期刊投稿百科

原子结构与光谱的论文题目怎么写

发布时间:2024-07-19 17:29:01

原子结构与光谱的论文题目怎么写

原子里的电子发生能级跃迁就会吸收或放出光子来。每一条原子光谱谱线都和原子能级的一个“光谱项之差”相对应。结构化学或量子化学里会讲到。

元素周期表是元素周期律用表格表达的具体形式,它反映元素原子的内部结构和它们之间相互联系的规律。元素周期表简称周期表。元素周期表有很多种表达形式,目前最常用的是维尔纳长式周期表。元素周期表有7个周期,有16个族和4个区。元素在周期表中的位置能反映该元素的原子结构。周期表中同一横列元素构成一个周期。同周期元素原子的电子层数等于该周期的序数。同一纵行(第Ⅷ族包括3个纵行)的元素称“族”。族是原子内部外电子层构型的反映。例如外电子构型,IA族是ns1,IIIA族是ns2 np1,O族是ns2 np6, IIIB族是(n-1) d1 us2等。元素周期表能形象地体现元素周期律。根据元素周期表可以推测各种元素的原子结构以及元素及其化合物性质的递变规律。当年,门捷列夫根据元素周期表中未知元素的周围元素和化合物的性质,经过综合推测,成功地预言未知元素及其化合物的性质。现在科学家利用元素周期表,指导寻找制取半导体、催化剂、化学农药、新型材料的元素及化合物。 横着看叫周期,是指元素周期表上某一横列元素最外层电子从1到8的一个周期循环 竖着看叫族,是指某一竖列元素因最外层电子数相同而表现出的相似的化学性质 主族元素是只有最外层电子没有排满的,但是副族有能级的跃迁,次外层电子也没排满。去找本高一的化学课本都有阿 在门捷列夫编制的周期表中,还留有很多空格,这些空格应由尚未发现的元素来填满。门捷列夫从理论上计算出这些尚未发现的元素的最重要性质,断定它们介于邻近元素的性质之间。例如,在锌与砷之间的两个空格中,他预言这两个未知元素的性质分别为类铝和类硅。就在他预言后的四年,法国化学家布阿勃朗用光谱分析法,从门锌矿中发现了镓。实验证明,镓的性质非常象铝,也就是门捷列夫预言的类铝。镓的发现,具有重大的意义,它充分说明元素周期律是自然界的一条客观规律;为以后元素的研究,新元素的探索,新物资、新材料的寻找,提供了一个可遵循的规律。元素周期律象重炮一样,在世界上空轰响了! 由于时代的局限性,门捷列夫的元素周期律并不是完整无缺的。一八九四年,惰性气体氛的发现,对周期律是一次考验和补充。一九一三年,英国物理学家莫塞莱在研究各种元素的伦琴射线波长与原子序数的关系后,证实原子序数在数量上等于原子核所带的阳电荷,进而明确作为周期律的基础不是原子量而是原子序数。在周期律指导下产生的原于结构学说,不仅赋予元素周期律以新的说明,并且进一步阐明了周期律的本质,把周期律这一自然法则放在更严格更科学的基础上。元素周期律经过后人的不断完善和发展,在人们认识自然,改造自然,征服自然的斗争中,发挥着越来越大的作用。 1865年,纽兰兹正在独立地进行化学元素的分类研究,在研究中他发现了一个很有趣的现象。当元素按原子量递增的顺序排列起来时,每隔8个元素,元素的物理性质和化学性质就会重复出现。由此他将各种元素按着原子量递增的顺序排列起来,形成了若干族系的周期。纽兰兹称这一规律为“八音律”。这一正确的规律的发现非但没有被当时的科学界接受,反而使它的发现者纽兰兹受尽了非难和侮辱。直到后来,当人人已信服了门氏元素周期之后才警醒了,英国皇家学会对以往对纽兰兹不公正的态度进行了纠正。门捷列夫在元素周期的发现中可谓是中流砥柱,不可避免地,他在研究工作中亦接受了包括自己的老师在内的各个方面的不理解和压力。 门捷列夫仔细研究了63种元素的物理性质和化学性质,又经过几次并不满意的开头之后,他想到了一个很好的方法对元素进行系统的分类。门捷列夫准备了许多类似扑克牌一样的卡片,将63种化学元素的名称及其原子量、氧化物、物理性质、化学性质等分别写在卡片上。门捷列夫用不同的方法去摆那些卡片,用以进行元素分类的试验。最初,他试图像德贝莱纳那样,将元素分分为三个一组,得到的结果并不理想。他又将非金属元素和金属元素分别摆在一起,使其分成两行,仍然未能成功。他用各种方法摆弄这些卡片,都未能实现最佳的分类。 1869年3月1日这一天,门捷列夫仍然在对着这些卡片苦苦思索。他先把常见的元素族按照原子量递增的顺序拼在一起,之后是那些不常见的元素,最后只剩下稀土元素没有全部“入座”,门捷列夫无奈地将它放在边上。从头至尾看一遍排出的“牌阵”,门捷列夫惊喜地发现,所有的已知元素都已按原子量递增的顺序排列起来,并且相似元素依一定的间隔出现。 第二天,门捷列夫将所得出的结果制成一张表,这是人类历史上第一张化学元素周期表。在这个表中,周期是纵行,族是横行。在门捷列夫的周期表中,他大胆地为尚待发现的元素留出了位置,并且在其关于周期表的发现的论文中指出:按着原子量由小到大的顺序排列各种元素,在原子量跳跃过大的地方会有新元素被发现,因此周期律可以预言尚待发现的元素。 事实上,德国化学家迈尔早在1864年就已发明了“六元素表”,此表已具备了化学元素周期表早几个月,迈尔又对“六元素表”进行了递减,提出了著名的《原子体积周期性图解》。该图解比门氏的第一张化学元素表定量化程度要强,因而比较精确。但是,迈尔未能对该图解进行系统说明,而该图解侧重于化学元素物理性质的体现。 1871年12月,门捷列夫在第一张元素周期表的基础上进行增益,发表了第二张表。在该表中,改竖排为横排,使用一族元素处于同一竖行中,更突出了元素性质的周期性。至此,化学元素周期律的发现工作已圆满完成。 客观上来说,迈尔和门捷列夫都曾独自发现了元素的周期律,但是由于门捷列夫对元素周期律的研究最为彻底,故而在化学界通常将周期律称为门捷列夫周期律。 我要加分啊希望采纳

