期刊投稿百科

数学建模在生活中的应用论文答辩题及答案解析

发布时间:2024-07-05 13:50:55

数学建模在生活中的应用论文答辩题及答案解析

摘要随着科学技术的迅速发展,数学建模这个词会越来越多的出现在现代人的生产、工作和社会活动中。众所周知,建立数学模型是沟通摆在面前的实际问题与数学工具之间的一座必不可少的桥梁。本文就是运用了数学建模的有关知识解决了部分生活与生产问题。例如,本文中的第一类是解决自来水供应问题,第二类是数学专业学生选课问题,第三类是饮料厂的生产与检修计划问题,这些都是根据数学建模的知识解决的问题。不仅使问题得到了解决,还进一步优化了数学模型,使数学建模问题变得可实用性!关键词: 数学建模 Lingo软件 模型正文 第一类:自来水供应问题:齐齐哈尔市梅里斯区华丰大街周围共4个居民区:园丁一号,政府六号,华丰一号,英雄一号。这四个居民区的自来水供应分别由A、B、C三个自来水公司供应,四个居民区每天需要得到保证的基本生活用水量分别为30,70,10,10千吨,但由于水源紧张,三个自来水公司每天最多只能分别提供50,60,50千吨自来水。由于管道输送等问题,自来水公司从水库向各个居民区送水所需付出的饮水管理费不同(见表1),其他管理费用都是450元/千吨。根据公司规定,各居民区用户按照统一标准900元/千吨收费。此外,四个居民区都向公司申请了额外用水,分别为每天50,70,20,40千吨。该公司应如何分配用水,才能获利最多?饮水管理费(元/千吨) 园丁一号 政府六号 华丰一号 英雄一号A 160 130 220 170B 140 130 190 150C 190 200 230 /(注意:C自来水公司与丁之间没有输水管道)模型建立:决策变量为A、B、C三个自来水公司(i=1,2,3)分别向园丁一号,政府六号,华丰一号,英雄一号四个居民区(j=1,2,3,4)的供水量。设水库i向j区的日供水量为x(ij),由题知x34=MinZ=160*x11+130*x12+220*x13+170*x14+140*x21+130*x22+190*x23+150*x24+190*x31+200*x32+230*x33;约束条件:x11+x12+x13+x14=50; x21+x22+x23+x24=60; x31+x32+x33=50; x11+x21+x31<=80; x1+x21+x31>=30; x12+x22+x32<=140; x12+x22+x32>=70; x13+x23+x33<=30; x13+x23+x33>=10; x14+x24<=50;x14+x24>=10; x(ij)>=0; 用lingo软件求解:Min=160*x11+130*x12+220*x13+170*x14+140*x21+130*x22+190*x23+150*x24+190*x31+200*x32+230*x33;x11+x12+x13+x14=50; x21+x22+x23+x24=60;x31+x32+x33=50; x11+x21+x31<=80; x11+x21+x31>=30; x12+x22+x32<=140;x12+x22+x32>=70;x13+x23+x33<=30; x13+x23+x33>=10;x14+x24<=50;x14+x24>=10;x34=0;x11>=0;x12>=0;x13>=0;x14>=0;x21>=0;x22>=0;x23>=0;x24>=0;x31>=0;x32>=0;x33>=0;运行结果:Global optimal solution found at iteration: 14 Objective value: 00Variable Value Reduced Cost X11 000000 00000 X12 00000 000000 X13 000000 00000 X14 000000 00000 X21 000000 00000 X22 00000 000000 X23 000000 00000 X24 00000 000000 X31 00000 000000 X32 000000 00000 X33 00000 000000 X34 000000 000000 Row Slack or Surplus Dual Price 1 00 -000000 2 000000 -0000 3 000000 -0000 4 000000 -0000 5 00000 000000 6 00000 000000 7 00000 000000 8 00000 000000 9 00000 000000 10 000000 -00000 11 00000 000000 12 000000 -00000 13 000000 000000 14 000000 000000 15 00000 000000 16 000000 000000 17 000000 000000 18 000000 000000 19 00000 000000 20 000000 000000 21 00000 000000 22 00000 000000 23 000000 000000 24 00000 000000灵敏度分析:Ranges in which the basis is unchanged: Objective Coefficient Ranges Current Allowable Allowable Variable Coefficient Increase Decrease X11 0000 0 0 X12 0000 0 0 X13 0000 0 0 X14 0000 0 0 X21 0000 0 0 X22 0000 0 0 X23 0000 0 0 X24 0000 0 0 X31 0000 0 0 X32 0000 0 0 X33 0000 0 0 Righthand Side Ranges Row Current Allowable Allowable RHS Increase Decrease 2 00000 0 0 3 00000 0 0 4 00000 0 0 5 00000 0 0 6 00000 0 0 7 0000 0 0 8 00000 0 0 9 00000 0 0 10 00000 0 0 11 00000 0 0 12 00000 0 0 14 0 0 0 15 0 0 0 16 0 1084396E+17 1084396E+17 17 0 1084396E+17 1084396E+17 18 0 0 0 19 0 0 0 20 0 0 0 21 0 0 0 22 0 0 0 23 0 0 0 24 0 0 0 第二类:数学专业学生选课问题 学校规定,数学专业的学生毕业时必须至少学习过两门数学课、一门计算机课、一门运筹学课。这些课程的编号、名称、所属类别要求如下表:课程编号 课程名称 所属类别 先修课要求1 微积分 数学 2 数学结构 数学;计算机 计算机编程3 解析几何 数学 4 计算机模拟 计算机;运筹学 计算机编程5 计算机编程 计算机 6 数学实验 运筹学;计算机 微积分;线性代数模型的建立与求解:用xi=1表示选课表中的六门课程(xi=0表示不选,i=1,2…,6)。问题的目标为选课的课程数最少,即:min=x1+x2+x3+x4+x5+x6;约束条件为:x1+x2+x3>=2;x2+x4+x5+x6>=1;x4+x6>=1;x4+x2-2*x5<=0;x6-x1<=0;@bin(x1); @bin(x2); @bin(x3); @bin(x4); @bin(x5); @bin(x6);运行结果:Global optimal solution found at iteration: 0 Objective value: 000000Variable Value Reduced Cost X1 000000 000000 X2 000000 000000 X3 000000 000000 X4 000000 000000 X5 000000 000000 X6 000000 000000 Row Slack or Surplus Dual Price 1 000000 -000000 2 000000 000000 3 000000 000000 4 000000 000000 5 000000 000000 6 000000 000000第三类:饮料厂的生产与检修计划 某饮料厂生产一种饮料用以满足市场需要。该厂销售科根据市场预测,已经确定了未来四周该饮料的需求量。计划科根据本厂实际情况给出了未来四周的生产能力和生产成本,如下图。每周当饮料满足需求后有剩余时,要支出存贮费,为每周每千箱饮料2千元。如果工厂必须在未来四周的某一周中安排一次设备检修,检修将占用当周15千箱的生产能力,但会使检修以后每周的生产能力提高5千箱,则检修应该放在哪一周,在满足每周市场需求的条件下,使四周的总费用(生产成本与存贮费)最小?周次 需求量(千箱) 生产能力(千箱) 成本(千元/千箱)1 15 30 02 25 40 13 35 45 44 25 20 5合计 100 135 模型建立:未来四周饮料的生产量分别记作x1,x2,x3,x4;记第1,2,3周末的库存量分别为y1,y2,y3;用wt=1表示检修安排在第t周(t=1,2,3,4)。输入形式:min=0*x1+1*x2+4*x3+5*x4+2*(y1+y2+y3);x1-y1=15;x2+y1-y2=25;x3+y2-y3=35;x4+y3=25;x1+15*w1<=30;x2+15*w2-5*w1<=40;x3+15*w3-5*w2-5*w1<=45;x4+15*w4-5*(w1+w2+w3)<=20;w1+w2+w3+w4=1;x1>=0;x2>=0;x3>=0;x4>=0;y1>=0;y2>=0;y3>=0;@bin(w1);@bin(w2);@bin(w3);@bin(w4);运行结果:Global optimal solution found at iteration: 0 Objective value: 0000Variable Value Reduced Cost X1 00000 000000 X2 00000 000000 X3 00000 000000 X4 00000 000000 Y1 000000 000000 Y2 00000 000000 Y3 000000 1000000 W1 000000 -5000000 W2 000000 500000 W3 000000 000000 W4 000000 000000 Row Slack or Surplus Dual Price 1 0000 -000000 2 000000 -000000 3 000000 -200000 4 000000 -400000 5 000000 -500000 6 000000 000000 7 000000 1000000 8 00000 000000 9 000000 000000 10 000000 000000 11 00000 000000 12 00000 000000 13 00000 000000 14 00000 000000 15 000000 000000 16 00000 000000 17 000000 000000参考文献【1】 杨启帆,边馥萍。数学建模。浙江大学出版社,1990【2】 谭永基,数学模型,复旦大学出版社,1997【3】 姜启源,数学模型(第二版)。高等教育出版社,1993【4】 姜启源,数学模型(第三版)。高等教育出版社2003

