论文发表百科

汽轮发电机论文

发布时间:2024-07-02 10:59:43

汽轮发电机论文

可以给我发份吗?谢谢啦

2007年7月23日,国家发改委公布了444个油耗不达标车型的“黑名单”,涉及55家生产企业。公告中还声明,所有不符合标准的车型自发布公告之日起不得再进行生产。发改委之所以这么做,是因为近年来石油价格的不断上涨。国际油价目前没有下跌的迹象,现国际原油价格已达到76美元。石油是不可再生的能源,其储藏量和可开采量资源正面临枯竭。2003年全球石油探明储量为11477亿桶,而每年新勘探量仅50亿桶。如今人类社会高度依赖于石油工业,包括汽车在内的各个行业的发展都离不开石油工业。地球上的石油到底还能供人类用多久?据美国石油业协会估计,地球上尚未开采的原油储藏量已不足两万亿桶,可供人类开采不超过95年的时间。在2050年到来之前,世界经济的发展将越来越多地依赖煤炭。其后在2250到2500年之间,煤炭也将消耗殆尽,矿物燃料供应枯竭。 中国石油资源不及世界人均水平的1/6,从1993年开始,中国成为石油净进口国,供需矛盾日益突出。2004年中国石油消费量达到了亿吨,进口原油亿吨。其中,车用燃油消耗已经达到了中国石油消费量的1/3左右。此后石油进口仍呈上升趋势,进口量约占使用量的20%左右,预计到2010年前后将达到40%,车用汽油年消耗量为6400万吨。面对人类即将消耗完需几百万年才形成的石油资源所引发的即将到来的能源危机,中国及全世界必须认识到要采取开源节流的战略,即一方面节约能源,另一方面开发新能源。 2006年中国车市销量达到720万辆,增长超过30%,中国已经超过日本成为世界第二大汽车市场。权威调查部门预计,除了中国、印度等发展中国家,2007年全球汽车销售都将进入疲软时代。但在中国汽车市场领跑全球汽车市场荣耀的背后,是中国过快消耗着祖先留下的资源。面对即将到来的能源危机,中国的汽车产业路在何方,路只有一条:使用新能源,也只有使用新的替代能源,汽车产业才能持续发展。实施替代能源战略,有助于我国汽车逐渐摆脱对原油的依赖,从能源安全的角度看,无疑是非常必要的。 那么,目前世界汽车产业使用替代能源主要有哪几种方式?其前景到底如何呢? 1乙醇燃料:价廉物美 使用乙醇燃料,是全世界最常见的一种燃料替代方案,也是目前国内颇为重视、已经得到推广的新燃料。这种燃料一般是与传统的汽油、柴油混合起来使用,其混合比例从加入10%~30%的乙醇到85%不等,甚至可以采用100%的乙醇作为燃料。其最大的好处在于不需要对现有的汽车结构做很大的修改就可以使用乙醇燃料, 而且这种燃料比起汽油、柴油来更加环保,能够起到减少污染的效果。同时,乙醇可以通过玉米、小麦、水稻、甜高粱、木薯、甘薯以及甘蔗、甜菜等农作物制造,甚至连农作物的秸秆都有可能被用来生产乙醇。只要合理解决“汽车与人争食”的问题,乙醇燃料的推广能解决燃料的再生问题,是最价廉物美的能源解决方案。 除了乙醇以外还有类似于丁醇、甲醇这样的生物燃料,都被纷纷用于替代汽油与柴油。乙醇燃料汽车由于与现有的汽车没有多大区别,所以在国内外都相对普及。例如巴西作为乙醇燃料汽车最流行的国家,在这方面最为典型。人们熟悉的本田思域、飞度,三菱帕捷罗等都拥有专门针对巴西市场的乙醇燃料型号。最新型的车款安装了油气浓度传感器,可以自动感知燃料箱内不同性质的燃料,做到与普通汽油柴油的自然替换。此外,著名的跑车制造厂莲花甚至推出了采用乙醇汽油混合燃料引擎的Exige265E跑车,它仅重930kg,265代表它的最大输出为265匹马力左右,E表示其使用的是莲花E85高性能环保动力。特别让人吃惊的是该车加速成绩足以向法拉利发起挑战,0~60mph加速时间仅为秒,0~100mph加速时间为秒,最高时速达到158mph。除了巴西以外,美国的乙醇燃料汽车也十分流行,中国则超过整个欧盟成为乙醇燃料消费的大国。如何摆脱简单改装并提高乙醇燃料汽车的技术含量以使其发挥更大的效能,是摆在中国汽车制造厂商面前的课题。

节能型循环水泵在供水系统中的应用 前言 电力工程建设中供水系统投资高、工程量大施工复杂,对电力工程建设造价与投资回收年限影响较大,在电厂供水系统方案设计中非常重视自然通风冷却塔与循环水泵选择,循环水泵房与循环水管道系统优化布置,因为它们直接影响汽轮机安全运行与发电机满负荷发电,直接影响电厂的经济性,为了降低供水系统年运行费用,节约工程造价必须推广节能型设备的应用、优化系统的配置。 火力发电厂中汽轮发电机凝汽器的冷却水量随季节变化,夏季冷却水量大冬季冷却流量小;随汽轮机抽汽量变化,抽汽量大冷却流量少,抽汽量小冷却流量大。供水系统采用一台机组配二台相同型号水泵并联模式,将循环冷却水量平均分配给二台循环水泵,这种配置模式符合《火力发电厂水工技术规程、规定》,在电厂供水系统设计中广泛使用。 但是,一台机组配二台相同型号水泵在运行过程中经常出现问题,为了从根本上解决水泵运行效率低下与系统流量变化步调不一的矛盾,开发一种新型高效节能型水泵事在必然。 高效节能型循环水泵在供水系统中的应用 近年来全国各地相继建成一大批135MW火力发电厂,在山东里彦电厂、徐州诧城电厂、甘肃金川电厂、山东魏桥热电厂,我们先后设计了18台135MW国产超高压、中间再热机组。这些电厂位于我国华北、东北与西北地区,共同特点是企业自发自用,除了有稳定的电力需求外还有供热负荷,供热负荷波动较大,夏季热负荷小冬季热负荷大,年采暖期长。 以135MW供热机组为例,汽轮机最大连续出力时汽轮机凝汽器的凝汽量为324t/h,需要循环冷却水量19640m3/h;汽轮机额定抽汽工况时汽轮机凝汽器的凝汽量为223t/h,需要循环冷却水量12274m3/h;汽轮机最大抽汽工况时汽轮机凝汽器的凝汽量143t/h,循环冷却水量4700m3/h。随机组运行工况的改变,循环水系统需要的冷却水量从4700m3/h--19000m3/h的巨幅波动。 供水系统采用常规水泵布置,为了满足夏季汽轮机运行要求,通常选用选择水泵流量9800-11700m3/h,扬程米,按照夏季二台水泵并联运行来满足循环水系统需要的冷却水量19000m3/h,其它季节通过一台水泵运行来满足循环水系统冷却水量需要,水泵流量范围9800-11700m3/h,系统超过此流量范围运行时,水泵运行很不经济。 不难发现:汽轮机在额定抽汽工况下,循环冷却系统需水量为12274t/h,系统水阻比汽轮机纯凝工况时略为减少米,水泵扬程下降到米,单台水泵流量增加到13000t/h,一台水泵运行可以满足系统要求,只是运行效率不高。可是汽轮机最大抽汽工况时,循环冷却水量只有4700t/h,系统水阻比汽轮机纯凝工况时大幅度减少,导致水泵扬程提高、运行效率很低,造成冷却塔淋水装置涌水、加大配水槽流速,水流热交换时间减少。由于水泵的工作效率极低,电动机无功功率增加,白白地浪费电能。 如果在135MW国产超高压、中间再热机组中循环水系统采用新型高效节能型水泵,将从根本上解决水泵运行效率低下与系统流量变化步调不一的矛盾。 以G48Sh水泵为例,在转速n=485r/min时、水泵流量17500m3/h、扬程18米、水泵效率88%、轴功率947kw;在转速n=420r/min时、水泵流量13200m3/h、扬程米、水泵效率87% 轴功率587kw。该水泵设计参数与135MW机组循环水系统参数基本吻合、运行效率高。对100多台G48Sh水泵进行抽样检测,实际运行效率为84-88%;常规48Sh-22水泵运行效率只有60%。 水泵配用电动机采用双极数、双转速的核心技术,增加了循环水系统运行调节灵活性。根据凝汽器冷却水量随季节变化、随抽汽量改变,自动调整电动机极数与转速,同时改变输出功率与水泵供水量。一台G48Sh水泵高转速运行比二台48Sh-22并联水泵每小时多供水量3000吨;一台G48Sh水泵低转速运行电动机输出功率可以从947KW调整到587KW,电动机功率降幅达37%,其节能效果非常明显。因为循环水系统除了夏季水泵高转速运行外,其他季节基本上可以低速运行,按照年运行时间7200小时计算,每年每台水泵可节省电量230万度。按照电厂厂用电价元/度计算,单台循环水泵每年节约电费大约为40万元左右,按照10-15年回收年限计算,单台循环水泵节约电费高达400-600万元,对于安装几台节能型循环水泵的电厂,其经济效益非常可观不可小视,这也是许多电厂节能技术改造的一个发展方向。而常规水泵配用电动机是固定不可调的,一定的转速所对应的输出功率是不变的。单台高效节能型循环水泵比等容量常规SH系列离心水泵价格高15-20万元,这部分投资费用只须电机低速运行很短时间即可收回全部成本。 高效节能型循环水泵的引入可以优化系统水力条件,加宽了水泵高效区段适应范围,有效地提高水泵工作效率;改变了一台汽轮机配二台等容量水泵常规设计理念,提出了一种新的水泵配置来满足汽轮机的变工况运行要求,本体结构采用卧式泵壳设计,厂运行、检修非常方便。 山东十里泉电厂(2×125MW)循环水系统原来配备了4台同型号48SH-22水泵运行,确实存在水泵供水量不足、效率低、经济性能差。1998年10月将其中的4#水泵更换成G48SH水泵,投产后电厂委托电力试验研究所进行了水泵性能测试,在高、低转速时运行效率分别高达与,比未改造其他水泵效率分别提高和,耗电量明显减少。 广东云浮电厂(2×125MW)也是配备了4台同型号循环水泵48SH-22。夏季3台水泵运行,其他季节2台运行。因为循环水流量不足、效率低,将其改成G48SH水泵,投产后委托广东电力试验研究所对水泵效率进行检测,新泵高转速时实际流量16537t/h、运行效率、电动机功率1002KW;新泵低转速时实际流量13080t/h、运行效率为、电动机功率646KW。水泵与机组运行工况吻合。原水泵实际流量14400t/h、效率、电动机功率1089KW;最高效率70%时流量为11540t/h,水泵与机组运行工况不符。高转速时新泵比旧泵供水量大2137 t/h、功率低、效率高;低速时新泵在供水量相同情况下,单台水泵每小时可以节省443KW,节能效果显著。 结论 任何新技术的推广都需要一个认识过程, 高效节能型循环水泵的最大特点是节能、工作效率高,值得在全国推广。但是它是否适合所有地区、所有135MW机组的运行还需要更多的实际应用证明,需要因地制宜的选择。 推广高效节能型循环水泵不仅涉及到电厂循环水泵的配置、水泵备用与水泵运行费用问题,而且关系到水泵与汽轮机运行的联锁、控制问题等等,尤其在长江边建设取水泵房必须谨慎选择,高效节能型循环水泵的几何尺寸较等容量水泵大的多,对江边取水泵房而言,设备及设备运行费用不及取水泵房结构费用与施工费用,特别是水源枯水位与最高水位相差较大的时候,取水泵房几何尺寸的任何变化对工程造价的影响是非常大的。

本文是给那些正在搞电气自动化毕业设计和写电气自动化毕业论文的朋友提供一个电气自动化毕业设计的选题。1、加速中小型老旧变压器更新换代的节电降耗2、会议电视系统应用探讨3、关于住宅电气设计的探讨4、高压配电设备及其运行5、高速单凭机硬件关键参数设计概论6、照明电路发生故障的原因及排除方法7、代替小型PLC的单片控制器8、固态继电器及在应用中的一些问题探讨9、断线保护装置对人身和设备的保护10、发电机组和大型电动机测温装置的测试和改进11、对当前汽轮发电机在线监测应用的初步分析和建议12、对闭环运行方式配电自动化系统的探讨13、电气设备热故障分析及对策14、电气设备机房的电涌防护15、电锅炉房的电气设计16、大学图书馆电气设计17、配电自动化系统中的通信系统电气化毕业设计 电气自动化毕业论文选题21、人工智能在电气传动中应用的进展2、电气改造工程施工组织设计3、真空技术4、用于基本驱动系统的高性能比变频器SinamicsG1105、脉冲功率装置能源计算机控制技术6、交流调速的功率控制技术7、国外永磁传动技术的新发展8、变频器制动新思路、新方法9、变频器在锅炉给粉器上的应用10、变频器在运行过程中存在的问题及其对策11、变频器应用中的干扰及其抑制12、新世界多层住宅配电设计13、民用建筑应急照明的解析14、交流参数稳压电源及其对谐波的抑制15、建筑防雷综合述论16、建筑电气在住宅室内环境设计中的功能与应用电气化毕业论文 电气自动化论文 电气工程毕业设计 电子电气毕业论文31、GIS在交通中的应用与发展2、能提供低成本风电的新型风力机3、风力发电机组齿轮箱监控设施4、风力发电机组齿轮箱概述5、暖通空调系统故障预测维护与设备管理自动化6、计算机监控系统在化学水汽品质监督中的应用7、机电一体化智能大流量电动执行机构的研究8、机电一体化智能大流量电动执行机构9、富有感染力的灯光照明10、油井高含水计量技术探讨11、基于MSP430单凭机的实时多任务操作系统 12、电机转子动平衡半自动去中系统的研制13、中国电源产业的发展与分析14、运动控制新技术15、一种智能型伺服放大器的设计16、新进制造技术的新发展17、无轴承电机研究和应用前景18、我国机械制造业管理信息化特点及发展趋势19、数控化发展趋势——智能化数控系统20、柔性制造系统的关键技术及发展趋势资料来源:

汽轮发电机组科技论文范文

轮机工程技术论文范文篇二 燃气轮机在热电联产工程中的应用状况分析 摘要: 燃气轮机是21世纪乃至更长时间内能源高效转换与洁净利用系统的核心动力装备.介绍了燃气轮机的发展现状及其在热电联产工程中的应用,简述了联合循环和简单循环燃气轮机电厂的基本组合方式,并列举了目前应用在热电联产工程中的几种主要的燃气轮机.阐述了燃气轮机相对于常规火电机组的优点,分析了影响燃气轮机在热电联产工程中推广的因素,并对我国燃气轮机的发展前景进行了展望. 关键词: 燃气轮机; 联合循环电厂; 热电联产 中图分类号: TK 479文献标志码: A Analysis of the application of gas turbines in heat and power cogeneration projects SUN Peifeng, JIANG Zhiqiang (1. China United Engineering Corporation, Hangzhou 310022, China; 2. China Huadian Corporation, Beijing 100031, China) Abstract: The gas turbine is the core equipment of highefficiency clean energy systems in the 21st century and even longer period of time. The current situation of gas turbine development and its application in heat and power cogeneration projects were showed in this paper. Two types of application of gas turbines in heat and power cogeneration projects were briefly introduced, namely, the simple cycle gas turbine power plant and the combined cycle power plant, and gas turbines widely used at present in heat and power cogeneration plants were enumerated. The advantages of the gas turbine plant compared with conventional coalfired power units were described and factors which could influence the application of the gas turbine were analyzed. In addition, the prospects for the development of gas turbines in China were evaluated. Key words: gas turbine; combined cycle power plant; heat and power cogeneration 燃气轮机由压气机、燃烧室、透平、控制系统和辅助设备组成.燃气轮机的设计是基于布莱顿循环.压气机(即压缩机)连续地从大气中吸入空气并将其压缩;压缩后的空气送入燃烧室,与喷入的天然气混合,并点火燃烧;燃烧后产生的高温烟气随即流入燃气透平中膨胀做功,推动透平带动压气机叶轮一起旋转.加热后的高温燃气的做功能力显著提高,因此,透平在带动压气机的同时,还有余功作为燃气轮机的输出功输出. 由于燃气轮机的工质是高温烟气而不是水蒸气,故可省去锅炉、冷凝器、给水处理等大型设备.因此,燃气轮机电厂附属设备较少,系统简单,占地面积较少. 燃气轮机可分为重型燃气轮机、工业型燃气轮机和航改型燃气轮机三类.重型燃气轮机的零件较为厚重,大修周期长,寿命可在10万h以上,主要用于满足城市公用电网需求,例如日立的H25和H80系列燃气轮机、通用电气的F级燃气轮机、西门子的SGT-8000系列燃气轮机、三菱的M701系列燃气轮机和阿尔斯通的GT系列重型燃气轮机等.工业型燃气轮机的结构紧凑,所用材料一般较好,燃气轮机的效率较高,例如索拉的T130燃气轮机和西门子SGT-800燃气轮机,常用于热电联产工程.航改型燃气轮机是由航空发动机改装而成的燃气轮机,在航空领域运用较多,但也有应用于发电及相关工业领域,例如通用电气的 LM 系列航改型燃气轮机等.航改型燃气轮机的结构最紧凑,最轻巧,效率最高,但寿命较短[1-2]. 燃气轮机自上世纪30年代诞生以来发展迅速.当今国际上最新型的G型燃气轮机和H型燃气轮机,单机功率已达到292~334 MW,发电热效率已达到.其中,由G型燃气轮机组成的联合循环单机功率可达489 MW,发电热效率可达;由H型燃气轮机组成的联合循环机组的发电热效率可达60%[3-5].H型燃气轮机组成的联合循环机组是目前已掌握的热-功循环效率最高的大规模商业化发电方式.不仅如此,燃气轮机与以煤为燃料的蒸汽轮机相比,它具有重量轻、体积小、效率高、污染少、启停灵活等优点.燃气轮机发电机组能在无外界电源的情况下迅速启动,机动性好.在电网中用它带动尖峰负荷和作为紧急备用电源,还能携带中间负荷,能较好地保障电网的安全运行,所以得到广泛应用[6]. 国内外科技界与产业界已经认识到燃气轮机将是21世纪乃至更长时期内能源高效转换与洁净利用系统的核心动力装备. 1燃气轮机在热电联产工程中的应用方式 燃气轮机在热电联产工程中的应用形式主要有两种:一种是燃气轮机联合循环热电厂;另一种是燃气轮机简单循环热电厂. 燃气轮机联合循环热电厂由燃气轮机、余热锅炉、蒸汽轮机(背压式、抽背式或者抽凝式)和发电机共同组成.燃气轮机排出的做功后的高温烟气通过余热锅炉回收烟气中的热量而得到高温水蒸气,水蒸气注入蒸汽轮机发电.蒸汽轮机的排汽或者部分在蒸汽轮机中做功后的抽汽用于供热,形式有:燃气轮机、蒸汽轮机同轴推动一台发电机的单轴联合循环;燃气轮机、蒸汽轮机推动各自的发电机的多轴联合循环.单轴的燃气轮机联合循环电厂规模较大,例如通用电气的9F系列机组.而多轴的联合循环机组常见于中小型的燃气轮机联合循环电厂.因此,对于电厂规模相对较小的热电联产工程来说,常选择多轴的燃气轮机联合循环机组. 燃气轮机简单循环热电厂由燃气轮机和余热锅炉组成.该类型燃气轮机热电厂不配置蒸汽轮机,通过余热锅炉直接对外供热.因此该类型燃气轮机热电厂发电热效率相对联合循环燃气轮机热电厂较低,约为30%~35%之间;热电比和供热成本的指标方面,简单循环燃气轮机热电厂也低于联合循环燃气轮机热电厂[7]. 由此可见,燃气轮机联合循环可大大提高发电厂整体发电热效率.即使只有燃气轮机和余热锅炉组成的不配置蒸汽轮机的简单循环燃气轮机发电厂,其发电效率也高于常规的小型燃煤热电厂. 2热电联产工程中燃气轮机机型选择 热电联产工程遵循“以热定电”原则,首先满足外界对蒸汽负荷的需求,一般对发电量的需求相对较少.因此,对于热电联产工程来说,大功率的重型燃气轮机使用相对较少,常配置一些中小型的燃气轮机. 世界主要的中小型燃气轮机有:索拉的T130燃气轮机;日立的H25和H80燃气轮机;通用电气的6F和LM系列的航改型燃气轮机;西门子的SGT-800燃气轮机.各机型的主要技术参数如表1(见下页)所示(表中数据来自各个燃气轮机厂家产品宣传手册,且会因计算的天然气热值等参数变化而发生微小的变化). 表1各中小型燃气轮机相关性能参数 Performance parameters of some gas turbines 表1中,H25,H80 和6F为重型燃气轮机;SGT-800和T130为工业型燃气轮机;LM6000为航改型燃气轮机.从表1可知,工业型和航改型燃气轮机单机发电热效率相对重型燃气轮机的单机发电效率明显更高,但燃气轮机的排烟温度相对较低.由于排到余热锅炉的高温烟气所包含的热量相对较少,因此对于整个联合循环热电厂,工业型和航改型燃气轮机联合循环热电厂的整体发电热效率反而低些[8-9].简单循环的燃气轮机热电厂若选择工业型燃气轮机及航改型燃气轮机,其热电厂发电热效率会较高. 对于配置蒸汽轮机的燃气轮机联合循环,重型燃气轮机因其排烟温度较工业型燃气轮机和航改型燃气轮机高,排到余热锅炉的高温烟气所包含的热量相对较多,余热锅炉产出的供蒸汽轮机发电用的高温高压的蒸汽也更多.因此,重型燃气轮机联合循环整体发电热效率比工业型燃气轮机和航改型燃气轮机联合循环的发电热效率高.燃气轮机联合循环热电厂中大多选择重型燃气轮机. 从能量的充分利用和逐级利用角度讲,相比于燃气轮机简单循环热电厂,燃气轮机联合循环热电厂更具有优势.目前我国燃气轮机热电联产工程中,大多选择重型燃气轮机组成的联合循环燃气轮机热电厂,如浙江省的某热电厂,采用6F级燃气轮机匹配余热锅炉和蒸汽轮机组成燃气轮机联合循环机组对外供热供电,燃气轮机联合循环热电厂整体发电热效率约60%. 但是对于某些对占地面积有严格要求的场合,如海上油气平台井等,一般可选择结构紧凑、效率高的工业型燃气轮机或者航改型燃气轮机机. 具体燃气轮机机型的选择可根据各工程的实际情况进行分析、计算、确定,如热电厂的对外供热参数和供热量、装机容量、机组数量、占地面积、整体热效率等. 3燃气轮机联合循环热电联产工程相对于常规火力发电热电联产的优势[10] 相对于常规燃煤的小型火力发电的热电联产电厂,燃气轮机联合循环热电厂的优势主要有: (1) 高效:燃气轮机联合循环的发电热效率已经达到甚至突破60%,这是一般常规火电机组无法比拟的,甚至高于目前最先进的超超临界机组而稳居各类火电机组之首. (2) 单位造价低:燃气轮机联合循环机组单位容量造价约400美元·kW-1,而常规火电机组造价为600~1 000美元·kW-1;若我国国产燃气轮机的制造加工水平进一步提升,燃气轮机联合循环机组单位容量造价还有非常大的下降空间. (3) 低排放:燃气轮机联合循环不排放SO2以及飞灰和灰渣;NOx的排放量也非常低,一般都可以达到 mg·m-3以下,甚至可以根据需要达到小于 mg·m-3的水平,CO2的排放量可以做到 mg·m-3;环保性能居于现有各种火电机组之上. (4) 节水:燃气轮机联合循环机组以燃气轮机发电为主,燃气轮机发电机功率占总容量的70%,联合循环机组所需用水量约为常规燃煤机组的1/3.这在某些缺水的地区显得尤为重要.若选择燃气轮机和余热锅炉配置的简单循环,整个电厂对机组冷却水量的需求相对于常规火电厂的冷却水量更是大幅度减少. (5) 省地:燃气轮机联合循环机组因附属设备较少,无需储煤场、输煤设施,占地面积仅为加脱硫装置的常规火电厂的1/3.这在城市边缘及城区的供热电厂显得尤为重要. (6) 建设工期短:燃气轮机联合循环机组最适合模块化设计,燃气轮机各部件模块可工厂化生产,运至现场吊装,因而大大缩短了燃气轮机电厂的建设工期. (7) 调峰性能好:通过余热锅炉的旁路烟囱,不运行蒸汽轮机及发电机组的情况下,一般在20 min 内就能达到燃气轮机及发电机组的100%负荷,而燃气轮机及其发电机组负荷占整个燃气轮机联合循环电厂额定负荷的70%左右,这保证了燃气轮机联合循环的良好调控性能,实现机组的日启夜停和调峰功能. (8) 操作运行和维护人员少:因为燃气轮机联合循环电厂自动化程度高,采用先进的控制系统,电厂对员工数量的需求大幅下降.一般情况下占同容量常规燃煤电厂人员的20%~25%就足够了. 4影响燃气轮机在热电联产工程中推广的主要因素 燃气轮机联合循环电厂在国外已经得到了普遍发展,近几年已占据美国电力市场的重要地位,欧洲的燃气轮机联合循环电厂也获得了长足的发展.目前我国燃气轮机联合循环电厂能否获得大力推广和发展,主要受制于如下三个因素: (1) 我国能提供多少天然气资源供燃气轮机发电工业使用;当前国内已有部分燃气轮机联合循环电厂因受制于燃料供应,每年运行的时间远远少于常规燃煤机组. 2012年,随着“西气东输”二线最后几条干线的建成投产,整个输气管道实现每年输气300亿m3.未来中国甚至有可能规划修建“四线”或者“五线”,进一步便于西部地区的天然气输送到东部地区开发利用. 另外,海上(东海、南海)天然气的开发、沿海港口城市液化天然气(LNG)的进口,也为联合循环发电扩充了气源供应条件.国内已经探明了华北、东北、西北三大煤层气资源储量,并将逐步开采. 随着天然气来源渠道的扩大,燃气轮机联合循环电厂的应用范围将大大突破西气东输管网和海上天然气所能影响的地区. (2) 如何合理确定天然气价格,使燃气轮机联合循环发电成本能够与严重污染的以煤为燃料的常规火电相竞争. 必须指出,天然气的价格对燃气轮机及联合循环的运行成本有着决定性的影响.在燃气轮机三项发电成本的组成中(设备折旧成本、机组运行维护成本、燃料成本),燃料成本的比例高达60%~65%,即使在天然气的产地,运输过程费用大为降低,天然气价格相对东南沿海地区更加便宜,其成本占燃气轮机发电成本的比例仍然是非常高的[4].在天然气价格居高不下的今天,燃料成本高已经成为制约燃气轮机发电大力推广的一个关键性因素. 当前,作为工业企业及城市基础设施的重要组成部分的许多中小型燃煤热电厂,通常地处城市之中或者城市郊区,因此不可避免地会对当地大气环境质量产生很大影响.中小型燃煤热电厂改造为燃气轮机联合循环热电厂,对当地环境质量的改善效果非常明显,也最容易得到人民群众的接受和支持. 热电厂的燃料从煤炭改造为天然气,虽然合理调整了能源结构,提高了能源利用效率,减少了煤炭运输环节的损失和浪费,但是对燃气轮机联合循环热电厂来说,燃料成本必然要增加,能源代价必然会提高,因此争取群众和企业的理解和参与,合理分担部分天然气成本因素,是解决天然气市场和成本关系的一条合理途径. 政府在制定燃气轮机联合循环热电厂上网电价和外供蒸汽价格时,应考虑到燃气轮机的环境效益,适当提高上网电价和外供蒸汽价格,这也是对天然气成本过高的一种消化. (3) 从长远的角度看,我国燃气轮机整体行业水平的提高是决定我国燃气轮机及联合循环电厂能否大力推广的一个重要因素. 燃气轮机的发展水平代表着一个国家的重大装备制造业的总体水平.当前我国的燃气轮机技术水平与世界先进水平之间的差距还很大,燃气轮机的核心部件依赖于进口,燃气轮机的每次大修花费很大.若某些燃气轮机的大修只能运回美国等发达国家进行,则其费用更大. 近年来,为了推动燃气轮机工业的发展,按照“市场换技术”的原则,我国对规划批量建设的燃气轮机发电站工程项目采取“打捆”式招标采购模式,由国外先进燃气轮机制造企业与国内制造企业相互结合组成联合体,进行燃气轮机联合循环电站工程项目的竞争投标,以吸收和引进国外先进技术.在这一过程中,我国同时引进了世界三大动力集团(通用电气、西门子、三菱)的F级重型燃气轮机.在实现燃气轮机设备制造本土化和国产燃气轮机技术开发方面都取得了良好的成果.在吸收和引进国外先进燃气轮机技术的基础上,逐步实现了燃气轮机联合循环电站设备研发和制造的国产化、本地化和知识产权自主化[11-12]. 2008年,我国具有完全自主知识产权的110 MW级R0110燃气轮机进行了点火及实验验证,其性能已经接近于目前国际上先进的F级燃气轮机,对我国的燃气轮机设计、制造和加工的整体水平是一个巨大的提升[13-14]. 目前,我国燃气轮机技术水平与国际先进水平之间的差距正在不断缩小,我国的燃气轮机自主研发、生产制造等方面取得了重大进展.2012年9月12日,上海市科委重大专项课题“高温合金叶片制造技术研究”通过专家验收,这标志着我国在燃气轮机核心部件国产化、自主化生产的道路上迈出了坚实的一步. 从制约燃气轮机联合循环电厂发展的三个因素及我国目前的相应情况可知,我国大力发展燃气轮机联合循环的条件已经具备,燃气轮机联合循环电厂的快速发展在近期将成为可能. 5总结 实现节能减排,提高能源利用率是我国能源结构调整的目标.随着我国天然气资源的开发、利用及液化天然气资源的引进,我国燃气轮机联合循环机组将不断增加.燃气轮机联合循环以其高效、清洁和灵活的特点,必将成为我国未来大力发展的电厂类型. 目前可用于热电联产的中小型燃气轮机容量和整个热电厂供热能力与我国广泛使用的蒸汽轮机热电机组的规格十分接近,因而可在不改变外部系统,不增加发电容量和不间断供热、发电的前提下,以较短的时间、较低的投资和较合理的电、热成本实现对热电厂以气代煤的改造.这也是燃气轮机联合循环热电厂可获得大力推广的现实条件. 总之,燃气轮机联合循环机组在我国电力工业中的作用将逐渐增强,发展燃气轮机联合循环热电厂任重而道远,但是前景是非常光明的. 参考文献: [1]李孝堂.燃气轮机的发展及中国的困局[J],航空发动机,2011,37(3):1-7. [2]马悦,纪锦锋.燃气-蒸汽联合循环电站机组配置及选型分析[J].能源工程,2011(6):52-57. [3]蒋洪德.重型燃气轮机的现状和发展趋势[J].热力透平,2012,41(2):83-88. [4]清华大学热能工程系动力机械与工程研究所,深圳南山热电股份有限公司.燃气轮机与燃气-蒸汽联合循环装置[M].北京:中国电力出版社,2007. [5]刘红,蔡宁生.重型燃气轮机技术进展分析[J].燃气轮机技术,2012,25(3):1-5. [6]张荣刚,李文强.浅析燃气轮机在电力行业中的应用[J].企业技术开发,2011,30(10):122-123. [7]徐迎超,阎波,樊泳,等.燃气-蒸汽联合循环(CCPP)发电在首钢迁钢公司中的应用[J].冶金动力,2012(1):27-29. [8]刘祖仁,李达,张阳.海上燃气轮机余热资源计算[J].中外能源,2012,17(5):99-103. [9]李达,张阳,孙毅.海上冷、热、电、惰气四联供护技术探讨[J].石油和化工节能,2012(5):11-14. [10]黄勇.我国发展联合循环机组的背景和条件[J].中国科技博览,2011(29):372. [11]刘华强,汪晨晖.燃气轮机在我国应用情况分析[J].中国新技术新产品,2012,(6):149. [12]杨连海,沈邱农.大型燃气轮机的自主化制造[J].燃气轮机技术,2006,19(1):11-14. [13]崔荣繁,陈克杰,郭宝亭.R0110重型燃气轮机的研制[J].航空发动机,2011,37(3):8-11. [14]包大陆.R0110重型燃气轮机气缸结构研究[J].中国新技术新产品,2012(9):109. 看了“轮机工程技术论文范文”的人还看: 1. 轮机工程技术个人简历免费模板 2. 船舶轮机管理论文 3. 船舶最新技术论文 4. 农业机械技术论文 5. 电厂工程技术管理论文