原子结构与光谱的论文题目

1912年7月,玻尔完成了他在原子结构方面的第一篇论文,历史学家们后来常常把它称作“曼彻斯特备忘录”。玻尔在其中已经开始试图把量子的概念结合到卢瑟福模型中去,以解决经典电磁力学所无法解释的难题。但是,一切都只不过是刚刚开始而已,在那片还没有前人涉足的处女地上,玻尔只能一步步地摸索前进。没有人告诉他方向应该在哪里,而他的动力也不过是对于卢瑟福模型的坚信和年轻人特有的巨大热情。玻尔当时对原子光谱的问题一无所知,当然也看不到它后来对于原子研究的决定性意义,不过,革命的方向已经确定,已经没有什么能够改变量子论即将崭露头角这个事实了。在浓云密布的天空中,出现了一线微光。虽然后来证明,那只是一颗流星,但是这光芒无疑给已经僵硬而老化的物理世界注入了一种新的生机,一种有着新鲜气息和希望的活力。这光芒点燃了人们手中的火炬,引导他们去寻找真正的永恒的光明。玻尔面临着选择,要么放弃卢瑟福模型,要么放弃麦克斯韦和他的伟大理论。玻尔勇气十足地选择了放弃后者。他以一种深刻的洞察力预见到,在原子这样小的层次上,经典理论将不再成立,新的革命性思想必须被引入,这个思想就是普朗克的量子以及他的h常数。应当说这是一个相当困难的任务。如何推翻麦氏理论还在其次,关键是新理论要能够完美地解释原子的一切行为。玻尔在哥本哈根埋头苦干的那个年头,门捷列夫的元素周期律已经被发现了很久,化学键理论也已经被牢固地建立。种种迹象都表明在原子内部,有一种潜在的规律支配着它们的行为,并形成某种特定的模式。原子世界像一座蕴藏了无穷财宝的金字塔,但如何找到进入其内部的通道,却是一个让人挠头不已的难题。

