期刊投稿百科

一篇完整的数学建模论文怎么写标题

发布时间:2024-09-06 06:57:34

一篇完整的数学建模论文怎么写标题

楼主你好,数学建模论文一般分为以下几个部分:  首先是摘要,这个是全文的概述,里面包括这个模型的主题,以及几个需要解决问题的总体答案,比如对模型结果的阐述,或者对原来的安排评价是否合理等等。另外摘要最好控制在word一页内(小四宋体),不要太多。  下面是论文的主体:   问题重述  主要是对需要解决的问题用自己的语言进行描述,这个就看你自己的文笔功底了。   模型假设  对你将要建立的模型进行理想假设,比如说将一些可能对结果影响不显著,但考虑起来需要很多时间的的问题理想化。   符号说明  将你要建立的模型中的一些参量用符号代替表示。   模型建立  这个是介绍你模型建立的原理和步骤,以及最终的模型结果,一般是一个评价函数,也可以是另外的形式,不过一定要给出一个能解决问题的大的方法   问题一、二、三(视具体的需要回答问题的个数而定,最好分条回答)  利用你上面建立的模型,对题目提出的问题进行求解,这个部分需要你通过程序来实现,最后给出这个问题的结果,如果是满不满意这样的问题,需要给出明确回答满意或不满意,如果是一个量的结果,就需要把通过你的模型以及代码得到的准确结果进行阐述。   模型改进  解决完上面题目提出的问题之后,可以对你的模型不足的地方再提出来,并提出改进的方案,以完善整个模型。   参考文献  最后将你的参考文献写上,包括你在网上查的的资料,以及别人的论文或者书籍等等。  如果最后需要你一并交上程序代码的话,还需要一个附录,里面包括程序代码,或者如果你上面的问题的结果太长的话(比如要给出几百个点的坐标这样的),可以将这些结果也放在这一块。  如果楼主需要看论文样式的话,推荐一个网站:    这是北京航空航天大学的数学建模网站,里面包括了该学校从92年开始到09年的各届论文,里面不乏一些比较好的论文,楼主如果需要参考样式的话,可以看看这些论文。  最后祝楼主好运。

论文(答卷)用白色A4纸,上下左右各留出5厘米的页边距。论文题目用三号黑体字、一级标题用四号黑体字,并居中。论文中其它汉字一律采用小四号黑色宋体字,行距用单倍行距。论文从正文开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字从“1”开始连续编号引用别人的成果或其他公开的资料(包括网上查到的资料) 必须按照规定的参考文献的表述方式在正文引用处和参考文献中均明确列出。正文引用处用方括号标示参考文献的编号,如[1][3]等;引用书籍还必须指出页码。参考文献按正文中的引用次序列出,其中书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年。 参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:起止页码,出版年。 参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间(年月日)。

首先是摘要,这个是全文的概述,里面包括这个模型的主题,以及几个需要解决问题的总体答案,比如对模型结果的阐述,或者对原来的安排评价是否合理等等。另外摘要最好控制在word一页内(小四宋体),不要太多。下面是论文的主体: 问题重述主要是对需要解决的问题用自己的语言进行描述,这个就看你自己的文笔功底了。 模型假设对你将要建立的模型进行理想假设,比如说将一些可能对结果影响不显著,但考虑起来需要很多时间的的问题理想化。 符号说明将你要建立的模型中的一些参量用符号代替表示。 模型建立这个是介绍你模型建立的原理和步骤,以及最终的模型结果,一般是一个评价函数,也可以是另外的形式,不过一定要给出一个能解决问题的大的方法 问题一、二、三(视具体的需要回答问题的个数而定,最好分条回答)利用你上面建立的模型,对题目提出的问题进行求解,这个部分需要你通过程序来实现,最后给出这个问题的结果,如果是满不满意这样的问题,需要给出明确回答满意或不满意,如果是一个量的结果,就需要把通过你的模型以及代码得到的准确结果进行阐述。 模型改进解决完上面题目提出的问题之后,可以对你的模型不足的地方再提出来,并提出改进的方案,以完善整个模型。 参考文献最后将你的参考文献写上,包括你在网上查的的资料,以及别人的论文或者书籍等等。如果最后需要你一并交上程序代码的话,还需要一个附录,里面包括程序代码,或者如果你上面的问题的结果太长的话(比如要给出几百个点的坐标这样的),可以将这些结果也放在这一块。如果楼主需要看论文样式的话,推荐一个网站:这是北京航空航天大学的数学建模网站,里面包括了该学校从92年开始到09年的各届论文,里面不乏一些比较好的论文,楼主如果需要参考样式的话,可以看看这些论文。

