电池被称之为腐蚀电池。腐蚀电池分为三(或二)类:(1)不同金属与同一种电解质溶液接触就会形成腐蚀电池。例如:在铜板上有一铁铆钉,其形成的腐蚀电池。铁作阳极(负极)发生金属的氧化反应:Fe→Fe2++2e-;(Fe→Fe2++2e)=-.阴极(正极)铜上可能有如下两种还原反应:(a)在空气中氧分压=21kPa时:O2+4H++4e-→2H2O;(O2+4H++4e-→2H2O)=,(b)没有氧气时,发生2H++2e-→H2;(2H++2e-→H2)=0V,有氧气存在的电池电动势E1=-()=;没有氧气存在时,电池的电动势E2=0-()=。可见吸氧腐蚀更容易发生,当有氧气存在时铁的锈蚀特别严重。铜板与铁钉两种金属(电极)连结一起,相当于电池的外电路短接,于是两极上不断发生上述氧化—还原反应。Fe氧化成Fe2+进入溶液,多余的电子转向铜极上,在铜极上O2与H+发生还原反应,消耗电子,并且消耗了H+,使溶液的pH值增大。在水膜中生成的Fe2+离子与其中的OH—离子作用生成Fe(OH)2,接着又被空气中氧继续氧化,即:Fe2++2OH-→Fe(OH)24Fe(OH)2+2H2O+O2→4Fe(OH)3Fe(OH)3乃是铁锈的主要成分。这样不断地进行下去,机械部件就受到腐蚀。(2)电解质溶液接触的一种金属也会因表面不均匀或含杂质微电池。例如工业用钢材其中含杂质(如碳等),当其表面覆盖一层电解质薄膜时,铁、碳及电解质溶液就构成微型腐蚀电池。该微型电池中铁是阳极:Fe→Fe2++2e-碳作为阴极:如果电解质溶液是酸性,则阴极上有氢气放出(2H++2e-→H2);如果电解质溶液是碱性,则阴极上发生反应O2+2H2O+4e-→4OH-。总结:从上面的分析可以看出:所形成的腐蚀电池阳极反应一般都是金属的溶解过程:M→Mz++ze-阴极反应在不同条件下可以是不同的反应,最常见的有下列两种反应:�①在缺氧条件下,H+离子还原成氢气的反应(释氢腐蚀)2H++2e-→H2。(=)该反应通常容易发生在酸性溶液中和在氢超电势较小的金属材料上。②氧气还原成OH-离子或H2O的反应(耗氧腐蚀)中性或碱性溶液中O2+2H2O+4e—→4OH-。(=)在酸性环境中,O2+4H++4e-→2H2(=)2.腐蚀电流一旦组成腐蚀电池之后,有电流通过电极,电极就要发生极化,因而研究极化对腐蚀的影响是十分必要。在金属腐蚀文献中,将极化曲线(电势~电流关系)绘成直线(横坐标采用对数标度),称为Evans(埃文斯)极化图(图10—8)。在Evans极化图中的电流密度j腐蚀表示了金属腐蚀电流,实际上代表了金属的腐蚀速率。影响金属表面腐蚀快慢(即腐蚀电流j)的主要因素:①腐蚀电池的电动势——两电极的平衡电极电势差越大,最大腐蚀电流也越大。②金属的极化性能——在其它条件相同的情况下,极化程度愈大(即极化曲线的斜率),腐蚀电流愈小。③氢超电势——释氢腐蚀时,氢在金属表面析出的超电势逾大,极化曲线的斜率就逾大,腐蚀电流反而减小。二、金属的稳定性“在所处环境下金属材料的稳定性如何?”是研究金属腐蚀与防腐首先必须考虑的问题。因此,金属-水系统的电势—pH图无疑是很有用的工具。1.电势(E)—pH关系的一般表达式若有如下电极反应:xO(氧化态)+mH++ze-�-→yR(还原态)+nH2O例如:Fe3O4+8H++2e-=3Fe2++4H2O式中O代表氧化态、R代表还原态;x,m,z,y,n为各反应物、产物的计量系数。当T=时E=-(10—14)因pH=-lg[a(H+)],a(H2O)=1上式可写成E=--(10—15)在a(R),a(O)被指定时,电势E与pH值成直线关系。①.电势与pH无关的反应:②.这些反应只有电子得失,没有H+或OH-离子参加。例如反应Zn2+(aq)+2e-=Zn(s);E(Zn2++2e-→Zn)=[a(Zn2+)/a(Zn)]。当a(Zn2+)=10-6、a(Zn)=时,E(Zn2++2e-→Zn)=.水溶液中的氢、氧电极反应因为反应在水溶液中进行,反应与H2,O2,H+,OH-有关。所以凡是以水作为溶剂的反应系统都一定要考虑氢、氧电极反应。氢电极反应(①线):电极反应式2H+(a)+2e-→H2(p);当p(H2)=时,有E(2H++2e-→H2)=(10—13)在E—pH图上是一条截距为零的直线,斜率为。氧电极反应(②线):电极反应式O2(p)+2H+(a)+2e-→H2O(l)在(H2O)=1、p(O2)=时,E(O2+2H++2e-→H2O)=该式表示氧电极反应的E—pH直线与氢电极的E—pH直线斜率相同,仅截距不同。4.电势-pH图的应用(1)图10—9中每条线上的点都表示Zn—H2O系统的一个平衡状态。凡不在直线上的任何一点均为非平衡状态,且每条线上方为该线所代表电极反应中氧化态稳定区,下方为还原态稳定区。因此,在图上分别得到Zn2+,Zn,Zn(OH)2的各自稳定存在区。