元素周期表是元素周期律用表格表达的具体形式,它反映元素原子的内部结构和它们之间相互联系的规律。元素周期表简称周期表。元素周期表有很多种表达形式,目前最常用的是维尔纳长式周期表。元素周期表有7个周期,有16个族和4个区。元素在周期表中的位置能反映该元素的原子结构。周期表中同一横列元素构成一个周期。同周期元素原子的电子层数等于该周期的序数。同一纵行(第Ⅷ族包括3个纵行)的元素称“族”。族是原子内部外电子层构型的反映。例如外电子构型,IA族是ns1,IIIA族是ns2 np1,O族是ns2 np6, IIIB族是(n-1) d1 us2等。元素周期表能形象地体现元素周期律。根据元素周期表可以推测各种元素的原子结构以及元素及其化合物性质的递变规律。当年,门捷列夫根据元素周期表中未知元素的周围元素和化合物的性质,经过综合推测,成功地预言未知元素及其化合物的性质。现在科学家利用元素周期表,指导寻找制取半导体、催化剂、化学农药、新型材料的元素及化合物。 横着看叫周期,是指元素周期表上某一横列元素最外层电子从1到8的一个周期循环 竖着看叫族,是指某一竖列元素因最外层电子数相同而表现出的相似的化学性质 主族元素是只有最外层电子没有排满的,但是副族有能级的跃迁,次外层电子也没排满。去找本高一的化学课本都有阿 在门捷列夫编制的周期表中,还留有很多空格,这些空格应由尚未发现的元素来填满。门捷列夫从理论上计算出这些尚未发现的元素的最重要性质,断定它们介于邻近元素的性质之间。例如,在锌与砷之间的两个空格中,他预言这两个未知元素的性质分别为类铝和类硅。就在他预言后的四年,法国化学家布阿勃朗用光谱分析法,从门锌矿中发现了镓。实验证明,镓的性质非常象铝,也就是门捷列夫预言的类铝。镓的发现,具有重大的意义,它充分说明元素周期律是自然界的一条客观规律;为以后元素的研究,新元素的探索,新物资、新材料的寻找,提供了一个可遵循的规律。元素周期律象重炮一样,在世界上空轰响了! 由于时代的局限性,门捷列夫的元素周期律并不是完整无缺的。一八九四年,惰性气体氛的发现,对周期律是一次考验和补充。一九一三年,英国物理学家莫塞莱在研究各种元素的伦琴射线波长与原子序数的关系后,证实原子序数在数量上等于原子核所带的阳电荷,进而明确作为周期律的基础不是原子量而是原子序数。在周期律指导下产生的原于结构学说,不仅赋予元素周期律以新的说明,并且进一步阐明了周期律的本质,把周期律这一自然法则放在更严格更科学的基础上。元素周期律经过后人的不断完善和发展,在人们认识自然,改造自然,征服自然的斗争中,发挥着越来越大的作用。 1865年,纽兰兹正在独立地进行化学元素的分类研究,在研究中他发现了一个很有趣的现象。当元素按原子量递增的顺序排列起来时,每隔8个元素,元素的物理性质和化学性质就会重复出现。由此他将各种元素按着原子量递增的顺序排列起来,形成了若干族系的周期。纽兰兹称这一规律为“八音律”。这一正确的规律的发现非但没有被当时的科学界接受,反而使它的发现者纽兰兹受尽了非难和侮辱。直到后来,当人人已信服了门氏元素周期之后才警醒了,英国皇家学会对以往对纽兰兹不公正的态度进行了纠正。门捷列夫在元素周期的发现中可谓是中流砥柱,不可避免地,他在研究工作中亦接受了包括自己的老师在内的各个方面的不理解和压力。 门捷列夫仔细研究了63种元素的物理性质和化学性质,又经过几次并不满意的开头之后,他想到了一个很好的方法对元素进行系统的分类。门捷列夫准备了许多类似扑克牌一样的卡片,将63种化学元素的名称及其原子量、氧化物、物理性质、化学性质等分别写在卡片上。门捷列夫用不同的方法去摆那些卡片,用以进行元素分类的试验。最初,他试图像德贝莱纳那样,将元素分分为三个一组,得到的结果并不理想。他又将非金属元素和金属元素分别摆在一起,使其分成两行,仍然未能成功。他用各种方法摆弄这些卡片,都未能实现最佳的分类。 1869年3月1日这一天,门捷列夫仍然在对着这些卡片苦苦思索。他先把常见的元素族按照原子量递增的顺序拼在一起,之后是那些不常见的元素,最后只剩下稀土元素没有全部“入座”,门捷列夫无奈地将它放在边上。从头至尾看一遍排出的“牌阵”,门捷列夫惊喜地发现,所有的已知元素都已按原子量递增的顺序排列起来,并且相似元素依一定的间隔出现。 第二天,门捷列夫将所得出的结果制成一张表,这是人类历史上第一张化学元素周期表。在这个表中,周期是纵行,族是横行。在门捷列夫的周期表中,他大胆地为尚待发现的元素留出了位置,并且在其关于周期表的发现的论文中指出:按着原子量由小到大的顺序排列各种元素,在原子量跳跃过大的地方会有新元素被发现,因此周期律可以预言尚待发现的元素。 事实上,德国化学家迈尔早在1864年就已发明了“六元素表”,此表已具备了化学元素周期表早几个月,迈尔又对“六元素表”进行了递减,提出了著名的《原子体积周期性图解》。该图解比门氏的第一张化学元素表定量化程度要强,因而比较精确。但是,迈尔未能对该图解进行系统说明,而该图解侧重于化学元素物理性质的体现。 1871年12月,门捷列夫在第一张元素周期表的基础上进行增益,发表了第二张表。在该表中,改竖排为横排,使用一族元素处于同一竖行中,更突出了元素性质的周期性。至此,化学元素周期律的发现工作已圆满完成。 客观上来说,迈尔和门捷列夫都曾独自发现了元素的周期律,但是由于门捷列夫对元素周期律的研究最为彻底,故而在化学界通常将周期律称为门捷列夫周期律。 我要加分啊希望采纳

1) DeltaE=E(bonding)-E(antibonding)=E(photon)=hf=hc/lamda(wavelength) h:Planck constant c: speed of light 2) Because E(n)=-RhZ^2/n^2 for H atom Z=1, but for He+ Z= so for H, and DeltaE=Rh(1/4-1/36) but for He+, DeltaE=4Rh(1/4-1/36)