1、问题陈述2、模型假设3、模型的建立与求解4、模型验证5、结果分析6、提出新方案7、参考文献

一篇完整的数学建模论文怎么写

数学建模论文写作一、写好数模答卷的重要性 评定参赛队的成绩好坏、高低,获奖级别,数模答卷,是唯一依据。 答卷是竞赛活动的成绩结晶的书面形式。 写好答卷的训练,是科技写作的一种基本训练。 二、答卷的基本内容,需要重视的问题1.评阅原则假设的合理性,建模的创造性,结果的合理性,表述的清晰程度。 2.答卷的文章结构题目(写出较确切的题目;同时要有新意、醒目)摘要(200-300字,包括模型的主要特点、建模方法和主要结论)关键词(求解问题、使用的方法中的重要术语)1)问题重述。2)问题分析。3)模型假设。4)符号说明。5)模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)。6)模型求解(计算方法设计或选择;算法设计或选择,算法思想依据,步骤及实现,计算框图;所采用的软件名称;引用或建立必要的数学命题和定理;求解方案及流程。)7)进一步讨论(结果表示、分析与检验,误差分析,模型检验)8)模型评价(特点,优缺点,改进方法,推广。)9)参考文献。10)附录(计算程序,框图;各种求解演算过程,计算中间结果;各种图形,表格。) 要重视的问题1)摘要。包括: 模型的数学归类(在数学上属于什么类型); 建模的思想(思路); 算法思想(求解思路); 建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验……); 主要结果(数值结果,结论;回答题目所问的全部“问题”)。▲ 注意表述:准确、简明、条理清晰、合乎语法、要求符合文章格式。务必认真校对。2)问题重述。3)问题分析。因素之间的关系、因素与环境之间的关系、因素自身的变化规律、确定研究的方法或模型的类型。5)模型假设。根据全国组委会确定的评阅原则,基本假设的合理性很重要。 根据题目中条件作出假设 根据题目中要求作出假设关键性假设不能缺;假设要切合题意。6) 模型的建立。 基本模型:ⅰ)首先要有数学模型:数学公式、方案等;ⅱ)基本模型,要求完整,正确,简明; 简化模型:ⅰ)要明确说明简化思想,依据等;ⅱ)简化后模型,尽可能完整给出; 模型要实用,有效,以解决问题有效为原则。数学建模面临的、要解决的是实际问题,不追求数学上的高(级)、深(刻)、难(度大)。ⅰ)能用初等方法解决的、就不用高级方法;ⅱ)能用简单方法解决的,就不用复杂方法;ⅲ)能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。d.鼓励创新,但要切实,不要离题搞标新立异。数模创新可出现在:▲ 建模中,模型本身,简化的好方法、好策略等;▲ 模型求解中;▲ 结果表示、分析、检验,模型检验;▲ 推广部分。e.在问题分析推导过程中,需要注意的问题:ⅰ)分析:中肯、确切;ⅱ)术语:专业、内行;ⅲ)原理、依据:正确、明确;ⅳ)表述:简明,关键步骤要列出;ⅴ)忌:外行话,专业术语不明确,表述混乱,冗长。7)模型求解。 需要建立数学命题时:命题叙述要符合数学命题的表述规范,尽可能论证严密。 需要说明计算方法或算法的原理、思想、依据、步骤。若采用现有软件,说明采用此软件的理由,软件名称。 计算过程,中间结果可要可不要的,不要列出。 设法算出合理的数值结果。8) 结果分析、检验;模型检验及模型修正;结果表示。 最终数值结果的正确性或合理性是第一位的; 对数值结果或模拟结果进行必要的检验;结果不正确、不合理、或误差大时,分析原因, 对算法、计算方法、或模型进行修正、改进。 题目中要求回答的问题,数值结果,结论,须一一列出; 列数据问题:考虑是否需要列出多组数据,或额外数据对数据进行比较、分析,为各种方案的提出提供依据; 结果表示:要集中,一目了然,直观,便于比较分析。▲ 数值结果表示:精心设计表格;可能的话,用图形图表形式。▲ 求解方案,用图示更好。9)必要时对问题解答,作定性或规律性的讨论。最后结论要明确。10)模型评价优点突出,缺点不回避。改变原题要求,重新建模可在此做。推广或改进方向时,不要玩弄新数学术语。11)参考文献12)附录详细的结果,详细的数据表格,可在此列出,但不要错,错的宁可不列。主要结果数据,应在正文中列出,不怕重复。检查答卷的主要三点,把三关: 模型的正确性、合理性、创新性 结果的正确性、合理性 文字表述清晰,分析精辟,摘要精彩 三、关于写答卷前的思考和工作规划 答卷需要回答哪几个问题――建模需要解决哪几个问题;问题以怎样的方式回答――结果以怎样的形式表示;每个问题要列出哪些关键数据――建模要计算哪些关键数据;每个量,列出一组还是多组数――要计算一组还是多组数。 四、答卷要求的原理 准确――科学性; 条理――逻辑性; 简洁――数学美; 创新――研究、应用目标之一,人才培养需要; 实用――建模、实际问题要求。五、建模理念 应用意识要解决实际问题,结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。 数学建模用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。 创新意识建模有特点,更加合理、科学、有效、符合实际;更有普遍应用意义;不单纯为创新而创新。

主要是摘要,一般评阅老师只看摘要的哦,三部曲:模型,思想,结果。不要太累赘,摘要单独占一页

论文写作方法一、摘要:500个字左右,包括模型的主要特点、建模方法和主要结果二、关键字:3-5个三.问题重述。略四. 模型假设 根据全国组委会确定的评阅原则,基本假设的合理性很重要。 (1)根据题目中条件作出假设 (2)根据题目中要求作出假设 关键性假设不能缺;假设要切合题意五. 模型的建立 (1) 基本模型: 1) 首先要有数学模型:数学公式、方案等 2) 基本模型,要求 完整,正确,简明 (2) 简化模型 1) 要明确说明:简化思想,依据 2) 简化后模型,尽可能完整给出 (3) 模型要实用,有效,以解决问题有效为原则。 数学建模面临的、要解决的是实际问题, 不追求数学上:高(级)、深(刻)、难(度大)。 u 能用初等方法解决的、就不用高级方法, u 能用简单方法解决的,就不用复杂方法, u 能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。 (4)鼓励创新,但要切实,不要离题搞标新立异数模创新可出现在 1建模中,模型本身,简化的好方法、好策略等, 2模型求解中 3结果表示、分析、检验,模型检验 4推广部分 (5)在问题分析推导过程中,需要注意的问题: u 分析:中肯、确切 u 术语:专业、内行;; u 原理、依据:正确、明确, u 表述:简明,关键步骤要列出 u 忌:外行话,专业术语不明确,表述混乱,冗长。六. 模型求解 (1) 需要建立数学命题时: 命题叙述要符合数学命题的表述规范,尽可能论证严密。 (2) 需要说明计算方法或算法的原理、思想、依据、步骤。 若采用现有软件,说明采用此软件的理由,软件名称 (3) 计算过程,中间结果可要可不要的,不要列出。 (4) 设法算出合理的数值结果。七、 结果分析、检验;模型检验及模型修正;结果表示 (1) 最终数值结果的正确性或合理性是第一位的 ; (2) 对数值结果或模拟结果进行必要的检验。结果不正确、不合理、或误差大时,分析原因, 对算法、 计算方法、或模型进行修正、改进; (3) 题目中要求回答的问题,数值结果,结论,须一一列出; (4) 列数据问题:考虑是否需要列出多组数据,或额外数据 对数据进行比较、分析,为各种方案的提出提供依据; (5) 结果表示:要集中,一目了然,直观,便于比较分析 1数值结果表示:精心设计表格;可能的话,用图形图表形式 2求解方案,用图示更好 (6) 必要时对问题解答,作定性或规律性的讨论。最后结论要明确。八.模型评价 优点突出,缺点不回避。 改变原题要求,重新建模可在此做。 推广或改进方向时,不要玩弄新数学术语。九、参考文献.十、附录 详细的结果,详细的数据表格,可在此列出。 但不要错,错的宁可不列。 主要结果数据,应在正文中列出,不怕重复。 检查答卷的主要三点,把三关: n 模型的正确性、合理性、创新性 n 结果的正确性、合理性 n 文字表述清晰,分析精辟,摘要精彩