本人1976年毕业于哈尔滨电力学校汽轮机专业,从事汽轮机专业已37年,1976年~1983年在呼伦贝尔电业局电力安装工程处,从事发电厂汽轮机安装工作,任汽轮机技术员。1983年3月调入东海拉尔发电厂,任汽机分场技术员,1994年,调入安全生产部,任汽机专责工程师,1992年通过工程类工程师资格的行业评审,晋中级职称。在从事汽轮机运行、检修管理的工作中,积累了丰富的工作经验,为我国电力建设和电力生产做出了较大的贡献,下面把我多年来在专业技术工作中所取得的成绩总结如下:

1、25MW机组胶球清洗装置改进: 1993年,对东海拉尔发电厂2台25MW机组胶球清洗装置进行改造,由活动式改为固定式,解决了原胶球清洗装置收球率低不能正常投入而需人工清洗凝汽器的问题,改造后胶球系统收球率100%。此项目荣获1993年伊敏煤电公司科技成果二等奖。本人在此次改造中起着重要作用。

2、锅炉及热网补水改用循环水余热利用: 1996年,进行25MW机组循环水余热利用改造,将机组的循环水输送到化学水处理室,进行处理后作为锅炉和热网的补水;充分利用循环水的余热。改造后取消了生水加热器,提高了机组的经济性。本人在此次改造中起着重要作用,此项目荣获1996年伊敏煤电公司科技成果三等奖。1999年,本人撰写论文《循环水余热利用及节能效果》,在《节能技术》编辑部,最全面的范文参考写作网站黑龙江省能源研究会优秀论文评审中被评为壹等论文。

3、解决#1机组调速系统工作不稳定,负荷摆动问题: #1机组调速系统工作不稳定,负荷大幅摆动,严重威胁机组的安全运行。经过组织专业研究、分析及试验,确定是危急遮断油门上油门活塞的排油孔的位置偏离设计位置,阻碍排油,使保护油路各滑阀间隙的泄油不能及时排出而进入速闭油管路,推动错油门上移,使调速系统不能正常调节而形成摆动。改进措施是:在油门活塞上重新钻孔使排油通畅,消除系统摆动,改进后调速系统工作正常。此项目荣获1996年伊敏煤电公司科技成果四等奖。

4、主持25MW机组锅炉连续排污扩容器疏水装置改造: 锅炉连续排污扩容器的疏水器厂家设计为吊桶浮子式疏水器,此装置关闭不严内漏严重,运行中连续排污扩容器无水位运行,将锅炉连续排污中的蒸汽白白浪费掉。为此将此疏水器改为液压水封疏水装置,改造后连续排污扩容器水位稳定,不需维护,回收了蒸汽,减少了热损失。此项目荣获1996年伊敏煤电公司科技成果四等奖。

5、主持#1、2机组PYS—140型除氧器及补水系统的节能改造: #1、2除氧器为喷雾淋水盘式大气式除氧器,运行中排汽带水严重。存在着疏水泵打水困难疏水箱满水溢流现象。1997年主持对#1、2除氧器及补水系统进行改造,具体措施是:

(1)在除氧器头部加盖挡水装置并在排氧管上安装节流孔。

(2)将进入除氧器的疏水与凝结水分开,疏水经喷嘴单独进入除氧器。改造后除氧器消除了排汽带水现象。疏水箱不满水不溢流减少了热损失,范文写作疏水泵打水快可间断运行降低了厂用电。此项目荣获1996年伊敏煤电公司科技成果三等奖。本人撰写《PYS—140型除氧器及补水系统节能改造》,在《节能》杂志2001年第2期发表。

6、厂内热网系统补水改造设计: 厂内热网系统补水箱设计在主厂房25米层,补水阀门为手动调节。

1、由于热网循环泵入口静压高使热网供水压力升高大于暖气片的工作压力,因此经常发生暖气片崩裂现象。

2、由于我厂热网循环水与生活热水为同一个系统,生活热水用量不恒定,时大时小。人工调节热网补水量不及时,经常发生热网补水箱满水溢流现象。1999年,对厂内热网补水系统进行改造,改进方案是:将热网补水箱改在热网加热站的屋顶,在补水箱内安装浮子套筒式补水调节阀。改造后热网供水压力稳定控制在以内,补水调节阀根据用水量自动调节水量,此装置免维护。

7、修改#1、2机组低真空改造辅机冷却水系统设计: 在2001年#1、2机组低真空循环水供热改造中,对辅机冷却水系统设计不合理的地方提出修改意见,将辅机冷却水泵入口负压吸水改为正压进水,将冷却水塔内增加取暖设备防冻改为辅机冷却水伴热防冻。提高了辅机冷却水系统运行可靠性,解决了水塔冬季停运后塔盆和进水管道防冻的问题。

8、#3、4机组凝结水泵入口管道改造: #3、4机组凝结水泵入口管道设计为159×4、5的管道。其管径设计偏小,机组的凝结水不能及时排出。在机组试安装期间对凝结水泵入口管道进行改造,将泵入口管道改为219×6管道,改造后消除了缺陷。

9、#3、4水塔压力管道防冻设计: #3、4机组冬季抽凝运行1台水塔停运,该系统设计没有考虑冬季停运的水塔上水管道防冻的问题。在机组安装期间将#3、4水塔进水管道安装了防冻阀门,解决了冬季停运水塔进水管道的`防冻问题。

10、主持#3、4机组前汽封排汽系统改造: 我厂#3、4机组前汽封排汽设计为三级排汽,第一级(靠汽缸侧)、二、三级排汽分别排至二、三、五段抽汽。

此设计存在的问题是前汽封漏汽排泄不畅,汽封向外漏汽漏入前轴承箱使油中带水,而且各排汽管道未安装阀门,使汽封排汽量无法调节。2006年,对#3、4机前汽封排汽系统进行改造:将前汽封一、二、三级排汽改排至下一级抽汽(四、五、六段抽汽),并在每路排汽管道安装阀门进行调节。改造后前汽封排汽通畅,减少向外漏汽,解决了油中进水的问题。

11、#3、4机组给水再循环系统改造设计: #3、4机组给水再循环系统设计为159×4母管和133×4分支管道,范文TOP100再循环母管联络门和分支管阀门设计为PN2。5MPa阀门,而且再循环母管缺少联络门。当给水再循环系统有故障检修时系统阀门不能关闭,必须2台机组全停才能检修。2007年利用机组全停消缺的机会,对#3、4机组给水再循环系统进行改造,将给水再循环管道改为133×12管道,母管联络门和分支门改为25MPa阀门,在给水泵再循环母管上增加了联络门数量。提高了给水再循环系统的安全性和可靠性。

12、主持#1、2热网补水系统的节能改造: 2007年,主持对#1、2热网补水系统进行改造,将50MW机组的循环水补入#1、2热网系统,回收利用了循环水的余热,改造后回收利用了循环水的余热,提高了机组的经济性。撰写《某电厂热网补水系统的节能改造》,在《节能》杂志2013年第9期发表。

13、#3、4机组主蒸汽疏水系统改造: 2台50MW机组投产后,存在着主蒸汽疏水故障检修时系统不能隔断、必须2台机组全停才能检修的缺陷,严重影响机组的正常运行,2009年利用机组全停消缺的机会,对2台机组主蒸汽系统进行改造,将主蒸汽疏水改为单机组独立疏水系统,改造后疏水系统运行可靠。此改造项目荣获2009年东海拉尔发电厂《合理化建议和“五小”竞赛奖励》思想汇报专题等奖。

14、#3、4机励磁机冷却水接口改造: #3、4机励磁机冷却水设计接口在发电机空冷器冷却水门后,由于高差的原因使励磁机冷却水量不能满足需求。因此在2009年机组检修时对该系统进行了改造,将励磁机冷却水的接口改到循环泵出口母管上。改造后励磁机冷却水量充足运行可靠。

15、#3、4机射水泵入口管道改造: #3、4机组射水泵入口管道设计为219×6管道,该设计的缺点是泵入口管道管径偏小,射水泵的振动偏大超标,并不能保证水泵安全运行。2010年机组大修时,对泵入口管道进行改造,将泵入口管道改为377×6管道,改造后改善了水泵运行环境消除了振动,提高了水泵运行的安全性和可靠性。

16、参加对#3发电机组轴承振动的诊断及处理: 我厂#3机组(50MW)投产后,就由于发电机轴承座振动超标问题几次停机检查,并在随后的两次大修和几次小修都没有彻底解决,一般运行半年后,发电机振动又会逐渐爬升超标,针对#3发电机轴承振动问题,经过认真的分析研究,制定了处理措施,并在2010年机组大修中实施。具体方案是:

1、更换3、4号轴承座,改为加固型轴承座。

2、拆除台板、垫铁,重新布置垫铁,在3、4号轴承座各增加6副垫铁(修前各为10副垫铁,修后各为16副垫铁),进行基础二次灌浆。转子轴系做高速动平衡,将轴承振幅降到合格范围。大修后机组发电机后轴承振幅降到50μm以内,前轴承轴向振幅降至60μm左右,机组可长期运行。本人在在此次工作中起重要作用。撰写论文《一台50MW汽轮发电机组振动故障诊断及处理》,在《汽轮机技术》2013年第6期发表。

17、#2回水泵站升压泵出口阀门起吊设施设计: 2011年#2回水泵站4台回水升压泵出入口门由电动蝶阀更换成电动闸阀,泵出口电动闸阀安装在3m标高处,电动闸阀自重1260kg(闸阀960kg,电装300kg)。因泵站未设计回水升压泵和泵进出口门的起吊设施,因此需制作安装泵和出入口门的起吊梁。在#2回水升压泵间顶部固定安装起吊梁(22b工字钢,长25。5m,自重928kg),起吊梁固定在6根引梁下部,引梁为30a槽钢(单梁长4m,重160kg),南侧搭在原电机起吊梁上焊接固定,北侧与厂房混凝土梁预埋铁焊接(预埋铁400×400×12钢板,钢板上焊4根16钢筋横向插入混凝土梁中),起吊梁上安装3t手动单轨小车和3t导链。此起吊设施完成了#2回水泵站升压泵出入口阀门更换的吊装任务,又可进行回水升压泵检修时泵盖和转子的吊装,详见《#2回水泵站升压泵出口门起吊梁强度校核》和《#2回水泵站升压泵出口门起吊梁施工图》。此改造项目荣获2011年东海拉尔发电厂《合理化建议和“五小”竞赛奖励》一等奖。

18、25MW机组工业水与50MW机组工业水管道连接改造: 在50MW机组工业水系统设计时,没有考虑与25MW机组工业水系统连接,当50MW机组工业水系统故障水源中断时没有辅机冷却水源。因此在2012年机组检修时,将25MW机组工业水与50MW机组工业水进行连接改造。改造后系统灵活可互为备用,提高了系统的可靠性。

19、#2热网循环泵叶轮车削,解决热网循环泵出口门开度偏小的问题: #2热网4台循环泵叶轮直径595mm,运行中水泵出口门(DN500闸阀)只能开60mm(此时电机电流46A),开度大于60mm时电机电流超标(额定电流48A),水泵轴功率大于设计值。2013年,将#2热网#1、3循环泵叶轮直径车削20mm(由595mm车削到575mm)并作叶轮的静平衡试验。车削后水泵运行出口门可全开,电流在42A(比车削前降低4A),供水压力和流量不降。在此工况下水泵可长期运行。解决了#2热网循环泵出口阀门开度偏小的问题。2台热网循环泵叶轮车削后,水泵轴功率降低59kw,运行中每个取暖期节省厂用电量659,856kw,上网电价0。326元/kwh,年创效益21。5万元。

20、2013年9月,编制#3机组低真空运行循环水供热改造方案,进行辅机冷却水系统改造设计: 工程于2013年10月12日完成改造并投入运行。实现节能、经济运行的目的。本人负责编制#3机组低真空运行循环水供热改造方案,进行辅机冷却水系统改造设计并指导安装,解决安装中存在的问题。撰写论文《供热初末期50MW机组低真空循环水供热的可行性》,在《节能》杂志2013年第12期发表。

