论文发表百科

关于环氧树脂的中外文论文文献

发布时间:2024-07-03 10:38:15

关于环氧树脂的中外文论文文献

第二炮兵工程学院,兵器发射理论与技术国家重点学科实验室,西安710025 摘要:针对光纤光栅(FBG)与被测金属构件可靠连接问题,提出环氧树脂掺金属粉末嵌入式封装技术,阐明了该封装工艺,采用纯弯曲梁对裸光纤光栅和封装后的光纤光栅分别进行应变实验,结果表明,经环氧树脂掺金属粉末封装后的光纤光栅传感器应变灵敏度是裸光纤光栅的1·3倍,达到1·53pm/με,具有很好的重复性,该方法提高了嵌入光纤光栅后被测金属构的机械强度。 关键词:光纤光栅;封装技术;环氧树脂掺金属粉末;应变传感。 图分类号:TB40;TN252 文献标识码:A 文章编号:1004-1699(2009)11-1675-04 光纤光栅传感技术是20世纪90年代初逐步发展起来的先进测试技术[1],与传统机电类传感器相比具有很多优势。光纤光栅的封装、安装技术及传感光信号的解调技术是使用中要解决的核心问题[2-8]。 由于光纤光栅过于纤细,工作环境又往往比较恶劣,在实际使用中必须对其进行有效的保护。目前针对金属被测构件的光纤光栅封装技术的研究已取得了一些进展,一般采用焊接式和粘贴式[9-13],然而这些封装方式体积较大,对于被测构件工作空间紧密的场合安装不便,而且不易与被测构件可靠结合,被测参数传递过程中容易失真。嵌入式封装技术能够实现FBG传感器与被测构件较好的连接,但这种方法会破坏金属表面结构,降低被测构件机械性能。 针对这些问题,本文尝试采用环氧树脂掺金属粉末嵌入式FBG封装技术,在被测系统设计时或被测构件安全系数较高的场合,将FBG嵌入到被测构件中,实现FBG与金属构件的可靠结合,采用环氧树脂掺金属粉末的目的不仅在于实现FBG的可靠粘接,而且可有效提高嵌入后金属构件的机械强度。该方法能够很好地解决FBG传感器与金属构件的可靠连接问题。 1·环氧树脂掺金属粉末封装工艺 此方法来源于金属粉末注射成形(Metal Pow-der Injection Molding,简称MIM),MIM是一种从塑料注射成形行业中引伸出来的新型粉末冶金成形技术。塑料注射成形技术能以低廉的价格生产各种复杂形状的制品,但强度不高。为了改善其性能,可以在塑料中添加金属或陶瓷粉以得到较高强度、耐磨性好的制品。本文采用环氧树脂掺金属粉末进行封装的目的是为了提高钢槽的强度,最大限度地保护光纤光栅,减少应力集中,提高钢梁的承载能力。本文选择镍粉作为封装用金属粉末。镍是一种银白色金属,具有良好的机械强度和延展性、难熔耐高温、化学稳定性好、在空气中不氧化等特征,是一种重要的有色金属原料。粘接剂选择低温固化、耐温-60℃~150℃的DG-3S改性环氧胶。采用上海紫珊光电技术有限公司生产的单模光栅作为敏感元件,其中心波长为1558·7 nm,反射率大于90%,带宽小于0·3 nm,光纤光栅的剥纤长度为16 mm,栅区长度为8 mm。采用自制纯弯曲梁作为被测构件来研究封装后光纤光栅的应变传感特性,纯弯曲梁材质为不锈钢,尺寸(L×W×H)为650 mm×20 mm×40 mm,并在一侧中心轴线上刻截面为半圆形通槽,通槽直径φ为1 mm,光纤光栅封装在槽内位于纯弯曲梁中心位置。 镍粉选取的方法为: (1)选取粒度较小的粉末,粒度为2μm~8μm,这样一方面可以使金属粉末与粘接剂充分结合,另一方面可以使粉末颗粒间具有较高的相对摩擦力; (2)选取振实粉末自然坡度角大于55°,增加粉末颗粒间相对摩擦力; (3)振实密度选择为... 参考资料: 环氧树脂胶粘剂、电子胶粘剂可咨询本帐号号码(深圳道尔科技有限公司)。

Electrochemical treatment of simulated industrial paint wastewater in a continuous tubular reactor 电镀工业涂装废水处理 专业词汇太多了 不太好翻译 只能希望你能找到更好的资源了。

典型汽车涂装废水处理工艺 摘 要:本文针对汽车涂装废水中含有树脂、表面活性剂、重金属离子,Oil、颜料等污染物,特别是其中的电泳废水、喷漆废水成份复杂,浓度高,可生化性差的实际情况,采用分质处理、混凝沉淀、混凝气浮、砂滤等工艺对涂装废水进行处理,取得了良好效果:CODCr去除率大于80%。实际运行表明,该工艺在技术和经济上均是合理可行的。Treatment technics of representative coating wastewater of automobile manufacturing Abstract:In this article, in allusion to the contamination of coating wastewater of automobile manufacturing which contains resin, surface active agent, heavy metal ion, oil, paint, dyestuff etc, especially the ELPO wastewater and painting wastewater which is complex, and has high concentration. we use separated pre-treatment, coagulating sedimentation, air flotation and sand filtration to treat coating wastewater and obtains good results: the removal rate of CODCr could be higher than 80%. The operate of the set proved that under this condition, it would be practicable both in technology and economy. 关键词:涂装废水;分质处理;混凝沉淀;混凝气浮;砂滤;Fenton试剂 Keywords:coating wastewater;separated pre-treatment;coagulating sedimentation;air flotation;sand filtration;Fenton reagent翻译 汽车及其零部件的涂装是汽车制造过程中产生废水排放最多的环节之一。涂装废水含有树脂、表面活性剂、重金属离子,Oil、PO43-、油漆、颜料、有机溶剂等污染物,CODCr值高,若不妥善处理,会对环境产生严重污染。对此类废水,传统的方法是直接对混合废水进行混凝处理,治理效果不理想,出水水质不稳定,较难达到排放标准。特别是其中的喷漆废水,含大量溶于水的有机溶剂,直接采用混凝法处理效果很差。我们在上海某汽车厂经过实地勘查、大量分析调研和小试,针对涂装废水的特点,采用分质预处理再进行后续处理的二步处理的方法,并选择芬顿氧化—混凝沉淀,气浮物化工艺进行处理,达到了排放标准,CODCr去除率达到80%以上。1废水的来源和主要污染物 涂装废水的来源及有害物质 涂装废水主要来自于预脱脂、脱脂、表调、磷化、钝化等车身前处理工序;阴极电泳工序和中涂、喷面漆工序。 废水中含有的主要有毒、有害物质如下:涂装前处理:亚硝酸盐、磷酸盐、乳化油、表面活性剂、Ni2+、Zn2+。底涂:低溶剂阴极电泳漆膜、无铅阴极电泳漆膜、颜料、粉剂、环氧树脂、丁醇、乙二醇单丁醚、异丙醇、二甲基乙醇胺、聚丁二烯树脂、二甲基乙醇、油漆等。中涂、面涂:二甲苯、香蕉水等有机溶剂、漆膜、颜料、粉剂。 废水水质、水量 本工程设计处理水量60m3/h。 油漆车间排放的废水分为间歇排放的废槽液和连续排放的清洗水。 间歇排放废水主要来源于前处理槽的倒槽废液、喷漆工段排放的废液等,废水浓度高,一次排放量大,水质如表1所示。 表1 间歇排放废水的水质污 染物源来水废 CODCr mg/L Oil mg/L PO43- mg/L Zn2+ mg/L Ni2+ mg/L Cd2+ mg/L 碳黑 mg/L pH 其它 预脱脂槽、脱脂槽废槽液、后喷淋、浸渍槽废槽液 2500~ 4000 300~ 950 250~400 表调槽废槽液 15~30 磷化槽废槽液、后喷淋、浸渍槽废槽液 400~600 100~150 20~30 6 钝化槽废槽液、后喷淋、浸渍槽废槽液 50~100 1~3 4~5 电泳废槽液 3000~ 20000 81 7~9 中涂、面漆喷漆室水槽废液 3000 5~6 漆渣 连续排放废水主要来自于前处理工序的后喷淋、浸渍槽的溢流废水等,相对间歇排放废水,其浓度低、总排放水量大,其水质如表2所示。表2 连续排放废水的水质源 来水废污染物 CODCr mg/L Oil mg/L PO43- mg/L Zn2+ mg/L Ni2+ mg/L Cd2+ mg/L 碳黑 mg/L pH 脱脂后冲洗废水 300 25 10~20 7~8 磷化后冲洗废水 20~30 12 8 6 钝化后冲洗废水 10~15 5~6 DI水喷淋槽喷淋废水 3900 1~3 4 循环去离子清洗废水 400 6 自泳后水洗溢流废水 100~1000 8 7~9 2.涂装废水处理工艺设计 汽车涂装废水处理工艺的关键之一在于合理的清浊分质。对部分难处理或影响后续处理的废水,根据其性质和排放规律,先进行间歇的预处理,再和其它废水集中连续处理,这样不仅可以取得较好的和稳定的处理效果,而且在经济上也合理可行。 涂装废水处理工艺流程 涂装废水处理工艺流程如图1所示。 图1某汽车厂涂装废水处理站处理流程 间歇预处理 脱脂废液 对脱脂废液采用酸化法进行破乳预处理,向脱脂废液中投加无机酸将pH调至2~3,使乳化剂中的高级脂肪酸皂析出脂肪酸,这些高级脂肪酸不溶于水而溶于油,从而使脱脂废液破乳析油。 另外,加酸后使脱脂废液中的阴离子表面活性剂在酸性溶液中易分解而失去稳定性,失去了原有的亲油和亲水的平衡,从而达到破乳。经预处理后CODCr从2500~4000mg/L降低到1500~2400mg/L,去除率在40%左右;而含油量从300~950 mg/L降至50~70 mg/L,去除率高达90%~95%。 电泳废液 在阴极电泳废水中含有大量高分子有机物,CODCr最高可达20000mg/L,还含大量电泳渣,这些物质在水中呈细小悬浮物或呈负电性的胶体状。处理中加入适当的阳离子型聚丙烯酰胺(PAM)和聚合氯化铝(PAC)作混凝剂,利用絮凝剂的吸附架桥作用来快速去除废水中的污染物。电泳废液在预处理时要求pH值在11~12之间,有较好的沉淀效果。反应后的出水CODCr在2000 mg/L左右。 喷漆废水 对喷漆废水先采用Fenton试剂(H2O2+FeSO4)对其进行预处理,使其中的有机物氧化分解,CODCr去除效率约在30%左右,再加入PAC和PAM对其进行混凝沉淀,经过此两步处理,CODCr的总去除率可达到60%~80%,由3000~20000mg/L降至1200~4000mg/L。出水排入混合废水调节池。 Fenton试剂具有很强的氧化能力,当pH值较低时(控制在3左右),H2O2被Fe2+催化分解生成羟基自由基(·OH),并引发更多的其他自由基,从而引发一系列的链反应[1]。通过具有极强的氧化能力的·OH与有机物的反应,使废水中的难降解有机物发生部分氧化、使废水中的有机物C—C键断裂,最终分解成H2O、CO2等,使CODCr降低。或者发生偶合或氧化,改变其电子云密度和结构,形成分子量不太大的中间产物,从而改变它们的溶解性和混凝沉淀性。同时,Fe2+被氧化生成Fe(OH)3在一定酸度下以胶体形态存在,具有凝聚、吸附性能,还可除去水中部分悬浮物和杂质。出水通过后续的混凝沉淀进一步去除污染物,以达到净化的目的[2]。 连续处理 经预处理的各类废水排入均和调节池中,与其它废水混合后进入连续处理流程。混合后的废水CODCr约为700~900mg/L。连续处理分为二级:混凝沉淀和混凝气浮。 在涂装废水中,油、高分子树脂(环氧树脂)、颜料(碳黑)、粉剂、磷酸盐等在表面活性剂、溶剂及各种助剂的作用下,以胶体的形式稳定地分散在水溶液中。可以靠投加化学药剂来破坏胶体的细微悬浮颗粒在水中形成的稳定体系,使其聚集成有明显沉淀性能的絮凝体,然后形成沉淀或浮渣加以除去[3]。 在废水中加入一定量的无机絮凝剂后,它们可中和乳化油或高分子树脂的电位,压缩双电层,胶粒碰撞促进凝集,完成脱稳过程,形成细小密实的絮凝物。这样可使涂装废水中的金属离子和磷酸根离子在碱性条件下生成的固体小颗粒形成沉淀物[4]。所以混凝处理可有效地去除汽车涂装废水中的油、高分子树脂、颜料和粉剂[5]。 重金属离子和磷酸盐中,由于Ni2+生成Ni(OH)2沉淀以及PO43-生成Ca3 (PO4) 2沉淀的最佳pH值是10以上;而Zn2+生成氢氧化物沉淀的最佳pH值范围是~,pH过高会形成ZnO22-而溶解。所以要分二级混凝反应以分别去除Ni2+,PO43-和Zn2+ 。同时,混凝反应后的固液分离分别采用的是斜板沉淀池和气浮池,这样既可以用斜板沉淀池来去除比重较大的重金属化合物沉淀,又可以用气浮池来去除比重较轻的有机物等。 混凝沉淀 第一级为混凝沉淀调节pH值为10~。 反应槽采用推流式反应槽,分为三格。第一格加碱将pH调高至10~,加入CaCl2,第二格加FeSO4,第三格加混凝剂PAM,反应后进入斜板沉淀池进行固液分离。三格停留时间分别为15min、15min、。斜板沉淀池表面负荷按2m3/m2·h设计。一级反应CODCr去除率为50%~60%。图2为一级反应槽示意图。图2 一级反应槽示意图 混凝气浮 二级反应的反应槽,也采用推流式反应槽,分为三格。第一格加酸将pH回调至~9,第二格加PAC,第三格加PAM,反应后进入气浮池进行固液分离。二级反应槽三格停留时间分别为10min、10min、5min。气浮池的溶气水按处理水量的30%设计。二级反应CODCr去除率为20%~25%,同时气浮也去除了Zn2+和一部分的表面活性剂。 深度处理 深度处理采用砂滤和活性炭过滤。从运行情况看,经砂滤后的出水即能达到排放标准(CODCr≤300mg/L)。砂滤装置的过滤速度控制在10~12m3/(m2·h)。反冲洗水由监测水箱中的水加压后提供,反冲洗强度控制在16~18L/(m2·s)。 砂滤后的出水已能达到排放要求,因此,活性炭过滤只是一个应急保证措施,一般情况下较少使用。 污泥处理 污泥处理的好坏,直接影响废水处理站的运行。由于污泥含油量高,直接进行压滤效果较差,在污泥浓缩槽中加入Ca(OH)2,pH调整至10左右,能达到较好的压滤效果。污泥含水率经板框压滤机后可由99%下降至75%~80%。 连续处理去除率分析 连续处理过程去除率如表3所示。表3 连续处理效率出水位置 CODCr去除率 斜板沉淀池出口 50%~60% 气浮池出口 20%~25% 砂滤出口 15% 3处理效果分析 该工程自2002年运行至今,处理效果稳定,表4为上海市环境监测中心2004年对该厂的监测分析报告数据汇总。监测时间为3天,每天取样12次(1小时取样一次,包括废水处理装置进口和出口)。表4 废水处理设施总排口监测数据监测 项目 废水处理装置进口* 废水处理装置出口 上海市《污水综合排放标准》(DB31/199–1997) 浓度最小值(mg/L) 浓度最大值(mg/L) 浓度平均值(mg/L) 浓度最小值(mg/L) 浓度最大值(mg/L) 浓度平均值(mg/L) pH 6~9 CODCr 434 759 625 73 132 300 三级标准 SS 93 351 204 21 145 29 350 三级标准 BOD5 36 145 87 4 83 150 三级标准 Oil 10 二级标准 Zn2+** - - - 二级标准 Mn2+** - - - 二级标准 Ni2+** - - - ND 第一类污染物排放标准 苯 ND ND ND ND ND ND 二级标准 甲苯 ND ND ND ND ND ND 二级标准 二甲苯 ND ND ND ND ND ND 二级标准 *废水处理装置进口指连续处理装置进口。** Zn2+、Mn2+、Ni2+本次监测未分析,表中所列为该厂废水处理站日常分析数据。 由上表可以看出,经处理后的废水以上海市《污水综合排放标准》(DB31/199—1997)进行评价,其中CODCr、BOD5、SS按三级标准评价(废水处理后排入安亭水质净化厂),其余采用二级标准及第一类污染物最高允许排放浓度,均能达到工程设计指标。 目前,处理装置运行稳定,出水均能达标。4.技术经济分析 工程造价和运行费用是人们在选用处理方法时所必须考虑和关心的问题。本工程采用分质处理后,与一般的集中物化处理比较,节省了加药量,污泥产量也有所减少,在一定程度上减少了运行费用,更重要的是保证了出水水质的稳定达标。本项目的技术经济指标见表5。表5 本处理工程技术经济指标总投资/万元 单位体积污水投资/万元 年运行费用/万元 单位体积污水处理费/元/m3 800 30 *年工作日按250天计,日处理水量为720 m3。5.结论 1、本工程采用分质处理、混凝沉淀、混凝气浮、砂滤等工艺对汽车涂装废水进行处理在技术和经济上是合理可行的。实际运行结果证明,此工艺对重金属、SS、Oil的去除效率超过90%,对CODCr的去除率大于80%。 2、汽车涂装废水水量和水质变化大,要特别的重视废水水量、水质均衡和分质预处理。根据工程实践证明,对脱脂废液,电泳废水、废液和喷漆废水这三股废水分别进行间歇预处理,这不仅有利于后续处理效率的提高,体现出技术和经济的统一,而且对整个系统的稳定运行和出水的稳定达标至关重要。参考文献:熊忠,林衍等 Fenton氧化法在废水处理中的应用[J] 新疆环境保护,2002,24(2):35~39 张林生,魏峰等 物理化学法处理汽车工业电泳涂装工艺中的超滤液废水[J] 给水排水,1999,25(10):33~36 刘绍根,汽车涂装废水处理技术[J] 工业用水与废水,2001,32(2):11~13 刘绍根,黄显怀 物化—生化法处理汽车生产废水[J] 给水排水,2001,27(12):53~56 廖亮,吴一飞等 磷化-喷漆线的废水处理工艺研究[J] 环境技术,2000,18,(4):18~21