原子结构与光谱的论文怎么写

元素周期表是元素周期律用表格表达的具体形式,它反映元素原子的内部结构和它们之间相互联系的规律。元素周期表简称周期表。元素周期表有很多种表达形式,目前最常用的是维尔纳长式周期表。元素周期表有7个周期,有16个族和4个区。元素在周期表中的位置能反映该元素的原子结构。周期表中同一横列元素构成一个周期。同周期元素原子的电子层数等于该周期的序数。同一纵行(第Ⅷ族包括3个纵行)的元素称“族”。族是原子内部外电子层构型的反映。例如外电子构型,IA族是ns1,IIIA族是ns2 np1,O族是ns2 np6, IIIB族是(n-1) d1 us2等。元素周期表能形象地体现元素周期律。根据元素周期表可以推测各种元素的原子结构以及元素及其化合物性质的递变规律。当年,门捷列夫根据元素周期表中未知元素的周围元素和化合物的性质,经过综合推测,成功地预言未知元素及其化合物的性质。现在科学家利用元素周期表,指导寻找制取半导体、催化剂、化学农药、新型材料的元素及化合物。 横着看叫周期,是指元素周期表上某一横列元素最外层电子从1到8的一个周期循环 竖着看叫族,是指某一竖列元素因最外层电子数相同而表现出的相似的化学性质 主族元素是只有最外层电子没有排满的,但是副族有能级的跃迁,次外层电子也没排满。去找本高一的化学课本都有阿 在门捷列夫编制的周期表中,还留有很多空格,这些空格应由尚未发现的元素来填满。门捷列夫从理论上计算出这些尚未发现的元素的最重要性质,断定它们介于邻近元素的性质之间。例如,在锌与砷之间的两个空格中,他预言这两个未知元素的性质分别为类铝和类硅。就在他预言后的四年,法国化学家布阿勃朗用光谱分析法,从门锌矿中发现了镓。实验证明,镓的性质非常象铝,也就是门捷列夫预言的类铝。镓的发现,具有重大的意义,它充分说明元素周期律是自然界的一条客观规律;为以后元素的研究,新元素的探索,新物资、新材料的寻找,提供了一个可遵循的规律。元素周期律象重炮一样,在世界上空轰响了! 由于时代的局限性,门捷列夫的元素周期律并不是完整无缺的。一八九四年,惰性气体氛的发现,对周期律是一次考验和补充。一九一三年,英国物理学家莫塞莱在研究各种元素的伦琴射线波长与原子序数的关系后,证实原子序数在数量上等于原子核所带的阳电荷,进而明确作为周期律的基础不是原子量而是原子序数。在周期律指导下产生的原于结构学说,不仅赋予元素周期律以新的说明,并且进一步阐明了周期律的本质,把周期律这一自然法则放在更严格更科学的基础上。元素周期律经过后人的不断完善和发展,在人们认识自然,改造自然,征服自然的斗争中,发挥着越来越大的作用。 1865年,纽兰兹正在独立地进行化学元素的分类研究,在研究中他发现了一个很有趣的现象。当元素按原子量递增的顺序排列起来时,每隔8个元素,元素的物理性质和化学性质就会重复出现。由此他将各种元素按着原子量递增的顺序排列起来,形成了若干族系的周期。纽兰兹称这一规律为“八音律”。这一正确的规律的发现非但没有被当时的科学界接受,反而使它的发现者纽兰兹受尽了非难和侮辱。直到后来,当人人已信服了门氏元素周期之后才警醒了,英国皇家学会对以往对纽兰兹不公正的态度进行了纠正。门捷列夫在元素周期的发现中可谓是中流砥柱,不可避免地,他在研究工作中亦接受了包括自己的老师在内的各个方面的不理解和压力。 门捷列夫仔细研究了63种元素的物理性质和化学性质,又经过几次并不满意的开头之后,他想到了一个很好的方法对元素进行系统的分类。门捷列夫准备了许多类似扑克牌一样的卡片,将63种化学元素的名称及其原子量、氧化物、物理性质、化学性质等分别写在卡片上。门捷列夫用不同的方法去摆那些卡片,用以进行元素分类的试验。最初,他试图像德贝莱纳那样,将元素分分为三个一组,得到的结果并不理想。他又将非金属元素和金属元素分别摆在一起,使其分成两行,仍然未能成功。他用各种方法摆弄这些卡片,都未能实现最佳的分类。 1869年3月1日这一天,门捷列夫仍然在对着这些卡片苦苦思索。他先把常见的元素族按照原子量递增的顺序拼在一起,之后是那些不常见的元素,最后只剩下稀土元素没有全部“入座”,门捷列夫无奈地将它放在边上。从头至尾看一遍排出的“牌阵”,门捷列夫惊喜地发现,所有的已知元素都已按原子量递增的顺序排列起来,并且相似元素依一定的间隔出现。 第二天,门捷列夫将所得出的结果制成一张表,这是人类历史上第一张化学元素周期表。在这个表中,周期是纵行,族是横行。在门捷列夫的周期表中,他大胆地为尚待发现的元素留出了位置,并且在其关于周期表的发现的论文中指出:按着原子量由小到大的顺序排列各种元素,在原子量跳跃过大的地方会有新元素被发现,因此周期律可以预言尚待发现的元素。 事实上,德国化学家迈尔早在1864年就已发明了“六元素表”,此表已具备了化学元素周期表早几个月,迈尔又对“六元素表”进行了递减,提出了著名的《原子体积周期性图解》。该图解比门氏的第一张化学元素表定量化程度要强,因而比较精确。但是,迈尔未能对该图解进行系统说明,而该图解侧重于化学元素物理性质的体现。 1871年12月,门捷列夫在第一张元素周期表的基础上进行增益,发表了第二张表。在该表中,改竖排为横排,使用一族元素处于同一竖行中,更突出了元素性质的周期性。至此,化学元素周期律的发现工作已圆满完成。 客观上来说,迈尔和门捷列夫都曾独自发现了元素的周期律,但是由于门捷列夫对元素周期律的研究最为彻底,故而在化学界通常将周期律称为门捷列夫周期律。 我要加分啊希望采纳