汽轮发电机组真空改善研究论文

一、项目提出的背景1.1 汽轮机'>300MW汽轮机电液控制系统 洛阳首阳山电厂二期2x汽轮机'>300MW汽轮机为日立公司TCDF-33.5亚临界压力、中间再热、双缸双排汽、冲动、凝汽式汽轮机,于1995年12月和1996年3月投产。汽轮机调节系统为数字电液调节(D—EHG),采用低压汽轮机油电液调节。执行机构的设置为1个高压油动机带动4个高压调速汽门,2个中压油动机带动2个中压调速汽门。每个油动机由一个电液伺服阀控制,1台汽轮机的3个油动机(CV、左右侧ICV)的电液伺服阀均为日本制造的Abex415型电液伺服阀。控制油和润滑油均采用同一油源即主油箱内的N32号防锈汽轮机油,在控制油路上安装一精密滤网(精度为51μm)。1.2 存在问题 首阳LU电厂3、4号机组从1995年试运开始,机组启动冲转过程中经常出现油动机突然不动的现象,经检查控制系统正常,信号传输正常,均为伺服阀故障所致,伺服阀更换后调节系统恢复正常。机组在带负荷稳定运行和中压调节门活动试验日寸,也出现油动机不动的情况及油动机全开或全关的现象, 检查均为伺服阀故障。 伺服阀出现故障必须进行更换,而这种调节系统设计形式伺服阀无法隔离,只能被迫停机更换。首阳山电厂3、4号机组由于伺服阀原因造成的停机:2000年分别为8次、5次,2001年分别为1次、2次;截止到2002年6月仅3号机组由于伺服阀原因造成的停机就达4次。对拆下来的故障伺服阀进行检查,发现其内部滤芯堵塞、喷嘴堵塞、滑阀卡涩。伺服阀内部滤芯堵塞引起伺服阀前置级控制压力过低,不能控制伺眼阀的第2级滑阀运动,致使油动机拒动(对控制信号不响应);喷嘴堵塞油动机关闭;伺服阀卡涩,使油动机保持在全开或全关位置。油质污染是造成上述故障的主要原因,油质污染造成伺阀卡涩的故障占伺服阀故障的85%[1]。1.3 油质状况及防止伺服阀卡涩的措施 由于3、4号机组试运时就经常发生伺服阀卡涩,移交生产后首阳山电厂对油质就非常重视,1996年成立了滤油班加强滤油管理,提高油质清洁度。伺服阀卡涩频率比试运时降低了许多,但次数还比较多。 日立《汽轮机维护手册》标明,伺服阀可在等于或低于NASl638第7级污染程度的油质中良好工作。二期油系统管路设计为套管形式,滤网后向伺服阀供油的控制油管位于润滑油回油管中无法取样监测,只能监视润滑油的清洁度。根据旧的《电厂用运行中汽轮机油质量标准》[2]中对油中机械杂质的要求是外观目视无杂质,1996年至今,每周化验3、4号机润滑油,油样透明、无杂质(有一段时间含少量水分,极少检查有杂质)。新的《电厂用运行中汽轮机油质量标准》[3]除要求外观目视油中无机械杂质外,对油质提出了更高要求:250MW及以上机组要求测试颗粒度,参考国外标准极限值NASl638规定8-9级或MOOG规定6级;有的汽轮机'>300MW汽轮机润滑系统和调速系统共用一个油箱,也用矿物汽轮机油,此时油中颗粒度指标应按制造厂提供的指标,测试周期为每6个月1次。2001年对3、4号机组汽轮机油取样讲行颗粒度分析,运行油颗粒度均合格(见表1)。 伺服阀卡涩引起停机,对机组安全性影响非常大,且伺服阀卡涩引起机组非计划停运影响电厂的经济性。首阳山电厂采取了以下临时措施: (1)定期更换伺服阀,超过3个月后遇到机组停机进行更换;(2)定期切换控制油滤芯,并对其清洗;(3)滤油机连续运行时提高油质清洁度;(4)加强油质检验。 从运行看,因伺服阀卡涩引起停机次数有所减少。但尚无从根本上解决问题,为此经分析、研究提出一系列改造设想,如“采用独立的控制油源”、“不停机更换伺服阀”等,但由于系统改造量大、改造费用高或技术上不可行而均放弃。经多方分析、调研,提出将伺服阀改型,选用抗污染性能较强的DDV阀的方案。二、Abex415型电液伺服阀2.1 工作原理 电液伺服阀是电液转换元件,又是功率放大元件,它把微小的电气信号转换成大功率的液压能输出,控制调速汽门的阀位。它的性能优劣对电液调节系统影响很大,是电液调节系统的核心和关键。该伺服阀为射流管式力反馈二级电液伺服阀,为四通阀门,其作用是控制进出液压系统的油量,使其与输入的电信号成比例,主要由阀体、转距电动机(线圈、电枢)、永久性磁铁、第1级射流管、压力反馈弹簧、第2级滑阀、“O”形环、外壳等组成(见图1)。 其工作原理:少量液压油从油源流经滤网,然后流经连接在力矩马达转子上的软管,最后从喷油嘴流出。从喷嘴出来的油喷到2根集油管上,2根油管分别连于滑阀的两端。无偏移时,每个集油管产生约二分之一的管道压力,因而无差压产生,所以滑阀平衡。电流流过力矩马达时即产生一定力矩,使力矩马达的转子转动一个小角度。若转子为反时针转动,则喷油管向右移动,引起更多的油喷到右边的集油管上,即产生压力,而左边集油管产生较小的压力。这样滑阀上出现压差,引起滑阀向左移动。滑阀一直向左移动直到回位弹簧产生的反力与力矩马达产生的力相等为止。这时滑阀处于一新的平衡位置。第2级电流成正比。如电流极性相反,则滑阀移到另一侧。2.2 主要特点 (1)该阀为射流管式力反馈二级放大电液伺服阀;(2)低滞环,高分辨率;(3)灵敏度高,线性好且控制精度高;(4)控制油采用润滑油同一油源即主油箱内的N32号防锈汽轮机油,对油质要求高且抗污染能力差。 2.3 主要技术规范 伺服阀的型号、。 三、DDV伺服阀技术介绍 工作原理 DDV伺服阀由集成块电子线路、直线马达、阀芯、阀套等几部分构成(见图2)。其工作原理为:一个电指令信号施加到阀芯位置控制器集成块上,电子线路在直线马达产生一个脉宽调制(PWM)电流,震荡器使阀芯位置传感器(LVDT)励磁。经解调后的阀芯位置信号和指令位置信号进行比较,阀芯位置控制器产生一个电流输出给力矩马达,力矩马达驱动阀芯,一直使阀芯移动到指令位置。阀芯的位置与指令信号大小成正比。伺服阀的实际流量Q是阀芯位置与通过阀芯计量边的压力降的函数。 永磁直线马达结构。其工作原理:直线马达是一个永磁的差动马达,永磁提供部分所需的磁力,直线马达所需的电流明显低于同量级的比例电磁线圈所需的电流。直线马达具有中性的中位,因为它一偏离中位就会产生力和行程,力和行程与电流成正比,,自线马达在向外伸出的过程巾必须克服高刚度弹簧所产生的对中力与外部的附加力(即液动力及由污染引起的摩擦力)。在直线马达返回中位时,对中弹簧力是和马达产生的力同方向的,等于给阀芯提供了附加的驱动力,因此使DDV伺服阀对污染的敏感性大为降低。直线马达借助对,卜弹簧回中,不需外加电流。停电、电缆损坏或紧急停机情况下,伺服阀均能自行回中,无需外力推动。3.2 主要特点 DDV阀是MOOG公司最新研制成功的新型电液伺服阀,目前已由MOOGGmbH(德国)公司进行批量生产。它是一种直接驱动式伺服阀,用集成电路实现阀芯位置的闭环控制。阀芯的驱动装置是永磁直线力马达,对中弹簧使阀芯保持在中位,直线力马达克服弹簧的对中力使阀芯在2个方向都可偏离中位,平衡在一个新的位置,这样就解决了比例电磁线圈只能在一个方向产:生力的不足之处。阀芯位置闭环控制电子线路与脉宽调制(PWM)驱动电子线路固化为一块集成块,用特殊的连接技术固定在伺服阀内,因此该伺服阀无需配套电子装置就能对其进行控制。 DDV阀与“射流管式伺服阀”(或“双喷嘴力反馈两级伺服阀”)相比,其最大特点是:(1)无液压前置级;(2)用大功率的直线力马达替代丁小功率的力矩马达;(3)用先进的集成块与微型位置传感器替代了工艺复杂的机械反馈装置一力反馈杆与弹簧管;(4)低的滞环,高的分辨率;(5)保持了带前置级的两级伺服阀的基本性能与技术指标;(6)对控制油质抗污染能力大大提高;(7)降低运行维护成本。3.3 主要技术参数 DDV伺服阀的型号、参数 四、技术改造方案及设备安装调试 通过技术改造实现的目标:(1)彻底解决伺服阀卡涩;(2)不改变调节系统的调节特性;(3)具有高的可靠性、安全性;(4)改造量小。 改造方案:(1)将汽轮机的CV、左右侧ICV伺服阀均改为DDV型伺服阀。(2)机械方面:因2种伺服阀形状、开孔尺寸及安装尺寸不同,在伺服阀与执行器间加装连接用的油路集成块,并在集成块上安装进油滤网。(3)热工方面:安装电源及信号转换箱,接受HITASS的D-EHG控制信号(±8mA)和2路220V交流电源(一路UPS,一路保安段),将控制信号(±8mA)变为电压信号(±10V)作为DDV的控制信号,交流220V转换为直流24V作为DDV的电源。 通过静止试验表明,调节系统静态特性达到与改型前试验数值基本一致,表明伺服阀改为DDV阀后,整个控制系统调节方法、调节性能无变化。改型前后静态试验数据 为检验伺服阀改为DDV阀后是否安全,能否保证失电状况下执行器关闭,进行了失电试验:加一开启信号,执行器开启;就地拔去信号接头,执行器自行关闭。五、运行实践及经济分析 4号机组自2001年9月运行至今,机组启停多次,调节系统可靠稳定,没有发生一次因伺服阀卡涩而造成机组的非计划停运。 技术改造后对机组安全、经济方面的影响。安全性:避免了伺服阀卡涩,极大地提高了机组的安全性、可靠性且机组非计划停运次数大大减少;经济性:技术改造除增加发电量外,每年约可节约费用74万元。技术改造费为每台机20万元,2台机组共40万元。1台机组1年就可收回2台机组的全部投资,经济效益显著。六、结 论 实际运行情况表明:该项技术改造在于汽轮机电液控制系统与润滑油系统同用一个油源,提高了适用性及抗污染能力,解决了电液伺服阀卡涩问题,大大减少了机组非计划停运次数,有明显的经济效益。可在同类日立00MW汽轮机的电液控制系统推广、实施。 目前国内机组电液控制系统工作液采用磷酸酯抗燃油的较多,而磷酸酯抗燃油与透平油相比理化性能要求严格、价格昂贵且维护复杂,尤其是磷酸酯抗燃油废液目前不能处理,其污染等同核污染,对人体健康有一定的危害。考虑到这些因素,机组电液控制系统工作液由抗燃油向汽轮机油系统发展是大趋势。 虽然DDV阀对油质污染的敏感性大为降低,但油质清洁度下降,会降低伺服阀计量边使用寿命,所以加强油质化学监督一点也不能放松。同时建议机组进行一次甩负荷试验,以进一步检验DDV阀的甩负荷特性。

节能型循环水泵在供水系统中的应用 前言 电力工程建设中供水系统投资高、工程量大施工复杂,对电力工程建设造价与投资回收年限影响较大,在电厂供水系统方案设计中非常重视自然通风冷却塔与循环水泵选择,循环水泵房与循环水管道系统优化布置,因为它们直接影响汽轮机安全运行与发电机满负荷发电,直接影响电厂的经济性,为了降低供水系统年运行费用,节约工程造价必须推广节能型设备的应用、优化系统的配置。 火力发电厂中汽轮发电机凝汽器的冷却水量随季节变化,夏季冷却水量大冬季冷却流量小;随汽轮机抽汽量变化,抽汽量大冷却流量少,抽汽量小冷却流量大。供水系统采用一台机组配二台相同型号水泵并联模式,将循环冷却水量平均分配给二台循环水泵,这种配置模式符合《火力发电厂水工技术规程、规定》,在电厂供水系统设计中广泛使用。 但是,一台机组配二台相同型号水泵在运行过程中经常出现问题,为了从根本上解决水泵运行效率低下与系统流量变化步调不一的矛盾,开发一种新型高效节能型水泵事在必然。 高效节能型循环水泵在供水系统中的应用 近年来全国各地相继建成一大批135MW火力发电厂,在山东里彦电厂、徐州诧城电厂、甘肃金川电厂、山东魏桥热电厂,我们先后设计了18台135MW国产超高压、中间再热机组。这些电厂位于我国华北、东北与西北地区,共同特点是企业自发自用,除了有稳定的电力需求外还有供热负荷,供热负荷波动较大,夏季热负荷小冬季热负荷大,年采暖期长。 以135MW供热机组为例,汽轮机最大连续出力时汽轮机凝汽器的凝汽量为324t/h,需要循环冷却水量19640m3/h;汽轮机额定抽汽工况时汽轮机凝汽器的凝汽量为223t/h,需要循环冷却水量12274m3/h;汽轮机最大抽汽工况时汽轮机凝汽器的凝汽量143t/h,循环冷却水量4700m3/h。随机组运行工况的改变,循环水系统需要的冷却水量从4700m3/h--19000m3/h的巨幅波动。 供水系统采用常规水泵布置,为了满足夏季汽轮机运行要求,通常选用选择水泵流量9800-11700m3/h,扬程米,按照夏季二台水泵并联运行来满足循环水系统需要的冷却水量19000m3/h,其它季节通过一台水泵运行来满足循环水系统冷却水量需要,水泵流量范围9800-11700m3/h,系统超过此流量范围运行时,水泵运行很不经济。 不难发现:汽轮机在额定抽汽工况下,循环冷却系统需水量为12274t/h,系统水阻比汽轮机纯凝工况时略为减少米,水泵扬程下降到米,单台水泵流量增加到13000t/h,一台水泵运行可以满足系统要求,只是运行效率不高。可是汽轮机最大抽汽工况时,循环冷却水量只有4700t/h,系统水阻比汽轮机纯凝工况时大幅度减少,导致水泵扬程提高、运行效率很低,造成冷却塔淋水装置涌水、加大配水槽流速,水流热交换时间减少。由于水泵的工作效率极低,电动机无功功率增加,白白地浪费电能。 如果在135MW国产超高压、中间再热机组中循环水系统采用新型高效节能型水泵,将从根本上解决水泵运行效率低下与系统流量变化步调不一的矛盾。 以G48Sh水泵为例,在转速n=485r/min时、水泵流量17500m3/h、扬程18米、水泵效率88%、轴功率947kw;在转速n=420r/min时、水泵流量13200m3/h、扬程米、水泵效率87% 轴功率587kw。该水泵设计参数与135MW机组循环水系统参数基本吻合、运行效率高。对100多台G48Sh水泵进行抽样检测,实际运行效率为84-88%;常规48Sh-22水泵运行效率只有60%。 水泵配用电动机采用双极数、双转速的核心技术,增加了循环水系统运行调节灵活性。根据凝汽器冷却水量随季节变化、随抽汽量改变,自动调整电动机极数与转速,同时改变输出功率与水泵供水量。一台G48Sh水泵高转速运行比二台48Sh-22并联水泵每小时多供水量3000吨;一台G48Sh水泵低转速运行电动机输出功率可以从947KW调整到587KW,电动机功率降幅达37%,其节能效果非常明显。因为循环水系统除了夏季水泵高转速运行外,其他季节基本上可以低速运行,按照年运行时间7200小时计算,每年每台水泵可节省电量230万度。按照电厂厂用电价元/度计算,单台循环水泵每年节约电费大约为40万元左右,按照10-15年回收年限计算,单台循环水泵节约电费高达400-600万元,对于安装几台节能型循环水泵的电厂,其经济效益非常可观不可小视,这也是许多电厂节能技术改造的一个发展方向。而常规水泵配用电动机是固定不可调的,一定的转速所对应的输出功率是不变的。单台高效节能型循环水泵比等容量常规SH系列离心水泵价格高15-20万元,这部分投资费用只须电机低速运行很短时间即可收回全部成本。 高效节能型循环水泵的引入可以优化系统水力条件,加宽了水泵高效区段适应范围,有效地提高水泵工作效率;改变了一台汽轮机配二台等容量水泵常规设计理念,提出了一种新的水泵配置来满足汽轮机的变工况运行要求,本体结构采用卧式泵壳设计,厂运行、检修非常方便。 山东十里泉电厂(2×125MW)循环水系统原来配备了4台同型号48SH-22水泵运行,确实存在水泵供水量不足、效率低、经济性能差。1998年10月将其中的4#水泵更换成G48SH水泵,投产后电厂委托电力试验研究所进行了水泵性能测试,在高、低转速时运行效率分别高达与,比未改造其他水泵效率分别提高和,耗电量明显减少。 广东云浮电厂(2×125MW)也是配备了4台同型号循环水泵48SH-22。夏季3台水泵运行,其他季节2台运行。因为循环水流量不足、效率低,将其改成G48SH水泵,投产后委托广东电力试验研究所对水泵效率进行检测,新泵高转速时实际流量16537t/h、运行效率、电动机功率1002KW;新泵低转速时实际流量13080t/h、运行效率为、电动机功率646KW。水泵与机组运行工况吻合。原水泵实际流量14400t/h、效率、电动机功率1089KW;最高效率70%时流量为11540t/h,水泵与机组运行工况不符。高转速时新泵比旧泵供水量大2137 t/h、功率低、效率高;低速时新泵在供水量相同情况下,单台水泵每小时可以节省443KW,节能效果显著。 结论 任何新技术的推广都需要一个认识过程, 高效节能型循环水泵的最大特点是节能、工作效率高,值得在全国推广。但是它是否适合所有地区、所有135MW机组的运行还需要更多的实际应用证明,需要因地制宜的选择。 推广高效节能型循环水泵不仅涉及到电厂循环水泵的配置、水泵备用与水泵运行费用问题,而且关系到水泵与汽轮机运行的联锁、控制问题等等,尤其在长江边建设取水泵房必须谨慎选择,高效节能型循环水泵的几何尺寸较等容量水泵大的多,对江边取水泵房而言,设备及设备运行费用不及取水泵房结构费用与施工费用,特别是水源枯水位与最高水位相差较大的时候,取水泵房几何尺寸的任何变化对工程造价的影响是非常大的。