一篇完整的数学建模论文题目怎么写

重点:数模论文的格式及要求 难点:团结协作的充分体现 一、 写好数模论文的重要性 数模论文是评定参与者的成绩好坏、高低、获奖级别的惟一依据 数模论文是培训(或竞赛)活动的最终成绩的书面形式。 写好论文的训练,是科技论文写作的一种基本训练。 二、数模论文的基本内容 1,评阅原则: 假设的合理性; 建模的创造性; 结果的合理性; 表述的清晰程度 2,数模论文的结构 0、摘要 1、问题的提出:综述问题的内容及意义 2、模型的假设:写出问题的合理假设,符号的说明 3、模型的建立:详细叙述模型、变量、参数代表的意义和满足的条件,进行问题分析,公式推导,建立基本模型,深化模型,最终或简化模型等 4、模型的求解:求解及算法的主要步骤,使用的数学软件等 5、模型检验:结果表示、分析与检验,误差分析等 6、模型评价:本模型的特点,优缺点,改进方法 7、参考文献:限公开发表文献,指明出处 8、 附录:计算框图、计算程序,详细图表 三、需要重视的问题 0.摘要   表述:准确、简明、条理清晰、合乎语法。   字数300-500字,包括模型的主要特点、建模方法和主要结果。可以有公式,不能有图表   简单地说,摘要应体现:用了什么方法,解决了什么问题,得到了那些主要结论。还可作那些推广。 1、 建模准备及问题重述: 了解问题实际背景,明确建模目的,搜集文献、数据等,确定模型类型,作好问题重述。   在此过程中,要充分利用电子图书资源及纸质图书资源,查找相关背景知识,了解本问题的研究现状,所用到的基本解决方法等。 2、模型假设、符号说明 基本假设的合理性很重要 (1)根据题目条件作假设; (2)根据题目要求作假设; (3)基本的、关键性假设不能缺; (4)符号使用要简洁、通用。 3、模型的建立 (1)基本模型 1) 首先要有数学模型:数学公式、方案等 2) 基本模型:要求完整、正确、简明,粗糙一点没有关系 (2)深化模型 1)要明确说明:深化的思想,依据,如弥补了基本模型的不足…… 2)深化后的模型,尽可能完整给出 3)模型要实用,有效,以解决问题有效为原则。数学建模面临的、是要解决实际问题,不追求数学上的高(级)、深(刻)、难(度)。 ▲能用初等方法解决的、就不用高级方法;   ▲能用简单方法解决的,就不用复杂方法;   ▲能用被更多人看懂、理解的方法,就不用只有少数人看懂、理解的方法。   4)鼓励创新,但要切实,不要离题搞标新立异,数模创新可出现在   ▲建模中:模型本身,简化的好方法、好策略等;   ▲模型求解中;   ▲结果表示、分析,模型检验;   ▲推广部分。 5)在问题分析推导过程中,需要注意的:  ▲分析要:中肯、确切;  ▲术语要:专业、内行;  ▲原理、依据要:正确、明确;  ▲表述要:简明,关键步骤要列出;  ▲忌:外行话,专业术语不明确,表述混乱、繁琐,冗长。 4、模型求解 (1)需要建立数学命题时:命题叙述要符合数学命题的表述规范,论证要尽可能严密; (2)需要说明计算方法或算法的原理、思想、依据、步骤。若采用现有软件,要说明采用此软件的理由,软件名称; (3)计算过程,中间结果可要可不要的,不要列出。 (4)设法算出合理的数值结果。 5、模型检验、结果分析 (1) 最终数值结果的正确性或合理性是第一位的 ; (2)对数值结果或模拟结果进行必要的检验。    当结果不正确、不合理、或误差大时,要分析原因,对算法、计算方法、或模型进行修正、改进; (3)题目中要求回答的问题,数值结果,结论等,须一一列出; (4)列数据是要考虑:是否需要列出多组数据,或额外数据;对数据进行比较、分析,为各种方案的提出提供可依赖的依据; (5)结果表示:要集中,一目了然,直观,便于比较分析。(最好不要跨页) ▲数值结果表示:精心设计表格;可能的话,用图形图表形式。 ▲求解方案,用图示更好 (6) 必要时对问题解答,作定性或规律性的讨论。   最后结论要明确。 6.模型评价   优点要突出,缺点不回避。若要改变原题要求,重新建模则可在此进行。推广或改进方向时,不要玩弄新数学术语。 7、参考文献   限于公开发表的文章、文献资料或网页 规范格式:   [1] 陈理荣,数学建模导论(M),北京:北京邮电大学出版社, [2] 楚扬杰,快速聚类分析在产品市场区分中的应用(J),武汉理工大学学报,2004,23(2),20- 8、附录 详细的数据、表格、图形,计算程序均应在此列出。但不要错,错的宁可不列。主要结果数据,应在正文中列出。 9、关于写答卷前的思考和工作规划  答卷需要回答哪几个问题――建模需要解决哪几个问题   问题以怎样的方式回答――结果以怎样的形式表示   每个问题要列出哪些关键数据――建模要计算哪些关键数据   每个量,列出一组还是多组数――要计算一组还是多组数…… 10、答卷要求的原理 ▲ 准确――科学性 ▲ 条理――逻辑性 ▲ 简洁――数学美 ▲ 创新――研究、应用目标之一,人才培养需要 ▲ 实用――建模。实际问题要求。 四、建模理念 应用意识:要让你的数学模型能解决或说明实际问题,其结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。 数学建模:用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。相同问题上要能够推广。 创新意识:建模有特点,要合理、科学、有效、符合实际;要有普遍应用意义;不单纯为创新而创新 五、格式要求 参赛论文写作格式 论文题目(三号黑体,居中) 一级标题(四号黑体,居中) 论文中其他汉字一律采用小四号宋体,单倍行距。论文纸用白色A4,上下左右各留出5厘米的页边距。 首页为论文题目和作者的专业、班级、姓名、学号,第二页为论文题目和摘要,论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字“1”开始连续编号。 第四页开始论文正文 正文应包括以下八个部分: 问题提出: 叙述问题内容及意义; 基本假设: 写出问题的合理假设; 建立模型: 详细叙述模型、变量、参数代表的意义和满足的条件及建模的思想; 模型求解: 求解、算法的主要步骤; 结果分析与检验:(含误差分析); 模型评价: 优缺点及改进意见; 参考文献: 限公开发表文献,指明出处; 参考文献在正文引用处用方括号标示参考文献的编号,如[1][3]等。参考文献按正文中的引用次序列出,其中 书籍的表述方式为: [编号] 作者,书名,出版地:出版社,出版年 参考文献中期刊杂志论文的表述方式为: [编号] 作者,论文名,杂志名,卷期号:出版年 参考文献中网上资源的表述方式为: [编号] 作者,资源标题,网址,访问时间(年月日) 附录:计算框图,原程序及打印结果。 六、分工协作取佳绩 最好三人一组,这三人中尽量做到一人数学基础较好,一人应用数学软件和编程的能力较强,一人科技论文写作水平较好。科技论文的写作要求整篇论文的结构严谨,语言要有逻辑性,用词要准确。 三人之间要能够配合得起来。若三人之间配合不好,会降低效率,导致整个建模的失败。   在合作的过程中,最好是能够找出一个组长,即要能够总揽全局,包括任务的分配,相互间的合作和进度的安排。    在建模过程中出现意见不统一时,要尊重为先,理解为重,做到 “给我一个相信你的理由”和“相信我,我的理由是……”,不要作无谓的争论。要善于斗争,勇于妥协。 还要注意以下几点: 注意存盘,以防意外 写作与建模工作同步 注意保密,以防抄袭 数学建模成功的条件和模型: 有兴趣,肯钻研;有信心,勇挑战;有决心,不怕难;有知识,思路宽;有能力,能开拓;有水平,善协作;有办法,点子多;有毅力,轻结果。