神秘之旅——我想象中的原子结构——进入原子在公元2100年,我被上级授予了一个重要任务:进入原子内部,探清它的内在结构。我被博士们发明的缩小机缩小了,并在电子显微镜的帮助下顺利进入了原子内部。——与核外电子的对话进入原子内部我第一个遇见的是核外电子,我不敢太靠近它,因为它带负电,虽然这些电荷对正常人来说没什么,但对被缩小的我来说却不同寻常,“你好啊!电子兄!”我站在远处叫到。“你是……”电子兄迟疑的问道。“我是人类呀!……”还未待我介绍完毕,电子就“跑”开了。这时我才发现,电子兄一直在绕着一个球形的小物体高速旋转,而且他们还排着队哩!——与原子核的对话看到电子兄如此繁忙,我便来到那个球形物体身边喊道:“你好呀!我可以进入你内部看看吗?”它答道:“我是原子核,我身上带有正电!你要进入我内部可要注意安全呀!”我小心翼翼的进入原子核内部,可还是被电流击晕了……——与质子、中子的对话当我醒来时,我身边多了几个圆圆身子的东西。我想:它们一定是质子和中子!“你们是质子和中子吗?你们可真像双胞胎呀!”我说。我身旁的一个圆身子说:“不,我们可不是双胞胎!站在你身边的都是中子,我们不带电!你刚才进来的时候受到的那股电流,便是质子身上带的正电荷!”我纳闷了,问道:“那不是每个原子都带电呢?那我们人类多危险呀!为什么我们人类没感受到呢?”质子在远处笑着答到:“那可不是这样!我们可不会伤害人类!我们质子所带的正电荷和核外电子所带的负电荷是相等的,也就是说我们质子数和核外电子数个个数是一样的!所以电性相互抵消,最后原子便不显电性了!”原来是这样呀!我的好奇心越发强烈了,我对这些微小可爱的粒子越来越感兴趣了,我还想继续进入它们内部看看!我说:“我可以进入你们内部去瞧瞧吗?”“非常欢迎!可是……只怕你进不去!”我恍然大悟,因为我身子和它们差不多大小。我只好带着一丝遗憾和它们告别了!心想:下次我还要来!一定要让博士们把我变得更小些,看看质子、中子里面还有些什么神秘的结构!

原子光谱包括发射光谱发、火焰光度法、x-射线谱、原子吸收光谱法一般这些光谱多是用来测定金属和痕量元素的。在查找文献时注意在中药微量元素的测定。

我想象中的原子结构就如公园里的花坛,草坪一般不过,这不知是把那极其微小的原子结构放大了多少倍呢! 在原子中,原子有两个好朋友,一个是原子核,一个是电子可是,这两位又给原子带来了一定的不便,麻烦因为原子核带正电,而电子却带负电这可难住了原子,为了公平起见,原子就成了一名"公正员",显电中性原子的问题解决了,原子核又有了新的麻烦,原来原子核内也有两个好朋友,一个是质子,一个是中子质子带正电荷,而中子却不带电,怎么办呢 不过,谁好动,谁的影响力就大,谁就是"主宰",所以原子核就随质子的习性,带正电荷了谁知质子很快与电子又成了一对好朋友,形影不离,我有多少你就有多少这样它们就成了一个"大家庭" 我想象中的原子结构就是如此,外表看起来很平凡如果你用自己的慧眼去细细观察,仔细体会,你会有更多,更大的新发现它们正等着我们通过努力去探索它们,揭开一个又一个神秘的"百宝箱"