汽设备是凝汽式汽轮机组的一个重要组成部分,它的工作性能直接影响整个汽轮机组的安全性、可靠性、稳定性和经济性。而凝汽器真空度是汽轮机运行的重要指标,也是反映凝汽器综合性能的一项主要考核指标。凝汽器的真空水平对汽轮发电机组的经济性有着直接影响,如果真空每降低 1%,将使汽轮机的汽耗量平均增加1%~2%,使煤耗增 加。因此保持凝汽器良好的运行工况,保证凝汽器的最有利真空,是提高我厂二期、三期的经济指标以及实现节能减排的一项重要的条件。一、凝汽器真空下降的主要特征和危害:(1)排汽温度升高;(2)凝结水过冷度增加;(3)真空表指示降低;(4)凝汽器端差增大;(5)机组出现振动;(6)在调节汽门开度不变的情况下,汽轮机的负荷降低。二、凝汽器真空下降的原因分析:引起汽轮机凝汽器真空下降的原因大致可以分为外因和内因两种:外因主要有循环水量中断或不足、循环水温升高、轴封供汽中断等;内因主要有凝汽器满水(或水位升高)、凝汽器结垢或腐蚀、凝汽器水侧泄漏、凝汽器真空系统不严密等。1、循环水量中断或不足循环水中断循环水中断引起凝汽器真空急剧下降的主要特征是:真空表指示回零、凝汽器前循环水压力急剧下降。循环水中断的原因可能是:循环水泵或其驱动电机故障,造成循环水泵跳闸,备用泵未联动;循环水泵出口蝶阀自关;循环水吸水口滤网堵塞,吸入水位过低;循环水泵轴封或吸水管不严密或破裂,使空气漏人泵内;凝汽器循环水进口或出口电动门误关等。循环水量不足循环水量不足的主要特征是:真空逐步下降、循环水出口和人口温差增大。(1)若此时凝汽器中流体阻力增大,表现为循环水进出口压差增大,循环水泵出口和凝汽器进口的循环水压均增高,可断定是凝汽器内管板堵塞。(2)若此时凝汽器中流体阻力减小,表现为循环水进出口压差减小,循环水泵出口和凝汽器出口的循环水压均增高,可断定是凝汽器循环水出水管部分堵塞。(3)循环水泵供水量减少,一般可从泵入口的吸入高度增大、真空表指针摆动、泵内有噪音和冲击声、出口压力不稳等现象进行判断。2、循环水温升高我厂的循环水为开式水,受季节影响大,特别是夏季,循环水温升高,影响了凝汽器的换热效果。当循环水进口温度升高时,其吸收热量就减少,蒸汽冷凝温度就越高,冷凝温度的升高可使排汽压力相应升高,降低蒸汽在汽轮机内部的焓降,使得凝汽器内真空下降。循环水温越高,循环水从凝汽器中带走的热量越少,据测算,循环水温升高5℃,可使凝汽器真空降低1%左右。可见,循环水温度对真空的影响是很大的。3、轴封供汽不足或中断后轴封供汽不足或中断,将导致不凝结气体从外部漏入处于真空状态的部位,最后泄漏到凝汽器中,过多的不凝结的气体滞留在凝汽器中影响传热,使凝结水过冷度增大,不但会使真空迅速下降,同时还会因空气冷却轴颈,严重时使转子收缩,胀差向负方向变动。轴封供汽中断,常由于轴封汽压自动调节失灵或手动调节不当引起,应开大调门,使轴封汽压力恢复正常,当轴封供汽量分配不均引起个别轴封漏入空气时,应调节轴封进汽分门,重新分配各轴封供汽量。4、凝汽器满水(或水位升高)凝汽器汽侧水位过高引起真空下降的原因是:(1)凝汽器汽侧水位升高后,淹没了下边一部分铜管,减少了凝汽器的冷却面积,使汽轮机排汽压力升高即真空降低。(2)如凝汽器水位升高到抽空气管口高度,则凝汽器真空便开始下降。根据凝结水淹没抽气口的程度,开始时真空降低缓慢,以后便迅速加快,这时连接在凝汽器喉部的真空表指示下降,而连接在真空泵上的真空表指示上升。如果不及时采取必要的措施,将造成真空泵过负荷。造成凝汽器满水的可能原因(1)凝结水泵故障。(2)凝汽器铜管破裂,此时凝结水水质恶化。(3)备用凝结水泵的进、出口阀门关闭不严或逆止阀损坏,水从备用泵倒流回凝汽器内。(4)正常运行中凝结水再循环门误动。5、凝汽器铜管结垢或腐蚀当凝汽器内铜管脏污结垢时,将影响凝汽器的热交换,使凝汽器端差增大,排汽温度上升,此时凝汽器内水阻增大,冷却通流量减小,冷却水出入口温差也随之增加,造成真空下降。凝结器铜管结垢对真空的影响是逐步积累和增强的,因此判断凝汽器铜管是否结垢,应与洁净时的运行数据比较。凝汽器铜管结垢的主要原因是循环水水质不良,在铜管内壁沉积了一层软质的有机垢或结成硬质的无机垢,严重地降低了铜管的传热能力,并减少了铜管的通流面积。6、凝汽器水侧泄漏凝汽器铜管泄漏,是凝汽器最常见的故障之一。凝汽器铜管泄漏,将使硬度很高的循环水进入凝汽器汽侧,凝汽器水位升高,真空下降,此外还使凝结水质变坏,造成锅炉和其它设备结垢和腐蚀,严重时可导致锅炉爆管。确认凝汽器铜管泄漏时应立即对凝汽器进行半侧查漏工作,平时利用停机的机会对凝汽器进行灌水查漏,对于查找出来的问题铜管如果条件允许,立即进行更换。7、真空系统不严密真空系统不严密,存在较小漏点时,不凝结的气体从外部漏入处于真空状态的部位,最后泄漏到凝汽器中,过多的不凝结气体滞留在凝汽器中影响传热,使真空异常下降,这类真空下降的特点是下降速度缓慢,而且真空下降到某一定值后,即保持稳定不再下降,这说明漏汽量和抽气量达到平衡。真空系统不严密漏气量增多时,表现的主要现象是:汽轮机排汽温度与凝汽器出口循环水温的差值增大、凝结水过冷却度增大。此时应立即查找漏气原因和漏气点并予以消除。下面介绍一下容易发生漏气的地点,以便查找和消除。(1)汽轮机排汽缸与凝汽器的连接管段由于热变形或腐蚀穿孔引起漏气。(2)汽缸变形,从法兰接合面不严密处漏入空气。(3)轴加U型管疏水或真空破坏门水封断水。(4)凝汽器水位计接头不严密,或其它与真空系统连接的设备或管道上的计量表连接管有缺陷。(5)真空系统的管道法兰接合面、阀门盘根等不严密,特别是真空泵进口管上的空气门盘根不严密等。三、凝汽器真空下降的预防措施:(1)加强对循环水供水设备的维护工作,确保设备的正常运行。(2)轴封供汽压力自动、凝汽器水位自动要可靠投用,并加强对凝汽器水位和轴封供汽压力的监视。(3)对凝汽器的汽水、水封设备的运行加强监视分析,防止水封设备损坏或水封失水漏空气。(4)汽水系统化学补充水水箱水位要正常,如果补充水的温度低,可以吸收更多的排汽热量,从而降低凝汽器温度。(6)坚持定期进行汽轮机真空严密性试验,监视真空系统严密程度。若结果不合格时,应对汽轮机真空系统进行查漏,堵漏。(7)提高凝汽器胶球清洗装置的投入率。(8)每次停机后都对凝汽器进行灌水查漏,同时应对运行中处于真空系统的水位计、低加系统等进行仔细检查,以消除漏气点。(9)加强对真空抽气系统的监视,如果真空泵工作效率降低或故障,即使真空系统严密,由于真空泵不能有效的抽吸凝汽器中的空气,也将使传热系统减小。(10)认真分析比较运行中各参数的情况:凝汽器的真空,排汽温度,凝结水的水质、温度,循环水进出口水温、压力,凝汽器热井水位,循环水泵电流值等。汽轮发电机组真空系统漏泄直接影响着汽轮机组的热经济性和安全性,一是影响机组热经济性,一般真空值每降低1,汽耗约增高 %左右,传热端差每升高1°C,供电煤耗约增加左右,所以真空值的高低对汽轮机的热经济性有很大影响;二是影响二次除氧效果,加剧低压设备管道腐蚀,对机组的安全运行非常不利;三是影响蒸汽凝结及热交换性能,增大过冷度和换热端差,增加真空泵的负担。凝汽式或抽凝式汽轮机的真空下降原因很多,短时间很难查清或处理,是一项难以解决的问题。综合自己二十年的工作经验,将影响因素逐级分类,范围逐步缩小,对常见问题基本都能判断准确。虽然是针对中小机组而言,但大机组也可以借鉴。大致判断过程是通过端差和过冷却度变化确定大类,再通过温度、压力、液位、负荷及真空波动情况确定原因。一、当只有真空下降,过冷却度和端差都基本不变时,一般是循环水系统故障。(1)凝汽器进口管板脏污或出口水室存气会增加设备流动阻力,使循环水进出口压差增大,水量减少,液相传热系数降低,总热阻增大,传热温差(饱和水汽与循环水平均温差)增大,排汽温度升高,真空降低:同时,总传热量基本不变,水量减少,进出口温差增大,进口不变时,出口温度升高。(2)凝汽器进水管道阻塞,会使循环水泵出口压力与凝汽器入水压力差增大,循环水量减少,真空降低,出口水温升高,凝汽器进出水压差减小。(3)凝汽器出水管路堵塞或阀门未全开,会使水量减少,真空降低,出口水温升高,整体压力升高,凝汽器进出口压力差下降。(4)循环水泵故障(水池水温低、入口滤网堵塞、吸入空气、水轮导叶磨损等),会使管路整体压力下降,泵电流降低,真空下降,出水温度升高。部分循环水泵跳闸,会使水压和排汽真空迅速下降,泵电流消失。(5)冷却风机断电,会是凝汽器进水温度持续上升,真空不断下降。循环水故障会使真空降低,但不会使真空波动。二、当伴随真空下降,只有端差增大,过冷却度没有变化时;此现象基本可以判断为凝汽器铜管结垢。结垢(如图片)使传热热阻增大,传热温差增大,而总传热量基本不变,循环水进出水温差不变,所以出水温度不变,排汽温度增加,端差增大,真空降低。三、当真空随热负荷的增加而下降,基本上可判断为凝汽器的热负荷过高造成。由于机组的调节汽门疏水、各级抽汽逆止门疏水、轴封加热器疏水以及两端汽封疏水均经本体疏水扩容器进入凝汽器,增加了凝汽器的换热强度,当机组抽汽量增加或循环冷却水量不足或虽冷却水量一定但因其水温较高时,就都会导致凝汽器真空度下降。四、真空随机组的电负荷的增加而增高。基本上可定为机组的末段抽汽至低压加热器管、阀泄露或低压加热器的空气门及其疏水系统泄露或汽机后轴封漏空气造成。当机组在低电负荷时末端抽汽为微负压,此时若该抽汽系统或与之相连的低压加热器有泄漏点就会造成机组的真空降低。当机组的电负荷增高时末端抽汽就会逐渐形成正压,就能封住上述的泄漏点,真空也就会逐渐增高。后轴封漏空气影响真空一般为后轴封块磨损严重或供后轴封汽压力低。但有一盲区;汽机排污管,有的机组排污管是从后轴封末端引出的,无论此管漏与堵均会影响真空。五、当端差和过冷却度都增大,除去凝汽器液位过高外,可以判断为凝汽器集气。凝汽器液位过高,淹没铜管,使凝结水过冷却,过冷却度增加;同时使汽–水换热面积减少,同样传热量,传热温差增大,传热温差增大,排汽温度升高,真空降低,出水温度基本不变,端差增大。凝汽器集气使凝汽器汽侧蒸汽分压降低,低于排汽中分压,其凝结温度自然小于排汽温度,过冷却度增加;同时会使汽相传热系数降低,总热阻增加,传热温差增大,端差增大;冷却水还要额外承担蒸汽冷却热,出水温度也增加了。凝汽器集气原因主要分两类,一是漏气,二是抽气器故障。可以通过真空系统严密性试验判定,试验合格就是抽气器问题,不合格就存在漏点。抽气器故障又分以下三个方面:(1)喷嘴堵塞。杂物堵塞喷嘴会使混合室形成真空低,抽气能力下降,对射汽抽气器,表现为一、二级蒸汽压力均上升,堵塞级关前面截止阀汽压下降慢;射水抽气器也表现为前面水压升高。可升降压冲洗。(2)汽、水源不足。射汽抽气器因锅炉检修等原因,蒸汽管道有杂质,堵塞了滤网或节流孔,就会使通过汽量减少,抽吸能力下降,表现为一、二级蒸汽压力均下降,而且波动,压力高时喷嘴工作,低时不工作,真空波动,排气口有气喘现象,只二级运行效果有时反而更好些。射水抽气器水压低主要是射水泵工作不正常,抽汽器连管过高过长所致,从而影响真空。(3)射水箱内水温过高。射水箱内水温过高会使射水抽气器的喷嘴处造成汽化,形成汽塞,从而影响抽出凝汽器内部不凝结气体的能力,使射水抽气器的效率低下、凝汽器集气,真空降低。六、汽侧水位过高或过低也会使抽气能力下降。过高淹没换热管,扩压管排放混合汽通道减小,凝结换热空间减少,混合物中蒸汽不能完全凝结,影响抽气器运行,未凝结汽从排气口排出,排气口冒白汽,甚至冒水。当疏水水封做得低时,疏水阀开度大,一级水位过低,凝汽室压力正常时,与机组凝汽器压差大于水封水柱压强,水封被破坏,凝汽室蒸汽排凝汽器,造成凝汽器真空降低,凝汽室真空上升,压差减少,水封又形成,表现为凝汽器和凝汽室真空规律性波动。七、冷却水室存气也会是换热面积减少,换热量下降,抽气能力下降。但一般只发生在开停车阶段,因为正常运行时经凝结水泵加压后已经是不饱和水,溶解度增加,即使泵轻微漏气,也会溶解,加热也不会析出。所以,水室中不会有气体存在。凝汽器换热管两侧介质都是洁净、无腐蚀的,不存在堵塞、腐蚀现象。有些地方凝结水再循环门始终开着,使经过抽气器和汽加的水流量增大,负压形成较高,但同时也增加了凝汽器的热载荷,但低排汽量时,对保护凝结水泵是有利的。真空系统漏气会使凝汽器集气,使真空降低,端差和过冷却度增大。但漏点位置不同,对端差和过冷却度的影响不一样。空气相对于蒸汽密度大,在凝汽器内向下流动,当漏气点在下部时,空气容易积聚,不易被抽出。上部空气少,无过冷却,换热系数基本不变,端差增加较少,冷却水出水温度随排汽温度增加;而下部水面上蒸汽分压低,对应凝结水温度低,过冷却度增大。八、负荷变动时,均压箱调整不及时或不当,会使后汽封缺汽,使空气漏入,排汽真空迅速降低,操作时要切实注意。当后汽封汽封齿和汽封片结合不好或汽封损坏时,空气就容易漏入,开机时,汽封压力很难达到要求,真空抽不到规定值,后汽缸温升快;正常运行时,真空靠蒸汽凝结形成,漏气影响变小,同时,供汽由前汽封和蒸汽系统各阀阀杆漏汽承担,汽量有保证,真空有所提高,但容易波动。凝结水泵轴封不严也有这种现象。换热管泄漏会使冷却水漏入,带入空气影响真空,但一般不会很大,过冷却度增加,凝结水水质发生变化,端差变化不大。九、除盐水补水也会带入空气,影响真空。但如果补水口位于凝汽器上部,漏气容易被抽出,对过冷却度影响不大,同时,补水和蒸汽换热,回收一部分热量,节约冷量,使真空升高、排汽温度降低,端差变化应该也不明显。补水口位于下部,就不好了、与上述正相反,定会影响真空。十、最后凝汽器真空降低,往往是多种因素共同作用的结果,由于真空系统比较庞大,严密性的治理也比较困难。但我们只要不盲目采取仪器进行普查,需冷静认真分析、逐段排查,缩小查漏范围,就不难逐一确定,采取相应措施,就能保持机组的正常运行。真空严密性差?真空系统治理知识干货一、真空严密性的重要性凝结器真空是发电厂重要的监视参数之一,凝结器真空变化对汽轮机安全、经济运行有较大影响。运行试验表明,凝汽器真空每降低1KPa会使汽轮机汽耗增加,发电机煤耗增加,使循环效率下降。汽轮机排汽温度的升高,会引起汽轮机轴承中心偏移,严重时会引起汽轮机的振动。此外,凝汽器真空降低时在保证机组出力不变时,必须增加蒸汽流量,导致轴向推力增大,影响汽轮机安全运行。另一方面,空气漏入凝结水中会使凝结水溶氧不合格,腐蚀汽轮机、锅炉设备,影响机组的安全运行。所以在汽轮机运行过程中,真空是一项非常重要的参数,真空值的高低,直接影响机组的经济性与安全性。二、凝汽器真空压力低的原因(1)加热器或除氧器事故疏水阀误开,引起加热器或除氧器汽水大量流到凝汽器,导致真空下降。(2)大机或小机轴封系统故障或调整不当,大量空气从汽轮机后汽封吸入引起真空快速下降。(3)凝汽器循环冷却水中断或水量不足。循环水中断,将出现凝汽器循环水进口失压的情况,导致汽轮机排汽温度急骤升高,真空迅速降低。循环冷却水量不足,不能满足冷却汽轮机全部排汽量的要求,将导致真空的逐渐下降。(4)循环冷却水进口温度高,必然会影响到汽轮机排汽的冷却,进而影响到机组的真空。(5)凝汽器水位过高。凝汽器中凝结水液面超出热井水位计上限,淹没部分冷却水管时,由于凝汽器汽侧冷却面积减少而使真空缓慢下降,严重时,如水位升高凝结水进入抽气管,则真空迅速下降。(6)真空泵工作不正常,必然引起凝汽系统的不可溶气体不断增多,导致凝汽系统真空降低。(7)真空系统不严密,漏入凝汽器汽侧的空气量增多,抽气器超负荷工作引起真空下降。机组运行过程中如果出现真空下降的问题,排除比较常见的故障外,真空系统的泄漏是造成真空下降的主要原因。其主要现象为真空下降、真空泵电流增大等。三、氦质谱检漏仪真空查漏法系统原理如图所示。凝汽器真空系统压力低主要是由于系统内有管道或仪表接口松动,垫片破损或焊口裂缝造成空气被吸入产生的。漏入真空系统的空气通过真空泵抽出,排到大气中。试验中,将高灵敏度氦质谱检漏仪的吸枪架在真空泵排气口;将氦气喷洒到真空系统各个可能发生泄漏的区域,若有漏点,氦气将被负压吸入到凝汽器中,由真空泵抽出,通过排气口排到大气中,吸枪会吸入部分带有氦气分子的气体,检漏仪便会显示出检测到的氦气分子量。漏点越大,被吸入的氦气分子量就越多,从而被检漏仪捕捉到的氦气分子也越多,这样就能准确锁定漏点的位置和大小。四、经济性提高的推算湖北某电厂210号汽轮机型号是型机组,试验发现其真空严密性为,采用氦质谱检漏仪发现漏点,进行消缺后,真空严密性降为。在300MW负荷工况下,真空变化为。300MW机组真空每升高1kPa,对热耗影响,对发电煤耗的影响(kW·h)。本文所述机组经真空查漏消缺后,机组真空提高约2kPa,煤耗下降(kW·h),按照本文所述机组年利用4706小时计算,每年可节约发电燃煤吨煤,每年可节约发电成本万