摘要 本文针对于病人如何服用维生素药剂,这一实际问题将实际问题转化为数学模型,从实际情景中找出有用的条件,并进行简化,建立线性规划模型。对于问题一,病人除了要满足每天摄入的维生素A不超过18克,B不超过13克,D不超过24克和E至少12克之外,还要使得尽可能多的摄入维生素C。对此建立线性模型,并用lingo软件编程求解。最终求得甲种药剂5粒,乙种药剂4粒可得到最优解。摄入最多的维生素E33克。对于问题二,要求病人满足每天对药的需要,而且使得花费的钱最少。约束条件和问题一一样,只是目标函数发生变化。对于此问题,同样建立线性规划模型,用lingo软件求解。求得服用甲种药剂0粒,乙种药剂4粒,即可求得最优解,花的钱最少,为4元。 关键字:维生素药剂 线性规划 一、问题的提出某公司有两种维生素制剂,甲种每粒含维生素A和B各1克,D和E各4克,C5克,乙种每粒含维生素A3克B2克,D1克,E3克和C2克,某病人每天需摄入维生素A不超过18克,B不超过13克,D不超过24克和E至少12克,问(1)病人每天应服两种维生素各多少才能满足需要,而且尽可能摄入较多的维生素C?(2)甲种复合维生素每粒5元,乙种复合维生素每粒1元,选择怎样的服法此病人才能花最少的钱而又满足每天的需要,此时该病人摄入的维生素C是多少?二、问题的分析对于问题一,这个优化问题的目标是使在保证摄取维生素营养的前提下,尽可能较多的摄入维生素E。要做的决策是病人每天应该服用甲种和乙种维生素各多少粒。决策受到4个条件的限制,它们分别是:维生素A不超过18克,B不超过13克,D不超过24克和E至少12克。按照题目所给,将决策变量、目标函数和约束条件用数学符号及式子表示出来,即可得到相应的线性规划模型。对于问题二,这个问题的目标依然是在保证每天摄入必要的维生素营养的前提下,要使得病人每天花的钱最少。在此情况下,求出病人摄入维生素E的量。问题二和问题一类似,要做的决策是病人每天服用两种维生素各多少粒。决策同样受到4个条件的限制,它们分别是:维生素A不超过18克,B不超过13克,D不超过24克和E至少12克。按照题目所给,将决策变量、目标函数和约束条件用数学符号及式子表示出来,即可得到相应的线性规划模型。三、模型假设1、假设题目所给数据都正确且合理。2、假设甲乙两种药粒对病人无副作用,且不产生不良反应。 四、符号说明 :每天服用甲种维生素的粒数:每天服用乙种维生素的粒数:表示目标函数维生素C的量:表示目标函数花的钱 五、模型的建立与求解1问题一模型的建立与求解1基本模型(1)决策变量:设病人每天服用甲种维生素粒;服用乙种维生素粒。(2)目标函数:(3)约束条件:维生素A不超过18克 维生素B不超过13克 维生素D不超过24克 维生素E至少12克 非负约束和均不能为负值,即(4)线性模型为: S , 2模型的求解 用lingo求解,输入程序代码为: max=5*x1+2*x2; x1+3*x2<=18; x1+2*x2<=13; 4*x1+x2<=24; 4*x1+3*x2>=12; x1>=0; x2>=0; 运行结果为: Global optimal solution Objective value: 00000 Total solver iterations: 3Variable Value Reduced Cost X1 000000 000000 X2 000000 000000 Row Slack or Surplus Dual Price 1 00000 000000 2 000000 000000 3 000000 4285714 4 000000 142857 5 00000 000000 6 000000 000000 7 000000 000000上述结果表明,当=5;当=4时,模型取得最优解,=33。1基本模型(1)决策变量:设病人每天服用甲种维生素粒;服用乙种维生素粒。(2)目标函数:(3)约束条件:维生素A不超过18克 维生素B不超过13克 维生素D不超过24克 维生素E至少12克 非负约束和均不能为负值,即(4)线性模型为: S ,2模型的求解 用lingo求解,输入程序代码为: min=5*x1+x2; x1+3*x2<=18; x1+2*x2<=13; 4*x1+x2<=24; 4*x1+3*x2>=12; x1>=0; x2>=0; 运行结果为: Global optimal solution Objective value: 000000 Total solver iterations: 2Variable Value Reduced Cost X1 000000 1666667 X2 000000 000000 Row Slack or Surplus Dual Price 1 000000 -000000 2 000000 000000 3 000000 000000 4 00000 000000 5 000000 -3333333 6 000000 000000 7 000000 000000 六、模型评价分析与推广上面的输出中除了告诉我们问题的最优解和最优值以外,还有许多对分析有用的结果。本题巧妙的运用了线性规划模型使得复杂的问题变得简单。运用lingo软件,把复杂的数学求解问题简单化。从本题可以知道,在实际生活中的很多问题都可以转化为线性规划模型,进行求解,使问题变得简单。例如牛奶的生产计划,汽车的生产计划等等。七、参考文献 [1]韩中庚,数学建模方法及其应用,高等教育出版社,2009。[2]侯进军 ,数学建模方法及其应用,东南大学出版社,2012。[3]姜启源、谢金星、叶俊 ,数学模型,高等教育出版社,3。