论文写作方法一、摘要:500个字左右,包括模型的主要特点、建模方法和主要结果二、关键字:3-5个三.问题重述。略四. 模型假设 根据全国组委会确定的评阅原则,基本假设的合理性很重要。 (1)根据题目中条件作出假设 (2)根据题目中要求作出假设 关键性假设不能缺;假设要切合题意五. 模型的建立 (1) 基本模型: 1) 首先要有数学模型:数学公式、方案等 2) 基本模型,要求 完整,正确,简明 (2) 简化模型 1) 要明确说明:简化思想,依据 2) 简化后模型,尽可能完整给出 (3) 模型要实用,有效,以解决问题有效为原则。 数学建模面临的、要解决的是实际问题, 不追求数学上:高(级)、深(刻)、难(度大)。 u 能用初等方法解决的、就不用高级方法, u 能用简单方法解决的,就不用复杂方法, u 能用被更多人看懂、理解的方法,就不用只能少数人看懂、理解的方法。 (4)鼓励创新,但要切实,不要离题搞标新立异数模创新可出现在 1建模中,模型本身,简化的好方法、好策略等, 2模型求解中 3结果表示、分析、检验,模型检验 4推广部分 (5)在问题分析推导过程中,需要注意的问题: u 分析:中肯、确切 u 术语:专业、内行;; u 原理、依据:正确、明确, u 表述:简明,关键步骤要列出 u 忌:外行话,专业术语不明确,表述混乱,冗长。六. 模型求解 (1) 需要建立数学命题时: 命题叙述要符合数学命题的表述规范,尽可能论证严密。 (2) 需要说明计算方法或算法的原理、思想、依据、步骤。 若采用现有软件,说明采用此软件的理由,软件名称 (3) 计算过程,中间结果可要可不要的,不要列出。 (4) 设法算出合理的数值结果。七、 结果分析、检验;模型检验及模型修正;结果表示 (1) 最终数值结果的正确性或合理性是第一位的 ; (2) 对数值结果或模拟结果进行必要的检验。结果不正确、不合理、或误差大时,分析原因, 对算法、 计算方法、或模型进行修正、改进; (3) 题目中要求回答的问题,数值结果,结论,须一一列出; (4) 列数据问题:考虑是否需要列出多组数据,或额外数据 对数据进行比较、分析,为各种方案的提出提供依据; (5) 结果表示:要集中,一目了然,直观,便于比较分析 1数值结果表示:精心设计表格;可能的话,用图形图表形式 2求解方案,用图示更好 (6) 必要时对问题解答,作定性或规律性的讨论。最后结论要明确。八.模型评价 优点突出,缺点不回避。 改变原题要求,重新建模可在此做。 推广或改进方向时,不要玩弄新数学术语。九、参考文献.十、附录 详细的结果,详细的数据表格,可在此列出。 但不要错,错的宁可不列。 主要结果数据,应在正文中列出,不怕重复。 检查答卷的主要三点,把三关: n 模型的正确性、合理性、创新性 n 结果的正确性、合理性 n 文字表述清晰,分析精辟,摘要精彩

一篇完整的数学建模论文题目

2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。 学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程: 现实原型问 题 数学模型 数学抽象 简化原则 演算推理 现实原型问题的解 数学模型的解 反映性原则 返回解释 列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。 3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。 高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。 例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。 时间(年份) 1910 1920 1930 1940 1950 1960 1970 1980 1990 人中数(百万) 39 50 63 76 92 106 123 132 145 分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。 通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。 四、培养学生的其他能力,完善数学建模思想。 由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想: (1)理解实际问题的能力; (2)洞察能力,即关于抓住系统要点的能力; (3)抽象分析问题的能力; (4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力; (5)运用数学知识的能力; (6)通过实际加以检验的能力。 只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。 例2:解方程组 x+y+z=1 (1) x2+y2+z2=1/3 (2) x3+y3+z3=1/9 (3) 分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。 方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根 t3-t2+1/3t-1/27=0 (4) 函数模型: 由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3) 平面解析模型 方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。 总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。