原子结构与光谱的论文怎么写啊

元素周期表是元素周期律用表格表达的具体形式,它反映元素原子的内部结构和它们之间相互联系的规律。元素周期表简称周期表。元素周期表有很多种表达形式,目前最常用的是维尔纳长式周期表。元素周期表有7个周期,有16个族和4个区。元素在周期表中的位置能反映该元素的原子结构。周期表中同一横列元素构成一个周期。同周期元素原子的电子层数等于该周期的序数。同一纵行(第Ⅷ族包括3个纵行)的元素称“族”。族是原子内部外电子层构型的反映。例如外电子构型,IA族是ns1,IIIA族是ns2 np1,O族是ns2 np6, IIIB族是(n-1) d1 us2等。元素周期表能形象地体现元素周期律。根据元素周期表可以推测各种元素的原子结构以及元素及其化合物性质的递变规律。当年,门捷列夫根据元素周期表中未知元素的周围元素和化合物的性质,经过综合推测,成功地预言未知元素及其化合物的性质。现在科学家利用元素周期表,指导寻找制取半导体、催化剂、化学农药、新型材料的元素及化合物。 横着看叫周期,是指元素周期表上某一横列元素最外层电子从1到8的一个周期循环 竖着看叫族,是指某一竖列元素因最外层电子数相同而表现出的相似的化学性质 主族元素是只有最外层电子没有排满的,但是副族有能级的跃迁,次外层电子也没排满。去找本高一的化学课本都有阿 在门捷列夫编制的周期表中,还留有很多空格,这些空格应由尚未发现的元素来填满。门捷列夫从理论上计算出这些尚未发现的元素的最重要性质,断定它们介于邻近元素的性质之间。例如,在锌与砷之间的两个空格中,他预言这两个未知元素的性质分别为类铝和类硅。就在他预言后的四年,法国化学家布阿勃朗用光谱分析法,从门锌矿中发现了镓。实验证明,镓的性质非常象铝,也就是门捷列夫预言的类铝。镓的发现,具有重大的意义,它充分说明元素周期律是自然界的一条客观规律;为以后元素的研究,新元素的探索,新物资、新材料的寻找,提供了一个可遵循的规律。元素周期律象重炮一样,在世界上空轰响了! 由于时代的局限性,门捷列夫的元素周期律并不是完整无缺的。一八九四年,惰性气体氛的发现,对周期律是一次考验和补充。一九一三年,英国物理学家莫塞莱在研究各种元素的伦琴射线波长与原子序数的关系后,证实原子序数在数量上等于原子核所带的阳电荷,进而明确作为周期律的基础不是原子量而是原子序数。在周期律指导下产生的原于结构学说,不仅赋予元素周期律以新的说明,并且进一步阐明了周期律的本质,把周期律这一自然法则放在更严格更科学的基础上。元素周期律经过后人的不断完善和发展,在人们认识自然,改造自然,征服自然的斗争中,发挥着越来越大的作用。 1865年,纽兰兹正在独立地进行化学元素的分类研究,在研究中他发现了一个很有趣的现象。当元素按原子量递增的顺序排列起来时,每隔8个元素,元素的物理性质和化学性质就会重复出现。由此他将各种元素按着原子量递增的顺序排列起来,形成了若干族系的周期。纽兰兹称这一规律为“八音律”。这一正确的规律的发现非但没有被当时的科学界接受,反而使它的发现者纽兰兹受尽了非难和侮辱。直到后来,当人人已信服了门氏元素周期之后才警醒了,英国皇家学会对以往对纽兰兹不公正的态度进行了纠正。门捷列夫在元素周期的发现中可谓是中流砥柱,不可避免地,他在研究工作中亦接受了包括自己的老师在内的各个方面的不理解和压力。 门捷列夫仔细研究了63种元素的物理性质和化学性质,又经过几次并不满意的开头之后,他想到了一个很好的方法对元素进行系统的分类。门捷列夫准备了许多类似扑克牌一样的卡片,将63种化学元素的名称及其原子量、氧化物、物理性质、化学性质等分别写在卡片上。门捷列夫用不同的方法去摆那些卡片,用以进行元素分类的试验。最初,他试图像德贝莱纳那样,将元素分分为三个一组,得到的结果并不理想。他又将非金属元素和金属元素分别摆在一起,使其分成两行,仍然未能成功。他用各种方法摆弄这些卡片,都未能实现最佳的分类。 1869年3月1日这一天,门捷列夫仍然在对着这些卡片苦苦思索。他先把常见的元素族按照原子量递增的顺序拼在一起,之后是那些不常见的元素,最后只剩下稀土元素没有全部“入座”,门捷列夫无奈地将它放在边上。从头至尾看一遍排出的“牌阵”,门捷列夫惊喜地发现,所有的已知元素都已按原子量递增的顺序排列起来,并且相似元素依一定的间隔出现。 第二天,门捷列夫将所得出的结果制成一张表,这是人类历史上第一张化学元素周期表。在这个表中,周期是纵行,族是横行。在门捷列夫的周期表中,他大胆地为尚待发现的元素留出了位置,并且在其关于周期表的发现的论文中指出:按着原子量由小到大的顺序排列各种元素,在原子量跳跃过大的地方会有新元素被发现,因此周期律可以预言尚待发现的元素。 事实上,德国化学家迈尔早在1864年就已发明了“六元素表”,此表已具备了化学元素周期表早几个月,迈尔又对“六元素表”进行了递减,提出了著名的《原子体积周期性图解》。该图解比门氏的第一张化学元素表定量化程度要强,因而比较精确。但是,迈尔未能对该图解进行系统说明,而该图解侧重于化学元素物理性质的体现。 1871年12月,门捷列夫在第一张元素周期表的基础上进行增益,发表了第二张表。在该表中,改竖排为横排,使用一族元素处于同一竖行中,更突出了元素性质的周期性。至此,化学元素周期律的发现工作已圆满完成。 客观上来说,迈尔和门捷列夫都曾独自发现了元素的周期律,但是由于门捷列夫对元素周期律的研究最为彻底,故而在化学界通常将周期律称为门捷列夫周期律。 我要加分啊希望采纳