这个是线性规划问题,因为牵扯到多重目标,因此可以算是一个目标规划。至于解法,用对应的单纯型法就可以了,一般的运筹学或者建模课程上面都有讲述。说,一时半会说是说不清楚的,建议你参考百度文库

这道题是线性规划的题目吧,你等会下,我在算现在解答您的疑问首先,就第一问而言,设服用甲x粒,乙y粒则A:x+3y B:x+2y C:5x+2y D:4x+y E:4x+3y 又因为A<=18 B<=13 D<=1 E>=12 所以可以把上述式子带入画出ABDE的二维坐标系 根据线性规划画(时间问题就不发图了) 然后求出C函数的最大值为

数学建模在生活中的应用论文答辩问题及答案解析

不知道PPT上写什么说明你建模没做好,不解释~

其实数模答辩很简单,不要有心理压力,参加答辩过程的队伍最次也是省一了。你只要注意以下几点就可以了: 答辩的过程就是检测下论文是不是你做的。 答辩的时候也就是陈述下当时你的建模过程,以及当时的闪光点。 PPT多用图,文字没谁看 对于自己的论文,多设计几个问题,并针对性的给出合理的解释,防止到时提问时不知道怎么给出。 一定要坚信自己的模型是合理正确的,否则别人就不会相信你了。 相信哥,没错。

就5分啊~~~~~~~~~~~真特么扣!不评论!