线②以上是O2(氧化态)的稳定区,下方是H2O(还原态)的稳定存在区;在线①以上是H+(氧化态)的稳定区、线①以下是H2(还原态)的稳定存在区。(2)在E—pH图中任意两条线所代表的电极反应都能构成一个化学反应。例如线①与②所代表的电极反应构成的化学反应为:O2(g)+2H2(g)=2H2O(l)。该反应可视为氧电极和氢电极组成的燃料电池。一般而言,高电势区直线所代表电极反应中的氧化态能氧化低电势区直线所代表反应中的还原态即:[氧化态]上+[还原态]下→[还原态]上+[氧化态]下且二直线相距愈远,以此二直线所代表电极反应组成电池时,电池的电动势就愈大,因此该氧化还原反应的趋势就愈大。如Zn2++2e-=Zn是线段a代表的平衡系统,该平衡位于①线下方,说明Zn在水溶液中是不稳定的。溶液中H+被还原成H2(g),Zn被氧化成Zn2+的反应2H++Zn=Zn2++H2是自发进行的。又因Zn的稳定区也在O2还原反应的②线以下,Zn被氧化成Zn2的反应:+2H++Zn=Zn2++H2O①线与a线反应组成电池:②线与a线组成电池,比①线距离线a更远,说明在含有O2的水溶液中Zn的热力学稳定性更差。(3)E—pH图可用来指导防腐、金属保护等方面的研究。从图10—9可知,当E<-时,Zn在酸性溶液中,既使在有氧存在的情况下都可以稳定存在,这就是金属电化学防腐的阴极保护原理;(4)水-Fe的E-pH图:Fe2++2e-→Fe(1线)Fe2O3+6H++2e=2Fe2++3H2O(2线)Fe3++e-=Fe2+(3线)Fe2O3+6H+=2Fe3++3H2O(4线)Fe3O4+8H++2e-=3Fe2++3H2O(5线)3Fe2O3+2H++2e-=2Fe3O4+H2O(6线)Fe3O4+8H++8e-=3Fe+4H2O(7线)总之,E—pH图在解决水溶液中发生的一系列反应及平衡问题,如元素分离,湿法冶炼,金属防腐,金属电沉积,地质问题等方面均得到广泛的应用。三、电化学保护1.阳极保护(适用有钝化曲线的金属)凡是在某些化学介质中,通过一定的阳极电流,能够引起钝化的金属,原则上都可以采用阳极保护法防止金属的腐蚀。例如我国化肥厂在碳铵生产中的碳化塔已较普遍地采用阳极保护法,取得了良好效果,有效地保护了碳化塔和塔内的冷却水箱。使用此法注意点:钝化区的电势范围不能过窄,否则容易由于控制不当,使阳极电势处于活化区,则不但不能保护金属,反将促使金属溶解,加速金属的腐蚀。2.阴极保护就是在要保护的金属构件上外加阳极,这样构件本身就成为阴极而受到保护,发生还原反应。阴极保护又可用两种方法来实现。(1)称为牺牲阳极保护法:它是在腐蚀金属系统上联结电势更负的金属,即更容易进行阳极溶解的金属(例如在铁容器外加一锌块)作为更有效的阳极,称为保护器。这时,保护器的溶解基本上代替了原来腐蚀系统中阳极的溶解,从而保护了原有的金属。此法的缺点是用作保护器的阳极消耗较多。(2)外加电流的阴极保护法:目前在保护闸门、地下金属结构(如地下贮槽、输油管、电缆等)、受海水及淡水腐蚀的设备、化工设备的结晶槽、蒸发罐等多采用这种方法,它是目前公认的最经济、有效的防腐蚀方法之一。该法是将被保护金属与外电源的负极相连,并在系统中引入另一辅助阳极,与外电源的正极相连。电流由辅助阳极(由金属或非金属导体组成)进入腐蚀电池的阴极和阳极区,再回到直流电源B。当腐蚀电池中的阴极区被外部电流极化到腐蚀电池中阳极的开路电势,则所有金属表面处于同一电势,腐蚀电流消失。因此,只要维持一定的外电流,金属就可不再被腐蚀。(3)气相中阴极保护。电化学方法能否在气相环境中使用是人们一直希望解决的问题。1988年,中国研究出了气相环境中的阴极保护技术,用于架空金属管道、桥梁、铁轨、海洋工程构件上的飞溅区保护,并在架空金属管道的实际试验中取得了非常好的保护效果,使材料的寿命延长了20多倍,为气相环境中的构件保护提供了一个崭新的途径。气相阴极保护原理与溶液中的阴极保护原理相同,只是用固体电介质代替溶液,成为阴极保护电流从阳极层流向阴极层的主要离子迁移通道。外加阴极电流从辅助阳极流入,经过固体电介质至阴极(即被保护的结构材料),从而使处于气相环境中的结构得到保护。3.缓蚀剂的防腐作用把少量的缓蚀剂(如万分之几)加到腐蚀性介质中,就可使金属腐蚀的速率显著的减慢。这种用缓蚀剂来防止金属腐蚀的方法是防腐蚀中应用得最广泛的方法之一。下面我们根据极化图来说明缓蚀剂抑制金属腐蚀的基本原理。电化学腐蚀的速率是由阳极过程和阴极过程的极化特征所决定的。只要加入的缓蚀剂能够抑制上述过程中的一种或二种,腐蚀速率就会降低。根据缓、蚀剂所能抑制的过程,我们可以把缓蚀剂分为阳极型缓蚀剂、阴极型缓蚀剂和混合型缓蚀剂。加入缓蚀剂,加快极化程度,降低腐蚀电流。作用的机理主要是在电极表面形成钝化膜或者吸附膜。缓蚀剂的种类繁多,属于无机类的缓蚀剂有亚硝酸盐、铬酸盐、重铬酸盐,磷酸盐等等;属于有机类的缓蚀剂有胺类、醛类、杂环化合物、咪唑啉类等等。具体使用时,需根据要保护的金属种类和腐蚀介质等条件通过筛选试验来确定。