年产吨环氧树脂毕业论文

战友!你真是遇见好人了!我是第二炮兵某部中尉连长!我也写过像你这样的论文!像底下那个是复制的,我给你点自己的意见吧! 注:我是用U盘给你复制的凹,是我自己收集的材料! 复合材料(Composite materials),是以一种材料为基体(Matrix),另一种材料为增强体(reinforcement)组合而成的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。 复合材料使用的历史可以追溯到古代。从古至今沿用的稻草增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20世纪40年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。 分类: 复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。将各种纤维增强体置于基体材料内复合而成。如纤维增强塑料、纤维增强金属等。②夹层复合材料。由性质不同的表面材料和芯材组合而成。通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。分为实心夹层和蜂窝夹层两种。③细粒复合材料。将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。④混杂复合材料。由两种或两种以上增强相材料混杂于一种基体相材料中构成。与普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显著提高,并具有特殊的热膨胀性能。分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超混杂复合材料。 60年代,为满足航空航天等尖端技术所用材料的需要,先后研制和生产了以高性能纤维(如碳纤维、硼纤维、芳纶纤维、碳化硅纤维等)为增强材料的复合材料,其比强度大于4×106厘米(cm),比模量大于4×108cm。为了与第一代玻璃纤维增强树脂复合材料相区别,将这种复合材料称为先进复合材料。按基体材料不同,先进复合材料分为树脂基、金属基和陶瓷基复合材料。其使用温度分别达250~350℃、350~1200℃和1200℃以上。先进复合材料除作为结构材料外,还可用作功能材料,如梯度复合材料(材料的化学和结晶学组成、结构、空隙等在空间连续梯变的功能复合材料)、机敏复合材料(具有感觉、处理和执行功能,能适应环境变化的功能复合材料)、仿生复合材料、隐身复合材料等。 [编辑本段]性能 复合材料中以纤维增强材料应用最广、用量最大。其特点是比重小、比强度和比模量大。例如碳纤维与环氧树脂复合的材料,其比强度和比模量均比钢和铝合金大数倍,还具有优良的化学稳定性、减摩耐磨、自润滑、耐热、耐疲劳、耐蠕变、消声、电绝缘等性能。石墨纤维与树脂复合可得到膨胀系数几乎等于零的材料。纤维增强材料的另一个特点是各向异性,因此可按制件不同部位的强度要求设计纤维的排列。以碳纤维和碳化硅纤维增强的铝基复合材料,在500℃时仍能保持足够的强度和模量。碳化硅纤维与钛复合,不但钛的耐热性提高,且耐磨损,可用作发动机风扇叶片。碳化硅纤维与陶瓷复合,使用温度可达1500℃,比超合金涡轮叶片的使用温度(1100℃)高得多。碳纤维增强碳、石墨纤维增强碳或石墨纤维增强石墨,构成耐烧蚀材料,已用于航天器、火箭导弹和原子能反应堆中。非金属基复合材料由于密度小,用于汽车和飞机可减轻重量、提高速度、节约能源。用碳纤维和玻璃纤维混合制成的复合材料片弹簧,其刚度和承载能力与重量大5倍多的钢片弹簧相当。 [编辑本段]成型方法 复合材料的成型方法按基体材料不同各异。树脂基复合材料的成型方法较多,有手糊成型、喷射成型、纤维缠绕成型、模压成型、拉挤成型、RTM成型、热压罐成型、隔膜成型、迁移成型、反应注射成型、软膜膨胀成型、冲压成型等。金属基复合材料成型方法分为固相成型法和液相成型法。前者是在低于基体熔点温度下,通过施加压力实现成型,包括扩散焊接、粉末冶金、热轧、热拔、热等静压和爆炸焊接等。后者是将基体熔化后,充填到增强体材料中,包括传统铸造、真空吸铸、真空反压铸造、挤压铸造及喷铸等、陶瓷基复合材料的成型方法主要有固相烧结、化学气相浸渗成型、化学气相沉积成型等。 [编辑本段]应用 复合材料的主要应用领域有:①航空航天领域。由于复合材料热稳定性好,比强度、比刚度高,可用于制造飞机机翼和前机身、卫星天线及其支撑结构、太阳能电池翼和外壳、大型运载火箭的壳体、发动机壳体、航天飞机结构件等。②汽车工业。由于复合材料具有特殊的振动阻尼特性,可减振和降低噪声、抗疲劳性能好,损伤后易修理,便于整体成形,故可用于制造汽车车身、受力构件、传动轴、发动机架及其内部构件。③化工、纺织和机械制造领域。有良好耐蚀性的碳纤维与树脂基体复合而成的材料,可用于制造化工设备、纺织机、造纸机、复印机、高速机床、精密仪器等。④医学领域。碳纤维复合材料具有优异的力学性能和不吸收X射线特性,可用于制造医用X光机和矫形支架等。碳纤维复合材料还具有生物组织相容性和血液相容性,生物环境下稳定性好,也用作生物医学材料。此外,复合材料还用于制造体育运动器件和用作建筑材料等。 复合材料的发展和应用 复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。 随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商PPG公司统计,2000年欧洲的复合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国GDP增长率的2倍,达到4%~6%。2000年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,2000年的总产量约为145万吨,预计2005年总产量将达180万吨。 从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达万吨,欧洲汽车复合材料用量到2003年估计可达万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达万吨,汽车等领域的用量仅为万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,用植物纤维与废塑料加工而成的复合材料,在北美已被大量用作托盘和包装箱,用以替代木制产品;而可降解复合材料也成为国内外开发研究的重点。 另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。 树脂基复合材料的增强材料 树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。 1、玻璃纤维 目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃纤维属于耐高温的玻璃纤维,是比较理想的耐热防火材料,用其增强酚醛树脂可制成各种结构的耐高温、耐烧蚀的复合材料部件,大量应用于火箭、导弹的防热材料。迄今为止,我国已经实用化的高性能树脂基复合材料用的碳纤维、芳纶纤维、高强度玻璃纤维三大增强纤维中,只有高强度玻璃纤维已达到国际先进水平,且拥有自主知识产权,形成了小规模的产业,现阶段年产可达500吨。 2、碳纤维 碳纤维具有强度高、模量高、耐高温、导电等一系列性能,首先在航空航天领域得到广泛应用,近年来在运动器具和体育用品方面也广泛采用。据预测,土木建筑、交通运输、汽车、能源等领域将会大规模采用工业级碳纤维。1997~2000年间,宇航用碳纤维的年增长率估计为31%,而工业用碳纤维的年增长率估计会达到130%。我国的碳纤维总体水平还比较低,相当于国外七十年代中、末期水平,与国外差距达20年左右。国产碳纤维的主要问题是性能不太稳定且离散系数大、无高性能碳纤维、品种单一、规格不全、连续长度不够、未经表面处理、价格偏高等。 3、芳纶纤维 20世纪80年代以来,荷兰、日本、前苏联也先后开展了芳纶纤维的研制开发工作。日本及俄罗斯的芳纶纤维已投入市场,年增长速度也达到20%左右。芳纶纤维比强度、比模量较高,因此被广泛应用于航空航天领域的高性能复合材料零部件(如火箭发动机壳体、飞机发动机舱、整流罩、方向舵等)、舰船(如航空母舰、核潜艇、游艇、救生艇等)、汽车(如轮胎帘子线、高压软管、摩擦材料、高压气瓶等)以及耐热运输带、体育运动器材等。 4、超高分子量聚乙烯纤维 超高分子量聚乙烯纤维的比强度在各种纤维中位居第一,尤其是它的抗化学试剂侵蚀性能和抗老化性能优良。它还具有优良的高频声纳透过性和耐海水腐蚀性,许多国家已用它来制造舰艇的高频声纳导流罩,大大提高了舰艇的探雷、扫雷能力。除在军事领域,在汽车制造、船舶制造、医疗器械、体育运动器材等领域超高分子量聚乙烯纤维也有广阔的应用前景。该纤维一经问世就引起了世界发达国家的极大兴趣和重视。 5、热固性树脂基复合材料 热固性树脂基复合材料是指以热固性树脂如不饱和聚酯树脂、环氧树脂、酚醛树脂、乙烯基酯树脂等为基体,以玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等为增强材料制成的复合材料。环氧树脂的特点是具有优良的化学稳定性、电绝缘性、耐腐蚀性、良好的粘接性能和较高的机械强度,广泛应用于化工、轻工、机械、电子、水利、交通、汽车、家电和宇航等各个领域。1993年世界环氧树脂生产能力为130万吨,1996年递增到143万吨,1997年为148万吨,1999年150万吨,2003年达到180万吨左右。我国从1975年开始研究环氧树脂,据不完全统计,目前我国环氧树脂生产企业约有170多家,总生产能力为50多万吨,设备利用率为80%左右。酚醛树脂具有耐热性、耐磨擦性、机械强度高、电绝缘性优异、低发烟性和耐酸性优异等特点,因而在复合材料产业的各个领域得到广泛的应用。1997年全球酚醛树脂的产量为300万吨,其中美国为164万吨。我国的产量为18万吨,进口4万吨。乙烯基酯树脂是20世纪60年代发展起来的一类新型热固性树脂,其特点是耐腐蚀性好,耐溶剂性好,机械强度高,延伸率大,与金属、塑料、混凝土等材料的粘结性能好,耐疲劳性能好,电性能佳,耐热老化,固化收缩率低,可常温固化也可加热固化。南京金陵帝斯曼树脂有限公司引进荷兰Atlac系列强耐腐蚀性乙烯基酯树脂,已广泛用于贮罐、容器、管道等,有的品种还能用于防水和热压成型。南京聚隆复合材料有限公司、上海新华树脂厂、南通明佳聚合物有限公司等厂家也生产乙烯基酯树脂。 1971年以前我国的热固性树脂基复合材料工业主要是军工产品,70年代后开始转向民用。从1987年起,各地大量引进国外先进技术如池窑拉丝、短切毡、表面毡生产线及各种牌号的聚酯树脂(美、德、荷、英、意、日)和环氧树脂(日、德)生产技术;在成型工艺方面,引进了缠绕管、罐生产线、拉挤工艺生产线、SMC生产线、连续制板机组、树脂传递模塑(RTM)成型机、喷射成型技术、树脂注射成型技术及渔竿生产线等,形成了从研究、设计、生产及原材料配套的完整的工业体系,截止2000年底,我国热固性树脂基复合材料生产企业达3000多家,已有51家通过ISO9000质量体系认证,产品品种3000多种,总产量达73万吨/年,居世界第二位。产品主要用于建筑、防腐、轻工、交通运输、造船等工业领域。在建筑方面,有内外墙板、透明瓦、冷却塔、空调罩、风机、玻璃钢水箱、卫生洁具、净化槽等;在石油化工方面,主要用于管道及贮罐;在交通运输方面,汽车上主要有车身、引擎盖、保险杠等配件,火车上有车厢板、门窗、座椅等,船艇方面主要有气垫船、救生艇、侦察艇、渔船等;在机械及电器领域如屋顶风机、轴流风机、电缆桥架、绝缘棒、集成电路板等产品都具有相当的规模;在航空航天及军事领域,轻型飞机、尾翼、卫星天线、火箭喷管、防弹板、防弹衣、鱼雷等都取得了重大突破。 热塑性树脂基复合材料 热塑性树脂基复合材料是20世纪80年代发展起来的,主要有长纤维增强粒料(LFP)、连续纤维增强预浸带(MITT)和玻璃纤维毡增强型热塑性复合材料(GMT)。根据使用要求不同,树脂基体主要有PP、PE、PA、PBT、PEI、PC、PES、PEEK、PI、PAI等热塑性工程塑料,纤维种类包括玻璃纤维、碳纤维、芳纶纤维和硼纤维等一切可能的纤维品种。随着热塑性树脂基复合材料技术的不断成熟以及可回收利用的优势,该品种的复合材料发展较快,欧美发达国家热塑性树脂基复合材料已经占到树脂基复合材料总量的30%以上。 高性能热塑性树脂基复合材料以注射件居多,基体以PP、PA为主。产品有管件(弯头、三通、法兰)、阀门、叶轮、轴承、电器及汽车零件、挤出成型管道、GMT模压制品(如吉普车座椅支架)、汽车踏板、座椅等。玻璃纤维增强聚丙烯在汽车中的应用包括通风和供暖系统、空气过滤器外壳、变速箱盖、座椅架、挡泥板垫片、传动皮带保护罩等。 滑石粉填充的PP具有高刚性、高强度、极好的耐热老化性能及耐寒性。滑石粉增强PP在车内装饰方面有着重要的应用,如用作通风系统零部件,仪表盘和自动刹车控制杠等,例如美国HPM公司用20%滑石粉填充PP制成的蜂窝状结构的吸音天花板和轿车的摇窗升降器卷绳筒外壳。 云母复合材料具有高刚性、高热变形温度、低收缩率、低挠曲性、尺寸稳定以及低密度、低价格等特点,利用云母/聚丙烯复合材料可制作汽车仪表盘、前灯保护圈、挡板罩、车门护栏、电机风扇、百叶窗等部件,利用该材料的阻尼性可制作音响零件,利用其屏蔽性可制作蓄电池箱等。 我国的热塑性树脂基复合材料的研究开始于20世纪80年代末期,近十年来取得了快速发展,2000年产量达到12万吨,约占树脂基复合材料总产量的17%,,所用的基体材料仍以PP、PA为主,增强材料以玻璃纤维为主,少量为碳纤维,在热塑性复合材料方面未能有重大突破,与发达国家尚有差距。 我国复合材料的发展潜力和热点 我国复合材料发展潜力很大,但须处理好以下热点问题。 1、复合材料创新 复合材料创新包括复合材料的技术发展、复合材料的工艺发展、复合材料的产品发展和复合材料的应用,具体要抓住树脂基体发展创新、增强材料发展创新、生产工艺发展创新和产品应用发展创新。到2007年,亚洲占世界复合材料总销售量的比例将从18%增加到25%,目前亚洲人均消费量仅为,而美国为,亚洲地区具有极大的增长潜力。 2、聚丙烯腈基纤维发展 我国碳纤维工业发展缓慢,从CF发展回顾、特点、国内碳纤维发展过程、中国PAN基CF市场概况、特点、“十五”科技攻关情况看,发展聚丙烯腈基纤维既有需要也有可能。 3、玻璃纤维结构调整 我国玻璃纤维70%以上用于增强基材,在国际市场上具有成本优势,但在品种规格和质量上与先进国家尚有差距,必须改进和发展纱类、机织物、无纺毡、编织物、缝编织物、复合毡,推进玻纤与玻钢两行业密切合作,促进玻璃纤维增强材料的新发展。