本题主要目的是建立相关模型解决在修建水渠过程中的诸多问题,从而实现工程量最优化。 针对问题一,为了求得开掘水渠的土石方量,本文通过对比分段三次Hermite 插值与三次样条插值,最终采用分段三次 Hermite 插值的方法对已知数 据点进行插值拟合,得到关于水渠的曲线方程   y f x  ,对水渠曲线方程积分即得到水渠长度    14550 7650 21 dx yL ,利用 MATLAB 求解得到水渠长度为: m 7522 。因此最终解得开掘水渠的总土石方量为: 3 m135405LSV  。 针对问题二,在问题一的基础上,本文建立积分上限函数模型:令 7650 a ,1x 满足 1 2 16xaVS y dt      ,求出 i x 后, 1 ix  满足 1 2 16iixxVS y dt       ,从而将总土石方量的六等分,得到 7 8736x 1  , 2 9862x 2  , 10956 x3  , 12116 x4  ,13353x 5  ,进而确定了六等分点的坐标  y,x 。 针对问题三,设在沿水渠的公路上有三个变量,分别为 k ji x ,x,x ,为使得运输工作量最小,本文建立了无约束规划模型,利用 MATLAB 求解得到最小运输量为 4 7 m  。并给出了修建两条公路时水渠上的位置坐标   5167,9296B 和   388811683C , 。 关键词:Hermite 插值 MATLAB 积分上限函数 无约束规划 一、问题重述 在某地区开掘水渠,已知该水渠经过的若干点。 问题一,求解水渠施工的总石方量; 问题二,如果将水渠的分成 6 截,每截土石方量相同,分段点应该取在何位置; 问题三,设平行于水渠修一条路。河道中挖出的土石方要运往 A(9500,4000)处为了方便运输,计划在沿水渠的公路上选择两点修建通往 A 处的临时公路,使得总的土石方运输工作量最小。 二、问题的分析 针对问题一,本题要求开掘水渠的总土石方量,已知水渠截面积,则主要目的在于求得水渠长度。已知水渠经过的若干点的位置,要得到水渠的长度,本文想到用插值拟合可以得到水渠曲线,对曲线积分则得到水渠长度。插值与拟合的方法有多种,样条插值会较光滑,但不一定能保持原有形状,考虑到要更好的保持水渠的形状,于是,本文选用 Hermite 方法进行插值拟合。 针对问题二, 要将水渠六等分且每段的土石方量相同,此问题为函数的反解问题,因此,在已知水渠曲线函数的情况下,本文可以考虑到用积分上限函数求解,从而确定 x 点,进而得到 y 点。 针对问题三,要修建公路以运输土石方,从而使运输量工作量最小。此问题为规划问题,在问题二中,本文已知 x 与土石方量 V 存在关系,又因为运输工作量等于土石方量与距离的乘积,因此,本文使用无约束规划模型,求工作量最小值即可。 三、模型假设 1、修建的两条临时公路为直线。 2、沿水渠的公路函数曲线近似与水渠的曲线函数相同。 四、符号说明   xf 水渠曲线方程 V 土石方量 S 水渠截面积 L 水渠长度 ix 水渠上点的横坐标 iy 水渠上点的纵坐标 iW 土石方运输工作量 1L 临时公路 2L 临时公路 五、模型的建立与求解 1 问题一 1 插值与拟合 由已知水渠经过的点,做出散点图(图 1) 8 9 1 1 2 3 4 x 10 420002500300035004000450050005500600065007000X/mY/m水渠散点图 图 水渠散点图 方法 1、利用 Hermite 方法对已知数据点进行插值。 【3】 设 已 知 函 数   xfy  在 1 n 个互异节点 n 10 x ,L,x,x 上 的 函 数 值   ii xfy    n,L,1,0i  和导数值   i ' i ' x fy  ,要求一个至多 2 n +1 次的多项 式   xH ,使得   i i yxH    i ' i ' y xH    n,1,0i  Hermite 插值多项式为:      2 ' i i i i i i H x h x x a y y y       其中,2nij 0j j ij i x x xx h               ,      n ij 0j j i i x x 1 a 。 利用 MATLAB 进行插值,得到插值曲线(图 2)。 8 9 1 1 2 3 4 x 10 420002500300035004000450050005500600065007000Hermite插值曲线与原始数据点X/mY/m Hermite插值曲线 原始数据点 图 Hermite 插值曲线与原始数据点 方法 2、利用样条差值对已知数据点进行插值。 【3】 定义样条函数: 数学上将具有一定光滑性的分段多项式称为样条函数。具体的说,给定区间   a,b 的一个划分 0 1 1nn :a x x x x b         如果函数 () sx满足: 在每个小区间  1 , ( 0,1, , 1) ii x x i n   上 () sx是k 次多项式; () sx在  a,b 上具有 1 k 阶连续导数。 则称 () sx为关于划分的k 次样条函数,其图形称为k 次样条曲线。 01 , , , n x x x 称为样条节点, 1 2 1 , , , n x x x  称为内节点, 0, n xx称为边界点,这样样条函数的全体记作 ( , ) p Sk  ,称为k 次样条函数空间。 显然,折线是一次样条曲线。 若 ( ) ( , ) p s x S k ,则 () sx是关于分划的k 次多项式样条函数。k 次多项式样条函数的一般形式为 101 ( ) ( ) !! i kn j ki kj ij x s x x x ik         其中 ( 0,1, , ) i ik   和 ( 1,2, , 1) j jn  均为任意常数,而 ( ) , ( ) , ( 1,2, , 1) 0, k jjk j j x x x x x x j n xx           本文使用 3 k  的情况:即为三次样条函数。 三次样条函数:对于  a,b 上的划分 0 1 1nn :a x x x x b         ,则 1 2 3 3 323 0 11 ( ) ( ) ( ,3) 2! 3! 3! n j jp j aa s x x x x x x S               其中3 3 ( ) , ( ) , ( 1,2, , 1) 0, jj j j x x x x x x j n xx           三次样条函数差值: 由于 3( ) ( ,3) ps x S中含有 3 n 个待定系数,故应需要 3 n 个插值条件,已知插值节点 i x 和相应的函数值 ( ) ( 0,1,2, , ) ii f x y i n  ,这里提供了 1 n 个条件,还需要 2 个边界条件。 常用的三次样条函数的边界条件有 3 中类型: (1) 3 0 3 ( ) , ( ) n s a y s b y     。由这中边界条件建立的样条插值函数称为 () fx的 完备三次样条插值函数。 特别的, 0'0 n yy  时,样条曲线在端点处呈水平状态。 如果 () fx  不知道,可以要求 3() sx  与 () fx  在端点处近似相等。这时以0 1 2 3 , , , x x x x 为节点作一个三次 Newton 插值多项式 () a Nx,以 1 2 3 , , , n n n n x x x x    作一个三次 Newton 插值多项式 () b Nx,要求 ( ) ( ), ( ) ( ) ab s a N a s b N b      由这种边界条件建立的三次样条称为 () fx的 Lagrange 三次样条插值函数。 (2) 3 0 3 3 ( ) , ( ) s a y s b y      。特别的 0 nn yy   时,称为自然边界条件。 (3) 3 3 3 3 ( 0) ( 0), ( 0) ( 0) s a s b s a s b           ,(这里要求 33 ( 0) ( 0) s a s b    )此条件称为周期条件。 利用 MATLAB 进行三次样条插值,得到插值曲线(图 3)。 8 9 1 1 2 3 4 x 10 420002500300035004000450050005500600065007000X/mY/m三次样条插值曲线与原始数据点 三次样条插值曲线 原始数据点 图 三次样条插值曲线与原始数据点 Hermite 插值与三次样条插值的对比【5】: SPLINE 提供的函数 s(x)的构建方法和 PCHIP 里面的函数 p(x)完全相同,只 O x y 0 AM  1M2M1nM n BM  图 4 不过在 X(j)处的斜率的选择方法不一样, SPLINE 函数的 s(x)在 X(j)的二阶导数 D^2s(x)也是连续的,这导致了如下结果: (1) SPLINE 更加光滑,即,D^2s(x)是连续的。 (2) 如果数据是一个光滑函数的值,则 SPLINE 更加精确。 (3) 如果数据不是光滑的,则 PCHIP 没有 overshoots,也不太震荡。 (4) PCHIP 建立的难度较小。 (5) 这两种函数估计的难度是一样的。 三次样条比 Hermite 插值光滑,样条的两阶导数连续,而 Hermite 插值一阶导数连续。不连续的两阶导数隐含着不连续的曲率。人的眼睛可以检测出图形上曲率的不连续。另一方面,Hermite 插值是保形状的,而样条插值不一定保形状。 通过对比 Hermite 插值与三次样条插值,针对本题并无明显差异。为了更好的保证图形形状,减小误差,本文采用 Hermite 插值。 2 求解水渠长度 圆的周长可以利用圆的内接正多边形的周长当边数无限增多时的极限确定。类似的方法,可以用来建立平面连续曲线的弧长,应用定积分来计算弧长。 设 AB 、 是曲线弧的两个端点。在弧 AB 上以此取分点: 0 1 2 1 1 , , , , , , , , i i n n A M M M M M M M B   ,并以此连接相邻分点得一折线(图4)。 当分点的数目无限增加且每小段 1ii MM  都缩向一点时,如果此折线的长11niiiMM    的极限存在,则称此极限为曲线弧 AB 的弧长,并称此曲线弧 AB 是 可求长的。 由于光滑曲线弧是可求长的,故可应用定积分来计算弧长。 设曲线弧由参数方程:  () , () xt t yt       给出,其中 ( ), ( ) tt  在  , 上具有连续导数,且 ( ) ( ) tt   、 不同时为零,现计算该曲线弧的长度。 取参数t为积分变量,它的变化区间为  , 。相应于  , 上任一小区间  , t t dt  的小弧段的长度 s  近似等于对应的弦的长度 22 ( ) ( ) xy    ,因为 ( ) ( ) ( ) x t dt t dx t dt          ( ) ( ) ( ) y t dt t dy t dt          所以, s  的近似值(弧微分)即弧长元素为 2 2 2 2 2 2 2 2 ( ) ( ) ( )( ) ( )( ) ( ) ( ) ds dx dy t dt t dt t t dt               于是所求弧长为 22 ( ) ( ) s t t dt       当曲线弧由直角坐标方程 ( ) ( ) y f x a x b    给出,其中 () fx在  , ab上具有一阶连续导数,这时曲线弧由参数方程 ()() xxa x by f x    从而所求的弧长为 21b a s y dx    利用插值后得到的水渠的曲线函数,对其进行积分,则为水渠长度。    14550 7650 21 dx yL 用 MATLAB 求解得到 m 7522L 3 求解土石方量 已知,水渠长度,水渠截面积。 则:   2 m1822810S  3m135405LSV  2 问题二 设函数 () fx在区间  , ab上连续,并且设x为  , ab上的一点。观察 () fx在部 分区间  , ax上的定积分 ()xa f x dx 首先,由于 () fx在  , ax上依旧连续,因此该定积分存在。这里,x即表示定积分的上限,又表示积分变量。因为定积分与积分变量的记号无关,所以,为了明确起见,可以吧积分变量改用其他符号,例如用t表示,则上面的定积分可以写成 ()xa f t dt 如果上限x在区间  , ab上任意变动,则对于每一个取定的x值,定积分有一 个对应值,所以它在  , ab上定义了一个函数,记作 () x : ( ) ( ) ( ) x a x f t dt a x b      () x 便为积分上限函数。 本文针对问题二建立积分上限函数模型: 216xaVS y dt      通过起点a作为积分下限,求得第一个积分上限,即第一个等分点,第一个等分点为积分下限,求得第二个积分上限,即第二个等分点,以此类推。改变积分上下限,确定5个等分点,将水渠六等分,且每段土石方量相同。 利用 MATLAB 求解(见附录 2),得到等分点坐标为:   5214,8736 ,   4797,9862 ,   419710956 , ,   3730,12116 ,   3540,13353 且每段的土石方量为: 3 1253 3 问题三 由问题二知土石方量 V 与水渠曲线函数存在关系。首先建立   xFV  模型。设在沿水渠的公路上有三个变量为 k ji x ,x,x ,修建的临时公路需要保证运输工作量最小,因此,在 D 点左边开掘水渠的土石方均运到 B 处,在 D 右边开掘水渠的土石方都运往 C 处。最终将土石方由 B、C 两处运往 A 处(示意图见图4) y = f(x)(xk)(xj)D(xi)L2L1ACB 图水渠临时公路修建示意图 运输工作量等于土石方量乘以距离,因此对于水渠曲线上的运输工作量本文建立的模型为: 以 i 0 x ~x 段为例,设:该段水渠长度为n L L,L i 0 i0  ,该段土石方量为n SLn V V,V i 0i0 i0   , 则: )LnL(V)L2L(V)LL(VW i0i0i0i0      )n21(LVVLn i0     n2 1nLV  当     i 0 i 0 x x2xx2 i0 dx y1dxy1S 2 1 LV 2 1 W,n 同理可得 1 kjkij W,W,W 则: iji01kjk1 WWWWW  14550 14550 2 2 2 2 11 1 1 1 1 22 kk j j k k xx x x x x S y dx y dx S y dx y dx                      j i j i ii x x 2x x 2x 7650 2x 7650 2 dx y1dxy1S 2 1 dxy1dxy1S 2 1 对于由 B、C 两点运往 A 处的运输工作量本文建立的模型为:        2 0k 2 0k 14550 x 22 0i 2 0ix76502 2 y yxxdxy1Syyxxdxy1SWjj   要使运输工作量最小,即 1 W 、 2 W 之和达到最小,因此,本文建立无约束规划模型:     kji2kji1 x,x,xWx,x,xWMin  即:                      2 0i 2 0i x 7650 2 2x x 2 2x 7650 2 y yxxdxy1dxy1 2 1 dxy1 2 1 Min j j i i                      2 0k 2 0k 14550 x 2 214550 x 2 2 x x 2 y yxxdxy1dxy1 2 1 dxy1 2 1 jk k j运用 MATLAB 求解得:(程序代码见附录 3) 最小运输工作量为: 4 7 m  B、C 两点的坐标为:   5167,9296B 和   388811683C , 。 六、模型的优缺点 优点: 1、 通过对比 Hermite 插值与三次样条插值,发现求得的水渠长度分别为 5m 和 1m,对本题无明显差异。 2、 对于运输量的规划问题,准确的反应了最优解。 缺点: 1、 对于插值函数的曲线积分,近似了曲线的导数,存在一定误差。 2、 规划问题的运算量较大。利用 MATLAB 算法优势不明显。