桥梁工程中的腐蚀问题探讨论文

摘要 :本文从桥梁工程中的腐蚀类型分析机制入手,对桥梁工程中的腐蚀机理以及原因分析进行了简要分析,并着重阐释了桥梁工程中腐蚀问题的整治措施,旨在为相关工程质量管理部门提供有价值的参考建议。

关键词 :桥梁工程;腐蚀;问题;原因;对策

0引言

随着经济的发展以及社会的进步,我国桥梁工程项目也呈现出高速发展的态势,但是,在实际工程项目运行过程中还存在很严重的腐蚀问题亟待解决,需要相关研究人员针对具体问题建立具体管控措施,建立更加完善的管控机制。同时,在对桥梁工程项目进行监督和管控的过程中,相关技术要针对腐蚀问题给予有效关注,建构更加完整的工程项目监管机制,从而提升工程管理效果。

1桥梁工程中的腐蚀类型分析

在对工程项目进行研究的过程中,首先要对桥梁腐蚀类型进行分析,由于腐蚀过程主要指的是材料在环境介质内发生物理或者是化学变化的情况,不仅会对整体技术体系产生影响,也会导致整体工程项目的性能受到损害。在实际腐蚀问题中,比较关键的问题主要包括桥梁化学腐蚀、桥梁物理腐蚀以及桥梁电化学腐蚀三类。在工程项目中,桥梁腐蚀问题主要是钢材腐蚀以及混凝土腐蚀,都会对整体工程项目产生较为严重的影响,甚至会导致整体工程的安全运行受到严重威胁[1]。