论数学建模在经济学中的应用  【摘 要】当代西方经济认为,经济学的基本方法是分析经济变量之间的函数关系,建立经济模型,从中引申出经济原则和理论进行决策和预测。  【关键词】经济学 数学模型 应用  在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统(根据厂家各种资源、产品工艺流程、生产成本及客户需求等数据进行数学经济建模)与客户进行商业谈判。  一、数学经济模型及其重要性  数学经济模型可以按变量的性质分成两类,即概率型和确定型。概率型的模型处理具有随机性情况的模型,确定型的模型则能基于一定的假设和法则,精确地对一种特定情况的结果做出判断。由于数学分支很多,加之相互交叉渗透,又派生出许多分支,所以一个给定的经济问题有时能用一种以上的数学方法去对它进行描述和解释。具体建立什么类型的模型,既要视问题而定,又要因人而异。要看自己比较熟悉精通哪门学科,充分发挥自己的特长。  数学并不能直接处理经济领域的客观情况。为了能用数学解决经济领域中的问题,就必须建立数学模型。数学建模是为了解决经济领域中的问题而作的一个抽象的、简化的结构的数学刻划。或者说,数学经济建模就是为了经济目的,用字母、数字及其他数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构的刻划。而现代世界发展史证实其经济发展速度与数学经济建模的密切关系。数学经济建模促进经济学的发展;带来了现实的生产效率。在经济决策科学化、定量化呼声日渐高涨的今天,数学经济建模更是无处不在。如生产厂家可根据客户提出的产品数量、质量、交货期、交货方式、交货地点等要求,根据快速报价系统与客户进行商业谈判。  二、构建经济数学模型的一般步骤  了解熟悉实际问题,以及与问题有关的背景知识。通过假设把所要研究的实际问题简化、抽象,明确模型中诸多的影响因素,用数量和参数来表示这些因素。运用数学知识和技巧来描述问题中变量参数之问的关系。一般情况下用数学表达式来表示,构架出一个初步的数学模型。然后,再通过不断地调整假设使建立的模型尽可能地接近实际,从而得到比较满意的结论。使用已知数据,观测数据或者实际问题的有关背景知识对所建模型中的参数给出估计值。运行所得到的模型。把模型的结果与实际观测进行分析比较。如果模型结果与实际情况基本一致,表明模型是符合实际问题的。我们可以将它用于对实际问题进一步的分析或者预测;如果模型的结果与实际观测不一致,不能将所得的模型应用于所研究的实际问题。此时需要回头检查模型的组建是否有问题。问题的假使是否恰当,是否忽略了不应该忽略的因素或者还保留着不应该保留的因素。并对模型进行必要的调整修正。重复前面的建模过程,直到建立出一个经检验符合实际问题的模型为止。一个较好的数学模型是从实际中得来,又能够应用到实际问题中去的。  三、应用实例  商品提价问题的数学模型:  问题  商场经营者即要考虑商品的销售额、销售量。同时也要考虑如何在短期内获得最大利润。这个问题与商场经营的商品的定价有直接关系。定价低、销售量大、但利润小;定价高、利润大但销售量减少。下面研究在销售总收入有限制的情况下商品的最高定价问题。  实例分析  某商场销售某种商品单价25元。每年可销售3万件。设该商品每件提价1元。销售量减少1万件。要使总销售收入不少于75万元。求该商品的最高提价。  解:设最高提价为X元。提价后的商品单价为(25+x)元  提价后的销售量为(30000-1000X/1)件  则(25+x)(30000-1000X/1)≥750000  (25+x)(30-x)≥750[摘要]本文从数学与经济学的关系出发,介绍了数学经济模型及其重要性,讨论了经济数学模型建立的一般步骤,分析了数学在经济学中应用的局限性,这对在研充经济学时有很好的借鉴作用。即提价最高不能超过5元。四、数学在经济学中应用的局限性  经济学不是数学,重要的是经济思想。数学只是一种分析工具数学作为工具和方法必须在经济理论的合理框架中才能真正发挥其应有作用,而不能将之替代经济学,在经济思想和理论的研究过程中,如果本末倒置,过度地依靠数学,不加限制地“数学化很可能阉割经济学的本质,以至损害经济思想,甚至会导致我们走入幻想,误入歧途。因为:  经济学不是数学概念和模型的简单汇集。不是去开拓数学前沿而是借助它来分析、解析经济现象,数学只是一种应用工具。经济学作为社会科学的分支学科,它是人类活动中有关经济现象和经济行为的理论。而人类活动受道德的、历史的、社会的、文化的、制度诸因素的影响,不可能像自然界一样是完全可以通过数学公式推导出来。把经济学变为系列抽象假定、复杂公式的科学。实际上忽视了经济学作为一门社会科学的特性,失去经济学作为社会科学的人文性和真正的科学性。  经济理论的发展要从自身独有的研究视角出发,去研究、分析现实经济活动内在的本质和规律。经济学中运用的任何数学方法,离不开一定的假设条件,它不是无条件地适用于任何场所,而是有条件适用于特定的领域在实际生活中社会的历史的心理的等非制度因素很可能被忽视而漏掉。这将会导致理论指导现实的失败。  数学计量分析方法只是执行经济理论方法的工具之一,而不是惟一的工具。经济学过分对数学的依赖会导致经济研究的资源误置和经济研究向度的单一化,从而不利于经济学的发展。  数学经济建模应用非常广泛,为决策者提供参考依据并对许多部门的具体工作进行指导,如节省开支,降低成本,提高利润等。尤其是对未来可以预测和估计,对促进科学技术和经济的蓬勃发展起了很大的推动作用。但目前尚没有一个具有普遍意义的建模方法和技巧。这既是我们今后应该努力发展的方向,又是我们不可推卸的责任。因此,我们要以自己的辛勤劳动,多实践、多体会,使数学经济建模为我国经济腾飞作出应有的贡献。  参考文献:  [1]孙红伟商场经营管理中的几个数学模型分析[J]商场现代化,2006,(8)

数学建模在生活中的应用论文答辩题及答案解析高中

这个是线性规划问题,因为牵扯到多重目标,因此可以算是一个目标规划。至于解法,用对应的单纯型法就可以了,一般的运筹学或者建模课程上面都有讲述。说,一时半会说是说不清楚的,建议你参考百度文库

此题为交通运输类问题,可以视作优化类问题,而且本题重点在于目标的选取和目标函数的建立,而最优值的求解反而不是问题的重点(因为哪里会发生交通事故、持续时间、车流量等等都是不可控制的参数,本题几乎没有可决策变

