期刊投稿百科

激光的产生及其应用论文选题背景初中

发布时间:2024-07-08 09:05:12

激光的产生及其应用论文选题背景初中

激光产生的过程如下:1、介质分子在外来能量的激发下跃迁到可以产生受激辐射的能级。2、一些在高能级的介质分子随机跃迁到低能级,并发射出一个光子。3、由于该能级可以产生受激辐射,所以在该光子击中另一个处于该能级的介质分子时,该介质分子产生受激辐射现象。即受入射光子的激发而从该能级跃迁至低能级,同时发射出一个和入射光子一模一样的光子。4、以上过程在谐振腔内进行,谐振腔两端是两块平行放置的反射镜,反射镜间距是受激辐射波长的整数倍。以使得只有完全垂直于两块反射镜的辐射被选择留下。5、被选择方向上的辐射不断增殖形成相干性非常好的激光光束。跃迁到低能级的介质分子在外来能量的激发下重新回到高能级,保证持续提供可激发的介质分子。6、谐振腔的一端放置的反射镜有一定的透射率,通过此端反射镜透射出来的光束就是我们可以使用的激光束。以上是激光发生原理的简述,请参考。至于应用,由于激光是方向性和相干性非常好的光,所以有很多适合激光的应用。如激光切割、激光美容、激光存储等等。

你身边的物理学——第010期

爱因斯坦在1930年代描述了原子的受激辐射。在此之后人们很长时间都在猜测,这个现象可否被用来加强光场,因为前提是介质必须存在着群数反转(或译居量反转)population inversion的状态。在一个二级系统中,这是不可能的。人们首先想到用三级系统,而且计算证实了辐射的稳定性。1958年,美国科学家肖洛Schawlow和汤斯Townes发现了一种神奇的现象:当他们将氖光灯泡所发射的光照在一种稀土晶体上时,晶体的分子会发出鲜艳的、始终会聚在一起的强光。根据这一现象,他们提出了"激光原理",即物质在受到与其分子固有振荡频率相同的能量激励时,都会产生这种不发散的强光--激光。他们为此发表了重要论文。(1964 Nobel Price of Physics)肖洛和汤斯的研究成果发表之后,各国科学家纷纷提出各种实验方案,但都未获成功。1960年5月16日,美国加利福尼亚州休斯实验室的科学家梅曼宣布获得了波长为6943微米的激光,这是人类有史以来获得的第一束激光,梅曼因而也成为世界上第一个将激光引入实用领域的科学家。1960年7月7日,梅曼宣布世界上第一台激光器由诞生,梅曼的方案是,利用一个高强闪光灯管,来刺激红宝石。由于红宝石其实在物理上只是一种掺有铬原子的刚玉,所以当红宝石受到刺激时,就会发出一种红光。在一块表面镀上反光镜的红宝石的表面钻一个孔,使红光可以从这个孔溢出,从而产生一条相当集中的纤细红色光柱,当它射向某一点时,可使其达到比太阳表面还高的温度。前苏联科学家尼古拉·巴索夫于1960年发明了半导体激光器。半导体激光器的结构通常由p层、n层和形成双异质结的有源层构成。其特点是:尺寸小,p合效率高,响应速度快,波长和尺寸与光纤尺寸适配,可直接调制,相干性好。在1980年代后期,半导体技术使得更高效而耐用的半导体激光二极管成为可能,这些在小功率的CD和DVD光驱和光纤数据线中得到使用。在1990年代,高功率的激光激发原理得到实现,比如片状激光和纤维激光。后者由于新的加工技术和20kW的高功率不断地被应用到材料加工领域中,从而部分的替代了CO2激光和Nd:YAG-激光。2000年代,激光的非线性得到利用,来制造X射线脉冲(来跟踪原子内部的过程);另一方面,蓝光和紫外线激光二极管已经开始进入市场。在2009年,中国研制出一种名为氟代硼铍酸钾(KBBF)的晶体,可用于激发深紫外线激光,一旦成功应用,可令每片光盘的容量超过1TB,亦使半导体上可存储的电路密度大幅提高[1]。现在,激光器已成为工业,通讯,科学及电子娱乐中的重要设备。