2桥梁工程中的腐蚀机理和原因分析

(1)桥梁工程中的腐蚀机理桥梁发生腐蚀问题,影响比较大的就是化学腐蚀和电化学腐蚀。在化学腐蚀中,桥梁会发生氧化反应和还原反应,基本原理就是离子交换。在电化学腐蚀过程中,氧化反应和还原反应相对独立,并且在阳极和阴极的作用下产生一定的变化,导致整体桥梁结构出现裂缝;(2)桥梁工程中的原因分析在对裂缝原因进行分析后,主要针对材料选择、施工结构以及养护机制进行综合分析和管控,确保实际问题能得到有效解决,实现整体运行和管控机制的完整度。第一,钢结构出现严重的腐蚀问题。主要是在桥梁工程中的钢结构,会出现严重的问题,究其原因,主要是由于空气中的大气和水共同作用,加之不同自然因素的影响,就会导致整体结构出现裂缝问题。特别要注意的是,在一些污染情况较为严重的地区,环境中含有大量的二氧化碳和二氧化硫,也会导致桥梁出现严重的腐蚀裂缝问题。在众多影响因素中,大气水分含量、降水量、尘埃以及光照都会影响到桥梁的实际质量,甚至会导致整体系统的结构和情况受到非常严重的影响。第二,钢筋混凝土本身组成成分中有水泥,其水化会产生CaO,当该物质和钢筋接触后,就会在钢筋外部产生FeO的化学膜结构,起到保护作用,但是这种保护作用会在接触到外界酸性物质后被破坏,实际的保护作用也会减弱;第二,混凝土出现严重的腐蚀问题,由于混凝土本身是一种较为复杂的复合产物,其实际组成中,硅酸二钙以及硅酸三钙是关键要素,其发生腐蚀反应主要是由于碳化分解以及氯离子出现了严重的腐蚀,都是导致问题出现的原因。特别要注意的是,在混凝土碳化过程中,正是基于本身的碱性环境,若是出现酸性物质,就会和原物质发生反应,致使平衡被破坏。在裂缝原因分析过程中,也要对酸化腐蚀进行集中处理,主要指的是废气废水、酸雨以及酸性物质,由于其都会和混凝土材料发生反应,也就导致反应后生成难溶物质,破坏混凝土结构后,产生了严重的裂缝问题。

3桥梁工程中腐蚀问题的整治措施

针对具体问题,相关研究人员要建立健全完整的管控和处理机制,确保桥梁腐蚀问题能得到有效的解决,特别是针对不良气候条件,要确保钢结构桥梁的腐蚀问题能得到优化管控。第一,要有效控制和治理环境污染问题。要从组织形式以及管理人员的基本素质出发,提升整体管控机制的有效性,并且确保管理行为和科研管控成果能建立有效的`平衡[2];第二,管理人员要针对实际问题进行优化处理,有效隔离污染问题的侵扰,在工程项目建立过程中集中选用耐腐蚀材料;第三,要集中选用较为先进的制造技术,提高桥梁项目的整体运行技术,促进管控结构和管理效果的优化发展;第四,在对桥梁裂缝问题进行分析和处理后,相关管理部门要结合实际情况,运用有效的技术框架建立一种动态化的管控机制和项目优化措施,从根本上落实最经济也是最有效的实践方案,从而提高整体裂缝处理问题的有效性。

4结束语

总而言之,针对桥梁工程,相关施工单位要建立最优化项目处理机制,强化裂缝问题的处理水平,确保技术层面和人为管理层面的同步优化,一定程度上提升工程项目的实际质量。只有强化问题处理措施和处理效果,确保整体项目管控框架的完整度,才能为我国桥梁工程项目的可持续发展奠定坚实基础。

参考文献

[1]彭建新,邵旭东.CO2排放、气候变化及其对混凝土结构开始腐蚀时间和时变可靠度评估的影响[J].公路交通科技,2014,26(10):76-81,86.

[2]石建光,余志勇,林挺宁等.沿海混凝土桥梁工程的腐蚀环境评价以及耐久性设计要求[J].混凝土,2013,15(12):67-71.

2000字很好搞的,先弄个引言啊啥的,最好是双语的。然后可以简单的回顾一下化学腐蚀与防护的历史起源啊发展啊,再说一下现状,最后展望一下未来。如果还没凑够字数就发表一下自己的看法啊学校在这方面的成就啊啥的。记得最后要写明参考资料