环氧树脂市场分析 环氧树脂是指分子中含有两个或两个以上环氧基团的有机高分子化合物,其分子结构是以分子链中含有活泼的环氧基团为特征。这使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物,并由此特性成为先进复合材料中应用最广泛的树脂体系,可适用于多种成型工艺配制成不同配方,可调节粘度范围大;以适应于不同的生产工艺。近年来橡胶弹性体增韧、树脂合金化改性以及环氧树脂增韧改性新技术等增韧技术的日益成熟,环氧树脂得到了更好更广泛的应用。目前环氧树脂统治着高性能复合材料的市场,因此对环氧树脂市场的研究有着广泛的意义。根据最新统计,我国2005年全年环氧树脂产量为44万吨、进口量为25万吨、出口量为6万吨、消费总量为63万吨,产量继续保持较大增长,进口量在总消费量中的比较进一步下降,消费量已趋于稳定合理。纵观近年来国际环氧树脂市场,1993年,世界环氧树脂生产能力为130万吨,1996年递增到万吨,1999年为万吨,2002年为186万吨,2005年为201万吨,预计2010年可达到250万吨左右。尤其是欧美、日本环氧树脂公司兼并及投资建设较为活跃。国际大鳄经过一系列重组整合,全球环氧树脂行业三甲已轮流坐庄,由20世纪末的Shell、DOW、Ciba-Geigy,变成Hexion、DOW、南亚。市场新三强生产能力分别达到38、36、30万吨/年!并且Hexion、DOW、南亚三甲目前在中国都设有生产基地,中国在数量上已成为全球环氧树脂最大生产国和重要消费国,但从消费结构以及企业个体角度来看,作为经济组织国内企业还有待做大做强。一、产业历史我国环氧树脂产业起步于1958年,但是计划经济的束缚、加上文革的影响,使我国的发展步子明显慢于国外。上世纪80年代情况有所好转,年增长率达到了7%左右,但从总量上看每年计划安排的环氧树脂用量始终在万吨以下。90年代初,我国经济发展逐渐与国际市场、国际经济接轨,环氧树脂行业出现了众多外资企业、中外合资企业,加上大量乡镇企业、私营企业的进入,我国环氧树脂生产企业如雨后春笋,一下子由原来的几十家扩大到近200家,出现了多种经济成份相互竞争、共同发展的局面。但当时的单套装置规模均在5000吨/年以下,与国外相比差距甚远,工艺技术上同样具有很大距离。经过上世纪90年代的大力发展,我国环氧树脂行业进入了又一个发展期。1998年环氧树脂消费量达到12万吨。技术引进在此过程中发挥了重要作用,使我国环氧树脂生产从技术水平到生产规模都有了一个很大的提高,他们生产的环氧树脂已经能够与进口货抗衡。在这一发展期间,我国环氧树脂行业出现了聚集发展的格局,龙头企业充分发挥了对整个行业的牵幅射作用,形成了我国环氧树脂的核心产业带;安徽黄山地区异军突起,他们独辟蹊径发展粉末涂料专用的固体树脂,凭借专业化的优势,构成了环氧树脂和环氧树脂粉末涂料联合生产基地;华南地区成为我国环氧树脂应用的一个高地,该地区凭借毗邻港的地域优势在大力发展电子工业的同时,带动了环氧树脂在电子领域的应用,是电子领域成为我国环氧树脂主要消费方向之一的重要推动力量。进入21世纪,电子电气、交通运输、石油化工、建筑工程等与环氧树脂相关的行业发展尤其迅猛,经济建设对环氧树脂的需求量急剧增加。在这一“发展”的大背景,我国环氧树脂迎来了黄金发展阶段。生产和消费的平均增长达到30%左右,远远高于同期全球3%的增长水平,成为全球环氧树脂增长的主要拉动力量。主要的发展特点表现为以下几个方面。二、产业特点一是外资带动。美国以及台资等纷纷在大陆建厂生产,这些外资工厂具有相当生产规模,几乎占了目前中国大陆环氧树脂生产能力的一半。同时采用的工艺技术都是国际最先进的,使我国环氧树脂产业不仅生产能力大幅提升,而且技术素质有了飞跃,特别是从国外到国内的技术“领先”刺激,促使国内原有的环氧树脂企业奋发创新,从而实现了良好的整体带动战略。二是行业内部通过结构调整,产业链与区域经济整体发展、同步提升,企业素质有了质的提高。规模化成为当前内资环氧树脂企业的最大特点,目前企业数量已从高峰时的200多家调整到100家左右,企业生产规模则有了极大提高,技术水平同样快速提高,而且其发展不再是孤立的而是具有带动或呼应整个产业链同步提升的能力,产生的聚集效应值得充分肯定,已经把我国环氧树脂产业水平推进到了一个新的高度。三是技术创新能力大为提高,技术水平进入世界较先进行列。当今环氧树脂产业领域的竞争,除了人才、管理、资本等因素外更重要的是技术的比较,目前中国环氧树脂业随着资本结构的多元化,同时也成为中外各种先进工艺技术的比拼舞台,在这一决定竞争成败的竞技场上,中国本土的企业在依靠自有知识产权的同时不断推进技术进步,在竞争中逐步发展壮大。四是整个行业呈现分工较为明确的格局。生产能力在2万吨/年左右的大型企业,无论内资、外资均以大宗的基础树脂为主,在这些领域没有规模就没有优势,小企业难以有所作为;内资企业的一些传统大厂也是新产品研发的中心,不断培育新的品种,不断形成新的大宗品种;而在粉末涂料重镇黄山,单一优势明显,产品大量出口;特种、专用产品和技术全面开花,一些小型企业“内精外王”,为业界瞩目。五是环氧树脂应用领域迅速打开。应用的力度和深度是产品生产规模的基础,材料制造行业为应用行业提供先进的材料、满足其生产出更好产品的要求,而应用行业又反过来要求材料制造行业提供更加先进的材料、促进其不断发展。其中许多以前依赖进口的产品,实现了国内部分或全部替代。六是信息化建设进展神速、与行业的现代化发展相辅相成。信息化促进产业化、产业化带动现代化已成该行业的真实写照,该行业先进企业大都有着信息化手段的有力支撑。通过ERP系统等全面的信息化建设,在流程上实现效率、在应用中实现了降耗的目标。三、应用分析目前我国环氧树脂应用主要领域有:电子信息,其中彩电、音响、电话机产量跃居世界第一,目前正在聚焦信息家电、移动计算、数字电视、无线局域网、汽车电子等领域的新兴市场,环氧树脂在其中的应用主要形式是敷铜板、塑封料、浇注料、包封料、贴片胶、模具胶等;交通设备,交通运输设备制造业中大量使用环氧电泳涂料、重防腐涂料、模具胶、工具胶等各类粘接剂、复合材料等;能源工业,环氧树脂在该行业中的应用主要是作为绝缘材料,应用形式主要有层压板、浇注料、塑封料、绝缘漆、粘接剂;汽车制造,高速发展的汽车产业将大力促使环氧树脂生产,目前每辆汽车平均需耗环氧树脂5公斤,随着我国汽车产业的腾飞,内需拉动下环氧树脂在该领域大有可为;建筑、水利行业,环氧树脂在该领域中的使用形式主要包括地坪、防腐涂料、其它建筑涂料、复合材料混凝土、环氧沥青、建筑补强和堵漏材料、大坝防腐材料等;石油石化,环氧树脂在石油石化的应用以防腐为核心,应用形式主要有海上石油平台、油罐、输油管道防腐材料。环氧树脂消费与经济发展存在着高度正相关联系,经济越发达、生活水平越高则环氧树脂消费量越高,目前发达国家人均消费环氧树脂水平达到1公斤/年左右。而我国人均消费环氧树脂2000年仅公斤,而2005年已达到公斤,增长了2倍,由于我国人口基数的庞大因此在今后几年的产业震荡中行业规模的扩张还是非常可观的。我国环氧树脂需求量的急速增加,引起国际业界高度关注。环氧树脂跨国公司几乎全部前来或正在前来我国投资兴建大型生产厂,国内企业也纷纷新建扩建环氧树脂装置。据公开披露的信息,目前拟新增环氧树脂生产能力达到55万吨/吨左右,加上现有生产能力40万吨/吨,预计2010年前后我国环氧树脂生产能力将达到130万吨/吨,接近全球的一半,成为世界环氧树脂大国。我国环氧树脂事业目前正进入一个新的关键发展期。四、市场建议但我国环氧树脂产业如何实现大国梦,并进而成为强国,还有很多课题要解决。首先要走专和特的道路。我国环氧树脂市场大,国产环氧树脂市场占有率一直持续上升并逐渐占据优势,同时开始走向国际市场,成绩可喜;但是进一步扩大优势就要从环氧树脂市场面大量广、用户产品更新换代快、工艺技术进步迅速这个特点出发,根据应用行业发展特点大力发展特种或专用环氧树脂,学习黄山的产业结构,中小企业力争单一优势,以专以特作市场。其次积极瞄准国外高档产品进行攻关,早日实现替代。我国短缺的、需要依赖进口的环氧树脂产品,价格都相当高甚至高得离谱,这些产品开发难度大、成本高,有些目前需求不大,但决不能因此放弃发展,有条件的厂应积极组织开发。一来可以为下游行业压缩过高成本,二来可以为自身赢得未来的市场。再次,要开发绿色产品,实现清洁生产。环氧树脂废水的治理是环氧树脂行业的一大难题,这主要是由于环氧废水中含有大量老化树脂和较高浓度的碱盐,采用传统的废水治理方法难以奏效。尤其电气、电子、建材方面对环保产品的要求呼声很高,目前大量使用非环保的溴化环氧树脂的覆铜板、阻燃电器浇注料已受到一定的限制,发展非卤化阻燃环氧树脂要立即行动。环保水溶性环氧树脂、无溶剂型环氧树脂、高固体份环氧树脂目前产量还很低、品种也不多,要大力推动发展。最后,必须加快发展原料、辅料的配套发展。目前我国双酚A、环氧氯丙烷、固化剂的生产远远跟不上环氧光固化涂料用环氧树脂的研究。五、上游行业分析环氧树脂生产中固化剂及环氧氯丙烷是最重要的生产要素。我国环氧树脂固化剂业的问题主要表现在以下几方面:一是产需矛盾突出,高档及许多专用固化剂需进口;二是品种少、系列化程度低,难以适应千变万化的环氧树脂配方之需;三是环氧树脂与固化剂配套发展水平极低,缺乏产业链的配套优势;四是固化剂发展缺乏统筹规划;五是研发状况不尽人意。我国环氧氯丙烷的发展,始终与环氧树脂的发展密切地联系在一起,至今为止我国环氧氯丙烷的主要用途还是用于生产环氧树脂。目前国内环氧氯丙烷消费结构为:环氧树脂行业占85%,合成甘油占7%,氯醇橡胶占2%,其他占6%。环氧氯丙烷在精细化工中的应用已开始起步,虽然使用量不能同环氧树脂同日而语,但其发展前景广阔,值得肯定。目前国内环氧氯丙烷生产企业在原材料及公用工程消耗、产品质量、生产成本等方面与国外先进水平比有较大差距。唯有大力改进生产技术,努力降低成本,提高产品质量,才能在提升行业国际竞争力的基础上更好的为国内的环氧树脂行业提供助力。按照环氧树脂消费与国民经济发展的关系曲线,以及与涂料、胶粘剂、复合材料等应用材料,电子、电工、建筑、汽车等应用领域的关联度,从多个方面进行测算,到2010年我国环氧树脂生产能力将达到130万吨,占全球总产能的一半,环氧树脂总消费量为150万吨左右,继去年成为全球最大生产国后,将于“十一五”中期成为全球最大消费国。六、市场预期2006年初,相对于原料行情的尴尬境地,环氧树脂市场达到了近10年来的高价位。但无论是双酚A价格疲软还是环氧氯丙烷供不应求,对于下游环氧树脂厂家来说均有一定影响,目前这种上下游之间的脱节必然是暂时现象,经过一段时间的调整后,在需求拉动下,环氧树脂及原料行业一定会回归共同繁荣的局面。中国环氧树脂产业“十一五”规划于日前正式开始编制,规划将特别贯彻环境友好、资源节约、自主创新原则。结合产业环境以及各行业需求,我们可以得出以下数据:1、预计2010年我国汽车产能将达到1200万辆,以目前辆汽车平均需耗环氧树脂5公斤计算,2010年我国汽车工业涂料消费环氧树脂约为6万吨,加上保有汽车的修补漆所需环氧树脂的量预计在9万吨左右。2、船舶工业、海洋工业所需环氧树脂涂料前景诱人。21世纪是“海洋的世纪”,是海洋开发的新时代。从现在到2010年,将是世界造船业大发展的时期,世界各类船只的需求量将增加50%。我国已脐身世界航运和造船业大国之列,码头设施、海上建筑、钻井平台、输油管道、海水养殖设施等行业也需要大量的环氧涂料(防腐、防海洋生物污染)。今后5年对环氧锌粉车间底漆、环氧铁红车间底漆、环氧沥清防锈漆、油舱压载水舱环氧涂料、环氧树脂软水舱漆、海洋工程及海上建筑用环氧防腐涂料的需求量很大,专家预测,2010年我国船舶工业、海洋工业需15万吨环氧树脂左右。3、集装箱工业:我国集装箱工业发展迅猛,已成为世界第一大集装箱生产国。预计2010年,集装箱用涂料需7万吨左右,要消耗环氧树脂5万吨左右。4、食品罐工业:随着生活水平的提高,食品罐头、食品贮存容器制造业持续高速发展,罐头涂料需要越来越多的环氧树脂。印度艾迪泰雅·比尔拉化学(泰国)有限公司总裁,最近在北京第3届酚酮及衍生物大会上称,今后3年中国将是亚洲环氧树脂市场中惟一保持赤字的国家。并进而表示2008年中国大陆环氧树脂生产能力42万吨/年、需求万吨/年,短缺万吨/年。中国环氧树脂行业协会()专家针对这一消息评论说,的论断指明了明环氧树脂全球过剩、中国短缺的趋势,这是正确的;但其所援引的数据是几年前的,按惯例几年间数据一般不会有大变化,但事实恰恰相反。变化如此巨大造成分析失误,可见我国环氧树脂业发展之快。 在2月24日于北京举行的第3届酚/酮及衍生物大会上,Agarwal称今后3年中国大陆环氧树脂需求增长率估计为,这明显高于日本、中国台湾地区和韩国,后3者的需求增长率估计分别为、和。至2008年中国将能生产近万吨/年环氧树脂,而其需求将为万吨/年,这导致短缺万吨/年。事实上近5年来中国大陆环氧树脂产需增长平均速度在20%以上,2005年中国大陆环氧树脂生产量32万吨、消费量62万吨。中国环氧树脂行业协会()专家说,这远“超过”先生2008年的预计数。 先生还表示,2008年中国台湾地区的环氧树脂产能将达到万吨/年,而其需求仅为万吨/年,导致过剩万吨/年。中国大陆的高增长率难以缓解亚洲过剩的供应,2005年亚洲环氧树脂总需求为万吨/年,而总产量为120万吨/年,导致过剩万吨/年。这种供需形势预计将不会得到改善,因为2008年亚洲环氧树脂总产量估计为万吨,而总需求为万吨,过剩45万吨。这些数字也大相径庭,实际上亚洲2005年环氧树脂需求为:中国大陆62万吨左右、台湾地区20万吨左右、日本18万吨左右,加上其它国家和地区根据不是万吨的概念。据中国环氧树脂行业协会()专家不完全统计,目前全球环氧树脂生产能力至少已达到万吨/年,中国占总能力的、其中大陆占总能力的。中国大陆环氧树脂生产能力从1999年5万吨/年、占世界总量的,发展到2005年32万吨/年、占世界总量的是个为全球了不起的成绩。中国已经成为全球环氧树脂主要生产国、重要消费国。 进入2006年,中国大陆环氧树脂生产能力已达到45万吨/年,同时在建生产能力达10万吨/年左右。从全球范围看环氧树脂产能已经过剩,但在中国大陆尚处于短缺,但短缺的是特种产品而非常规产品。中国环氧树脂行业协会()专家强调指出,业界投资时必须充分考虑这一现状,切忌低水平重复建设、一哄而上。为此要坚持以下原则:一是要改变以6101为主的产品思路,双酚A型环氧体系产品是世界环氧行业的主流,但应以618环氧树脂为基础树脂,长期以来我国环氧树脂的生产都是以6101或E-44为主要产品,而基础树脂618或E-51生产量极少,这是我国过去采用手糊法生产玻璃钢而造成的事实,现在形势已经发生变化故为此不能抱住6101这个产品不放,而应该扩大思路生产无溶剂、低粘度、或改性的新产品;二是发展目前紧缺的环氧树脂产品,目前我国环氧树脂年用量已达30万吨左右,但其中二分之一仍然依靠进口,国产环氧树脂以双酚A型为主,而且固化剂、活性稀释剂、助剂等配套不齐不成系统,150多家生产环氧树脂厂大多在双酚A型环氧树脂方面抡跑道,而一些前景好的跑道都让给外商,例如耐热系列、阻燃系列、水溶系列、高纯度系列的产品国内生产厂家很少,其实酚醛环氧、邻甲酚甲醛环氧、双酚F环氧、脂环族环氧、含磷环氧及光固化环氧、水性环氧都是目前看好的产品;三是开发有利环保的新产品,各行各业现在都十分注重环境保护,市面上出现了不少“绿色”产品,为此对使用的原料也提出了这方面的要求,如覆铜板、阻燃电器浇注料大量使用溴化环氧树脂,而溴化物因破坏大气层臭氧结构目前已受到一定的限制,生产非卤化阻燃环氧树脂必须尽早计议;四是走合作联合之路,开拓环氧系统产品,我国环氧树脂生产和科研起步不晚但发展速度慢了点,。在我国也有一些很有实力的环氧树脂生产和研究单位以及大专院校,曾经开发出许多当时比较先进的生产工艺和产品,但不知什么原因没有推广开来,现在很多单位已经采用鼓励科研开发新机制,相信发展新技术、新产品的速度会比以前快。 改革开放以来的事实证明了我国环氧树脂企业界有信心、有能力来发展好我国环氧树脂事业。当中国市场刚开放时国外环氧树脂大量涌进中国市场,一度国产环氧树脂曾被压得透不过气,国外环氧树脂在国内市场的占有率曾高达65%左右。时至今日虽然进口的环氧树脂为30万吨左右,但国产环氧树脂产量也达到30万吨左右,国产环氧树脂与国外环氧树脂在国内市场的占有率上已平分秋色。而且在环氧树脂的出口方面,虽然总量很小,但蓝星新材料无锡树脂厂等企业已实现批量出口,去年以来该厂出口增长巨大,这也说明我国环氧树脂也是有能力进入国际市场。 最近,由于下游行业开工情况不理想,加上原料双酚A价格低迷,国内环氧树脂行情在外盘走高的背景下反而趋疲,10天左右时间降幅300~500元/吨。目前液体树脂主流价格华东地区23000~24000、华南地区24000-24500、华北地区23000~24000、东北地区23500~24500元/吨,固体树脂主流价格华东地区18800~19000、华南地区19000~19200元/吨。 环氧树脂2大原料双酚A和环氧氯丙烷,前期价格一弱一挺,环氧氯丙烷的居高不下使环氧树脂承受成本之痛,双酚A的持续低迷让环氧树脂售价欲提还休;随着环氧氯丙烷行情的下调,环氧树脂价格迅速挫低。据中国环氧树脂行业协会()市场分析人士介绍,目前主导产品液体环氧树脂618(E-51)价格23500~24000元/吨,6101(E-44)价格23000~23500元/吨,固体环氧树脂604(E-12)价格为18700~19000元/吨。环氧氯丙烷行情的调整从固体产品疲、液体产品平,转变为液体产品疲、固体产品平,上周5(3月10日)华东、华南、华北、东北各地全面下挫。 国内环氧树脂市场当前的另一个特点是外盘高、内贸疲。虽然也感受到了出货困难的压力,但环氧树脂进口市场依然坚挺,其中美国瀚森(Hexion,原壳牌)828价格27000~27500元/吨,台湾南亚128(E-51)价格24800~25000元/吨,陶氏331(E-51)价格在26500元/吨。中国环氧树脂行业协会()市场人士介绍说,陶氏化学计划3月中旬上调环氧树脂美金报价,前期美国瀚森外盘价格上涨了100美元/吨。 从原料供应角度看目前成本难以下降。其中环氧氯丙烷行情虽有下调但空间有限,可以说是上涨下跌均受限:近期国内环氧氯丙烷整体成交量未有明显起色,由于前期下游环氧树脂行情持续疲软、需求冷清而造成无形压力,一方面外盘价格高挺、市场货源一般、贸易商走货意向不强,另一方面国内厂家价格持稳、走货顺畅,从而导致市场价格进入僵持局面,目前下游环氧树脂略有起色是为利好,但上周末约有2000吨环氧氯丙烷进口货到港,鉴于此前环氧氯丙烷价格一直高位徘徊,因此其行情上涨动力不足,近期走势波动空间有限。而双酚A在贸易商推价努力下开始起色,主流市场华东地区价格提升至11800~11900元/吨,且成交情况有所好转,中国环氧树脂行业协会()市场人士分析认为,双酚A内外盘倒挂已维持较长时间,加上近期亚太地区酚酮和双酚A装置逐步进入检修,外盘下行可能性甚小,从而将对内贸市场形成回升支撑,同时由于下游环氧树脂市场疲态减缓,双酚A行情有所重返12000元/吨平台.品 种 成交价格(元∕吨) 升跌率(%) 评 析环氧树脂 E-51 24500 / 受生产原材料等影响,价格稍有上升环氧树脂 E-54 24800 / 同上环氧树脂 E-44 24000 / 同上环氧树脂 E-20 23500 / 同上环氧树脂 E-12 24000 / 同上酚醛环氧树脂 F-51 33000~35000 / 固 化 剂 1044 16000 / 无毒、性价比高固 化 剂 2544 22000 / 无毒、性价比高固 化 剂 T-31 14500~17500 / 因产品质量及原材料不同,真假T-31之间差异较大固 化 剂 650 20000 / 固 化 剂 651 23000 / 固 化 剂 H300 22000 / 固 化 剂 593 28000~34000 / 部分厂家用591冒充593低价进入市场固 化 剂 113 19000 / 因主要原材料DDM主要产地都在华东,所以华南价格较高固 化 剂 (地坪面涂用) 42000 / 固 化 剂 (水晶胶用) 43000 / 固 化 剂 (打磨胶用) 62000 / 甲基四氢苯酐 910 16500 / 促 进 剂 DMP30 22000 / 促 进 剂 二甲基苄胺 38000 / 稀 释 剂 660A 30000 / 稀 释 剂 661 16000 / 稀 释 剂 6630 30000 / 前期,因环氧氯丙烷价格持续走高,导致环氧树脂价位逐步提升、双酚A价位较为稳定、对环氧的价位起一定的高位打压,所以环氧树脂的升浮步子不是很大。 前期,由于受到南亚等大装备将要投产,冲击市场,对业内人士心理上造成阴影,较多厂商压缩库存观望,但形势突变现象并未出现。主要原因是环氧生产量扩容,超过了前道ECH的供应量,ECH的价格提升,限制了环氧树脂的成本,使其已经没有回降的空间,再加上国内环氧树脂的出口大增,国内用量也逐步进入旺季,所以预测三,四,五月份环氧树脂价格仍呈上升趋势.