激光产生的基本原理:激光—“受激辐射放大”是通过强光照射激光发生介质,使介质内部原子的电子获得能量,受激而使电子运动轨道发生迁移,由低能态变为高能态。处于激发态的原子,受外界辐射感应,使处于激发态的原子跃迁到低能态,同时发出一束光,这束光在频率、相位、传播方向、偏振等方面和入射光完全一致,此时的光为受激辐射光,即激光。激光加工原理:利用激光束与物质相互作用的特性对材料进行减材、增材、等材加工的一门技术,将聚焦后的激光束照射在工件材料表面,光能瞬间转化为热能,局部区域吸收大量能量后,根据不同的激光工艺参数,材料发生气化、熔化、金相组织变化以及冲击热应力,从而达到工件材料的去除、连接、改性或分离等。激光清洗:利用高频高能量激光脉冲照射工件表面,涂覆层瞬间吸收聚焦的激光能量,使表面的污物、锈斑或涂层发生瞬间蒸发或剥离,高速有效地清除清洁对象表面附着物或表面涂层,从而达到洁净的工艺过程。激光切割:利用经聚焦的高功率密度激光束照射工件,使被照射的材料迅速熔化、汽化、烧蚀或达到燃点,同时借助与光束同轴的高速气流吹除熔融物质,从而实现将工件分割。激光焊接:激光焊接是利用激光束优异的方向性和高功率密度等特点,将激光束聚焦在很小的区域内,瞬间使被焊处形成一个能量高度集中的热源区,使被焊物局部熔化并快速冷却,从而形成牢固的焊点和焊缝。

激光的产生及其应用论文选题背景

通俗讲就是能量转换!!

你身边的物理学——第010期

激光是由原子中的核外电子在不同轨道之间受到激发而发生“跃迁”时产生的。打个比方,激光的产生过程好比用水泵将水抽到水塔顶部,然后突然打开闸门,这时水就会以强大的力量喷射而出。能够充当这个“水塔”的是一些我们称之为激光晶体的物质。

你不是吧?你想问的问题,恐怕一句半句很难说明白。

激光的产生及其应用论文选题背景及意义

你不是吧?你想问的问题,恐怕一句半句很难说明白。

半导体激光器(激光二极管)的工作原理

激光原理光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子,同时改变自身运动状况的表现。微观粒子都具有特定的一套能级(通常这些能级是分立的)。任一时刻粒子只能处在与某一能级相对应的物质与光相互作用的规律状态(或者简单地表述为处在某一个能级上)。与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h(h为普朗克常量)。激光的理论基础起源于大物理学家爱因斯坦,1917年爱因斯坦提出了一套全新的技术理论‘光与物质相互作用’。这一理论是说在组成物质的原子中,有不同数量的粒子(电子)分布在不同的能级上,在高能级上的粒子受到某种光子的激发,会从高能级跳到(跃迁)到低能级上,这时将会辐射出与激发它的光相同性质的光,而且在某种状态下,能出现一个弱光激发出一个强光的现象。这就叫做“受激辐射的光放大”,简称激光。

激光的产生及其应用论文选题背景怎么写

你不是吧?你想问的问题,恐怕一句半句很难说明白。

毕业论文的研究背景包括选题简介、个人想法、选题意义。毕业论文的研究背景所写内容为:1、选题简介:所选题目的现今研究的相关情况,如前人研究的成果,所选题目到目前所研究到的状况,先论述行业环境情况,然后引用行业数据报告作支撑。2、个人想法:你对选题的特别看法,以及选此题的原因,你对前人的研究成果和看法的想法,以及前人的研究有哪些不足,你选择的研究放向的切入点。要体现你对这个题目的思考以及闪光点,要讲明在别人研究的基础上自己将要做的探讨是什么,即为什么写这篇论文以及要解决什么问题。3、选题意义:就实际的工作实践活动未来发展趋势、前景而言,需要研究的价值意义。一个研究成立的基础就是它要有意义,最好能投入实际生产。意义又包括历史性意义、理论性意义和实践意义。毕业论文写作注意事项:1、写毕业论文是一件很严谨的事,所以里面的一些用词要特别注意,要用合适的表达方式进行表述,避免过于口语化。2、写毕业论文不仅要有亮点,这一亮点还要突出。突出的亮点,能让你的论文更生动、更传神,所以写毕业论文时,一定要特别注意这一点,这一点做得好的话,能进一步升华我们的论文。

激光原理光与物质的相互作用,实质上是组成物质的微观粒子吸收或辐射光子,同时改变自身运动状况的表现。微观粒子都具有特定的一套能级(通常这些能级是分立的)。任一时刻粒子只能处在与某一能级相对应的物质与光相互作用的规律状态(或者简单地表述为处在某一个能级上)。与光子相互作用时,粒子从一个能级跃迁到另一个能级,并相应地吸收或辐射光子。光子的能量值为此两能级的能量差△E,频率为ν=△E/h(h为普朗克常量)。激光的理论基础起源于大物理学家爱因斯坦,1917年爱因斯坦提出了一套全新的技术理论‘光与物质相互作用’。这一理论是说在组成物质的原子中,有不同数量的粒子(电子)分布在不同的能级上,在高能级上的粒子受到某种光子的激发,会从高能级跳到(跃迁)到低能级上,这时将会辐射出与激发它的光相同性质的光,而且在某种状态下,能出现一个弱光激发出一个强光的现象。这就叫做“受激辐射的光放大”,简称激光。