原子光谱包括发射光谱发、火焰光度法、x-射线谱、原子吸收光谱法一般这些光谱多是用来测定金属和痕量元素的。在查找文献时注意在中药微量元素的测定。

原子结构与光谱的论文选题

玻尔原子模型的主要内容 玻尔的原子理论给出这样的原子图像: 电子在一些特定的可能轨道上绕核作圆周运动,离核愈远能量愈高; 可能的轨道由电子的角动量必须是 h/2π的整数倍决定; 当电子在这些可能的轨道上运动时原子不发射也不吸收能量,只有当电子从一个轨道跃迁到另一个轨道时原子才发射或吸收能量,而且发射或吸收的辐射是单频的,辐射的频率和能量之间关系由 E=hν给出。h为普朗克常数。h=26×10^(-34)Js 玻尔的理论成功地说明了原子的稳定性和氢原子光谱线规律。 玻尔的理论大大扩展了量子论的影响,加速了量子论的发展。1915年,德国物理学家索末菲(Arnold Sommerfeld,1868-1951)把玻尔的原子理论推广到包括椭圆轨道,并考虑了电子的质量随其速度而变化的狭义相对论效应,导出光谱的精细结构同实验相符。[编辑本段]波尔模型的实验验证 1897年,美国天文学家皮克林在恒星弧矢增二十二的光谱中发现了一组独特的线系,称为皮克林线系。皮克林线系中有一些谱线靠近巴耳末线系,但又不完全重合,另外有一些谱线位于巴耳末线系两临近谱线之间。起初皮克林线系被认为是氢的谱线,然而玻尔提出皮克林线系是类氢离子He+发出的谱线。随后英国物理学家埃万斯在实验室中观察了He+的光谱,证实玻尔的判断完全正确。 和玻尔提出玻尔模型几乎同一时期,英国物理学家亨利·莫斯莱测定了多种元素的X射线标识谱线,发现它们具有确定的规律性,并得到了经验公式——莫塞莱公式。莫塞莱看到玻尔的论文,立刻发现这个经验公式可以由玻尔模型导出,为玻尔模型提供了有力的证据。 1914年,夫兰克和赫兹进行了用电子轰击汞蒸汽的实验,即夫兰克-赫兹实验。实验结果显示,汞原子内确实存在能量为9eV的量子态。1920年代,夫兰克和赫兹又继续改进实验装置,发现了汞原子内部更多的量子态,有力地证实了玻尔模型的正确性。 1932年尤雷(HCUrey)观察到了氢的同位素氘的光谱,测量到了氘的里德伯常数,和玻尔模型的预言符合得很好。[编辑本段]波尔模型的推广 1916年,爱因斯坦(Albert Einstein,1879-1955)从玻尔的原子理论出发用统计的方法分析了物质的吸收和发射辐射的过程,导出了普朗克辐射定律。爱因斯坦的这一工作综合了量子论第一阶段的成就,把普朗克、爱因斯坦、玻尔三人的工作结合成一个整体。