化学电池的研究论文全解

用PQDD啊

作者: Raymond George Klaus Hassmann【摘要】燃料电池具有非同寻常的性能: 电效率可达60%以上,而且可以在带着部分负荷运行的情况下进行维修,除了有低比率碳氧化物排放外几乎没有任何有害的排放物。文章介绍按温度划分的4种主要燃料电池(PEMFC、PAFC、MCFC和SOFC)的性能,重点介绍高温固体氧化物燃料电池(SOFC)的应用及其发展前景。 With demonstration projects fuel cells are Well uder way toward penetrating the power market,covering a wide range of application.This paper introduces the main four types of fuel cells which are PEMFC,PAFC,MCFC and SOFC.Then it puts the emphasis on SOFC and its application market. 燃料电池是通过由电解液分隔开的2个电极中间的燃料(如天然气、甲醇或纯净氢气)的化学反应直接产生出电能。与汽轮发电机生产的电能相比,燃料电池具有非同寻常的特性:它的电效率可达60%以上,可以在带部分负荷运行的情况下进行维修,而且除了排放低比率碳氧化物外,几乎没有任何其他的有害排放物。1 燃料电池的分类 目前研制的燃料电池技术在运行温度上有不同的类型,从比室温略高直到高达1000℃的范围。大多数工业集团公司的注意力集中在以下4种主要类型上:(1)运行温度在60-80℃之间的聚合物电解液隔膜型燃料电池(PEMFC);(2)运行温度在160-220℃之间的磷酸类燃料电池(PAFC);(3)运行温度在620-660℃之间的熔融碳酸盐类燃料电池(MCFC);(4)运行温度在880-1000℃之间的固体氧化物燃料电池(SOFC)。 可以将这些类型的燃料电池划分为低温型(100℃及以下)、中温型(约200℃左右)及高温型(600-l000℃)燃料电池。 表1简要地列出了各种类型燃料电池的性能。中温型和高温型燃料电池适于用在静止式装置上,而低温型燃料电池对于静止装置和移动式装置都适用。 实用装置的功率容量差别也很大,可以给笔记本电脑及移动电话供电(数以W计),也可以给居民住宅(数kW)或是分散的电热设备和动力设备(数百KW到数MW)供电。 最适于用来驱动汽车的是低温型燃料电池。 根据使用期限成本进行的经济性比较结果表明,就发电成本而言,SOFC型燃料电池要PEM型低30%。这个结果是根据SOFC型燃料电池的电效率比PEM型的高,这2种燃料电池最终都可以达到l000美元/KW的投资成本这一假设条件而推导出来的。 2 高温燃科电池 高温型燃料电池具有许多适于在静止式装置上使用的特性。但是在高温型燃料电池产生出电能之前需要较长的加热过程,因而这种技术不能应用于要求在短时间内频繁起动的各种实用装置。此外,高温型燃料电池还具有以下特点: (1)不需要使用贵金属来催化电化学反应。一般情况下使用陶瓷材料。 (2)对CO完全没有限制。CO参加到电化学反应过程并像H2一样被氧化。 (3)对燃料表现出高度灵活性。可以给这类燃料电池发电设备供应天然气,天然气在设备内部被转换成H2和CO。这意味着无需任何外部燃料,从而大大简化了发电设备的平衡问题。 (4)高温可以将燃气轮机连接到该系统上,在这种情况下,燃料电池发电设备是在300kPa压力下运行,并在不考虑燃气轮机输出的情况下将燃料电池的功率密度提高约20%,因此使总的电效率提高10%,可成倍地降低使用期限成本。 (5)较高的运行温度也为排热提供了更多的灵活性。在电效率达60%或更高水平的联合循环系统中可限制废热排放,而在单循环下则会排放出更多的热量。 MCFC和SOFC是这类高温型燃料电池的2种技术。它们使用的材料不同。MCFC是在一只陶瓷容器中放入液态的金属碳酸盐作为电解液,如果没有采取防止电极老化的措施,燃料电他的使用寿命会受到影响。 在MCFC中电化学反应是由CO3离子引发的。MCFC采用的是颊型电池,和SOFC型的管形设计方案相比,这种颊型电他的功率密度要稍微高一些。这在成本上要比SOFC型装置优越。但在另一方面,由于SOFC所用的陶瓷材料非常稳定,可以用在950-1000℃范围内,所以SOFC装置在抗老化性能上更具优越性。到目前为止,所有的长期电池试验和正在运行的试验性机组都表明SOFC型装置的使用寿命可以达到70 000-80 000h,是MCFC型的2倍。 MCFC和SOFC 2种技术在进行100-250kW功率范围的单循环现场试验中,成本都有大幅度的下降。