战友!你真是遇见好人了!我是第二炮兵某部中尉连长!我也写过像你这样的论文!像底下那个是复制的,我给你点自己的意见吧!注:我是用U盘给你复制的凹,是我自己收集的材料!复合材料(Composite materials),是以一种材料为基体(Matrix),另一种材料为增强体(reinforcement)组合而成的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。复合材料使用的历史可以追溯到古代。从古至今沿用的稻草增强粘土和已使用上百年的钢筋混凝土均由两种材料复合而成。20世纪40年代,因航空工业的需要,发展了玻璃纤维增强塑料(俗称玻璃钢),从此出现了复合材料这一名称。50年代以后,陆续发展了碳纤维、石墨纤维和硼纤维等高强度和高模量纤维。70年代出现了芳纶纤维和碳化硅纤维。这些高强度、高模量纤维能与合成树脂、碳、石墨、陶瓷、橡胶等非金属基体或铝、镁、钛等金属基体复合,构成各具特色的复合材料。分类:复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。将各种纤维增强体置于基体材料内复合而成。如纤维增强塑料、纤维增强金属等。②夹层复合材料。由性质不同的表面材料和芯材组合而成。通常面材强度高、薄;芯材质轻、强度低,但具有一定刚度和厚度。分为实心夹层和蜂窝夹层两种。③细粒复合材料。将硬质细粒均匀分布于基体中,如弥散强化合金、金属陶瓷等。④混杂复合材料。由两种或两种以上增强相材料混杂于一种基体相材料中构成。与普通单增强相复合材料比,其冲击强度、疲劳强度和断裂韧性显著提高,并具有特殊的热膨胀性能。分为层内混杂、层间混杂、夹芯混杂、层内/层间混杂和超混杂复合材料。 60年代,为满足航空航天等尖端技术所用材料的需要,先后研制和生产了以高性能纤维(如碳纤维、硼纤维、芳纶纤维、碳化硅纤维等)为增强材料的复合材料,其比强度大于4×106厘米(cm),比模量大于4×108cm。为了与第一代玻璃纤维增强树脂复合材料相区别,将这种复合材料称为先进复合材料。按基体材料不同,先进复合材料分为树脂基、金属基和陶瓷基复合材料。其使用温度分别达250~350℃、350~1200℃和1200℃以上。先进复合材料除作为结构材料外,还可用作功能材料,如梯度复合材料(材料的化学和结晶学组成、结构、空隙等在空间连续梯变的功能复合材料)、机敏复合材料(具有感觉、处理和执行功能,能适应环境变化的功能复合材料)、仿生复合材料、隐身复合材料等。[编辑本段]性能 复合材料中以纤维增强材料应用最广、用量最大。其特点是比重小、比强度和比模量大。例如碳纤维与环氧树脂复合的材料,其比强度和比模量均比钢和铝合金大数倍,还具有优良的化学稳定性、减摩耐磨、自润滑、耐热、耐疲劳、耐蠕变、消声、电绝缘等性能。石墨纤维与树脂复合可得到膨胀系数几乎等于零的材料。纤维增强材料的另一个特点是各向异性,因此可按制件不同部位的强度要求设计纤维的排列。以碳纤维和碳化硅纤维增强的铝基复合材料,在500℃时仍能保持足够的强度和模量。碳化硅纤维与钛复合,不但钛的耐热性提高,且耐磨损,可用作发动机风扇叶片。碳化硅纤维与陶瓷复合,使用温度可达1500℃,比超合金涡轮叶片的使用温度(1100℃)高得多。碳纤维增强碳、石墨纤维增强碳或石墨纤维增强石墨,构成耐烧蚀材料,已用于航天器、火箭导弹和原子能反应堆中。非金属基复合材料由于密度小,用于汽车和飞机可减轻重量、提高速度、节约能源。用碳纤维和玻璃纤维混合制成的复合材料片弹簧,其刚度和承载能力与重量大5倍多的钢片弹簧相当。[编辑本段]成型方法 复合材料的成型方法按基体材料不同各异。树脂基复合材料的成型方法较多,有手糊成型、喷射成型、纤维缠绕成型、模压成型、拉挤成型、RTM成型、热压罐成型、隔膜成型、迁移成型、反应注射成型、软膜膨胀成型、冲压成型等。金属基复合材料成型方法分为固相成型法和液相成型法。前者是在低于基体熔点温度下,通过施加压力实现成型,包括扩散焊接、粉末冶金、热轧、热拔、热等静压和爆炸焊接等。后者是将基体熔化后,充填到增强体材料中,包括传统铸造、真空吸铸、真空反压铸造、挤压铸造及喷铸等、陶瓷基复合材料的成型方法主要有固相烧结、化学气相浸渗成型、化学气相沉积成型等。[编辑本段]应用 复合材料的主要应用领域有:①航空航天领域。由于复合材料热稳定性好,比强度、比刚度高,可用于制造飞机机翼和前机身、卫星天线及其支撑结构、太阳能电池翼和外壳、大型运载火箭的壳体、发动机壳体、航天飞机结构件等。②汽车工业。由于复合材料具有特殊的振动阻尼特性,可减振和降低噪声、抗疲劳性能好,损伤后易修理,便于整体成形,故可用于制造汽车车身、受力构件、传动轴、发动机架及其内部构件。③化工、纺织和机械制造领域。有良好耐蚀性的碳纤维与树脂基体复合而成的材料,可用于制造化工设备、纺织机、造纸机、复印机、高速机床、精密仪器等。④医学领域。碳纤维复合材料具有优异的力学性能和不吸收X射线特性,可用于制造医用X光机和矫形支架等。碳纤维复合材料还具有生物组织相容性和血液相容性,生物环境下稳定性好,也用作生物医学材料。此外,复合材料还用于制造体育运动器件和用作建筑材料等。 复合材料的发展和应用 复合材料是指由两种或两种以上不同物质以不同方式组合而成的材料,它可以发挥各种材料的优点,克服单一材料的缺陷,扩大材料的应用范围。由于复合材料具有重量轻、强度高、加工成型方便、弹性优良、耐化学腐蚀和耐候性好等特点,已逐步取代木材及金属合金,广泛应用于航空航天、汽车、电子电气、建筑、健身器材等领域,在近几年更是得到了飞速发展。 随着科技的发展,树脂与玻璃纤维在技术上不断进步,生产厂家的制造能力普遍提高,使得玻纤增强复合材料的价格成本已被许多行业接受,但玻纤增强复合材料的强度尚不足以和金属匹敌。因此,碳纤维、硼纤维等增强复合材料相继问世,使高分子复合材料家族更加完备,已经成为众多产业的必备材料。目前全世界复合材料的年产量已达550多万吨,年产值达1300亿美元以上,若将欧、美的军事航空航天的高价值产品计入,其产值将更为惊人。从全球范围看,世界复合材料的生产主要集中在欧美和东亚地区。近几年欧美复合材料产需均持续增长,而亚洲的日本则因经济不景气,发展较为缓慢,但中国尤其是中国内地的市场发展迅速。据世界主要复合材料生产商PPG公司统计,2000年欧洲的复合材料全球占有率约为32%,年产量约200万吨。与此同时,美国复合材料在20世纪90年代年均增长率约为美国GDP增长率的2倍,达到4%~6%。2000年,美国复合材料的年产量达170万吨左右。特别是汽车用复合材料的迅速增加使得美国汽车在全球市场上重新崛起。亚洲近几年复合材料的发展情况与政治经济的整体变化密切相关,各国的占有率变化很大。总体而言,亚洲的复合材料仍将继续增长,2000年的总产量约为145万吨,预计2005年总产量将达180万吨。 从应用上看,复合材料在美国和欧洲主要用于航空航天、汽车等行业。2000年美国汽车零件的复合材料用量达万吨,欧洲汽车复合材料用量到2003年估计可达万吨。而在日本,复合材料主要用于住宅建设,如卫浴设备等,此类产品在2000年的用量达万吨,汽车等领域的用量仅为万吨。不过从全球范围看,汽车工业是复合材料最大的用户,今后发展潜力仍十分巨大,目前还有许多新技术正在开发中。例如,为降低发动机噪声,增加轿车的舒适性,正着力开发两层冷轧板间粘附热塑性树脂的减振钢板;为满足发动机向高速、增压、高负荷方向发展的要求,发动机活塞、连杆、轴瓦已开始应用金属基复合材料。为满足汽车轻量化要求,必将会有越来越多的新型复合材料将被应用到汽车制造业中。与此同时,随着近年来人们对环保问题的日益重视,高分子复合材料取代木材方面的应用也得到了进一步推广。例如,用植物纤维与废塑料加工而成的复合材料,在北美已被大量用作托盘和包装箱,用以替代木制产品;而可降解复合材料也成为国内外开发研究的重点。 另外,纳米技术逐渐引起人们的关注,纳米复合材料的研究开发也成为新的热点。以纳米改性塑料,可使塑料的聚集态及结晶形态发生改变,从而使之具有新的性能,在克服传统材料刚性与韧性难以相容的矛盾的同时,大大提高了材料的综合性能。 树脂基复合材料的增强材料 树脂基复合材料采用的增强材料主要有玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等。 1、玻璃纤维 目前用于高性能复合材料的玻璃纤维主要有高强度玻璃纤维、石英玻璃纤维和高硅氧玻璃纤维等。由于高强度玻璃纤维性价比较高,因此增长率也比较快,年增长率达到10%以上。高强度玻璃纤维复合材料不仅应用在军用方面,近年来民用产品也有广泛应用,如防弹头盔、防弹服、直升飞机机翼、预警机雷达罩、各种高压压力容器、民用飞机直板、体育用品、各类耐高温制品以及近期报道的性能优异的轮胎帘子线等。石英玻璃纤维及高硅氧玻璃纤维属于耐高温的玻璃纤维,是比较理想的耐热防火材料,用其增强酚醛树脂可制成各种结构的耐高温、耐烧蚀的复合材料部件,大量应用于火箭、导弹的防热材料。迄今为止,我国已经实用化的高性能树脂基复合材料用的碳纤维、芳纶纤维、高强度玻璃纤维三大增强纤维中,只有高强度玻璃纤维已达到国际先进水平,且拥有自主知识产权,形成了小规模的产业,现阶段年产可达500吨。 2、碳纤维 碳纤维具有强度高、模量高、耐高温、导电等一系列性能,首先在航空航天领域得到广泛应用,近年来在运动器具和体育用品方面也广泛采用。据预测,土木建筑、交通运输、汽车、能源等领域将会大规模采用工业级碳纤维。1997~2000年间,宇航用碳纤维的年增长率估计为31%,而工业用碳纤维的年增长率估计会达到130%。我国的碳纤维总体水平还比较低,相当于国外七十年代中、末期水平,与国外差距达20年左右。国产碳纤维的主要问题是性能不太稳定且离散系数大、无高性能碳纤维、品种单一、规格不全、连续长度不够、未经表面处理、价格偏高等。 3、芳纶纤维 20世纪80年代以来,荷兰、日本、前苏联也先后开展了芳纶纤维的研制开发工作。日本及俄罗斯的芳纶纤维已投入市场,年增长速度也达到20%左右。芳纶纤维比强度、比模量较高,因此被广泛应用于航空航天领域的高性能复合材料零部件(如火箭发动机壳体、飞机发动机舱、整流罩、方向舵等)、舰船(如航空母舰、核潜艇、游艇、救生艇等)、汽车(如轮胎帘子线、高压软管、摩擦材料、高压气瓶等)以及耐热运输带、体育运动器材等。 4、超高分子量聚乙烯纤维 超高分子量聚乙烯纤维的比强度在各种纤维中位居第一,尤其是它的抗化学试剂侵蚀性能和抗老化性能优良。它还具有优良的高频声纳透过性和耐海水腐蚀性,许多国家已用它来制造舰艇的高频声纳导流罩,大大提高了舰艇的探雷、扫雷能力。除在军事领域,在汽车制造、船舶制造、医疗器械、体育运动器材等领域超高分子量聚乙烯纤维也有广阔的应用前景。该纤维一经问世就引起了世界发达国家的极大兴趣和重视。 5、热固性树脂基复合材料 热固性树脂基复合材料是指以热固性树脂如不饱和聚酯树脂、环氧树脂、酚醛树脂、乙烯基酯树脂等为基体,以玻璃纤维、碳纤维、芳纶纤维、超高分子量聚乙烯纤维等为增强材料制成的复合材料。环氧树脂的特点是具有优良的化学稳定性、电绝缘性、耐腐蚀性、良好的粘接性能和较高的机械强度,广泛应用于化工、轻工、机械、电子、水利、交通、汽车、家电和宇航等各个领域。1993年世界环氧树脂生产能力为130万吨,1996年递增到143万吨,1997年为148万吨,1999年150万吨,2003年达到180万吨左右。我国从1975年开始研究环氧树脂,据不完全统计,目前我国环氧树脂生产企业约有170多家,总生产能力为50多万吨,设备利用率为80%左右。酚醛树脂具有耐热性、耐磨擦性、机械强度高、电绝缘性优异、低发烟性和耐酸性优异等特点,因而在复合材料产业的各个领域得到广泛的应用。1997年全球酚醛树脂的产量为300万吨,其中美国为164万吨。我国的产量为18万吨,进口4万吨。乙烯基酯树脂是20世纪60年代发展起来的一类新型热固性树脂,其特点是耐腐蚀性好,耐溶剂性好,机械强度高,延伸率大,与金属、塑料、混凝土等材料的粘结性能好,耐疲劳性能好,电性能佳,耐热老化,固化收缩率低,可常温固化也可加热固化。南京金陵帝斯曼树脂有限公司引进荷兰Atlac系列强耐腐蚀性乙烯基酯树脂,已广泛用于贮罐、容器、管道等,有的品种还能用于防水和热压成型。南京聚隆复合材料有限公司、上海新华树脂厂、南通明佳聚合物有限公司等厂家也生产乙烯基酯树脂。 1971年以前我国的热固性树脂基复合材料工业主要是军工产品,70年代后开始转向民用。从1987年起,各地大量引进国外先进技术如池窑拉丝、短切毡、表面毡生产线及各种牌号的聚酯树脂(美、德、荷、英、意、日)和环氧树脂(日、德)生产技术;在成型工艺方面,引进了缠绕管、罐生产线、拉挤工艺生产线、SMC生产线、连续制板机组、树脂传递模塑(RTM)成型机、喷射成型技术、树脂注射成型技术及渔竿生产线等,形成了从研究、设计、生产及原材料配套的完整的工业体系,截止2000年底,我国热固性树脂基复合材料生产企业达3000多家,已有51家通过ISO9000质量体系认证,产品品种3000多种,总产量达73万吨/年,居世界第二位。产品主要用于建筑、防腐、轻工、交通运输、造船等工业领域。在建筑方面,有内外墙板、透明瓦、冷却塔、空调罩、风机、玻璃钢水箱、卫生洁具、净化槽等;在石油化工方面,主要用于管道及贮罐;在交通运输方面,汽车上主要有车身、引擎盖、保险杠等配件,火车上有车厢板、门窗、座椅等,船艇方面主要有气垫船、救生艇、侦察艇、渔船等;在机械及电器领域如屋顶风机、轴流风机、电缆桥架、绝缘棒、集成电路板等产品都具有相当的规模;在航空航天及军事领域,轻型飞机、尾翼、卫星天线、火箭喷管、防弹板、防弹衣、鱼雷等都取得了重大突破。 热塑性树脂基复合材料 热塑性树脂基复合材料是20世纪80年代发展起来的,主要有长纤维增强粒料(LFP)、连续纤维增强预浸带(MITT)和玻璃纤维毡增强型热塑性复合材料(GMT)。根据使用要求不同,树脂基体主要有PP、PE、PA、PBT、PEI、PC、PES、PEEK、PI、PAI等热塑性工程塑料,纤维种类包括玻璃纤维、碳纤维、芳纶纤维和硼纤维等一切可能的纤维品种。随着热塑性树脂基复合材料技术的不断成熟以及可回收利用的优势,该品种的复合材料发展较快,欧美发达国家热塑性树脂基复合材料已经占到树脂基复合材料总量的30%以上。 高性能热塑性树脂基复合材料以注射件居多,基体以PP、PA为主。产品有管件(弯头、三通、法兰)、阀门、叶轮、轴承、电器及汽车零件、挤出成型管道、GMT模压制品(如吉普车座椅支架)、汽车踏板、座椅等。玻璃纤维增强聚丙烯在汽车中的应用包括通风和供暖系统、空气过滤器外壳、变速箱盖、座椅架、挡泥板垫片、传动皮带保护罩等。 滑石粉填充的PP具有高刚性、高强度、极好的耐热老化性能及耐寒性。滑石粉增强PP在车内装饰方面有着重要的应用,如用作通风系统零部件,仪表盘和自动刹车控制杠等,例如美国HPM公司用20%滑石粉填充PP制成的蜂窝状结构的吸音天花板和轿车的摇窗升降器卷绳筒外壳。 云母复合材料具有高刚性、高热变形温度、低收缩率、低挠曲性、尺寸稳定以及低密度、低价格等特点,利用云母/聚丙烯复合材料可制作汽车仪表盘、前灯保护圈、挡板罩、车门护栏、电机风扇、百叶窗等部件,利用该材料的阻尼性可制作音响零件,利用其屏蔽性可制作蓄电池箱等。 我国的热塑性树脂基复合材料的研究开始于20世纪80年代末期,近十年来取得了快速发展,2000年产量达到12万吨,约占树脂基复合材料总产量的17%,,所用的基体材料仍以PP、PA为主,增强材料以玻璃纤维为主,少量为碳纤维,在热塑性复合材料方面未能有重大突破,与发达国家尚有差距。 我国复合材料的发展潜力和热点 我国复合材料发展潜力很大,但须处理好以下热点问题。 1、复合材料创新 复合材料创新包括复合材料的技术发展、复合材料的工艺发展、复合材料的产品发展和复合材料的应用,具体要抓住树脂基体发展创新、增强材料发展创新、生产工艺发展创新和产品应用发展创新。到2007年,亚洲占世界复合材料总销售量的比例将从18%增加到25%,目前亚洲人均消费量仅为,而美国为,亚洲地区具有极大的增长潜力。 2、聚丙烯腈基纤维发展 我国碳纤维工业发展缓慢,从CF发展回顾、特点、国内碳纤维发展过程、中国PAN基CF市场概况、特点、“十五”科技攻关情况看,发展聚丙烯腈基纤维既有需要也有可能。 3、玻璃纤维结构调整 我国玻璃纤维70%以上用于增强基材,在国际市场上具有成本优势,但在品种规格和质量上与先进国家尚有差距,必须改进和发展纱类、机织物、无纺毡、编织物、缝编织物、复合毡,推进玻纤与玻钢两行业密切合作,促进玻璃纤维增强材料的新发展。 4、开发能源、交通用复合材料市场 一是清洁、可再生能源用复合材料,包括风力发电用复合材料、烟气脱硫装置用复合材料、输变电设备用复合材料和天然气、氢气高压容器;二是汽车、城市轨道交通用复合材料,包括汽车车身、构架和车体外覆盖件,轨道交通车体、车门、座椅、电缆槽、电缆架、格栅、电器箱等;三是民航客机用复合材料,主要为碳纤维复合材料。热塑性复合材料约占10%,主要产品为机翼部件、垂直尾翼、机头罩等。我国未来20年间需新增支线飞机661架,将形成民航客机的大产业,复合材料可建成新产业与之相配套;四是船艇用复合材料,主要为游艇和渔船,游艇作为高级娱乐耐用消费品在欧美有很大市场,由于我国鱼类资源的减少、渔船虽发展缓慢,但复合材料特有的优点仍有发展的空间。 5、纤维复合材料基础设施应用 国内外复合材料在桥梁、房屋、道路中的基础应用广泛,与传统材料相比有很多优点,特别是在桥梁上和在房屋补强、隧道工程以及大型储仓修补和加固中市场广阔。 6、复合材料综合处理与再生 重点发展物理回收(粉碎回收)、化学回收(热裂解)和能量回收,加强技术路线、综合处理技术研究,示范生产线建设,再生利用研究,大力拓展再生利用材料在石膏中的应用、在拉挤制品中的应用以及在SMC/BMC模压制品中的应用和典型产品中的应用。 21世纪的高性能树脂基复合材料技术是赋予复合材料自修复性、自分解性、自诊断性、自制功能等为一体的智能化材料。以开发高刚度、高强度、高湿热环境下使用的复合材料为重点,构筑材料、成型加工、设计、检查一体化的材料系统。组织系统上将是联盟和集团化,这将更充分的利用各方面的资源(技术资源、物质资源),紧密联系各方面的优势,以推动复合材料工业的进一步发展。