二、数学应用题如何建模 建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次: 第一层次:直接建模。 根据题设条件,套用现成的数学公式、定理等数学模型,注解图为: 将题材设条件翻译 成数学表示形式 应用题 审题 题设条件代入数学模型 求解 选定可直接运用的 数学模型 第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。 第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。 第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。 三、建立数学模型应具备的能力 从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。 3.1提高分析、理解、阅读能力。 阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。 3.2强化将文字语言叙述转译成数学符号语言的能力。 将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。 例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少? 将题中给出的文字翻译成符号语言,成本y=a(1-p%)5 3.3增强选择数学模型的能力。 选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表: 函数建模类型 实际问题 一次函数 成本、利润、销售收入等 二次函数 优化问题、用料最省问题、造价最低、利润最大等 幂函数、指数函数、对数函数 细胞分裂、生物繁殖等 三角函数 测量、交流量、力学问题等 3.4加强数学运算能力。 数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。 利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。

一篇完整的数学建模论文题目是什么

2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。 学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程: 现实原型问 题 数学模型 数学抽象 简化原则 演算推理 现实原型问题的解 数学模型的解 反映性原则 返回解释 列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。 3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。 高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。 例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。 时间(年份) 1910 1920 1930 1940 1950 1960 1970 1980 1990 人中数(百万) 39 50 63 76 92 106 123 132 145 分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。 通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。 四、培养学生的其他能力,完善数学建模思想。 由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想: (1)理解实际问题的能力; (2)洞察能力,即关于抓住系统要点的能力; (3)抽象分析问题的能力; (4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力; (5)运用数学知识的能力; (6)通过实际加以检验的能力。 只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。 例2:解方程组 x+y+z=1 (1) x2+y2+z2=1/3 (2) x3+y3+z3=1/9 (3) 分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。 方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根 t3-t2+1/3t-1/27=0 (4) 函数模型: 由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3) 平面解析模型 方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。 总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。 数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。 一、数学应用题的特点 我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点: 第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。 第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。 第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。 第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。