汽轮机蒸汽毕业论文

一、项目提出的背景1.1 汽轮机'>300MW汽轮机电液控制系统 洛阳首阳山电厂二期2x汽轮机'>300MW汽轮机为日立公司TCDF-33.5亚临界压力、中间再热、双缸双排汽、冲动、凝汽式汽轮机,于1995年12月和1996年3月投产。汽轮机调节系统为数字电液调节(D—EHG),采用低压汽轮机油电液调节。执行机构的设置为1个高压油动机带动4个高压调速汽门,2个中压油动机带动2个中压调速汽门。每个油动机由一个电液伺服阀控制,1台汽轮机的3个油动机(CV、左右侧ICV)的电液伺服阀均为日本制造的Abex415型电液伺服阀。控制油和润滑油均采用同一油源即主油箱内的N32号防锈汽轮机油,在控制油路上安装一精密滤网(精度为51μm)。1.2 存在问题 首阳LU电厂3、4号机组从1995年试运开始,机组启动冲转过程中经常出现油动机突然不动的现象,经检查控制系统正常,信号传输正常,均为伺服阀故障所致,伺服阀更换后调节系统恢复正常。机组在带负荷稳定运行和中压调节门活动试验日寸,也出现油动机不动的情况及油动机全开或全关的现象, 检查均为伺服阀故障。 伺服阀出现故障必须进行更换,而这种调节系统设计形式伺服阀无法隔离,只能被迫停机更换。首阳山电厂3、4号机组由于伺服阀原因造成的停机:2000年分别为8次、5次,2001年分别为1次、2次;截止到2002年6月仅3号机组由于伺服阀原因造成的停机就达4次。对拆下来的故障伺服阀进行检查,发现其内部滤芯堵塞、喷嘴堵塞、滑阀卡涩。伺服阀内部滤芯堵塞引起伺服阀前置级控制压力过低,不能控制伺眼阀的第2级滑阀运动,致使油动机拒动(对控制信号不响应);喷嘴堵塞油动机关闭;伺服阀卡涩,使油动机保持在全开或全关位置。油质污染是造成上述故障的主要原因,油质污染造成伺阀卡涩的故障占伺服阀故障的85%[1]。1.3 油质状况及防止伺服阀卡涩的措施 由于3、4号机组试运时就经常发生伺服阀卡涩,移交生产后首阳山电厂对油质就非常重视,1996年成立了滤油班加强滤油管理,提高油质清洁度。伺服阀卡涩频率比试运时降低了许多,但次数还比较多。 日立《汽轮机维护手册》标明,伺服阀可在等于或低于NASl638第7级污染程度的油质中良好工作。二期油系统管路设计为套管形式,滤网后向伺服阀供油的控制油管位于润滑油回油管中无法取样监测,只能监视润滑油的清洁度。根据旧的《电厂用运行中汽轮机油质量标准》[2]中对油中机械杂质的要求是外观目视无杂质,1996年至今,每周化验3、4号机润滑油,油样透明、无杂质(有一段时间含少量水分,极少检查有杂质)。新的《电厂用运行中汽轮机油质量标准》[3]除要求外观目视油中无机械杂质外,对油质提出了更高要求:250MW及以上机组要求测试颗粒度,参考国外标准极限值NASl638规定8-9级或MOOG规定6级;有的汽轮机'>300MW汽轮机润滑系统和调速系统共用一个油箱,也用矿物汽轮机油,此时油中颗粒度指标应按制造厂提供的指标,测试周期为每6个月1次。2001年对3、4号机组汽轮机油取样讲行颗粒度分析,运行油颗粒度均合格(见表1)。 伺服阀卡涩引起停机,对机组安全性影响非常大,且伺服阀卡涩引起机组非计划停运影响电厂的经济性。首阳山电厂采取了以下临时措施: (1)定期更换伺服阀,超过3个月后遇到机组停机进行更换;(2)定期切换控制油滤芯,并对其清洗;(3)滤油机连续运行时提高油质清洁度;(4)加强油质检验。 从运行看,因伺服阀卡涩引起停机次数有所减少。但尚无从根本上解决问题,为此经分析、研究提出一系列改造设想,如“采用独立的控制油源”、“不停机更换伺服阀”等,但由于系统改造量大、改造费用高或技术上不可行而均放弃。经多方分析、调研,提出将伺服阀改型,选用抗污染性能较强的DDV阀的方案。二、Abex415型电液伺服阀2.1 工作原理 电液伺服阀是电液转换元件,又是功率放大元件,它把微小的电气信号转换成大功率的液压能输出,控制调速汽门的阀位。它的性能优劣对电液调节系统影响很大,是电液调节系统的核心和关键。该伺服阀为射流管式力反馈二级电液伺服阀,为四通阀门,其作用是控制进出液压系统的油量,使其与输入的电信号成比例,主要由阀体、转距电动机(线圈、电枢)、永久性磁铁、第1级射流管、压力反馈弹簧、第2级滑阀、“O”形环、外壳等组成(见图1)。 其工作原理:少量液压油从油源流经滤网,然后流经连接在力矩马达转子上的软管,最后从喷油嘴流出。从喷嘴出来的油喷到2根集油管上,2根油管分别连于滑阀的两端。无偏移时,每个集油管产生约二分之一的管道压力,因而无差压产生,所以滑阀平衡。电流流过力矩马达时即产生一定力矩,使力矩马达的转子转动一个小角度。若转子为反时针转动,则喷油管向右移动,引起更多的油喷到右边的集油管上,即产生压力,而左边集油管产生较小的压力。这样滑阀上出现压差,引起滑阀向左移动。滑阀一直向左移动直到回位弹簧产生的反力与力矩马达产生的力相等为止。这时滑阀处于一新的平衡位置。第2级电流成正比。如电流极性相反,则滑阀移到另一侧。2.2 主要特点 (1)该阀为射流管式力反馈二级放大电液伺服阀;(2)低滞环,高分辨率;(3)灵敏度高,线性好且控制精度高;(4)控制油采用润滑油同一油源即主油箱内的N32号防锈汽轮机油,对油质要求高且抗污染能力差。 2.3 主要技术规范 伺服阀的型号、。 三、DDV伺服阀技术介绍 工作原理 DDV伺服阀由集成块电子线路、直线马达、阀芯、阀套等几部分构成(见图2)。其工作原理为:一个电指令信号施加到阀芯位置控制器集成块上,电子线路在直线马达产生一个脉宽调制(PWM)电流,震荡器使阀芯位置传感器(LVDT)励磁。经解调后的阀芯位置信号和指令位置信号进行比较,阀芯位置控制器产生一个电流输出给力矩马达,力矩马达驱动阀芯,一直使阀芯移动到指令位置。阀芯的位置与指令信号大小成正比。伺服阀的实际流量Q是阀芯位置与通过阀芯计量边的压力降的函数。 永磁直线马达结构。其工作原理:直线马达是一个永磁的差动马达,永磁提供部分所需的磁力,直线马达所需的电流明显低于同量级的比例电磁线圈所需的电流。直线马达具有中性的中位,因为它一偏离中位就会产生力和行程,力和行程与电流成正比,,自线马达在向外伸出的过程巾必须克服高刚度弹簧所产生的对中力与外部的附加力(即液动力及由污染引起的摩擦力)。在直线马达返回中位时,对中弹簧力是和马达产生的力同方向的,等于给阀芯提供了附加的驱动力,因此使DDV伺服阀对污染的敏感性大为降低。直线马达借助对,卜弹簧回中,不需外加电流。停电、电缆损坏或紧急停机情况下,伺服阀均能自行回中,无需外力推动。3.2 主要特点 DDV阀是MOOG公司最新研制成功的新型电液伺服阀,目前已由MOOGGmbH(德国)公司进行批量生产。它是一种直接驱动式伺服阀,用集成电路实现阀芯位置的闭环控制。阀芯的驱动装置是永磁直线力马达,对中弹簧使阀芯保持在中位,直线力马达克服弹簧的对中力使阀芯在2个方向都可偏离中位,平衡在一个新的位置,这样就解决了比例电磁线圈只能在一个方向产:生力的不足之处。阀芯位置闭环控制电子线路与脉宽调制(PWM)驱动电子线路固化为一块集成块,用特殊的连接技术固定在伺服阀内,因此该伺服阀无需配套电子装置就能对其进行控制。 DDV阀与“射流管式伺服阀”(或“双喷嘴力反馈两级伺服阀”)相比,其最大特点是:(1)无液压前置级;(2)用大功率的直线力马达替代丁小功率的力矩马达;(3)用先进的集成块与微型位置传感器替代了工艺复杂的机械反馈装置一力反馈杆与弹簧管;(4)低的滞环,高的分辨率;(5)保持了带前置级的两级伺服阀的基本性能与技术指标;(6)对控制油质抗污染能力大大提高;(7)降低运行维护成本。3.3 主要技术参数 DDV伺服阀的型号、参数 四、技术改造方案及设备安装调试 通过技术改造实现的目标:(1)彻底解决伺服阀卡涩;(2)不改变调节系统的调节特性;(3)具有高的可靠性、安全性;(4)改造量小。 改造方案:(1)将汽轮机的CV、左右侧ICV伺服阀均改为DDV型伺服阀。(2)机械方面:因2种伺服阀形状、开孔尺寸及安装尺寸不同,在伺服阀与执行器间加装连接用的油路集成块,并在集成块上安装进油滤网。(3)热工方面:安装电源及信号转换箱,接受HITASS的D-EHG控制信号(±8mA)和2路220V交流电源(一路UPS,一路保安段),将控制信号(±8mA)变为电压信号(±10V)作为DDV的控制信号,交流220V转换为直流24V作为DDV的电源。 通过静止试验表明,调节系统静态特性达到与改型前试验数值基本一致,表明伺服阀改为DDV阀后,整个控制系统调节方法、调节性能无变化。改型前后静态试验数据 为检验伺服阀改为DDV阀后是否安全,能否保证失电状况下执行器关闭,进行了失电试验:加一开启信号,执行器开启;就地拔去信号接头,执行器自行关闭。五、运行实践及经济分析 4号机组自2001年9月运行至今,机组启停多次,调节系统可靠稳定,没有发生一次因伺服阀卡涩而造成机组的非计划停运。 技术改造后对机组安全、经济方面的影响。安全性:避免了伺服阀卡涩,极大地提高了机组的安全性、可靠性且机组非计划停运次数大大减少;经济性:技术改造除增加发电量外,每年约可节约费用74万元。技术改造费为每台机20万元,2台机组共40万元。1台机组1年就可收回2台机组的全部投资,经济效益显著。六、结 论 实际运行情况表明:该项技术改造在于汽轮机电液控制系统与润滑油系统同用一个油源,提高了适用性及抗污染能力,解决了电液伺服阀卡涩问题,大大减少了机组非计划停运次数,有明显的经济效益。可在同类日立00MW汽轮机的电液控制系统推广、实施。 目前国内机组电液控制系统工作液采用磷酸酯抗燃油的较多,而磷酸酯抗燃油与透平油相比理化性能要求严格、价格昂贵且维护复杂,尤其是磷酸酯抗燃油废液目前不能处理,其污染等同核污染,对人体健康有一定的危害。考虑到这些因素,机组电液控制系统工作液由抗燃油向汽轮机油系统发展是大趋势。 虽然DDV阀对油质污染的敏感性大为降低,但油质清洁度下降,会降低伺服阀计量边使用寿命,所以加强油质化学监督一点也不能放松。同时建议机组进行一次甩负荷试验,以进一步检验DDV阀的甩负荷特性。