工学论文开题报告

工学是理工科内的一大分支,工学的课程带有很强的可操作性和专业性,下面就是我为您收集整理的工学论文开题报告的相关文章,希望可以帮到您,如果你觉得不错的话可以分享给更多小伙伴哦!

毕业设计题目:年产4200吨环氧氯丙烷车间氯丙烯合成工段工艺设计

指导教师 :

院 系: 科亚学院

专业班级 : 科化工0401班

学 号:

姓 名:

日 期: XX年 3月 7日

1、环氧氯丙烷的物理、化学性质

环氧氯丙烷(ec)英文名:3—chloro—1,2—epoxypropane;epichlorohydrin。 分子式:c3h5clo ,分子量:92。52 , 熔点—25。6℃,沸点117。9℃,相对密度(水=1):1。18(20℃),相对密度(空气=1): 3。29 ,饱和蒸汽压 (kpa):1。8(20℃) ,自燃点415 ℃,折射率(nd20)1。438。 微溶于水,可混溶于醇、醚、4氯化碳、苯。无色油状液体,有氯仿样刺激气味。用于制环氧树脂,也是1种含氧物质的稳定剂和化学中间体 易燃其蒸气与空气形成爆炸性混合物,遇明火、高温能引起分解爆炸和燃烧。若遇高热可发生剧烈分解,引起容器破裂或爆炸事故。

2、环氧氯丙烷的生产原料及主要产品

环氧氯丙烷是1种重要的有机化工原料和精细化工产品,用途10分广泛。以它为原料制得的环氧树脂具有粘结性强,耐化学介质腐蚀、收缩率低、化学稳定性好、抗冲击强度高以及介电性能优异等特点,在涂料、胶粘剂、增强材料、浇铸材料和电子层压制品等行业具有广泛的应用。此外,环氧氯丙烷还可用于合成甘油、玻璃钢、电绝缘品、表面活性剂、医药、农药、涂料、胶料、离子交换树脂、增塑剂、(缩)水甘油衍生物、氯醇橡胶等多种产品,用作纤维素酯、树脂、纤维素醚的溶剂,用于生产化学稳定剂、化工染料和水处理剂等。

1原料:丙烯

丙烯的化学结构式:ch2=chch2oh 。物理性质::无色透明液体,熔点:—129,沸点:97。1,闪点:28,密度(20):0。854,折光率:1。4135。。

用途::丙烯醇是医药,农药和香料的中间体。主要的衍生物及其用途为:用于合成环氧氯丙烷、甘油、1,4—丁2醇以及烯丙基酮,生产增塑剂和工程塑料等重要有机合成原料。此外,其碳酸盐可以做光学树脂、安全玻璃和显示屏,其醚可以做聚合物的增黏剂等。

2主要产品:环氧树脂

目前我国的环氧氯丙烷主要用于生产环氧树脂,其消费比例为环氧树脂占85%,合成甘油占7%,氯醇橡胶占2%,其他如溶剂、稳定剂、表面活性剂、阻燃剂、油田化学品、水处理剂等占6%