A题 数码相机定位数码相机定位在交通监管(电子警察)等方面有广泛的应用。所谓数码相机定位是指用数码相机摄制物体的相片确定物体表面某些特征点的位置。最常用的定位方法是双目定位,即用两部相机来定位。对物体上一个特征点,用两部固定于不同位置的相机摄得物体的像,分别获得该点在两部相机像平面上的坐标。只要知道两部相机精确的相对位置,就可用几何的方法得到该特征点在固定一部相机的坐标系中的坐标,即确定了特征点的位置。于是对双目定位,精确地确定两部相机的相对位置就是关键,这一过程称为系统标定。标定的一种做法是:在一块平板上画若干个点, 同时用这两部相机照相,分别得到这些点在它们像平面上的像点,利用这两组像点的几何关系就可以得到这两部相机的相对位置。然而,无论在物平面或像平面上我们都无法直接得到没有几何尺寸的“点”。实际的做法是在物平面上画若干个圆(称为靶标),它们的圆心就是几何的点了。而它们的像一般会变形,如图1所示,所以必须从靶标上的这些圆的像中把圆心的像精确地找到,标定就可实现。图 1 靶标上圆的像有人设计靶标如下,取1个边长为100mm的正方形,分别以四个顶点(对应为A、C、D、E)为圆心,12mm为半径作圆。以AC边上距离A点30mm处的B为圆心,12mm为半径作圆,如图2所示。图 2 靶标示意图用一位置固定的数码相机摄得其像,如图3所示。图3 靶标的像请你们:(1) 建立数学模型和算法以确定靶标上圆的圆心在该相机像平面的像坐标, 这里坐标系原点取在该相机的焦点,x-y平面平行于像平面;(2) 对由图2、图3分别给出的靶标及其像,计算靶标上圆的圆心在像平面上的像坐标, 该相机的像距(即焦点到像平面的距离)是1577个像素单位(1毫米约为78个像素单位),相机分辨率为1024×786;(3) 设计一种方法检验你们的模型,并对方法的精度和稳定性进行讨论;(4) 建立用此靶标给出两部固定相机相对位置的数学模型和方法。

摘要 本文针对于病人如何服用维生素药剂,这一实际问题将实际问题转化为数学模型,从实际情景中找出有用的条件,并进行简化,建立线性规划模型。对于问题一,病人除了要满足每天摄入的维生素A不超过18克,B不超过13克,D不超过24克和E至少12克之外,还要使得尽可能多的摄入维生素C。对此建立线性模型,并用lingo软件编程求解。最终求得甲种药剂5粒,乙种药剂4粒可得到最优解。摄入最多的维生素E33克。对于问题二,要求病人满足每天对药的需要,而且使得花费的钱最少。约束条件和问题一一样,只是目标函数发生变化。对于此问题,同样建立线性规划模型,用lingo软件求解。求得服用甲种药剂0粒,乙种药剂4粒,即可求得最优解,花的钱最少,为4元。 关键字:维生素药剂 线性规划 一、问题的提出某公司有两种维生素制剂,甲种每粒含维生素A和B各1克,D和E各4克,C5克,乙种每粒含维生素A3克B2克,D1克,E3克和C2克,某病人每天需摄入维生素A不超过18克,B不超过13克,D不超过24克和E至少12克,问(1)病人每天应服两种维生素各多少才能满足需要,而且尽可能摄入较多的维生素C?(2)甲种复合维生素每粒5元,乙种复合维生素每粒1元,选择怎样的服法此病人才能花最少的钱而又满足每天的需要,此时该病人摄入的维生素C是多少?二、问题的分析对于问题一,这个优化问题的目标是使在保证摄取维生素营养的前提下,尽可能较多的摄入维生素E。要做的决策是病人每天应该服用甲种和乙种维生素各多少粒。决策受到4个条件的限制,它们分别是:维生素A不超过18克,B不超过13克,D不超过24克和E至少12克。按照题目所给,将决策变量、目标函数和约束条件用数学符号及式子表示出来,即可得到相应的线性规划模型。对于问题二,这个问题的目标依然是在保证每天摄入必要的维生素营养的前提下,要使得病人每天花的钱最少。在此情况下,求出病人摄入维生素E的量。问题二和问题一类似,要做的决策是病人每天服用两种维生素各多少粒。决策同样受到4个条件的限制,它们分别是:维生素A不超过18克,B不超过13克,D不超过24克和E至少12克。按照题目所给,将决策变量、目标函数和约束条件用数学符号及式子表示出来,即可得到相应的线性规划模型。三、模型假设1、假设题目所给数据都正确且合理。2、假设甲乙两种药粒对病人无副作用,且不产生不良反应。 四、符号说明 :每天服用甲种维生素的粒数:每天服用乙种维生素的粒数:表示目标函数维生素C的量:表示目标函数花的钱 五、模型的建立与求解1问题一模型的建立与求解1基本模型(1)决策变量:设病人每天服用甲种维生素粒;服用乙种维生素粒。(2)目标函数:(3)约束条件:维生素A不超过18克 维生素B不超过13克 维生素D不超过24克 维生素E至少12克 非负约束和均不能为负值,即(4)线性模型为: S , 2模型的求解 用lingo求解,输入程序代码为: max=5*x1+2*x2; x1+3*x2<=18; x1+2*x2<=13; 4*x1+x2<=24; 4*x1+3*x2>=12; x1>=0; x2>=0; 运行结果为: Global optimal solution Objective value: 00000 Total solver iterations: 3Variable Value Reduced Cost X1 000000 000000 X2 000000 000000 Row Slack or Surplus Dual Price 1 00000 000000 2 000000 000000 3 000000 4285714 4 000000 142857 5 00000 000000 6 000000 000000 7 000000 000000上述结果表明,当=5;当=4时,模型取得最优解,=33。1基本模型(1)决策变量:设病人每天服用甲种维生素粒;服用乙种维生素粒。(2)目标函数:(3)约束条件:维生素A不超过18克 维生素B不超过13克 维生素D不超过24克 维生素E至少12克 非负约束和均不能为负值,即(4)线性模型为: S ,2模型的求解 用lingo求解,输入程序代码为: min=5*x1+x2; x1+3*x2<=18; x1+2*x2<=13; 4*x1+x2<=24; 4*x1+3*x2>=12; x1>=0; x2>=0; 运行结果为: Global optimal solution Objective value: 000000 Total solver iterations: 2Variable Value Reduced Cost X1 000000 1666667 X2 000000 000000 Row Slack or Surplus Dual Price 1 000000 -000000 2 000000 000000 3 000000 000000 4 00000 000000 5 000000 -3333333 6 000000 000000 7 000000 000000 六、模型评价分析与推广上面的输出中除了告诉我们问题的最优解和最优值以外,还有许多对分析有用的结果。本题巧妙的运用了线性规划模型使得复杂的问题变得简单。运用lingo软件,把复杂的数学求解问题简单化。从本题可以知道,在实际生活中的很多问题都可以转化为线性规划模型,进行求解,使问题变得简单。例如牛奶的生产计划,汽车的生产计划等等。七、参考文献 [1]韩中庚,数学建模方法及其应用,高等教育出版社,2009。[2]侯进军 ,数学建模方法及其应用,东南大学出版社,2012。[3]姜启源、谢金星、叶俊 ,数学模型,高等教育出版社,3。