关于汽车发动机的探讨学生姓名: X X 学号:xxxxxxxxxxx入学时间: 2004 年 9 月指导老师: x x 职称: 讲师 学 校: xxxxxxxxxxxxxxxxxxxxxxxxxxxx 目 录第一节 发动机的分类……………………………………………3第二节 发动机的总体构造………………………………………4第三节 四冲程发动机的工作原理………………………………6第四节 二冲程发动机的工作原理………………………………10第五节 发动机的主要性能指标与特性…………………………13致谢…………………………………………………………………16参考文献……………………………………………………………171关于汽车发动机的探讨内容提要:目前汽车普遍采用的是往复活塞式内燃机,发动机是汽车的心脏,它以其热效率高、结构紧凑、机动性强、运动维护简便的优点著称于世。本文针对发动机作出详细的讲解,包括发动机的分类、发动机的结构、发动机的工作原理,并据此分析汽车发动机的性能及主要指标。关键词:汽油机 柴油机 二冲程 四冲程 性能指标 特性2第一节 发动机的分类 发动机是将自然界某种能量直接转换为机械能并拖动某些机械进行工作的机器。将热能转化为机械能的发动机,称为热力发动机(简称热机),其中的热能是由燃料燃烧所产生的。内燃机是热力发动机的一种,其特点是液体或气体燃料和空气混合后直接输入机器内部燃烧而产生热能,然后再转变成机械能。另一种热机是外燃机,如蒸汽机、汽轮机或燃气轮机等,其特点是燃料在机器外部燃烧以加热水,产生高温、高压的水蒸气,输送至机器内部,使所含的热能转变为机械能。 内燃机与外燃机相比,具有热效率高、体积小、质量小、便于移动、起动性能好等优点,因此广泛应用于飞机、船舶以及汽车、拖拉机、坦克等各种车辆上。但是内燃机一般要求使用石油燃料,且排出的废气中所含有害气体成分较高。为解决能源与大气污染的问题,目前国内外正致力于排气净化以及其他新能源发动机的研究开发工作。 根据车用内燃机将热能转化为机械能的主要构件形式的不同,可分为活塞式内燃机和燃气轮机两大类。前者又可按活塞运动方式不同分为往复活塞式和旋转活塞式两种。往复活塞式内燃机在汽车上应用最广泛,是本文的主要讨论对象。汽车发动机(指汽车用活塞式内燃机)可以根据不同的特征分类: (1)按着火方式分类 可分为压燃式与点燃式发动机。压燃式发动机为压缩气缸内的空气或可燃混合气,产生高温,引起燃料着火的内燃机;点燃式发动机是将压缩气缸内的可燃混合气,用点火器点火燃烧的内燃机。 (2)按使用燃料种类分类可分为汽油机、柴油机、气体燃料发动机、煤气机、液化石油气发动机及多种燃料发动机等。 (3)按冷却方式分类可分为水冷式、风冷式发动机。以水或冷却液为冷却介质的称作水冷式发动机;以空气为冷却介质的称作风冷式发动机。(4)按进气状态分类可分为非增压(或自然吸气)和增压发动机。非增压发动机为进入气缸前的空气或可燃混合气未经压气机压缩的发动机,仅带扫气泵而不带增压器的二冲程发动机亦属此类;增压发动机为进入气缸前的空气或可燃混合气已经在压气机内压缩,藉以增大充量密度的发动机。3 (5)按冲程数分类 可分为二冲程和四冲程发动机。在发动机内,每一次将热能转变为机械能,都必须经过吸人新鲜充量(空气或可燃混合气)、压缩(当新鲜充量为空气时还要输入燃料),使之发火燃烧而膨胀作功,然后将生成的废气排出气缸这样一系列连续过程,称为一个工作循环。对于往复活塞式发动机,可以根据每一工作循环所需活塞行程数来分类。凡活塞往复四个单程(或曲轴旋转两转)完成一个工作循环的称为四冲程发动机;活塞往复两个单程(或曲轴旋转一转)完成一个工作循环的称为二冲程发动机。 (6)按气缸数及布置分类仅有一个气缸的称为单缸发动机,有两个以上气缸的称为多缸发动机;根据气缸中心线与水平面垂直、呈一定角度和平行的发动机,分别称为立式、斜置式与卧式发动机;多缸发动机根据气缸间的排列方式可分为直列式(气缸呈一列布置)、对置式(气缸呈两列布置,且两列气缸之间的中心线呈180。)和V形(气缸呈曲列布首,且两列气缸之问夹角为V形)等发动机。第二节 发动机的总体构造 发动机是一部由许多机构和系统组成的复杂机器。现代汽车发动机的结构形式很多,即使是同一类型的发动机,其具体构造也是各种各样的。我们可以通过一些典型汽车发动机的结构实例来分析发动机的总体构造。下面以CA1014系列轻型货车用的CA488Q型汽油发动机为例,介绍四冲程剐机的一般构造(图1-1)。(1) 机体组 CA488Q型发动机的机体组包括气缸盖14、气缸体7及油底壳37。有的发动机将气缸体分铸成上下两部分,上部称为气缸体,下部称为曲轴箱。机体组的作用足作为发动机各机构、各系统的装配基体,而且其本身的许多部分又分别是曲柄连杆机构、配气机构、供给系统、冷却系统和润滑系统的组成部分。气缸盖和气缸体的内壁共同组成燃烧室的一部分,是承受高温、高压的机件。在进行结构分析时,常把机体组列入曲柄连杆机构。(2) 曲柄连杆机构 曲柄连杆机构包括活塞13、连杆10、带有飞轮28的曲轴5等。它是将活塞的直线往复运动变为曲轴的旋转运动并输出动力的机构。(3) 配气机构 配气机构包括进气门19、排气门15、摇臂45、气门间隙调节器46、凸轮轴25以及凸轮轴定时带轮20(由曲轴定时带轮6驱动)等。其作用是使可燃混合气及时充入气缸并及时从气缸排除废气。4 图2-1 解放CA488Q型汽油机的构造5(4) 供给系统 供给系统包括汽油箱、汽油泵、汽油滤清器、化油器38、空气滤清器、进气管39、排气管53、排气消声器等。其作用是把汽油和空气混合为成分合适的可燃混合气供入气缸,以供燃烧,并将燃烧生成的废气排出发动机。 (5) 点火系统 点火系统的功用是保证按规定时刻及时点燃气缸中被压缩的混合气。其中包括供给低压电流的蓄电池和发电机以及分电器、点火线圈与火花塞等。 (6) 冷却系统 冷却系统主要包括水泵、散热器、风扇22、分水管以及气缸体和气缸盖里铸出的空腔——水套等。其功用是把受热机件的热量散到大气中去,以保证发动机正常工作。 (7) 润滑系统 润滑系统包括机油泵50、机油集滤器51、限压阀、润滑油道、机油滤清器等,其功用是将润滑油供给作相对运动的零件,以减少它们之间的摩擦阻力,减轻机件的磨损,并部分地冷却摩擦零件,清洗摩擦表面。 (8) 起动系统 包括起动机及其附属装置,用以使静止的发动机起动并转入自行运转。 车用汽油机一般都由上述两个机构和五个系统组成。第三节 四程发动机的工作原理一、四冲程汽油机工作原理 现代汽油发动机的构造如图3-1所示。气缸内装有活塞10,活塞通过活塞销、连杆11与曲轴12相连接。活塞存气缸内作往复运动,通过连杆推动 曲轴转动。为了吸入新鲜充量和排除废气,设有进、排气系统等。图3-2所示为发动机示意图。活塞往复运动时,其顶面从一个方向转为相反方向的转变点的位置称为止点。活塞顶面离曲轴中心线最远时的止点,称为上止点(TDC——Top Dead Center);活塞顶面离曲轴中心线最近时的止点称为下止点(BDC——Bottom Dead Centel),活塞运行的上、下两个止点之间的距离s称为活塞行程。曲轴与连杆下端的连接中心至曲轴中心的垂直距离月称为曲柄半径。对于气缸中心线与曲轴中心线相交的发动机,活塞行程5等于曲柄半径R的两倍。6四冲程发动机的工作循环包括四个活塞行程:进气行程、压缩冲程、作功行程、和排气行程。(1) 进气行程 汽油机将空气与燃料先在气缸的外部的化油器中、节气门体处或进气道内进行混合,形成可燃混合气后被吸入气缸。进气过程中进气门开启,节气门关闭。随着活塞从上止点向下止点移动,活塞上方的气缸容积变大,从气缸内的压力将到大气压以下,即在气缸内形成真空度。这样可眼燃混合气便经进气门被吸入气缸。由于进气系统的阻力,进气终了时气缸内的气体压力约为~。 (2) 压缩行程 为使吸入气缸的可燃混合气能迅速燃烧,以产生较大的压力,从而使发动机发出较大功率,必须在燃烧前将可燃混合气压缩,使其容积缩小,密度加大,温度升高,故需要有压缩过程。在这个过程中,进、排气门全部关闭,曲轴推动活塞由下止点向上止点移动一个行程,称为压缩行程。活塞到达上止点时压缩终了,此时,混合气被压缩到活塞上方很小的空间,即燃烧室中。可燃混合气压力升高到~,温度可达600~700K。压缩前气缸中气体的最大容积与压缩后的最小容积之比称为压缩比。7现代汽油发动机的压缩比一般为6~9(轿车有的达到9~11)。如一汽一大众捷达轿车EA827型发动机的压缩比为,而EA113型发动机的压缩比为。 压缩比越大,在压缩终了时混合气压力和温度越高,燃烧速度增快,因而发动机发出的功率增大,热效率提高,经济性越好。但压缩比过大时,不仅不能进一步改善燃烧情况,反而会出现爆燃和表面点火等不正常的燃烧现象。爆燃是由于气体压力和温度过高,在燃烧室内离点燃中心较远处的末端可燃混合气自燃而造成的一种不正常燃烧。爆燃时,火焰以极高的速率传播,温度和压力急剧升高,形成压力波,以声速向前推进。当这种压力波撞击燃烧室壁而时就发出尖锐的敲缸声。同时,还会引起发动机过热,功率下降,燃油消耗量增加等一系列不良后果。严重爆燃时,甚至造成气门烧毁、轴瓦破裂、活塞烧顶、火花塞绝缘体击穿等机件损坏现象。表面点火是由于燃烧室内炽热表面(如排气门头,火花塞电极,积炭)点燃混合气产生的另一种不正常燃烧现象。表面点火发生时,也伴有强烈的敲击声(较沉闷),产生的高压会使发动机机件承受的机械负荷增加,寿命降低。因此,在提高发动机压缩比的同时,必须注意防止爆燃和表面点火的发生。此外,发动机压缩比的提高还受到排气污染法规的限制。(3) 作功行程 在这个行程中,进、排气门仍旧关闭。当活塞接近上止点时,装在气缸体(或气缸盖)上的火化塞即发出电火花,点燃被压缩的可燃混合气。可燃混合气燃烧后,放出大量的热能,其压力和温度迅速增加,所能达到的最高压力p,约为3~5MPa,相应温度则为2200~2800K。高温、高压燃气推动活塞从上止点向F止点运动,通过连杆使曲轴旋转并输出机械能。它除了用于维持发动机本身继续运转而外,其余即用于对外作功。(4) 排气行程 可燃混合气燃烧后生成的废气,必须从气缸中排除,以便进行下一个工作循环。当膨胀接近终了时,排气门丌启,靠废气的压力进行自由排气,活塞到达下止点后再向上止点移动时,继续将废气强制排到大气中。活塞到上止点附近时,排气行程结束。由于燃烧室占有一定的容积,因此在排气终了时,不可能将废气排尽,这一8部分留下的废气称为残余废气。综上所述,四冲程汽油机经过进气、压缩、燃烧作功、排气四个行程,完成一个工作循环。这期问活塞在上、下止点问往复移动了四个行程,曲轴旋转了两周。二、四冲程柴油机工作原理现代柴油发动机的构造如图3-3所示。四冲程柴油机(压燃式发动机)的每个工作循环也经历进气、压缩、作功、排气四个行程。但由于柴油机的燃料是柴油,其粘度比汽油大,而其自燃温度却较汽油低,故可燃混合气的形成及着火方式都与汽油机不同。柴油机在进气行程吸人的是纯空气。存压缩行程接近终了时,柴油机喷油泵将油压提高到10MPa以上,通过喷油器喷人气缸,在很短时间内与压缩后的高温空气混合,形成可燃混合气。因此,这种发动机的可燃混合气是在气缸内部形成的。由于柴油机的压缩比高(一般为16~22),所以压缩终了时气缸内的空气压力可达~,同时温度高达750~1000K,大大超过柴油的自燃温度。因此,柴油喷入气缸后,在很短时间内与空气混合便立即自行发火燃烧。气缸内气压急剧上升到6~9MPa,温度也升到2000~2500K。在高压气体推动下,活塞向下运动并带动帅轴旋转而作功。废气同样经排气管排人大气中。柴油机与汽油机比较,各有特点。汽油机具有转速高(目前轿车汽油机最高9转速达5000~6000r/min,货车汽油机转速达4000r/min左右)、质量小、工作噪声小、起动容易、制造和维修费用低等特点,故存轿车和轻型货车及越野车上得到广泛的应用;其不足之处是燃油消耗率高,燃油经济性差。柴油机因压缩比高,燃油消耗率平均比汽油机低20%~30%左右,且柴油价格较低,所以燃油经济性好。一般装载质量为5t以上的货车大都采用柴油机;其缺点是转速较汽油机低(一般最高转速在2500~3000r/min左右)、质量大、制造和维修费用高(因为喷油泵和喷油器加工精度要求高)。但目前柴油机的这些缺点正在逐渐得到克服,其应用范围正在向中、轻型货车扩展。国外有的轿车也采用柴油机,其最高转速可达5000r/min。由此可见,四冲程发动机在一个工作循环的四个活塞行程中,只有一个行程是作功的,其余三个行程则是作功的辅助行程。因此,在单缸发动机内,曲轴每转两周中只有半周是由于膨胀气体的作用使曲轴旋转,其余一周半则依靠飞轮惯性维持转动。显然,作功行程时.曲轴的转速比其他三个行程内的曲轴转速要高,所以曲轴转速是不均匀的,因而发动机运转就不平稳。为了解决这个问题,飞轮必须做成具有很大的转动惯量,而这样做将使整个发动机质量和尺寸增加。显然,单缸发动机工作振动大。采用多缸发动机可以弥补上述缺点。因此,现在汽车上基本不用单缸发动机。用得最多的是4缸、6缸、8缸发动机。在多缸四冲程发动机的每一个气缸内,所有的工作过程是相同的,并按上述次序进行,但所有气缸的作功行程并不同时发生。例如,在4气缸发动机内,曲轴每转半周便有一个气缸在作功;在8缸发动机内,曲轴每转1/4周便有一个作功行程。气缸数越多,发动机的工作越平稳。但发动机气缸数增多,一般将使其结构复杂,尺寸及质量增加。第四节 二冲程发动机的工作原理一、二冲程汽油机工作原理二冲程发动机的工作循环是在两个活塞行程内,即曲轴旋转一周的时间完成的。发动机气缸上有三个孔,这三个孔可分别在一定的时刻为活塞所关闭。进气孔与化油器相连通,可燃混合气经进气孔流入曲轴箱,继而可经扫气孔进入气缸内,而废气则可经过与排气管连通的排气孔被排出。10活塞向上移动,到活塞将三孔都关闭时,开始压缩在上一循环即已吸入缸内的可燃混合气,同时在活塞下面的曲轴箱内形成真空度(这种发动机的曲轴箱必须足密封的)。当活塞继续上行时,进气孔开启,在大气压力作用下,可燃混合气便自化油器流入曲轴箱。活塞接近上止点时,火花塞发出电火花,点燃被压缩的混合气。高温、高压气体膨胀迫使活塞向下移动。进气孔逐渐被关闭,流人曲轴箱的混合气则因活塞的下移而被预先压缩。当活塞接近下止点时,排气孔开启,废气经过排气孔、排气管、消声器流到大气中。受到预压的新鲜混合气便自曲轴箱经扫气孔流入缸内,并扫除废气。废气从气缸内被新鲜混合气扫除并取代的过程,称为气缸的换气过程。由上述可知,在二冲程发动机内,一个工作循环所包含的两个行程是: (1) 第一行程 活塞自下止点向上移动,事先已充入活塞上方气缸内的混合气被压缩,新的可燃混合气又自化油器被吸入活塞下方的曲轴箱内。 (2) 第二行程 活塞自上止点向下移动,活塞上方进行着作功过程和换气过程,而活塞下方则进行可燃混合气的预压缩。 为了防止新鲜混合气大量与废气混合并随废气一起排出气缸而造成浪费,活塞顶做成特殊的形状,使新鲜混合气的气流被引向上部。这样还可以利用新鲜混合气来扫除废气,使排气更为彻底。但是在二冲程发动机中,要完全避免可燃混合气的损失是很困难的。 图4-1为二冲程发动机示功图。它的工作循环如下:活塞由下止点向上止点运动,当将排气孔(a点)关闭时,压缩过程开始。到上止点前开始点火燃烧,缸内压力迅速增高,叮段即燃烧过程。接着活塞下行膨胀作功,一直到6点,排气孔被打开,开始排气。此时,缸内压力较高,一般为0.3~0.6MPa,11故废气以声速从缸内排出,压力迅速下降。当活塞继续下移将换气孔打开,曲轴箱内的新鲜可燃混合气进入气缸。这段时问里的排气称为自由排气。排气一直延续到活塞下行到下止点后再向上将排气孔关闭为止。示功图bda曲线为二冲程发动机的换气过程,大约占130度~150度曲轴转角。接着活塞继续向上,便重复压缩过程,进行新的循环。 二冲程化油器式发动机与四冲程化油器式发动机相比较,其主要优点如下: 1)曲轴每转—周就有一个作功行程,因此,当二冲程发动机的工作容积和转速与四冲程发动机相同时,在理论上它的功率应等于四冲程发动机的2倍。 2)由于发生作功过程的频率较高,故二冲程发动机的运转比较均匀平稳。 3)由于没有专门的换气机构,所以其构造较简单,质量也比较小。 4)使用方便。因为附属机构少,所以易受磨损和经常需要修里理的运动部件数量也比较少。 由于构造上的原因,二冲程发动机的最大缺点是不易将废气自气缸内排除得较干净,并且在换气时减少了有效工作行程。因此,在同样的工作容积和曲轴转速下,二冲程发动机的功率并不等于四冲程发动机的2倍,只等于~倍;而且在换气时有一部分新鲜可燃混合气随同废气排出,因此二冲程发动机不如四冲程发动机经济。 由于上述缺点,二冲程化油器式发动机存汽车上较少被采用。但这种发动机的制造费用低廉,构造简单,质量小,所以在摩托车上广泛应用。二冲程发动机可以通过减少扫气损失来改善燃油经济性差的缺点,因此电控喷射的二冲程发动机在汽车上得到了发展。二、二冲程柴油机工作原理二冲程柴油机的工作过程和二冲程化油器式发动机的工作过程相似。所不同的是进入柴油机气缸的不是可燃混合气,而是纯空气。空气由扫气泵提高压力以后,经过装在气缸外部的空气室和气缸壁(或气缸套)上的许多小孔进入气缸内,废气经由气缸盖上的排气门排出。在第一行程中,活塞自下止点向上止点移动。行程开始前不久,进气孔和排12气门均已开启,利用自扫气泵流出的空气(压力约为~)使气缸换气。当活塞继续向上移动,进气孔被遮盖,排气门也被关闭,空气受到压缩。当活塞接近上止点时,气缸内的压力增到3MPa,温度约升至850~1000K,燃油在高压(约17~20Mpa)下喷入气缸内,致使燃油自行着火燃烧,使气缸内压力增高。在第二行程中,活塞受燃烧气体膨胀作用自上止点向下止点移动而作功。活寒卜行2/3行程时排气门开启,排出废气,此后气缸内压力降低,进气孔开启,进行换气。换气一直继续到活塞向上移动1/3行程的距离,直到进气孔完全被遮盖为止。这种形式的发动机称为气门—窗孔直流扫气柴油机。与四冲程柴油机比较,二冲程柴油机的优缺点与上面讨论二冲程汽油机时所指出的优缺点基本相同,但由于二冲程柴油机用纯空气扫除废气,没有燃料损失,故经济件较高。第五节 发动机的主要性能指标与特性发动机的主要性能指标有动力性能指标(有效转矩、有效功率、转速等)、经济性能指标(燃油消耗率)和运转性能指标(排气品质、噪声和起动性能等)。一、动力性能指标(1)有效转矩发动机通过飞轮对外输出的平均转矩称为有效转矩。有效转矩与外界施加于发动机曲轴上的阻力矩相平衡。(2)有效功率发动机通过飞轮对外输出的功率称为有效功率。它等于有效转矩与曲轴角速度的乘积。发动机曲轴转速的高低,关系到单位时间内作功次数的多少或发动机有效功率的大小,即发动机的有效功率随曲轴转速的不同而改变。因此,在说明发动机有效功率的大小时,必须同时指明其相应的转速。在发动机产品标牌上规定的功率及其相应的转速分别称作标定功率和标定转速。发动机在标定功率和标定转速下的工作状况,称为标定工况。标定功率是发动机所能发出的最大功率,它是根据发动机用途而制定的有效功率最大使用限度。同一种型号的发动机,当其用途不同时,其标定功率值并不相同。按照汽车发动机可靠性试验方法的规定,汽车13发动机应能在标定工况下连续运行300~1000h。二、经济性能指标发动机每发出1 kw有效功率,在1h内所消耗的燃油质量(以g为单位),称为燃油消耗率。 发动机的性能是随着许多因素而变化的,其变化规律称为发动机特性。三、运转性能指标发动机的运转性能指标主要指排气品质、噪声、起动性能等。由于这些性能不仅与使用者利益相关,更关系到人类的健康,因此必须指定共同遵守的统一标准,并给予严格控制。(1)排气品质发动机的排气中含有对人体有害的物质,它对大气的污染已形成公害。为此,各国采取了许多对策,并制定相应的控制法规。发动机排出的有害排放物,主要有氮氧化合物,碳氢化合物(HC)和一氧化碳(CO)等以及排气颗粒。(2)噪声噪声会刺激神经,使人心情烦躁,反应迟钝,甚至造成耳聋,诱发高血压和神经系统的疾病,因此,也必须用法规形式进行限制。汽车是城市中主要的噪声源之一,发动机又是汽车的主要噪声源,故必须给予控制。在我国制定的汽车加速行驶车外噪声限值标准(GBl495--2002)中,对不同分类的汽车以及同一分类中不同总质量及发动机不同额定功率的汽车,详细制定了噪声限值。(3)起动性能起动性能好的发动机在一定温度下能可靠地发动,起动迅速,起动消耗的功率小,起动期磨损少。发动机起动性能的好坏除与发动机结构有关外,还与发动机工作过程相联系,它直接影响汽车机动性、操作者的安全和劳动强度。我国标准规定,不采用特殊的低温起动措施,汽油机在-10℃、柴油机在-5℃以下的气温条件下起动发动机时,15s以内发动机要能自行运转。四、发动机的速度特性当燃料供给调节机构位置固定不变时,发动机性能参数(有效转矩、功率、燃油消耗率等)随转速改变而变化的曲线,称为速度特性曲线。14如果改变燃料供给调节机构的位置又可得到另外一组特性曲线,则当燃料供给调节机构位置达到最大时,所得到的是总功率特性,也称发动机外特性;而把燃料供给调节机构其他位置下得到的特性称为部分速度特性。外特性曲线下标出的发动机最大功率和最大有效转矩及其相应的转速,是表示发动机性能的重要指标。要联系汽车使用条件,诸如道路情况所要求克服的阻力数值、最高车速等,来分析发动机外特性曲线是否符合要求。五、发动机工作状况发动机运转状态或工作状态(简称发动机工况)常以功率和转速来表征,有时也用负荷与转速来表征。 发动机负荷是指发动机驱动从动机械所耗费的功率或有效转矩的大小;也可表述为发动机在某一转速下的负荷,就是当时发动机发出的功率与同一转速下所可能发出的最大功率之比,以百分数表示。15致 谢本论文的设计历时三个多月的时间。在此我要向我的讲师x老师表示最诚挚的感谢。从课题的设计方案、课题的编辑到论文的撰写和修改的各个阶段,都得到了钱老师的认真指导、严格要求。钱老师渊博的学识、严谨的治学精神以及平易近人的态度,使我在学习知识的同时,如浴春风。在整个课题的研究和设计过程中,也得到了同组的其它同学的支持和帮助,大家一起克服了一个又一个难题,在此表示感谢。在大学四年的学习过程中,我的学识有了长进,能力有了提高。为此我要感谢我的家人,以及所有教导过我的老师和长辈们,是他们鼓励着我前进。另外我要感谢我的朋友和同学,使我每天都轻松、愉快。16【参考文献】1、陈家瑞 《汽车构造 上 》 机械工业出版社2、陈家瑞 《汽车构造 下 》 机械工业出版社3、扶爱民 《汽车运用基础》 电子工业出版社4、扶爱民 《汽车发动机构造与维护》 电子工业出版社5、巫安达 乔国荣 《汽车维护技术》 高等教育出版社6、凌凯汽车资料编写组 《汽车原理》 北京邮电大学出版社17