3、环氧氯丙烷工艺生产方法及选择

目前,工业上环氧氯丙烷的生产方法主要有丙烯高温氯化法和乙酸丙烯酯法两种。

丙烯高温氯化法是工业上生产环氧氯丙烷的经典方法,由美国shell公司于1948年首次开发成功并应用于工业化生产。目前,世界上90%以上的环氧氯丙烷采用此法进行生产。其工艺过程主要包括丙烯高温氯化制氯丙烯,氯丙烯与次氯酸化合成2氯丙醇,2氯丙醇皂化合成环氧氯丙烷3个反应单元。

4、 工艺流程叙述

(1)丙烯高温氯化法:

(1)丙烯高温氯化制氯丙烯

丙烯与氯气经干燥、预热后以摩尔比4~5:1混合进入高温氯化反应器,短时间(约3 s)内进行反应,生成氯丙烯和氯化氢气体。精制后得氯丙烯产品,同时副产d—d混剂(1,2—2氯丙烷和1,3—2氯丙烯),氯化氢气体经水吸收后得到工业盐酸。

ch2=chch2 + cl2 →ch2=chch2cl +hcl

(2)氯丙烯次氯酸化合成2氯丙醇

氯气在水中生成次氯酸(或采用介质叔丁醇和氯气在naoh溶液中反应生成叔丁基次氯酸盐,该盐水解生成次氯酸,叔丁醇循环使用),次氯酸与氯丙烯反应生成2氯丙醇(过程中2氯丙醇浓度1般控制在4%左右)。

2ch2=chch2cl +2hocl→ clch2chclch2oh + clch2chohch2cl

2,3—2氯丙醇,70%) (1,3—2氯丙醇,30%)

(3)2氯丙醇皂化合成环氧氯丙烷

2氯丙醇水溶液与ca(oh)2或naoh反应生成环氧氯丙烷。

(3)2氯丙醇皂化合成环氧氯丙烷

2氯丙醇水溶液与ca(oh)2或naoh反应生成环氧氯丙烷。

clch2chclch2oh + clch2chohch2cl + 1/2 ca(oh)2→

clch2chclch2oh + clch2chohch2cl + 1/2 ca(oh)2→

丙烯高温氯化法的特点是生产过程灵活,工艺成熟,操作稳定,除了生产环氧氯丙烷外,还可生产甘油、氯丙烯等重要的有机合成中间体,副产d—d混剂(1,3—2氯丙烯和1,2—2氯丙烷)也是合成农药的重要中间体。缺点是原料氯气引起的设备腐蚀严重,对丙烯纯度和反应器的材质要求高,能耗大,氯耗量高,副产物多,产品收率低。生产过程产生的含氯化钙和有机氯化物污水量大,处理费用高,清焦周期短。

(2)乙酸丙烯酯法

前苏联科学院与日本昭和电工均开发了利用乙酸丙烯酯为原料生产环氧氯丙烷的生产工艺。前苏联是采用先氯化后水解工艺,昭和电工则采用先水解后氯化工艺。其工艺过程主要包括合成乙酸丙烯酯,乙酸丙烯酯水解制烯丙醇,合成2氯丙醇以及2氯丙醇皂化生成环氧氯丙烷4个反应单元。

(1)在钯和助催化剂作用下,丙烯与氧在温度160~180 ℃、压力0。5~1。0 mpa,乙酸存在下反应生成乙酸丙烯酯。

ch2=chch2+ 1/2o2 + ch3cooh→ ch2=chch2ococh3 +h2o

(2)在温度60~80 ℃、压力0。1~1。0 mpa下,以强酸性阳离子交换树脂为催化剂,乙酸丙烯酯经水解反应生成烯丙醇。

ch2=chch2ococh3 +h2o→ ch2=chch2oh +ch3cooh

(3)在温度0~10 ℃,压力0。1~0。3 mpa条件下,烯丙醇与氯通过加成反应生成2氯丙醇。

ch2=chch2oh + cl2→ ch2clchclch2oh

(4)2氯丙醇与氢氧化钙发生皂化反应生成环氧氯丙烷。

ch2clchclch2oh+ 1/2ca(oh)2→ ch2— chch2cl + 1/2cacl2 +h2o

与传统的丙烯高温氯化法相比较,乙酸丙烯酯法具有以下优点:(1)避免了高温氯化反应,反应条件温和,易于控制,不结焦、操作稳定,丙烯、氢氧化钙和氯气的用量大大减少,反应副产物和含氯化钙废水的排放量也大大减少。(2)开发了丙烯醇的氯化加成反应系统,成功地将氧引入环氧化物中,首次实现了由氧氧化代替氯氧化的技术,减少了醚化副反应,提高了系统的收率。(3)工艺过程无副产盐酸产生。(4)可以较容易获得目前技术还不能得到的高纯度烯丙醇。主要缺点是工艺流程长,催化剂寿命短,投资费用相对较高。

5、安全环保措施

(1)燃烧爆炸危险性:

危险特性:其蒸气与空气形成爆炸性混合物,遇明火、高温能引起分解爆炸和燃烧。若遇高热可发生剧烈分解,引起容器破裂或爆炸事故。易燃性(红色):3 反应活性(黄色):2

灭火方法:泡沫、2氧化碳、干粉、砂土。消防器具(包括scba)不能提供足够有效的防护。若不小心接触,立即撤离现场,隔离器具,对人员彻底清污。高温下能发生自反应,阻塞安全阀,导致罐体爆炸。蒸气能扩散到远处,遇点火源着火,并引起回燃。封闭区域内的蒸气遇火能爆炸。如果该物质或被污染的流体进入水路,通知有潜在水体污染的下游用户。

(2)包装与储运

储存于阴凉、通风仓间内。远离火种、热源。仓温不宜超过 30℃。防止阳光直射。包装要求密封,不可与空气接触。应与氧化剂、酸类、碱类分开存放。储存间内的照明、通风等设施应采用防爆型。罐储时要有防火防爆技术措施。禁止使用易产生火花的机械设备和工具。搬运时要轻装轻卸,防止包装及容器损坏。 erg指南:131 erg指南分类:易燃液体—有毒的

(3)毒性危害

接触限值:中国mac:1mg/m3[皮] 前苏联mac:1mg/m3 美国tlv—twa:acgih 2ppm,7。6mg/m3 美国tlv—stel:未制订标准。

蒸气对呼吸道有强烈刺激性。反复和长时间吸入能引起肺、肝和肾损害。高浓度吸入致中枢神经系统抑制可致死。蒸气对眼有强烈刺激性,液体可致眼灼伤。皮肤直接接触液体可致灼伤。口服引起肝、肾损害,可致死。慢性中毒:长期少量吸入可出现神经衰弱综合征和周围神经病变。 iarc评价:2a组,可疑人类致癌物;动物证据充分 ntp:可疑人类致癌物 idlh:75ppm,潜在致癌物嗅阈:0。934ppm osha:表z—1空气污染物 niosh标准文件:niosh 76—206 健康危害(蓝色):

(4)防护措施

密闭操作,全面排风。空气中浓度超标时,戴面具式呼吸器。紧急事态抢救或撤离时,建议佩戴自给式呼吸器。戴化学安全防护眼镜。穿紧袖工作服,长筒胶鞋。戴防化学品手套。工作后,淋浴更衣。保持良好的卫生习惯。防止皮肤和粘膜的损害。

(5)泄漏处置:

疏散泄漏污染区人员至安全区,禁止无关人员进入污染区,切断火源。应急处理人员戴自给式呼吸器,穿防护服。不要直接接触泄漏物,在确保安全情况下堵漏。喷水雾可减少蒸发。用砂土或其它不燃性吸附剂混合吸收,然后收集运至废物处理场所。如大量泄漏,利用围堤收容,然后收集、转移、回收或无害处理后废弃。

6、当前生产中存在的问题及建议

(1) 积极发展环氧氯丙烷下游产品,带动环氧氯丙烷的生产与发展今后几年,世界主要国家和地区的环氧氯丙烷下游各消费领域依然会发展较快,各地区的环氧氯丙烷的生产主要是自用,估计会有少量出口。今后几年我国的汽车工业,住宅建设,电子工业等领域将有1个高速发展的阶段,随着我国西部大开发,将有大规模的基础设施投入建设,因此,今后几年,我国的环氧氯丙烷的下游产品,如:环氧树脂、合成甘油等的市场需求量将会很大,美国、西欧及日本主要

一、课题的依据和意义:

1、依据:时尚是有艺术品位的生活,时知务也,尚在品质!时尚一族的生活是艺术化的,所追求的生活随着时间的变化也会不断的提高的,但不变的是一直在追求高品质的生活。为了满足这一人群的需要,时尚产品也在不断的更新,向更高的品质发展。

概念车可以理解为未来汽车,汽车设计师利用概念车向人们展示新颖、独特、超前的构思,反映着人类对先进汽车的梦想与追求。概念车往往只是处在创意、试验阶段,也许永不投产。与大批量生产的'商品车不同,每一辆概念车都可以摆脱生产制造工艺的束缚,尽情地夸张地展示自己的独特魅力。时尚一族这个人群在未来的社会中,随着生活水平和精神追求的提高将会愈来愈庞大。为了满足这一人群的旅游出行进行交通设计是又必要性的。

概念车的最大功能就是发现与引导这些变化的方向。肯·奥库亚马说过世界在变,汽车在变,在今后的10年到20年内会变得很剧烈。交通工具也要随着这种变化不管更新、改变。未来概念车的设计可以推动我们的交通发展,解决很多我们生活中现有的一些问题,使我们未来的出行、旅游更加方便。

天马行空、随心所欲在设计中不再是不切实际,对于概念车的设计天马行空的创意和随心所欲的想象已经成为一种珍贵财富。舞动的概念、迸发的理念塑造了经典概念车的楷模。概念车体现了汽车设计师的灵感和风

格,概念车甚至不受量产车的条件限制,可任意采用未经充分验证的新工艺、新材料和新设计,充分发挥想象力和创造力。

针对时尚一族的概念车设计需要打造出时尚、艺术、高品位的产品,因为品质与美是要艺术的手法去塑造,艺术提高品位,艺术是脱俗的,出类拔萃的;时尚是高尚的,时尚离不开艺术,艺术可以创造时尚。

2、意义:时尚赋予人们不同的内涵和神韵,带给人的是一种愉悦的心情和优雅、纯粹与不凡感受,能体现不凡的生活品味,精致、展露个性。人类对时尚的追求,在精神上的或是物质上的追求都促进了人类生活。概念车是汽车中内容最丰富、最深刻、最前卫、最能代表世界汽车科技发展和设计水平的汽车。概念车是时代的最新汽车科技成果,代表着未来汽车的发展方向,因此它展示的作用和意义很大,能够给人以启发并促进相互借鉴学习。因为概念车有超前的构思,体现了独特的创意,并应用了最新科技成果,所以它的鉴赏价值极高。概念车也是艺术性最强、最具吸引力的汽车。

针对时尚一族未来型概念车的设计,将会改变未来生活的方式,改变时尚潮流的走向,引领未来生活中交通方式的发展方向。

二、国内外研究概况及发展趋势:

1、国内概况:中国概念车设计的起步较晚,1999年在上海国际车展,中国以吉祥动物麒麟为名的第一款概念车吸引了世人的目光,这是第一辆由中国人设计,在中国制造并面向中国市场的经济型汽车。稚嫩的车型,俗气的颜色,平平的参数是人不得不感慨中国汽车设计的落后。但是他最

大的意义就是唤起了中国概念车的设计。

2003年的“鲲鹏”是中国感念车的一个亮点。终于有了对外形和颜色的思考,但是不得不说造型依然很丑。虽然不足还有很多,但是“鲲鹏”对所在微型车细分领域的全新探索,演练了低成本构造,泛亚以每两年一辆概念车的速度成长,这使得中国汽车厂商在目睹这一个又一个的中国概念车之后开始醒悟,中国需要概念车的设计。

2、国外概况:国外概念车的设计尤其是欧美国家的概念车设计较为成熟,不论技术上、造型上、色彩搭配上、还是使用方式等创新都处在世界的前端。

发展趋势:

趋势一:传统车型分类被打破交叉车型成趋势。如今越来越多的车型打出了交叉车型的概念。如大众概念车ConceptA亮点:运动轿车与SUV的结合;斯柯达概念车Yeti亮点:SUV、轿车、旅行车等集于一身。趋势二:传统能源殆尽新能源汽车代替。能源问题是目前汽车技术的最大课题,其也直接影响到节能、环保等一系列技术。如雪佛兰Sequel氢燃料电池车亮点:最先进的氢燃料电池车型;福特Reflex柴电混合动力概念车亮点:利用太阳能的柴油电力混合动力。

趋势三:打破汽车结构的未来智能行走机器。设计师们不满足于这些传统汽车概念,他们需要打破常规的、面向未来的智能行走机器。如丰田全新未来概念车Fine—T亮点:智能交通下的未来车。

趋势四:个性化的突破设计。外形设计的突破性,是一款概念车的基

本要求。如雷诺Zoe概念车亮点:不对称的车门设计;福特iosis概念车亮点:奠定福特未来风格的雕塑感设计

三、研究内容及基本思路:

1、研究内容:

造型上,整车为流线型设计,考虑空气力学,要有效地减小风阻,车体设计时尚前卫,动感活力,遵循简约主义的同时又要凸显个性。整车将采用仿生学进行形态设计,将会运用一些中国传统元素穿插在设计之中。把中国风贯彻在在设计中,要体现原创性。

结构上,整车为两厢设计,发动机中置,车门为双开门上旋打开方式。车型初步定为跑车类汽车。

材料上,材料主要以环保型材料取代钢铁和塑料,可能采用碳纤维,不过更多的将会使用采用铝或者钢这样的常见材料。

色彩上,定位人群为时尚一族,因此选用较亮丽的彩色,多种配色方案。

人机上,考虑人与机器的关系,遵循人机工程学。

2、基本思路:

打造一款时尚的未来型概念跑车,形态上拥有张力,在年轻的90后上寻找灵感,根据时尚的90后们的喜好来进行设计。收集一些相关的资料,研究90后时尚人群中的习惯和遇到的问题,这些研究在设计中得以体现。结构设计会在现有的一些汽车结构基础上进行改进,尽量保持楔形车型。

四、进度安排:

1、前期阶段(—):

1)—制定工作计划,指导教师资格审定;

2)10月13日下午召开毕业设计(论文)动员大会(全院);

3)—指导老师制定毕业设计题目,学生进行选题;指导老师与学生双向选择,题目

上要求做到一人一题。下达具体任务书;

2、中期阶段(—寒假前)

1)—开题报告,毕业设计调研分析及材料整理;前期发散草图;

2)—课题研究报告,毕业设计前期方案、方案初选及深入;

3)—方案定稿,深入草图,毕业论文前三章初稿。

4)2011年12月18日学院毕业设计(论文)中期检查;

5)—寒假放假毕业设计建模、渲染、版面,寒假放假前集中检查;

环氧树脂工艺设计论文参考文献

[1]曾清华,王栋知,王淀佐.聚合物-粘土矿物纳米复合材料.化工进展,1998,17(2):13~16.

[2]王立新,张楷亮,任丽,等.聚合物/层状硅酸盐纳米复合材料的研究进展.复合材料学报,2001,18(3):5~9.

[3] Giannalis E layered silicate Mater,1996,8(1):29~35.

[4] Alexandre M,Dubois silicate nanocomposites:Preparation,properties and uses of a new class of Sci Eng,2000,Report,28(1~2):1~63.

[5]徐卫兵.聚合物/蒙脱土插层纳米复合材料的研究.中国科学技术大学,博士论文,2001.

[6]张琴.熔体插层聚丙烯纳米复合材料:形成过程、剥离机理、形态与性能.四川大学,博士论文,2002.

[7]袁昌来,董发勤.粘土/有机纳米复合粉体材料.中国非金属矿工业导刊,2003,(4):14~17.

[8]吕建坤.环氧树脂及高性能热塑性树脂与粘土插层复合的研究.浙江大学,博士论文,2001.

[9]须藤俊男,著.严寿鹤,刘万,贾克实,译.粘土矿物学.北京:地质出版社,1981.