目前在MCFC开发上占有主导地位的是美国的Fuel Cell Energy公司及其在德国的授权单位MTU,日本的Ishikawajima-Harima重工(IHI)和三菱公司等。而Siemens Westinghouse在SOFC开发上处于领先水平。3 中温型燃料电池 目前磷酸类燃料电池(PAFC)是具有最先进技术的燃料电池。80年代,IFC(国际燃料电池公司)决定对其前期商业化生产线进行投资,制造和销售200kW的PAFC装置,并将其投入市场。东芝公司在80年代末就已经努力使PAFC技术进入商用市场。从此,PAFC技术就一直在静止燃料电池的市场中占据着显赫的位置。迄今为止,全球已经安装了150多套PAFC燃料电池装置。 研究表明,这种燃料电池未能实现市场商业化的原因大致有以下几方面: (1)电效率最高为40%,超过维修期限后会降到35%甚至更低水平。通常情况下设备的使用期限不超过20 000运行h。 (2)有些试验性的设备(如东芝公司管理的1套11MW设备未能达到顶期的性能水平。 (3)美国和日本政府大幅度削缩用于PAFC技术研究和开发的投资。 (4)从迄今积累的经验及在改善设计参数和降低产品成本方面的潜力来看,让PAFC技术成功地跻身于当今的市场中的可能性是极低的。4 SOFC在配电市场方面的潜力 Siemens Westinghouse公司根据对市场的分析,决定采取必要的措施加快SOFC技术进入市场的步伐。预计在2003-2004年提供第l批产品,进入商业性生产前的试验阶段,装置容量从目前的2MW扩大到15MW。 北美和欧洲被认为是SOFC燃料电池技术最有希望的市场。Hagler Bailly公司和西门子公司对功率范围为250 kW-l MW的市场进行了调查,结果表明到2005年SOFC燃料电池的市场容量为每年10000MW。北美和欧洲几乎各占50%。考虑到北美洲用户的结构和他们的需求,在北美洲各类小型发电机组的总容量在2010年可能达到每年约1000MW,其中600MW可能是燃料电池发电装置。在各种类型的燃料电池中,SOFC的市场份额约占40%,到2010年在北美洲SOFC的全年销售额将达到亿美元。 在竞争日益激烈的配电市场中的另一个获胜者是微型燃气轮机,主要是作为备用电源或辅助电源。由于SOFC和微型燃气轮机的特性适于不同的应用场所,SOFC效率高但投资成本也高,而微型燃气轮机成本低但效率也低,因而这2种技术不会产生市场上竞争。而往复式发动机会逐渐失去其在市场中的份额。 欧洲电网要比北美洲电网强大得多,欧洲电网强化了集中的大型发电厂的作用。因此在北美洲经常出现的分散式电热设备和动力装置的供电质量和供电可靠性问题在欧洲是不突出的。但另一方面,在欧洲对能量储存更为敏感。 此外,一些国家政府将颁布新的规程和法律及新的能源价格,预计欧洲各国之间市场份额会有重大差异。在有些情况下这个过程会给SOFC用于配电装置起到一定的促进作用。此外,欧洲的自由化近程落后于北美洲。因此,市场预测结果会有很大程度的不确定性。5 SOFC技术应用的扩展 使用天然气作为燃料的SOFC是车载式装置,其扩展应用可有以下几种形式:(1)家庭应用:新一代燃料电池将是扁平管型的,其功率密度是目前所用圆柱型燃料电池技术的2倍,因而将制造出5kW的燃料电池装置。这种设计方案是可行的,在配电市场中可以替代圆柱型燃料电池。(2)l0MW以上的系统装置:很显然,只要SOFC技术占有了功率范围在250-10MW的市场,那么下一步最必然的是要争取占有l0MW以上更大规模发电设备的市场。通过把更多SOFC链接起来便能实现这个目标,也满足了高效率低成本的要求。20MW级规模燃料电池的电效率已经接近甚至超过70%。(3)用液态燃料运行:使用天然气作为燃料将SOFC的应用局限在靠近天然气供气网的区域内,从而使这项新技术的应用受到限制。因此存在着让SOFC使用液态燃料的迫切要求。因此,应与大型石油公司合作进行该课题的研究开发,选择一种适宜的液体燃料并设计出最适于使用这种新燃料的SOFC发电装置,以便为边远的用户服务。 (4)C02的分离:Shell公司和 Siemens Westinghouse公司正在共同研制一种能将CO2从完全反应后的燃料中分离的SOFC设飞方案。例如,当把其装在用于回收油的平台上时,可以把CO2用泵压到地下储层中,这不但可省去CO2的排放税,还可提高原油的产出量。 (5)综合性应用:CO2分离装置可能是点火的火花装置,它使得SOFC在一种封闭且可再生的能量循环中成为关键性部件。经过-段时间,SOFC能产生出热量和电力,例如用于大型暖房的设施中,SOFC装置产生的C02可用来加快植物的生长。而任何一种农作物收获后的剩余有机物都可以转化为气体供给SOFC作燃料。