数学建模在生活中的应用论文答辩题及答案解析视频

这个是线性规划问题,因为牵扯到多重目标,因此可以算是一个目标规划。至于解法,用对应的单纯型法就可以了,一般的运筹学或者建模课程上面都有讲述。说,一时半会说是说不清楚的,建议你参考百度文库

此题为交通运输类问题,可以视作优化类问题,而且本题重点在于目标的选取和目标函数的建立,而最优值的求解反而不是问题的重点(因为哪里会发生交通事故、持续时间、车流量等等都是不可控制的参数,本题几乎没有可决策变

其实,家庭中的其他生活用水一样可以用来冲洗马桶,比方说经过最后一次漂洗,衣服洗干净了,从洗衣机排出的水看上去还比较干净,直接流进下水管还真有点可惜。还有像洗完脸、洗过菜的水,如果能再次利用就好了。业余发明家吴汉平研制了一套生活用水回用装置,获得了国家专利。他将厨房的洗涤槽、卫生间的面盆和坐便器水箱连接到一个储水箱上。洗涤槽、面盆流出来的比较干净的水进入储水箱,供冲厕使用。 现在我来教你省水小秘方要用省水形马桶,般审型马桶加装2段式冲水配件。水箱底下浮饼拆下 即成无段式控制出水。 小便池自动冲水器冲水时间调短。 用米水、洗衣水、洗碗水及洗澡水等清水来浇花、洗车,及擦洗地板。清理地毯法由湿式或蒸汽式改成乾燥粉沫式。将除湿机收集的水,及纯水机、蒸馏水机等净水设备的废水回收再利用。 现在我说完了6项省水秘方,你是否想到比我更好的省水方法呢?你是否在省水呢?我想你应该在省水吧! 长期以来,人们普遍认为水是“取之不尽,用之不竭”的,不知道爱惜,而浪费挥霍。事实上,水资源日益紧缺,而我市的城市供水工作更是在严重缺水的边缘艰难度日,自来水来之不易。 人不可一日无水,水是生命之源,珍惜水就是珍惜自己的生命!在此,我们介绍一些日常生活中的节水常识: 刷牙 浪费:不间断放水,30秒,用水约6升。 节水:口杯接水,3口杯,用水0.6升。三口之家每日两次,每月可节水486升。 洗衣 浪费:洗衣机不间断地边注水边冲洗、排水的洗衣方式,每次需用水约165升。 节水:洗衣机采用洗涤—脱水—注水—脱水—注水—脱水方式洗涤,每次用水110升,每次可节水55升,每月洗4次,可节水220升。 另外,衣物集中洗涤,可减少洗衣次数;小件、少量衣物提倡手洗,可节约大量水;洗涤剂过量投放将浪费大量水。 洗浴 浪费:过长时间不间断放水冲淋,会浪费大量水。 盆浴时放水过多,以至溢出,或盆浴时一边打开水塞,一边注水,浪费将十分惊人。 节水:间断放水淋浴(比如脚踏式、感应式等)。搓洗时应及时关水。避免过长时间冲淋。 盆浴后的水可用于洗衣、洗车、冲洗厕所、拖地等。 炊事 浪费:水龙头大开,长时间冲洗。烧开水时间过长,水蒸汽大量蒸发。用自来水冲淋蔬菜、水果。 节水:炊具食具上的油污,先用纸擦除,再洗涤,可节水。 控制水龙头流量,改不间断冲洗为间断冲洗。 洗车 浪费:用水管冲洗,20分钟,用水约240升。 节水:用水桶盛水洗车,需3桶水,用水约30升。使用洗涤水、洗衣水洗车。使用节水喷雾水枪冲洗。利用机械自动洗车,洗车水处理循环使用。 节水小方法: 节约用水,利在当代,功在千秋,这是经过讨论同学们一起研究出一些生活节水小方法:   一、淘米水洗菜,再用清水清洗,不仅节约了水,还有效地清除了蔬菜上的残存农药;   二、洗衣水洗拖帕、帚地板、再冲厕所。第二道清洗衣物的洗衣水擦门窗及家具、洗鞋袜等;   三、大、小便后冲洗厕所,尽量不开大水管冲洗,而充分利用使用过的“脏水”;   四、夏天给室内外地面洒水降温,尽量不用清水,而用洗衣之后的洗衣水;   五、自行车、家用小轿车清洁时,不用水冲,改用湿布擦,太脏的地方,也宜用洗衣物过后的余水冲洗;   六、冲厕所:如果您使用节水型设备,每次可节水4一5kg;   七、家庭浇花,宜用淘米水、茶水、洗衣水等;   八、家庭洗涤手巾、小对象、瓜果等少量用水。宜用盆子盛水而不宜开水龙头放水冲洗;   九、洗地板:用拖把擦洗,可比用水龙头冲洗每次每户可节水200kg以上;   十、水龙头使用时间长有漏水现象,可用装青霉素的小药瓶的橡胶盖剪一个与原来一样的垫圈放进去,可以保证滴水不漏;   十一、将卫生间里水箱的浮球向下调整2厘米,每次冲洗可节省水近3kg;按家庭每天使用四次算,一年可节药水4380kg。   十二、洗菜:一盆一盆地洗,不要开着水龙头冲,一餐饭可节省50kg;   十三、淋浴:如果您关掉龙头擦香皂,洗一次澡可节水60kg;   十四、手洗衣服:如果用洗衣盆洗、清衣服则每次洗、清衣比开着水龙头节省水200kg;   十五、用洗衣机洗衣服:建议您满桶再洗,若分开两次洗,则多耗水120kg;   十六、洗车:用抹布擦洗比用水龙头冲洗,至少每次可节水400kg;