本题主要目的是建立相关模型解决在修建水渠过程中的诸多问题,从而实现工程量最优化。 针对问题一,为了求得开掘水渠的土石方量,本文通过对比分段三次Hermite 插值与三次样条插值,最终采用分段三次 Hermite 插值的方法对已知数 据点进行插值拟合,得到关于水渠的曲线方程   y f x  ,对水渠曲线方程积分即得到水渠长度    14550 7650 21 dx yL ,利用 MATLAB 求解得到水渠长度为: m 7522 。因此最终解得开掘水渠的总土石方量为: 3 m135405LSV  。 针对问题二,在问题一的基础上,本文建立积分上限函数模型:令 7650 a ,1x 满足 1 2 16xaVS y dt      ,求出 i x 后, 1 ix  满足 1 2 16iixxVS y dt       ,从而将总土石方量的六等分,得到 7 8736x 1  , 2 9862x 2  , 10956 x3  , 12116 x4  ,13353x 5  ,进而确定了六等分点的坐标  y,x 。 针对问题三,设在沿水渠的公路上有三个变量,分别为 k ji x ,x,x ,为使得运输工作量最小,本文建立了无约束规划模型,利用 MATLAB 求解得到最小运输量为 4 7 m  。并给出了修建两条公路时水渠上的位置坐标   5167,9296B 和   388811683C , 。 关键词:Hermite 插值 MATLAB 积分上限函数 无约束规划 一、问题重述 在某地区开掘水渠,已知该水渠经过的若干点。 问题一,求解水渠施工的总石方量; 问题二,如果将水渠的分成 6 截,每截土石方量相同,分段点应该取在何位置; 问题三,设平行于水渠修一条路。河道中挖出的土石方要运往 A(9500,4000)处为了方便运输,计划在沿水渠的公路上选择两点修建通往 A 处的临时公路,使得总的土石方运输工作量最小。 二、问题的分析 针对问题一,本题要求开掘水渠的总土石方量,已知水渠截面积,则主要目的在于求得水渠长度。已知水渠经过的若干点的位置,要得到水渠的长度,本文想到用插值拟合可以得到水渠曲线,对曲线积分则得到水渠长度。插值与拟合的方法有多种,样条插值会较光滑,但不一定能保持原有形状,考虑到要更好的保持水渠的形状,于是,本文选用 Hermite 方法进行插值拟合。 针对问题二, 要将水渠六等分且每段的土石方量相同,此问题为函数的反解问题,因此,在已知水渠曲线函数的情况下,本文可以考虑到用积分上限函数求解,从而确定 x 点,进而得到 y 点。 针对问题三,要修建公路以运输土石方,从而使运输量工作量最小。此问题为规划问题,在问题二中,本文已知 x 与土石方量 V 存在关系,又因为运输工作量等于土石方量与距离的乘积,因此,本文使用无约束规划模型,求工作量最小值即可。 三、模型假设 1、修建的两条临时公路为直线。 2、沿水渠的公路函数曲线近似与水渠的曲线函数相同。 四、符号说明   xf 水渠曲线方程 V 土石方量 S 水渠截面积 L 水渠长度 ix 水渠上点的横坐标 iy 水渠上点的纵坐标 iW 土石方运输工作量 1L 临时公路 2L 临时公路 五、模型的建立与求解 1 问题一 1 插值与拟合 由已知水渠经过的点,做出散点图(图 1) 8 9 1 1 2 3 4 x 10 420002500300035004000450050005500600065007000X/mY/m水渠散点图 图 水渠散点图 方法 1、利用 Hermite 方法对已知数据点进行插值。 【3】 设 已 知 函 数   xfy  在 1 n 个互异节点 n 10 x ,L,x,x 上 的 函 数 值   ii xfy    n,L,1,0i  和导数值   i ' i ' x fy  ,要求一个至多 2 n +1 次的多项 式   xH ,使得   i i yxH    i ' i ' y xH    n,1,0i  Hermite 插值多项式为:      2 ' i i i i i i H x h x x a y y y       其中,2nij 0j j ij i x x xx h               ,      n ij 0j j i i x x 1 a 。 利用 MATLAB 进行插值,得到插值曲线(图 2)。 8 9 1 1 2 3 4 x 10 420002500300035004000450050005500600065007000Hermite插值曲线与原始数据点X/mY/m Hermite插值曲线 原始数据点 图 Hermite 插值曲线与原始数据点 方法 2、利用样条差值对已知数据点进行插值。 【3】 定义样条函数: 数学上将具有一定光滑性的分段多项式称为样条函数。具体的说,给定区间   a,b 的一个划分 0 1 1nn :a x x x x b         如果函数 () sx满足: 在每个小区间  1 , ( 0,1, , 1) ii x x i n   上 () sx是k 次多项式; () sx在  a,b 上具有 1 k 阶连续导数。 则称 () sx为关于划分的k 次样条函数,其图形称为k 次样条曲线。 01 , , , n x x x 称为样条节点, 1 2 1 , , , n x x x  称为内节点, 0, n xx称为边界点,这样样条函数的全体记作 ( , ) p Sk  ,称为k 次样条函数空间。 显然,折线是一次样条曲线。 若 ( ) ( , ) p s x S k ,则 () sx是关于分划的k 次多项式样条函数。k 次多项式样条函数的一般形式为 101 ( ) ( ) !! i kn j ki kj ij x s x x x ik         其中 ( 0,1, , ) i ik   和 ( 1,2, , 1) j jn  均为任意常数,而 ( ) , ( ) , ( 1,2, , 1) 0, k jjk j j x x x x x x j n xx           本文使用 3 k  的情况:即为三次样条函数。 三次样条函数:对于  a,b 上的划分 0 1 1nn :a x x x x b         ,则 1 2 3 3 323 0 11 ( ) ( ) ( ,3) 2! 3! 3! n j jp j aa s x x x x x x S               其中3 3 ( ) , ( ) , ( 1,2, , 1) 0, jj j j x x x x x x j n xx           三次样条函数差值: 由于 3( ) ( ,3) ps x S中含有 3 n 个待定系数,故应需要 3 n 个插值条件,已知插值节点 i x 和相应的函数值 ( ) ( 0,1,2, , ) ii f x y i n  ,这里提供了 1 n 个条件,还需要 2 个边界条件。 常用的三次样条函数的边界条件有 3 中类型: (1) 3 0 3 ( ) , ( ) n s a y s b y     。由这中边界条件建立的样条插值函数称为 () fx的 完备三次样条插值函数。 特别的, 0'0 n yy  时,样条曲线在端点处呈水平状态。 如果 () fx  不知道,可以要求 3() sx  与 () fx  在端点处近似相等。这时以0 1 2 3 , , , x x x x 为节点作一个三次 Newton 插值多项式 () a Nx,以 1 2 3 , , , n n n n x x x x    作一个三次 Newton 插值多项式 () b Nx,要求 ( ) ( ), ( ) ( ) ab s a N a s b N b      由这种边界条件建立的三次样条称为 () fx的 Lagrange 三次样条插值函数。 (2) 3 0 3 3 ( ) , ( ) s a y s b y      。特别的 0 nn yy   时,称为自然边界条件。 (3) 3 3 3 3 ( 0) ( 0), ( 0) ( 0) s a s b s a s b           ,(这里要求 33 ( 0) ( 0) s a s b    )此条件称为周期条件。 利用 MATLAB 进行三次样条插值,得到插值曲线(图 3)。 