[10] OlejnikSL,,1968,72(1):241~249.

[11] Theng B K G,Churchman G J,Whitton J S,Claridge G G of Intercalation Methods for differentiating halloysite from and Clay Minerals,1984,32(4):249~258.

[12] of Solid State13Cand29Si nuclear Magnetic Resonance spectra of Kaolinite and Clay Minerals,1985,33(3):173~180.

[13] Sugahara Y,Satokawa S,Kuroda K,Kato for the Formation of Interlayer Polyacrylonitrile in and Clay Minerals,1988,36(4):343~348.

[14] Sidheswaran P,Bhat A N,Ganguli of Salts of Fatty Acids into and Clay Minerals,1990,38(1):29~32.

[15] Sugahara Y,Satokawa S,Kuroda K,Kato of a kaolinite-polyacrylamide intercalation and Clay Minerals,1990,38(2):137~143.

[16] Tunney J J,Detellier and characterization of two distinctet hylene glycol derivatives of and Clay Minerals,1994,42(5):552~560.

[17] Tunney J J,Detellier nanocomposite (ethyleneglycol)-kaolinite ,8:927~935.

[18] Frost R L,Tran T H,Kristof spectroscopy of the lattice region of kaolinite and its Spectroscopy,1997,13:175~186.

[19] Frost R L,Kristof of halloysite:a Raman Spectroscopic and Clay Minerals,1997,45(4):551~563.

[20] Frost R L,Tran T H,Kristof structure of a intercalated ordered kaolinite-a Raman microscopy Minerals,1997,32:587~596.

[21] Komori Y,Sugahara kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of ,1998,13(4):930~934.

[22] Komori Y,Sugahara Y,Kuroda transformation of a kaolinite-poly(acrylamide)intercalation ,1999,9:3081~3085.

[23] Gardolinski J E,Zamora P P,Wypych and Characterization of akaolinite-1-methyl-2-pyrrolidone Intercalation of Colloid and Interface Science,1999,211:137~141.

[24] Itagaki T,Komori Y,Sugahara Y,Kuroda of a kaolinite-poly(β-alanine)intercalation ,2001,11:3291~3295.

[25] Komori Y,Sugahara intercalation of poly(vinylpyrrolidone)into kaolinite by arefined guest displacement ,1999,11:3~6.

[26] Komori Y,Sugahara Y,Kuroda of alkylamines and water into kaolinite with methanol kaolinite as an Clay Science,1999,15:241~252.

[27] Takenawa R,Komori Y,Hayashi S,Kawamata J,Kuroda of nitroanilines into kaolinite and second harmonic ,2001,13:3741~3746.

[28] Matsumura A,Komori Y,Itagaki T,Sugahara Y,Kuroda of a kaolinite-nylon 6 intercalation ,2001,74:1153~1158.

[29] Szilvia Papp,Anna Szucs,Imre synthesis of monodisperse Pd nanoparticles in layered State Ionics,2001,141~142:169~176.

[30] Patakfalvi R,Oszko A,Dekany and characterization of silver nanoparticle/kaolinite and Surfaces A:,2003,220:45~54.

[31]卢寿慈.粉体加工技术.北京:中国轻工业出版社,1999.

[32]杨雅秀,张乃娴,苏昭冰,等.中国粘土矿物.北京:地质出版社,1994.

[33] Hayashi Study of Dynamics and Evolution of Guest Molecules in Kaolinite/Dimethyl and Clay Minerals,1997,45(5):724~732.

[34] Hayashi Study of Dynamics of dimethyl Sulfoxide Molecules in Kaolinite/Dimethyl Sulfoxide Intercalation ,1995,99:7120~7129.

[35] Hayashi S,Ueda T,Hayamizu K,et study of kaolinite.Ⅰ.29Si,27Al, Phys Chem,1992,96:10992~10928.

[36] Xie X L,Hayashi study of kaolinite in tercalation compound with formamide and its derivatives.Ⅰ.Structure and orientation of guest Phys Chem B,1999,103:5949~5955.

[37] Tunney J J,Detellier nanocomposite (ethyleneglycol)~kaolinite ,1998,8:927~935.

[38] Komori Y,Sugahara kaolinite-NMF-methanol intercalation compound as a versatile intermediate for further intercalation reaction of ,1998,13(4):930~934.

[39] Komori Y,Sugahara Y,Kuroda transformation of a kaolinite-poly(acrylamide)intercalation ,1999,9:3081~3085.

[40] Kelleher B P,Sutton D,O'Dwyer T Effect of Kaolinite Intercalation on the Structural Arrangements of NMethylformamide and of Colloid and Interface Science,2002,255:219~224.

[41]Frost R L,Kristof J,Horrath E,et Interface Sci,1999,412:380.

[42]王林江,吴大清,袁鹏,等.高岭石/甲酰胺插层的1H魔角旋转核磁共振谱.科学通报,2001,46(22):1910~1913.

[43] Tunney J J,Detellier modified of methoxy groups on the interlamellar aluminol surface of ,1996,6(10):1679~1685.

[44]赵顺平,夏华,张生辉.高岭石/有机插层复合材料的研究进展.材料科学与工程学报,2003,21(4):620~624.

[45]古映莹,廖仁春,吴幼纯,等.高岭石-MBT复合材料的制备及其对Pb2+的吸附性能.贵州化工,2001,26(3):23~25.

[46] FrostRL,VanDerGaastSJ,Zbik M,Kloro eJT,Paroz G kaolinite:a hihly ordered kaolinite that is difficult to intercalate-an XRD,SEM and Raman spectroscopic Clay Science,2002,20:177~187.

[47]王林江,吴大清.高岭石有机插层反应的影响因素.化工矿物与加工,2001,(5):29~32.

[48]李伟东,黄建国,许承晃.高岭土-二甲亚砜夹层复合物的形成机理.华侨大学学报(自然科学版),1994,15(1):48~52.

[49]李学强,夏华.高岭土-乙酸钾夹层复合物制备.非金属矿,2002,25(4):22~23.

[50] Tunney J J,Detellier and Characterization of two Distinct Ethylene Glycol Derivatives of and Clay Minerals,1994,42(5),552~560.

[51] Sato of Kaolinite-Amino acid intrecalates derived from hydrated and Clay Minerals,1999,47(6):793~802.

[52] Itagati A,Matsumura A,Kato M,et of material of science letters,2001,20:1483~1484.

[53]沈忠悦,袁明永,叶瑛,杨帅杰.高岭石的夹层化合物及其剥片作用.非金属矿,2000,23(6):12~13.

[54]刘岚,罗远芳,贾德民.聚合物/高岭石嵌入纳米复合材料研究进展.合成橡胶工业,2002,25(3):190~193.

[55] Lawrence G,Ginanelis polymer electrolyte nanocomposites:Melt intercalation of poly(ethyleneoxide)in micatype Mater,1995,7(2):154~156.

[56] LiuYJ,Schindler J L,DeGroot D C,et ,structure,and reactions of poly(ethyleneoxide)/V2O5intercalative Mater,1996,8(2):525~534.

[57] Murray H and new applications for kaolin,smectite,and palygorskite:A general Clay Sci,2000,17(5~6):207~221.

[58] Balbir Singh,Woodlands,Ian Donald Richard Mackinnon,Ellengrove,Both of Patent 6022821,2000.

[59] John Gerard Thompson,Page;Ian Donald Richard Mackinnon,Ellengrove;Sasha Koun,Cook;Neil Gabbitas,Kambah,all of Patent 5858081,1999.

关于参考文献的正确格式

关于参考文献的正确格式,参考文献指的是在文章或者著作中参考到的文献,有一定的格式要求,而参考文献更加是学术论文的重要组成部分,下面分享关于参考文献的正确格式相关内容,一起来看看吧。

参考文献是根据GB/TB7714-2005《文后参考文献著录规则》,适用于“著者和编辑编录的'文后参考文献,而不能作为图书馆员、文献目录编辑者以及索引编辑者使用的文献编著录规则”。参考文献的书写样式不可随意更改,要按照标准仔细地进行排版。

参考文献的编写顺序是按照论文中引用文献的顺序进行编排,采用中括号的数字连续编号,

依次书写作者、文献名、杂志或书名、卷号或期刊号、出版时间。

参考文献的书写首先要明确的一点是,参考文献的全角和半角问题。其实很简单,英文标点+半角;中文标点+全角。可以自己试一下全角和半角的差别在哪,其实就是字符问题,全角字符占两个字节,半角是占一个。另外我们要了解一下关于参考文献都有哪些类型。一共是分为16种类型,如下图所示。

其中对于专著、论文集中的析出文献,其文献类型标识建议采用单字母“A”;对于其他未说明的文献类型,建议采用单字母“Z”。

我们可以具体的学习一下参考文献格式

[序号] 期刊作者。题名[J]。刊名。出版年,卷(期): 起止页码。

[序号] 专著作者。书名[M]。版次(第一版可略)。出版地:出版社,出版年∶起止页码。

[序号] 论文集作者。题名〔C〕。编者。论文集名。出版地∶出版社,出版年∶起止页码。

[序号] 学位论文作者。题名〔D〕。保存地点:保存单位,年份。

[序号] 专利所有者。专利文献题名〔P〕。国别:专利号。发布日期。

[序号] 标准编号,标准名称〔S〕。出版地:出版者,出版年。

[序号] 报纸作者。题名〔N〕。报纸名,出版日期(版次)。

[序号] 报告作者。题名〔R〕。报告地:报告会主办单位,年份。

[序号] 电子文献作者。题名〔电子文献及载体类型标识〕。文献出处,日期。

参考文献以正文中引用的先后次序排列。

以下分别是著作、学位论文和期刊的例子:

[1] 王兴业,唐羽章。复合材料力学性能[M]。长沙:国防科技大学出版社,1988:366–382。

[2] 李玉彬。环氧树脂电子束固化机制与应用基础研究[D]。北京:北京航空航天大学,2005。

[3] 武德珍,宋勇志,金日光。PVC/弹性体/纳米CaCO3 复合体系的加工和组成对力学性能的影响[J]。复合材料学报,2004,21(1):119–124。

环氧树脂地坪漆往往被用在仓库或者工厂地面施工过程中,产品因为采用的是新型的材料,通过特殊的工艺设计而成,所以不仅仅具有耐腐蚀和耐磨的优势,经过长期的使用,也可以承受一定的重压而不会有丝毫的破损,除此之外,合格的环氧树脂地坪漆还需要配合专业的操作工具进行安装和维护处理,有兴趣的朋友参考下文学习相关方面施工要求和施工工艺吧。

一、环氧树脂地坪漆施工要求

1、要求水泥素地基面牢固、结实、不起壳,好是水泥与混凝土底一起浇注,以杜绝砂浆层起壳现象,混凝土基础干燥28天。

2、一楼地面需做防水处理。

3、要求水泥基面表层不起砂、硬度好、没有水泥粉化现象。

4、表面平坦,无凹凸不平、蜂窝麻面、水泥疙瘩等现象。

5、地坪表面的PH值应在—之间。

二、环氧树脂地坪漆施工工艺

环氧地坪表面的处理:

1、新竣工的工业地坪必须经过一定的养护后方可施工。

2、清除表面的水泥浮浆、旧漆以及粘附的垃圾杂物。

3、彻底清除表面的油污,用克油王清洗剂处理。

4、清除积水,并使潮处彻底干燥。

5、表面的清洁需用无尘清扫机及大型吸尘器来完成。

6、平整的表面允许空隙为2~,含水量在6%以下,PH值6~80。

7、地坪表面的打毛,需用无尘打磨机来完成,并用吸尘器彻底清洁。

8、对地坪表面的洞孔和明显凹陷处应用腻子来填补批刮,实干后,打磨吸尘。

涂饰封闭涂料:

在处理清洁、平整的砼表面,采用高压无气喷涂或辊涂,环氧封闭底涂料。在涂饰封闭涂料施工前应进行地面含水率的测定,如果含水于5%,则应进行断水处理或地面应再保养,达到含水率要求后再施工。底漆施工时将材料按比例充分搅拌均匀,用滚涂或用刮片刮涂于素地,要均匀有光泽,不均匀处理进行第二次补涂。一般24小时后可做中涂。局部漏涂可用刷子补涂,表面多余的底漆必须在下道工序施工前打磨处理好。

批刮批刮料:

1、在实干(25℃,约4小时)以后的底漆表面采用两道批刮腻子的方法,以确保地坪的耐磨损、 耐压性、碰撞、水、矿物油、酸碱溶液等性能,并调整地面平整度。

2、用100~200目的石英砂和环氧批刮料,作为第1道腻子,要充分搅拌均匀、刮平。

3、用砂袋式无尘滚动磨砂机打磨第1道腻子,并吸尘清洁。

4、用200—270目的石英砂和环氧批刮料,作为第1道腻子,要充分搅拌均匀、刮平。

5、用砂袋式无尘滚动磨砂机打磨第2道腻子,并吸尘清洁。

6、两道腻子实干以后,如有麻面、裂缝处应先进行修补,然后用平板砂光机进行打磨,使其平整,并吸尘清洁。

7、石英砂使用目数由现场工程师根据地面具体情况确定。

环氧树脂地坪漆的施工工艺对环氧树脂地坪漆的使用效果起着重要作用,所以在使用环氧树脂地坪漆时,一定要严格按照环氧树脂地坪漆的施工工艺来完成,这样才能充分发挥环氧树脂地坪漆的效能。

合格的环氧树脂地坪漆比其它的地面材料更加经济实惠,不仅耐磨耐腐蚀,而且耐油污耐重压,所以往往被用在一些有大型加工设备的仓库或者工厂中,并且我们还可以发现这类环氧树脂地坪漆提供的产品也是比较多的,除了前期选择有保障的一款以外,必要的时候还应该参考类似上文的施工要求和施工工艺,从技术角度入手进行安装来保障必要的维护处理。

参考文献标注的正确格式如下:1、参考文献格式为:[序号]+著作作者+篇名或书名等+参考文献的类型+著作的“出版年”或期刊的“年,卷(期)”等+“:页码(或页码范围)”。2、引用别人的毕业论文的标注格式为(毕业论文类型为学位论文[D]):[序号]主要责任者.文献题名[D].出版地:出版单位.出版年:起止页码(可选)。3、举例如:[11]张筑生.微分半动力系统的不变集[D].北京:北京大学数学系数学研究所,1983:1-7。

水性环氧树脂涂料研究进展论文

如何提高水性环氧树脂涂料的耐水性?一般在兼顾乳液稳定的前提下,控制亲水基团的含量尽可能低,或提高聚酯本身的耐水性,以长链二元酸及二元醇为原料(如己二酸等),有支链的二元醇或新戊二醇为原料也可提高聚酯的耐水性,聚醚的耐水解性好,有时也可以与聚酯并用.另外,向聚氨酯分子链中引入表面能低的硅氧烷链段或功能性氟单体,以增强水性聚氨酯的疏水性.内交联的缺点是产生高粘度的预聚体,导致乳化困难,有可能得不到粒径细微的稳定乳液.因此,必须控制支化和交联度,找到合适配比,否则在乳化预聚体时可能产生凝胶.外交联所得乳液性能好,并且可根据不同交联剂品种及用量,调节胶膜的性能,缺点是操作不方便.热处理可使可交联型聚氨酯基团之间发生化学反应,形成交联结构,从而提高耐水性、耐热性.有的水性聚氨酯含可反应的官能团,如在聚氨酯分子结构中通过含环氧基多元醇组分引入环氧基团,经热处理形成交联的胶膜.最好是成膜得时候想办法把COOH给反应掉。-----------------------------水性树脂中异丙醇的作用?在剪切水性树脂时,加入异丙醇是起何作用的?是作为水溶性的有机溶剂来提高分散稳定性的?没错,作为水溶性的有机溶剂来提高分散稳定性的,但是不只作为水溶剂,异丙醇水溶性不如乙醇,但作为有机溶剂分散能力远高于乙醇,又不会像丙酮或环己烷那样过强的溶解性.所以异丙醇是很好的选择,而且相对比较环保.-------------------------------论文:《高性能水性聚酯树脂的合成及性能研究》2016年6月28日 - DMPA的含量直接影响水性聚酯树脂的水解稳定 式(3)性、外观、耐水...优越的低温性能,而且聚醚中不存在相对易水解的酯基,因此在水性体系...