摘要 本文针对于病人如何服用维生素药剂,这一实际问题将实际问题转化为数学模型,从实际情景中找出有用的条件,并进行简化,建立线性规划模型。对于问题一,病人除了要满足每天摄入的维生素A不超过18克,B不超过13克,D不超过24克和E至少12克之外,还要使得尽可能多的摄入维生素C。对此建立线性模型,并用lingo软件编程求解。最终求得甲种药剂5粒,乙种药剂4粒可得到最优解。摄入最多的维生素E33克。对于问题二,要求病人满足每天对药的需要,而且使得花费的钱最少。约束条件和问题一一样,只是目标函数发生变化。对于此问题,同样建立线性规划模型,用lingo软件求解。求得服用甲种药剂0粒,乙种药剂4粒,即可求得最优解,花的钱最少,为4元。 关键字:维生素药剂 线性规划 一、问题的提出某公司有两种维生素制剂,甲种每粒含维生素A和B各1克,D和E各4克,C5克,乙种每粒含维生素A3克B2克,D1克,E3克和C2克,某病人每天需摄入维生素A不超过18克,B不超过13克,D不超过24克和E至少12克,问(1)病人每天应服两种维生素各多少才能满足需要,而且尽可能摄入较多的维生素C?(2)甲种复合维生素每粒5元,乙种复合维生素每粒1元,选择怎样的服法此病人才能花最少的钱而又满足每天的需要,此时该病人摄入的维生素C是多少?二、问题的分析对于问题一,这个优化问题的目标是使在保证摄取维生素营养的前提下,尽可能较多的摄入维生素E。要做的决策是病人每天应该服用甲种和乙种维生素各多少粒。决策受到4个条件的限制,它们分别是:维生素A不超过18克,B不超过13克,D不超过24克和E至少12克。按照题目所给,将决策变量、目标函数和约束条件用数学符号及式子表示出来,即可得到相应的线性规划模型。对于问题二,这个问题的目标依然是在保证每天摄入必要的维生素营养的前提下,要使得病人每天花的钱最少。在此情况下,求出病人摄入维生素E的量。问题二和问题一类似,要做的决策是病人每天服用两种维生素各多少粒。决策同样受到4个条件的限制,它们分别是:维生素A不超过18克,B不超过13克,D不超过24克和E至少12克。按照题目所给,将决策变量、目标函数和约束条件用数学符号及式子表示出来,即可得到相应的线性规划模型。三、模型假设1、假设题目所给数据都正确且合理。2、假设甲乙两种药粒对病人无副作用,且不产生不良反应。 四、符号说明 :每天服用甲种维生素的粒数:每天服用乙种维生素的粒数:表示目标函数维生素C的量:表示目标函数花的钱 五、模型的建立与求解1问题一模型的建立与求解1基本模型(1)决策变量:设病人每天服用甲种维生素粒;服用乙种维生素粒。(2)目标函数:(3)约束条件:维生素A不超过18克 维生素B不超过13克 维生素D不超过24克 维生素E至少12克 非负约束和均不能为负值,即(4)线性模型为: S , 2模型的求解 用lingo求解,输入程序代码为: max=5*x1+2*x2; x1+3*x2<=18; x1+2*x2<=13; 4*x1+x2<=24; 4*x1+3*x2>=12; x1>=0; x2>=0; 运行结果为: Global optimal solution Objective value: 00000 Total solver iterations: 3Variable Value Reduced Cost X1 000000 000000 X2 000000 000000 Row Slack or Surplus Dual Price 1 00000 000000 2 000000 000000 3 000000 4285714 4 000000 142857 5 00000 000000 6 000000 000000 7 000000 000000上述结果表明,当=5;当=4时,模型取得最优解,=33。1基本模型(1)决策变量:设病人每天服用甲种维生素粒;服用乙种维生素粒。(2)目标函数:(3)约束条件:维生素A不超过18克 维生素B不超过13克 维生素D不超过24克 维生素E至少12克 非负约束和均不能为负值,即(4)线性模型为: S ,2模型的求解 用lingo求解,输入程序代码为: min=5*x1+x2; x1+3*x2<=18; x1+2*x2<=13; 4*x1+x2<=24; 4*x1+3*x2>=12; x1>=0; x2>=0; 运行结果为: Global optimal solution Objective value: 000000 Total solver iterations: 2Variable Value Reduced Cost X1 000000 1666667 X2 000000 000000 Row Slack or Surplus Dual Price 1 000000 -000000 2 000000 000000 3 000000 000000 4 00000 000000 5 000000 -3333333 6 000000 000000 7 000000 000000 六、模型评价分析与推广上面的输出中除了告诉我们问题的最优解和最优值以外,还有许多对分析有用的结果。本题巧妙的运用了线性规划模型使得复杂的问题变得简单。运用lingo软件,把复杂的数学求解问题简单化。从本题可以知道,在实际生活中的很多问题都可以转化为线性规划模型,进行求解,使问题变得简单。例如牛奶的生产计划,汽车的生产计划等等。七、参考文献 [1]韩中庚,数学建模方法及其应用,高等教育出版社,2009。[2]侯进军 ,数学建模方法及其应用,东南大学出版社,2012。[3]姜启源、谢金星、叶俊 ,数学模型,高等教育出版社,3。