激光的产生与应用论文选题背景及意义初中

爱因斯坦在1930年代描述了原子的受激辐射。在此之后人们很长时间都在猜测,这个现象可否被用来加强光场,因为前提是介质必须存在着群数反转(或译居量反转)population inversion的状态。在一个二级系统中,这是不可能的。人们首先想到用三级系统,而且计算证实了辐射的稳定性。1958年,美国科学家肖洛Schawlow和汤斯Townes发现了一种神奇的现象:当他们将氖光灯泡所发射的光照在一种稀土晶体上时,晶体的分子会发出鲜艳的、始终会聚在一起的强光。根据这一现象,他们提出了"激光原理",即物质在受到与其分子固有振荡频率相同的能量激励时,都会产生这种不发散的强光--激光。他们为此发表了重要论文。(1964 Nobel Price of Physics)肖洛和汤斯的研究成果发表之后,各国科学家纷纷提出各种实验方案,但都未获成功。1960年5月16日,美国加利福尼亚州休斯实验室的科学家梅曼宣布获得了波长为6943微米的激光,这是人类有史以来获得的第一束激光,梅曼因而也成为世界上第一个将激光引入实用领域的科学家。1960年7月7日,梅曼宣布世界上第一台激光器由诞生,梅曼的方案是,利用一个高强闪光灯管,来刺激红宝石。由于红宝石其实在物理上只是一种掺有铬原子的刚玉,所以当红宝石受到刺激时,就会发出一种红光。在一块表面镀上反光镜的红宝石的表面钻一个孔,使红光可以从这个孔溢出,从而产生一条相当集中的纤细红色光柱,当它射向某一点时,可使其达到比太阳表面还高的温度。前苏联科学家尼古拉·巴索夫于1960年发明了半导体激光器。半导体激光器的结构通常由p层、n层和形成双异质结的有源层构成。其特点是:尺寸小,p合效率高,响应速度快,波长和尺寸与光纤尺寸适配,可直接调制,相干性好。在1980年代后期,半导体技术使得更高效而耐用的半导体激光二极管成为可能,这些在小功率的CD和DVD光驱和光纤数据线中得到使用。在1990年代,高功率的激光激发原理得到实现,比如片状激光和纤维激光。后者由于新的加工技术和20kW的高功率不断地被应用到材料加工领域中,从而部分的替代了CO2激光和Nd:YAG-激光。2000年代,激光的非线性得到利用,来制造X射线脉冲(来跟踪原子内部的过程);另一方面,蓝光和紫外线激光二极管已经开始进入市场。在2009年,中国研制出一种名为氟代硼铍酸钾(KBBF)的晶体,可用于激发深紫外线激光,一旦成功应用,可令每片光盘的容量超过1TB,亦使半导体上可存储的电路密度大幅提高[1]。现在,激光器已成为工业,通讯,科学及电子娱乐中的重要设备。

现代社会中,信息的作用越来越重要,谁掌握的信息越迅速、越准确、越丰富,谁也就更加掌握了主动权,也就有更多成功的机会。激光的出现引发了一场信息革命,从VCD、DVD光盘到激光照排,激光的使用大大提高了效率,以及方便人们保存和提取信息,“激光革命” 意义非凡。激光的空间控制性和时间控制性很好,对加工对象的材质、形状、尺寸和加工环境的自由度都很大,特别适用于自动化加工,激光加工系统与计算机数控技术相结合可构成高效自动化加工设备,已成为企业实行适时生产的关键技术,为优质、高效和低成本的加工生产开辟了广阔的前景。目前,激光技术已经融入我们的日常生活之中了,在未来的岁月中,激光会带给我们更多的奇迹。

理论上讲,只要工作物质足够长,则不管初始自发辐射有多弱,最终总可以被放大到一定强度。但在实际激光器中,一般来说,工作物质既没有必要,也没有可能特别长(最近发展起来的以光纤为工作物质的激光器是一个例外),通常的做法是在其两端各放一块反射镜,使光得以来回反射多次通过工作物质并被不断放大,为充分利用光能,介质往往被置于一聚光腔体中,后者与端面反射镜共同构成激光谐振腔。由以上的讨论可以看出,激光作为一种光,与自然界其他发光一样,是由原子(或分子、离子等)跃迁产生的,而且是由自发辐射引起的。不同的是,普通光源自始至终都是由自发辐射产生的,因而含有不同频率(或不同波长、不同颜色)的成分,并向各个方向传播。激光则仅在最初极短的时间内依赖于自发辐射,此后的过程完全由受激辐射决定。正是这一原因,使激光具有非常纯正的颜色,几乎无发散的方向性,极高的发光强度。而正是这些神奇的特性,使激光在各个领域具有一系列令人难以置信而又不得不相信的应用。

相关百科
热门百科
首页
发表服务