我这里有,我正好在写造船史方面的论文,但是挺多的。你具体是哪个方面,或者哪个时期,我挑选以后发给你吧! 已经发过去了,请查收!分两个压缩包!

汽轮机技术投稿

在哪里发表首先是自己的意愿,然后是看单位或学校的要求,有本可持续能源的刊应该适合

1.文章标题:一般不超过300个汉字以内,必要时可以加副标题,最好并译成英文。2.作者姓名、工作单位:题目下面均应写作者姓名,姓名下面写单位名称(一、二级单位)、所在城市(不是省会的城市前必须加省名)、邮编,不同单位的多位作者应以序号分别列出上述信息。3.提要:用第三人称写法,不以“本文”、“作者”等作主语,100-200字为宜。4.关键词:3-5个,以分号相隔。5.正文标题:内容应简洁、明了,层次不宜过多,层次序号为一、(一)、1、(1),层次少时可依次选序号。6.正文文字:一般不超过1万字,用A4纸打印,正文用5号宋体。

如果不是要求必须发专刊,

可在我们刊物发表,有收录环保类文章很多多的

英文:ASME Journal of Heat Transfer,International Journal of Heat and Mass Transfer等。雪无痕(站内联系TA)电机工程学报 动力工程学报 热能与动力工程(CSCD) 各大学学报(自然科学版)。。。missyou8326(站内联系TA)热能动力工程不是EI源了:cry:ylberyl(站内联系TA)中文的认为还是《中国电机工程学报》,两专家背靠背盲审,论文质量比较可靠,Ei检索。 工程热物理学报得参加会议,参加会议还不一定录。 再者就是推荐《热能动力工程》也比较正规,只是不被Ei检了。 然后《动力工程》,《热力发电》和《汽轮机技术》 节能技术也是核心期刊 不是国家核心,是科技核心。windkiller3707(站内联系TA)太阳能学报、燃料化学学报。EI源刊。sh0283(站内联系TA)燃烧科学与技术longerwell(站内联系TA)这个比较多了吧 太阳能学报 太阳能 国外的比较多 中文的认为还是《中国电机工程学报》,两专家背靠背盲审,论文质量比较可靠,Ei检索。 工程热物理学报得参加会议,参加会议还不一定录。 再者就是推荐《热能动力工程》也比较正规,只是不被Ei检了。 然后《动力 ... 补充一下:机械工程学报、燃烧科学与技术、化工学报。天也潇潇(站内联系TA)化工学报不错的动力小硕(站内联系TA)电机认可度比较高的,特别是咱们能源电力这块雪无痕(站内联系TA)化工学报审稿太严了。。ymgeng(站内联系TA)Combustion&Flame .....xiangqian327(站内联系TA)国际传热传质,哈尔滨工业大学学报ncccompany(站内联系TA)heat transfer雨吻梦里花(站内联系TA)化工学报也沾边的。。

相关百科
热门百科
首页
发表服务