数学建模在生活中的应用论文答辩问题及答案解析视频

摘要 本文针对于病人如何服用维生素药剂,这一实际问题将实际问题转化为数学模型,从实际情景中找出有用的条件,并进行简化,建立线性规划模型。对于问题一,病人除了要满足每天摄入的维生素A不超过18克,B不超过13克,D不超过24克和E至少12克之外,还要使得尽可能多的摄入维生素C。对此建立线性模型,并用lingo软件编程求解。最终求得甲种药剂5粒,乙种药剂4粒可得到最优解。摄入最多的维生素E33克。对于问题二,要求病人满足每天对药的需要,而且使得花费的钱最少。约束条件和问题一一样,只是目标函数发生变化。对于此问题,同样建立线性规划模型,用lingo软件求解。求得服用甲种药剂0粒,乙种药剂4粒,即可求得最优解,花的钱最少,为4元。 关键字:维生素药剂 线性规划 一、问题的提出某公司有两种维生素制剂,甲种每粒含维生素A和B各1克,D和E各4克,C5克,乙种每粒含维生素A3克B2克,D1克,E3克和C2克,某病人每天需摄入维生素A不超过18克,B不超过13克,D不超过24克和E至少12克,问(1)病人每天应服两种维生素各多少才能满足需要,而且尽可能摄入较多的维生素C?(2)甲种复合维生素每粒5元,乙种复合维生素每粒1元,选择怎样的服法此病人才能花最少的钱而又满足每天的需要,此时该病人摄入的维生素C是多少?二、问题的分析对于问题一,这个优化问题的目标是使在保证摄取维生素营养的前提下,尽可能较多的摄入维生素E。要做的决策是病人每天应该服用甲种和乙种维生素各多少粒。决策受到4个条件的限制,它们分别是:维生素A不超过18克,B不超过13克,D不超过24克和E至少12克。按照题目所给,将决策变量、目标函数和约束条件用数学符号及式子表示出来,即可得到相应的线性规划模型。对于问题二,这个问题的目标依然是在保证每天摄入必要的维生素营养的前提下,要使得病人每天花的钱最少。在此情况下,求出病人摄入维生素E的量。问题二和问题一类似,要做的决策是病人每天服用两种维生素各多少粒。决策同样受到4个条件的限制,它们分别是:维生素A不超过18克,B不超过13克,D不超过24克和E至少12克。按照题目所给,将决策变量、目标函数和约束条件用数学符号及式子表示出来,即可得到相应的线性规划模型。三、模型假设1、假设题目所给数据都正确且合理。2、假设甲乙两种药粒对病人无副作用,且不产生不良反应。 四、符号说明 :每天服用甲种维生素的粒数:每天服用乙种维生素的粒数:表示目标函数维生素C的量:表示目标函数花的钱 五、模型的建立与求解1问题一模型的建立与求解1基本模型(1)决策变量:设病人每天服用甲种维生素粒;服用乙种维生素粒。(2)目标函数:(3)约束条件:维生素A不超过18克 维生素B不超过13克 维生素D不超过24克 维生素E至少12克 非负约束和均不能为负值,即(4)线性模型为: S , 2模型的求解 用lingo求解,输入程序代码为: max=5*x1+2*x2; x1+3*x2<=18; x1+2*x2<=13; 4*x1+x2<=24; 4*x1+3*x2>=12; x1>=0; x2>=0; 运行结果为: Global optimal solution Objective value: 00000 Total solver iterations: 3Variable Value Reduced Cost X1 000000 000000 X2 000000 000000 Row Slack or Surplus Dual Price 1 00000 000000 2 000000 000000 3 000000 4285714 4 000000 142857 5 00000 000000 6 000000 000000 7 000000 000000上述结果表明,当=5;当=4时,模型取得最优解,=33。1基本模型(1)决策变量:设病人每天服用甲种维生素粒;服用乙种维生素粒。(2)目标函数:(3)约束条件:维生素A不超过18克 维生素B不超过13克 维生素D不超过24克 维生素E至少12克 非负约束和均不能为负值,即(4)线性模型为: S ,2模型的求解 用lingo求解,输入程序代码为: min=5*x1+x2; x1+3*x2<=18; x1+2*x2<=13; 4*x1+x2<=24; 4*x1+3*x2>=12; x1>=0; x2>=0; 运行结果为: Global optimal solution Objective value: 000000 Total solver iterations: 2Variable Value Reduced Cost X1 000000 1666667 X2 000000 000000 Row Slack or Surplus Dual Price 1 000000 -000000 2 000000 000000 3 000000 000000 4 00000 000000 5 000000 -3333333 6 000000 000000 7 000000 000000 六、模型评价分析与推广上面的输出中除了告诉我们问题的最优解和最优值以外,还有许多对分析有用的结果。本题巧妙的运用了线性规划模型使得复杂的问题变得简单。运用lingo软件,把复杂的数学求解问题简单化。从本题可以知道,在实际生活中的很多问题都可以转化为线性规划模型,进行求解,使问题变得简单。例如牛奶的生产计划,汽车的生产计划等等。七、参考文献 [1]韩中庚,数学建模方法及其应用,高等教育出版社,2009。[2]侯进军 ,数学建模方法及其应用,东南大学出版社,2012。[3]姜启源、谢金星、叶俊 ,数学模型,高等教育出版社,3。

不能紧张,一定要口齿清晰!!!

这个是线性规划问题,因为牵扯到多重目标,因此可以算是一个目标规划。至于解法,用对应的单纯型法就可以了,一般的运筹学或者建模课程上面都有讲述。说,一时半会说是说不清楚的,建议你参考百度文库

这道题是线性规划的题目吧,你等会下,我在算现在解答您的疑问首先,就第一问而言,设服用甲x粒,乙y粒则A:x+3y B:x+2y C:5x+2y D:4x+y E:4x+3y 又因为A<=18 B<=13 D<=1 E>=12 所以可以把上述式子带入画出ABDE的二维坐标系 根据线性规划画(时间问题就不发图了) 然后求出C函数的最大值为

相关百科
热门百科
首页
发表服务