化学电池化学电池将化学能直接转变为电能的装置。主要部分是电解质溶液、浸在溶液中的正、负电极和连接电极的导线。依据能否充 电复原,分为原电池和蓄电池两种 化学电池的种类 化学电池按工作性质可分为:一次电池(原电池);二次电池(可充电电池);铅酸蓄电池。其中:一次电池可分为:糊式锌锰电池、纸板锌锰电池、碱性锌锰电池、扣式锌银电池、扣式锂锰电池、扣式锌锰电池、锌空气电池、一次锂锰电池等。二次电池可分为:镉镍电池、氢镍电池、锂离子电池、二次碱性锌锰电池等。铅酸蓄电池可分为:开口式铅酸蓄电池、全密闭铅酸蓄电池。 1.锌锰电池 锌二氧化锰电池(简称锌锰电池) 又称勒兰社(Leclanche)电池,是法国科学家勒兰社(Leclanche,1839-1882)于1868年发明的由锌(Zn)作负极,二氧化锰(MnO2)为正极,电解质溶液采用中性氯化铵(NH4Cl)、氧化锌(ZnCl2)的水溶液,面淀粉或浆层纸作隔离层制成的电池称锌锰电池,由于其电解质溶液通常制成凝胶状或被吸附在其它载体上而呈现不流动状态,故又称锌锰干电池。按使用隔离层区分为糊式和板式电池两种,板式又按电解质液不同分铵型和锌型电池纸板电池两种。 干电池用锌制筒形外壳作负极,位于中央的顶盖上有铜帽的石墨棒作正极,在石墨棒的周围由内向外依次是A:二氧化锰粉末(黑色)------用于吸收在正极上生成的氢气(以防止产生极化现象);B:用饱和了氯化铵和氯化锌的淀粉糊作为电解质溶液。 电极反应式为:负极(锌筒):Zn +– 2e === Zn(NH3)2Cl2↙+2H+ 正极(石墨):2NH4+ === 2NH3 ↑+ H2↑ H2O + 2MnO2 + 2e === 2MnOOH+ 2OH- 总反应:Zn + 2NH4Cl + 2MnO2 === Zn(NH3)2Cl2↙+2MnOOH 干电池的电压大约为,不能充电再生。 2.碱性锌锰电池 20世纪中期在锌锰电池基础上发展起来的,是锌锰电池的改进型。电池使用氢氧化钾(KOH)或氢氧化钠(NaOH)的水溶液做电解质液,采用了与锌锰电池相反的负极结构,负极在内为膏状胶体,用铜钉做集流体,正极在外,活性物质和导电材料压成环状与电池外壳连接,正、负极用专用隔膜隔开制成的电池。 3.铅酸蓄电池 1859年法国普兰特(Plante)发现,由正极板、负极板、电解液、隔板、容器(电池槽)等5个基本部分组成。用二氧化铅作正极活性物质,铅作负极活性物质,硫酸作电解液,微孔橡胶、烧结式聚氯乙烯、玻璃纤维、聚丙烯等作隔板制成的电池。 铅蓄电池可放电也可以充电,一般用硬橡胶或透明塑料制成长方形外壳(防止酸液的泄漏);设有多层电极板,其中正极板上有一层棕褐色的二氧化铅,负极是海绵状的金属铅,正负电极之间用微孔橡胶或微孔塑料板隔开(以防止电极之间发生短路);两极均浸入到硫酸溶液中。放电时为原电池,其电极反应为: 负极:Pb + SO42-- 2e === PbSO4 正极:PbO2 + 4H+ + SO42- + 2e === PbSO4 + 2H2O 总反应式为:Pb + PbO2 + 2H2SO4 ====== 2PbSO4 + 2H2O 当放电进行时,硫酸溶液的的浓度将不断降低,当溶液的密度降到 时应停止使用进行充电,充电时为电解池,其电极反应如下: 阳极:PbSO4 + 2H2O- 2e === PbO2 + 4H+ + SO42- 阴极:PbSO4 + 2e === Pb + SO42- 总反应式为:2PbSO4 + 2H2O ====== Pb + PbO2 + 2H2SO4 当溶液的密度升到时,应停止充电。 上述过程的总反应式为: 放电 Pb + PbO2 + 2H2SO4 ====== 2PbSO4 + 2H2O 充电 4.锌银电池 一般用不锈钢制成小圆盒形,圆盒由正极壳和负极壳组成,形似纽扣(俗称纽扣电池)。盒内正极壳一端填充由氧化银和石墨组成的正极活性材料,负极盖一端填充锌汞合金组成的负极活性材料,电解质溶液为KOH浓溶液。电极反应式如下: 负极:Zn + 2OH- -2e=== ZnO + H2O 正极:Ag2O + H2O + 2e === 2Ag + 2OH- 电池的总反应式为:Ag2O + Zn ====== 2Ag + ZnO 电池的电压一般为,使用寿命较长。 5.