我有详细 资料 怎么联系 人生试题一共有四道题目:学业、事业、婚姻、家庭。平均分高才能及格,切莫花太多的时间和精力在任一题目上。

根据制备方法的不同,水性环氧树脂的制备方法主要有机械法、相反转法、固化剂乳化法和化学改性法。1. 机械法也称直接乳化法,通常是将环氧树脂用球磨机、胶体磨、均质器等磨碎,然后加入乳化剂水溶液,再通过超声振荡、高速搅拌将粒子分散于水中,或将环氧树脂与乳化剂混合,加热到一定温度,在激烈搅拌下逐渐加入水而形成环氧树脂乳液。机械法制备水性环氧树脂乳液的优点是工艺简单、成本低廉、所需乳化剂的用量较少。但是,此方法制备的乳液中环氧树脂分散相微粒的尺寸较大,约10μm左右,粒子形状不规则,粒度分布较宽,所配得的乳液稳定性一般较差,并且乳液的成膜性能也不太好,而且由于非离子表面活性剂的存在,会影响涂膜的外观和一些性能。2. 相反转法即通过改变水相的体积,将聚合物从油包水(w/o)状态转变成水包油(O/W)状态,是一种制备高分子树脂乳液较为有效的方法,几乎可将所有的高分子树脂借助于外加乳化剂的作用通过物理乳化的方法制得相应的乳液。相反转原指多组分体系中的连续相在一定条件下相互转化的过程,如在油/水/乳化剂体系中,当连续相从油相向水相(或从水相向油相)转变时,在连续相转变区,体系的界面张力最小,因而此时的分散相的尺寸最小。通过相反转法将高分子树脂乳化为乳液,制得的乳液粒径比机械法小,稳定性也比机械法好,其分散相的平均粒径一般为l~2μm。3. 固化剂乳化法是不外加乳化剂,而是利用具有乳化效果的固化剂来乳化环氧树脂。这种具有乳化性质的固化剂一般是改性的环氧树脂固化剂,它既具有固化,又具有乳化低相对分子质量液体环氧树脂的功能。乳化型固化剂一般是环氧树脂-多元胺加成物。在普通多元胺固化剂中引入环氧树脂分子链段,并采用成盐的方法来改善其亲水亲油平衡值,使其成为具有与低相对分子质量液体环氧树脂相似链段的水可分散性固化剂。由于固化剂乳化法中使用的乳化剂同时又是环氧树脂的固化剂,因此固化所得漆膜的性能比需外加乳化剂的机械法和相反转化法要好。4. 化学改性法又称自乳化法,是水性环氧树脂的主要制备方法。化学改性法是通过打开环氧树脂分子中的部分环氧键,引入极性基团,或者通过自由基引发接枝反应,将极性基团引入环氧树脂分子骨架中,这些亲水性基团或者具有表面活性作用的链段能帮助环氧树脂在水中分散。由于化学改性法是将亲水性的基团通过共价键直接引入到环氧树脂的分子中,因此制得的乳液稳定,粒子尺寸小,多为纳米级。化学改性法引入的亲水性基团可是以阴离子、阳离子或非离子的亲水链段。非离子型水性环氧树脂:非离子型水性环氧树脂可分为乳化剂乳化的非离子型水性环氧树脂体系、自乳化非离子型水性环氧树脂体系和非离子型水性环氧固化剂体系。用化学改性法制备的非离子型自乳化水性环氧树脂乳液由于只含亲水性聚氧乙烯链段,不含阴/阳离子基团,因此乳液对pH的变化适应性强,同时涂膜的柔韧性及耐水性也有较大的提升。故改性非离子型水性环氧树脂体系的开发将成为水性环氧涂料领域新的研究热点。

环氧树脂低温脆裂特性研究论文

导电胶是一种固化或干燥后具有一定导电性的胶粘剂。它可以将多种导电材料连接生产成导电胶工艺。低温下开裂的解决方法换清洁的针头;换质量好的胶;胶牌号不应搞错。另外胶不均匀。胶量过多也会造成低温开裂。

一、前言环氧树脂胶粘剂是胶粘剂中重要的品种之一,环{TodayHot}氧树脂对各种金属材料、非金属材料(铝、钢、铁、铜、木材、玻璃、混凝土)、热固性材料(酚醛塑料、氨基塑料、不饱和聚醋)等都有优良的粘接性能,因此有万能胶之称[1].由于环氧树脂胶粘剂的众多优越性能,所以在土木建筑中用于结构方面尤其受到青睐,近十几年来发展十分迅速,胶种也向着环保、能够在特速条件(潮湿、低温、水下)下固化、室温固化、高强度的方向发展,应用范围也越来越广泛[2-4].但是,我们在生产与使用环氧树脂结构胶的过程中也发现一个问题.目前,我国大量使用的结构胶固化时间均需要较长时间,一般为4-7天,而有些工程需要胶粘剂较快固化(如室温下24小氏固化)、强度要求并不高,我们的大部分胶粘剂就无法满足此类要求.虽然市面上有些产品能够满万这些要求,但是这些产品产量小、价格高,不适合在土木建筑方面大规模应用.所以我们考虑研制一种能够满足这类要求的产品.二、实验部分1、原材料实验中使用的原材料主要有E-51环氧树脂、活性环氧稀释剂、增韧剂、偶联剂、改性脂肪胺固化剂A、改性脂环胺固化剂B以及气相触变剂二氧化硅,填料.2、试样制备以1Cr18Ni9Ti不锈钢为被粘基材,经砂纸打磨,丙酮清洗擦洗后,涂胶并进行粘接.室温固化24小时后测试其钢一钢拉伸剪切强度.3、性能测试{HotTag}按GB/T 7124试验.试验结果取五个试件的算术平均值.三、结果与讨论1、快速固化环氧胶粘剂组份的选择考虑到胶粘剂的环保要求,我们在选用稀释剂(组份A)与增韧剂(组份B)的时候均采用了活性组份,活性稀释剂与活性增韧剂能够参与到环氧树脂的固化反应中去,挥发性小,符合现在环保的要求.偶联剂(组份C)选用硅烷偶联剂.因为要求胶粘剂能够快速固化,毒性低,材料成本又不能太高,所以我们挑选了两种性能较好的改性脂肪胺A(组份D)与改性脂环胺B(组份E).填料选用滑石粉,根据使用要求适当添加.在现场使用时可能需要胶粘剂有一定的触变性,所以在胶粘剂中添加适量的气相二氧化硅做为触变剂.2、正交实验设计方案与结果为了确定各组份的配比,决定选用正交实验方法进行实验.通过两组正交实验,分别考察两种固化剂制的性能,同时确定其它组份含量.(1)改性脂肪胺固化剂A实验取E-51环氧树脂100份为基础,其它各组份均与此相配比.考察稀释剂A (3, 6, 9)、增韧剂B(4, 8,12) ,偶联剂C ()、固化剂A(20,30,40)4个因素,选用L9(43)正交表.参照GB 7124-1986 胶粘剂拉伸剪切强度测定方法(金属对金属) 1.适用范围 规定了在室温下金属对金属搭接的胶粘剂拉伸剪切强度测定方法.本标准适用于规定 条件下制备、测试的标准试样. GB 7124-1986等效采用ISO 4587-1979《胶粘剂—高强度胶粘剂拉伸搭接剪切 强度的测定》. 2.原理 试样为单搭接结构.在试样的搭接面上施加纵向拉伸剪切力,测定试样能承受的最大 负荷.搭接面上的平均剪应力为胶粘剂的金属搭接的拉伸剪切强度. 3.装置 试验机 使用的试验机应使试样的破坏负荷在满标负荷的15%-85%之间.试验机的力值示 值误差不应大于1%. 试验机应配备一副自动调心的试样夹持器,使力线与试样中心线保持一致. 试验机应保证试样夹持器的移动速度在(5士1) mm/min内保持稳定. 量具 测量试样搭接面长度和宽度的量具精度不低于0. 05mm. 夹具 胶接试样的夹具应能保证胶接的试样符合条文4的要求. (注:在保证金属片不破坏的情况下,试样与试样夹持器也可用销、孔连接的方法.但不能用于仲裁试验.) 4.试样 除非另有规定,试样应符合图1的形状和尺寸.标准试样的搭接长度是(士 0. 5)mm,金属片的厚度是(士)mm [ISO厚度为(士)mm].试样的搭接 长度或金属片的厚度不同对试验结果会有影响. 4. 2建议使用LY12-CZ铝合金、1Cr18Ni9Ti不锈钢、45碳钢、T2铜等金属材料. 4.3常规试验,试样数量不应少于五个.仲裁试验试样数量不应少于十个. 注:1.对于高强度胶枯剂,侧试时如出现金属材料屈服或破坏的情况,则可适当增加金属片厚度或减少搭接长度,两者中选择前者较好. 2.测试时金属片所受的应力不要超过其屈服强度σs,金属片的厚度t可按下式计算: t= lgτ/σs 式中: t 一金属片厚度,mm; l 一试样搭接长度,mm; τ 一胶粘剂拉伸剪切强度,Mpa; σs —金属材料屈服强度,MPa . 5.试样制备 5.1试样可用不带槽(如图2)或带槽的(如图3)的平板制备,也可单片制备. 胶接用的金属片表面应平整,不应有弯曲、翘曲、歪斜等变形.金属片应无毛刺, 边缘保持直角. 胶接时,金属片的表面处理、胶粘剂的配比、涂胶量、涂胶次数、晾置时间等胶接 工艺以及胶粘剂的固化温度、压力、时间等均按胶粘剂的使用要求进行. 制备试样都应使用夹具,以保证试样正确地搭接和精确地定位. 切割已胶接的平板时,要防止试样过热,应尽量避免损伤胶接缝. 6.试验条件 除非另有规定,试样的停放时间和试验环境应符合下列要求. 试样制备后到试验的最短时间为16h,最长时间为一个月. 试验应在温度为(2312)℃的环境中进行.仲裁试验或对温度、湿度敏感的胶粘剂 应在温度为(23士2)℃、相对湿度为45%^-55%的环境中进行. 对仅有温度要求的测试,测试前试样在试验温度下停放时间不应少于半小时;对有 温度、湿度要求的测试,测试前试样在试验环境下的停放时间一般不应少于16h. 7.试验步骤 7.1用量具测量试样搭接面的长度和宽度,精确到0. 05mm. 7. 2把试样对称地夹在上、下夹持器中,夹持处至搭接端的距离(50士1)mm.. 7. 3开动试验机,在(5士1) mm/min内,以稳定速度加载.记录试样剪切破坏的最大负 荷.记录胶接破坏的类型(内聚破坏、粘附破坏、金属破坏). 8.试验结果 8.1对金属搭接的胶粘剂拉伸剪切强度按下式计算: τ=P/(B×L) 式中:τ 一胶粘剂拉伸剪切强度,MPa; p —试样剪切破坏的最大负荷,N; B —试样搭接面宽度,mm; L —试样搭接面长度,mm. 试验结果以剪切强度的算术平均值、最高值、最低值表示.取三位有效数字. 9.试验报告 试验报告应包括下列内容: a.胶粘剂的型号和批号; b.金属材料的型号、厚度及表面处理方法; c.试样制备方法(不带槽平板、带槽平板、单片)和胶接工艺的必要说明; d.试样搭接长度; e.试样数量; f.试验结果(算术平均值、最高值、最低值); g.试样的破坏类型和数量; h.胶层的平均厚度; i.与本标准不同之处.,

怕冻的 冬天时千万要注意。

环氧树脂灌封胶具有许多优点,如优良的力学性能、电绝缘 性、耐热性、耐腐蚀性以及与各种材料良好的粘接性能等,因而被广泛地应用在干式变压器、互感器、电抗器等电器设备的整体 灌注密封上。然而,随着电器领域的发展,电器使用环境越来越苛刻,环氧树脂灌封料逐渐暴露出其缺陷,即固化物易开裂, 特别是在低温环境下更易开裂。环氧树脂灌封料的低温开裂问题,严重影响了电器产品的质量和在使用中的安全稳定性,一直是环氧树脂灌封工作中迫切需要解决的问题。因此提高环氧树脂灌封胶抗开裂性能的研究十分重要。环氧灌封胶开裂原因分析:环氧树脂灌封料产生低温开裂的原因是多方面的,如配方设计、产品结构设计和灌封工艺等。同时,低温开裂现象的产生往往是上述多种因素共同作用的结果。其中环氧树脂灌封胶料由于配方设计、产品结构设计、灌封工艺等方面的因素,在固化过程中会产生较大的内应力,在内应力作用下,灌封胶料内不同程度的缺陷和细微的裂纹扩展造成开裂。所以,内应力的存在是导致灌封料开裂的根本原因。1、从组分上看,环氧灌封胶一般是A/B双组份,A组分由经过加工或改性后的环氧树脂与颜填料、助剂组成,环氧树脂本身的耐温极限在120℃,高温使得环氧树脂分子老化断键;B组分一般采用胺类和酸酐类环氧固化剂,属于加成缩合性固化剂,容易产生气泡,酸酐类与胺类相比,固化温度较高,固化时间长,收缩率小,耐温性好,但耐溶剂、耐碱性较差,固化后均形成热固性产品,硬度高,在外界冷热交变环境下容易出现细小裂纹,失去密封性。 2、从结构上看,环氧树脂中的环氧基与固化剂活性基团反应,环氧值高的固化后交联度高,强度大,但较脆,高温下易开裂;环氧值中等的在冷热温度下性能良好;环氧值低的交联度低,强度较差。 3、在配方设计中,颜填料的密度、粒径、形状等对性能影响很大,颜填料的分散状态也对性能有较大影响,各组分间的配比、用量需要经过反复优化,配方设计不当,不能提高灌封胶的综合性能。 4、从工艺上看,由于环氧类灌封胶多属于加成缩合型固化,固化中产生副产物,如甲醇、氨气等气体,工艺操作不当内部及表面会聚集大量气孔,气孔会大大降低环氧灌封胶的强度,在冷热温度下会产生大量裂纹。 1、通过对环氧树脂改性,控制环氧树脂的环氧值,选择合适的固化剂,来控制反应的速度、交联度、脂和填料密度、各组分间的配比和用量,提高灌封胶的耐温性、耐辐照、附着力、气密性,降低灌封胶的密度。 2、在工艺上也要不断摸索,为了避免产生气孔,浇筑时要沿着器壁缓慢浇筑,有条件的可以先抽真空排起泡再浇筑成型;浇筑时可以先灌封大部分,待固化后再灌封剩余小部分,可以避免缩孔;可以使用不同种类的灌封胶搭配,比如与组件或线圈接触的采用环氧灌封胶,其余部位使用有机硅灌封胶,控制两个种类的用量关系。合理设计环氧树脂灌封产品的结构,能有效降低灌封料中的内应力。因此,在环氧树脂灌封中嵌件和灌封模具的设计应遵循下列原则:3、灌封模具的尺寸形状要有利于灌封料 自由收缩,有利于分散应力。嵌件和灌封模具应避免出现尖角、锐棱或角度急剧变化的部位,尽量采用圆形。因为圆形四周 所产生应力均匀一致,而在棱角处最容易因应力集中造成环氧树脂开裂。嵌件个数应尽量少,避免应力集中的个数。必要时应采用柔性过渡的方法,即设计弹性缓冲层,以缓解内应 力对灌封体的冲击。这样,可大大减少环氧树脂灌封件中的内应力,从而提高其 抗低温开裂性能。东莞华创/华创材料-始于1999年,专业的胶粘剂研发生产企业!专注于环氧树脂胶,电子灌封胶,结构胶,环氧AB胶,单组份环氧胶,UV胶,无影胶,光固化胶水,弹性环氧胶,柔性环氧,邦定胶,密封胶,水晶胶,导电胶,导磁胶,导热胶,耐高温胶,磁芯胶,变压器胶,电感胶水,快干胶,电子胶等之研发生产

相关百科
热门百科
首页
发表服务