8 9 1 1 2 3 4 x 10 420002500300035004000450050005500600065007000X/mY/m三次样条插值曲线与原始数据点 三次样条插值曲线 原始数据点 图 三次样条插值曲线与原始数据点 Hermite 插值与三次样条插值的对比【5】: SPLINE 提供的函数 s(x)的构建方法和 PCHIP 里面的函数 p(x)完全相同,只 O x y 0 AM  1M2M1nM n BM  图 4 不过在 X(j)处的斜率的选择方法不一样, SPLINE 函数的 s(x)在 X(j)的二阶导数 D^2s(x)也是连续的,这导致了如下结果: (1) SPLINE 更加光滑,即,D^2s(x)是连续的。 (2) 如果数据是一个光滑函数的值,则 SPLINE 更加精确。 (3) 如果数据不是光滑的,则 PCHIP 没有 overshoots,也不太震荡。 (4) PCHIP 建立的难度较小。 (5) 这两种函数估计的难度是一样的。 三次样条比 Hermite 插值光滑,样条的两阶导数连续,而 Hermite 插值一阶导数连续。不连续的两阶导数隐含着不连续的曲率。人的眼睛可以检测出图形上曲率的不连续。另一方面,Hermite 插值是保形状的,而样条插值不一定保形状。 通过对比 Hermite 插值与三次样条插值,针对本题并无明显差异。为了更好的保证图形形状,减小误差,本文采用 Hermite 插值。 2 求解水渠长度 圆的周长可以利用圆的内接正多边形的周长当边数无限增多时的极限确定。类似的方法,可以用来建立平面连续曲线的弧长,应用定积分来计算弧长。 设 AB 、 是曲线弧的两个端点。在弧 AB 上以此取分点: 0 1 2 1 1 , , , , , , , , i i n n A M M M M M M M B   ,并以此连接相邻分点得一折线(图4)。 当分点的数目无限增加且每小段 1ii MM  都缩向一点时,如果此折线的长11niiiMM    的极限存在,则称此极限为曲线弧 AB 的弧长,并称此曲线弧 AB 是 可求长的。 由于光滑曲线弧是可求长的,故可应用定积分来计算弧长。 设曲线弧由参数方程:  () , () xt t yt       给出,其中 ( ), ( ) tt  在  , 上具有连续导数,且 ( ) ( ) tt   、 不同时为零,现计算该曲线弧的长度。 取参数t为积分变量,它的变化区间为  , 。相应于  , 上任一小区间  , t t dt  的小弧段的长度 s  近似等于对应的弦的长度 22 ( ) ( ) xy    ,因为 ( ) ( ) ( ) x t dt t dx t dt          ( ) ( ) ( ) y t dt t dy t dt          所以, s  的近似值(弧微分)即弧长元素为 2 2 2 2 2 2 2 2 ( ) ( ) ( )( ) ( )( ) ( ) ( ) ds dx dy t dt t dt t t dt               于是所求弧长为 22 ( ) ( ) s t t dt       当曲线弧由直角坐标方程 ( ) ( ) y f x a x b    给出,其中 () fx在  , ab上具有一阶连续导数,这时曲线弧由参数方程 ()() xxa x by f x    从而所求的弧长为 21b a s y dx    利用插值后得到的水渠的曲线函数,对其进行积分,则为水渠长度。    14550 7650 21 dx yL 用 MATLAB 求解得到 m 7522L 3 求解土石方量 已知,水渠长度,水渠截面积。 则:   2 m1822810S  3m135405LSV  2 问题二 设函数 () fx在区间  , ab上连续,并且设x为  , ab上的一点。观察 () fx在部 分区间  , ax上的定积分 ()xa f x dx 首先,由于 () fx在  , ax上依旧连续,因此该定积分存在。这里,x即表示定积分的上限,又表示积分变量。因为定积分与积分变量的记号无关,所以,为了明确起见,可以吧积分变量改用其他符号,例如用t表示,则上面的定积分可以写成 ()xa f t dt 如果上限x在区间  , ab上任意变动,则对于每一个取定的x值,定积分有一 个对应值,所以它在  , ab上定义了一个函数,记作 () x : ( ) ( ) ( ) x a x f t dt a x b      () x 便为积分上限函数。 本文针对问题二建立积分上限函数模型: 216xaVS y dt      通过起点a作为积分下限,求得第一个积分上限,即第一个等分点,第一个等分点为积分下限,求得第二个积分上限,即第二个等分点,以此类推。改变积分上下限,确定5个等分点,将水渠六等分,且每段土石方量相同。 利用 MATLAB 求解(见附录 2),得到等分点坐标为:   5214,8736 ,   4797,9862 ,   419710956 , ,   3730,12116 ,   3540,13353 且每段的土石方量为: 3 1253 3 问题三 由问题二知土石方量 V 与水渠曲线函数存在关系。首先建立   xFV  模型。设在沿水渠的公路上有三个变量为 k ji x ,x,x ,修建的临时公路需要保证运输工作量最小,因此,在 D 点左边开掘水渠的土石方均运到 B 处,在 D 右边开掘水渠的土石方都运往 C 处。最终将土石方由 B、C 两处运往 A 处(示意图见图4) y = f(x)(xk)(xj)D(xi)L2L1ACB 图水渠临时公路修建示意图 运输工作量等于土石方量乘以距离,因此对于水渠曲线上的运输工作量本文建立的模型为: 以 i 0 x ~x 段为例,设:该段水渠长度为n L L,L i 0 i0  ,该段土石方量为n SLn V V,V i 0i0 i0   , 则: )LnL(V)L2L(V)LL(VW i0i0i0i0      )n21(LVVLn i0     n2 1nLV  当     i 0 i 0 x x2xx2 i0 dx y1dxy1S 2 1 LV 2 1 W,n 同理可得 1 kjkij W,W,W 则: iji01kjk1 WWWWW  14550 14550 2 2 2 2 11 1 1 1 1 22 kk j j k k xx x x x x S y dx y dx S y dx y dx                      j i j i ii x x 2x x 2x 7650 2x 7650 2 dx y1dxy1S 2 1 dxy1dxy1S 2 1 对于由 B、C 两点运往 A 处的运输工作量本文建立的模型为:        2 0k 2 0k 14550 x 22 0i 2 0ix76502 2 y yxxdxy1Syyxxdxy1SWjj   要使运输工作量最小,即 1 W 、 2 W 之和达到最小,因此,本文建立无约束规划模型:     kji2kji1 x,x,xWx,x,xWMin  即:                      2 0i 2 0i x 7650 2 2x x 2 2x 7650 2 y yxxdxy1dxy1 2 1 dxy1 2 1 Min j j i i                      2 0k 2 0k 14550 x 2 214550 x 2 2 x x 2 y yxxdxy1dxy1 2 1 dxy1 2 1 jk k j运用 MATLAB 求解得:(程序代码见附录 3) 最小运输工作量为: 4 7 m  B、C 两点的坐标为:   5167,9296B 和   388811683C , 。 六、模型的优缺点 优点: 1、 通过对比 Hermite 插值与三次样条插值,发现求得的水渠长度分别为 5m 和 1m,对本题无明显差异。 2、 对于运输量的规划问题,准确的反应了最优解。 缺点: 1、 对于插值函数的曲线积分,近似了曲线的导数,存在一定误差。 2、 规划问题的运算量较大。利用 MATLAB 算法优势不明显。

相关百科
热门百科
首页
发表服务