镉镍电池和氢镍以及金属氢化物镍电池 二者均采用氧化镍或氢氧化镍作正极,以氢氧化钾或氢氧化钠的水溶液作电解质溶液,金属镉或金属氢化物作负极。金属氢化物电池为20世纪80年代末,利用吸氢合金和释放氢反应的电化学可逆性发明制成,是小型二次电池主导产品。 6.锂电池 锂电池是一类以金属锂或含锂物质作为负极材料的化学电源的总称通称锂电池,分为一次锂电池和二次锂电池。 7.锂离子电池 指能使锂离子嵌入和脱嵌的碳材料代替纯锂作负极,锂的化合物作正极,混合电解液作电解质液制成的电池。锂离子电池是1990年有日本索尼公司研制出并首先实现产品化。国内外已商品化的锂离子电池正极是LiCoO2,负极是层状石墨,电池的电化学表达式为(—) C6▏1mol/L LiPF6-EC+DEC▏LiCoO2(+) 8.氢氧燃料电池 这是一种高效、低污染的新型电池,主要用于航天领域。其电极材料一般为活化电极,具有很强的催化活性,如铂电极、活性碳电极等。电解质溶液一般为40%的KOH溶液。电极反应式如下: 负极:2H2 + 4OH- -4e=== 4H2O 正极:O2 + 2H2O + 4e=== 4OH- 总反应式:2H2 + O2 === 2H2O 9.熔融盐燃料电池 这是一种具有极高发电效率的大功率化学电池,在加拿大等少数发达国家己接近民用工业化水平。按其所用燃料或熔融盐的不同,有多个不同的品种,如天然气、CO、---熔融碳酸盐型、熔融磷酸盐型等等,一般要在一定的高温下(确保盐处于熔化状态)才能工作。 下面以CO---Li2CO3 + Na2CO3---空气与CO2型电池为例加以说明: 负极反应式:2CO + 2CO32--4e === 4CO2 正极反应式:O2 + 2CO2 + 4e=== 2CO32- 总反应式为:2CO + O2 === 2CO2 该电池的工作温度一般为6500C 10.海水电池 1991年,我国科学家首创以铝---空气---海水为材料组成的新型电池,用作航海标志灯。该电池以取之不尽的海水为电解质,靠空气中的氧气使铝不断氧化而产生电流。其电极反应式如下: 负极:4Al – 12e === 4Al3+ 正极:3O2 + 6H2O + 12e === 12OH- 总反应式为:4Al + 3O2 + 6H2O === 4Al(OH)3 这种电池的能量比普通干电池高20---50倍! 新型化学电池 (1碱性氢氧燃料电池 这种电池用30%-50%KOH为电解液,在100°C以下工作。燃料是氢气,氧化剂是氧气。其电池图示为 (―)C|H2|KOH|O2|C(+) 电池反应为 负极 2H2 + 4OH―4e=4H2O 正极 O2 + 2H2O + 4e=4OH 总反应 2H2 + O2=2H2O 碱性氢氧燃料电池早已于本世纪60年代就应用于美国载人宇宙飞船上,也曾用于叉车、牵引车等,但其作为民用产品的前景还评价不一。否定者认为电池所用的电解质KOH很容易与来自燃料气或空气中的CO2反应,生成导电性能较差的碳酸盐。另外,虽然燃料电池所需的贵金属催化剂载量较低,但实际寿命有限。肯定者则认为该燃料电池的材料较便宜,若使用天然气作燃料时,它比唯一已经商业化的磷酸型燃料电池的成本还要低。 (2) 磷酸型燃料电池 它采用磷酸为电解质,利用廉价的炭材料为骨架。它除以氢气为燃料外,现在还有可能直接利用甲醇、天然气、城市煤气等低廉燃料,与碱性氢氧燃料电池相比,最大的优点是它不需要CO2处理设备。磷酸型燃料电池已成为发展最快的,也是目前最成熟的燃料电池,它代表了燃料电池的主要发展方向。目前世界上最大容量的燃料电池发电厂是东京电能公司经营的11MW美日合作磷酸型燃料电池发电厂,该发电厂自1991年建成以来运行良好。近年来投入运行的100多个燃料电池发电系统中,90%是磷酸型的。市场上供应的磷酸型发电系统类型主要有日本富士电机公司的50KW或100KW和美国国际燃料电池公司提供的200KW。 富士电机已提供了70多座电站,现场寿命超过10万小时。 磷酸型燃料电池目前有待解决的问题是:如何防止催化剂结块而导致表面积收缩和催化剂活性的降低,以及如何进一步降低设备费用。 化学电源的重大意义: 化学能转换为电能的原理的发现和各式各样电池装置的发明,是贮能和供能技术的巨大进步,是化学对人类的一项重大贡献,极大地推进了现代化的进程,改变了人们的生活方式,提高了人们的生活质量。

相关百科
热门百科
首页
发表服务