元素周期表是元素周期律用表格表达的具体形式,它反映元素原子的内部结构和它们之间相互联系的规律。元素周期表简称周期表。元素周期表有很多种表达形式,目前最常用的是维尔纳长式周期表。元素周期表有7个周期,有16个族和4个区。元素在周期表中的位置能反映该元素的原子结构。周期表中同一横列元素构成一个周期。同周期元素原子的电子层数等于该周期的序数。同一纵行(第Ⅷ族包括3个纵行)的元素称“族”。族是原子内部外电子层构型的反映。例如外电子构型,IA族是ns1,IIIA族是ns2 np1,O族是ns2 np6, IIIB族是(n-1) d1 us2等。元素周期表能形象地体现元素周期律。根据元素周期表可以推测各种元素的原子结构以及元素及其化合物性质的递变规律。当年,门捷列夫根据元素周期表中未知元素的周围元素和化合物的性质,经过综合推测,成功地预言未知元素及其化合物的性质。现在科学家利用元素周期表,指导寻找制取半导体、催化剂、化学农药、新型材料的元素及化合物。 横着看叫周期,是指元素周期表上某一横列元素最外层电子从1到8的一个周期循环 竖着看叫族,是指某一竖列元素因最外层电子数相同而表现出的相似的化学性质 主族元素是只有最外层电子没有排满的,但是副族有能级的跃迁,次外层电子也没排满。去找本高一的化学课本都有阿 在门捷列夫编制的周期表中,还留有很多空格,这些空格应由尚未发现的元素来填满。门捷列夫从理论上计算出这些尚未发现的元素的最重要性质,断定它们介于邻近元素的性质之间。例如,在锌与砷之间的两个空格中,他预言这两个未知元素的性质分别为类铝和类硅。就在他预言后的四年,法国化学家布阿勃朗用光谱分析法,从门锌矿中发现了镓。实验证明,镓的性质非常象铝,也就是门捷列夫预言的类铝。镓的发现,具有重大的意义,它充分说明元素周期律是自然界的一条客观规律;为以后元素的研究,新元素的探索,新物资、新材料的寻找,提供了一个可遵循的规律。元素周期律象重炮一样,在世界上空轰响了! 由于时代的局限性,门捷列夫的元素周期律并不是完整无缺的。一八九四年,惰性气体氛的发现,对周期律是一次考验和补充。一九一三年,英国物理学家莫塞莱在研究各种元素的伦琴射线波长与原子序数的关系后,证实原子序数在数量上等于原子核所带的阳电荷,进而明确作为周期律的基础不是原子量而是原子序数。在周期律指导下产生的原于结构学说,不仅赋予元素周期律以新的说明,并且进一步阐明了周期律的本质,把周期律这一自然法则放在更严格更科学的基础上。元素周期律经过后人的不断完善和发展,在人们认识自然,改造自然,征服自然的斗争中,发挥着越来越大的作用。 1865年,纽兰兹正在独立地进行化学元素的分类研究,在研究中他发现了一个很有趣的现象。当元素按原子量递增的顺序排列起来时,每隔8个元素,元素的物理性质和化学性质就会重复出现。由此他将各种元素按着原子量递增的顺序排列起来,形成了若干族系的周期。纽兰兹称这一规律为“八音律”。这一正确的规律的发现非但没有被当时的科学界接受,反而使它的发现者纽兰兹受尽了非难和侮辱。直到后来,当人人已信服了门氏元素周期之后才警醒了,英国皇家学会对以往对纽兰兹不公正的态度进行了纠正。门捷列夫在元素周期的发现中可谓是中流砥柱,不可避免地,他在研究工作中亦接受了包括自己的老师在内的各个方面的不理解和压力。 门捷列夫仔细研究了63种元素的物理性质和化学性质,又经过几次并不满意的开头之后,他想到了一个很好的方法对元素进行系统的分类。门捷列夫准备了许多类似扑克牌一样的卡片,将63种化学元素的名称及其原子量、氧化物、物理性质、化学性质等分别写在卡片上。门捷列夫用不同的方法去摆那些卡片,用以进行元素分类的试验。最初,他试图像德贝莱纳那样,将元素分分为三个一组,得到的结果并不理想。他又将非金属元素和金属元素分别摆在一起,使其分成两行,仍然未能成功。他用各种方法摆弄这些卡片,都未能实现最佳的分类。 1869年3月1日这一天,门捷列夫仍然在对着这些卡片苦苦思索。他先把常见的元素族按照原子量递增的顺序拼在一起,之后是那些不常见的元素,最后只剩下稀土元素没有全部“入座”,门捷列夫无奈地将它放在边上。从头至尾看一遍排出的“牌阵”,门捷列夫惊喜地发现,所有的已知元素都已按原子量递增的顺序排列起来,并且相似元素依一定的间隔出现。 第二天,门捷列夫将所得出的结果制成一张表,这是人类历史上第一张化学元素周期表。在这个表中,周期是纵行,族是横行。在门捷列夫的周期表中,他大胆地为尚待发现的元素留出了位置,并且在其关于周期表的发现的论文中指出:按着原子量由小到大的顺序排列各种元素,在原子量跳跃过大的地方会有新元素被发现,因此周期律可以预言尚待发现的元素。 事实上,德国化学家迈尔早在1864年就已发明了“六元素表”,此表已具备了化学元素周期表早几个月,迈尔又对“六元素表”进行了递减,提出了著名的《原子体积周期性图解》。该图解比门氏的第一张化学元素表定量化程度要强,因而比较精确。但是,迈尔未能对该图解进行系统说明,而该图解侧重于化学元素物理性质的体现。 1871年12月,门捷列夫在第一张元素周期表的基础上进行增益,发表了第二张表。在该表中,改竖排为横排,使用一族元素处于同一竖行中,更突出了元素性质的周期性。至此,化学元素周期律的发现工作已圆满完成。 客观上来说,迈尔和门捷列夫都曾独自发现了元素的周期律,但是由于门捷列夫对元素周期律的研究最为彻底,故而在化学界通常将周期律称为门捷列夫周期律。 我要加分啊希望采纳

1�人们对原子是否是组成物质的最小微粒这一古老的课题的进一步认识是从汤姆生发现电 子开始的.因为原子中出现了比原子更小的粒子,说明原子本身不是组成物质的最小微粒 .所以说电子的发现对揭示原子结构有其重大的意义,它是近代物理三大发现(X射线、放射 性、电子)之一.另外,电子发现的本身也是一个很好的培养学生分析问题和解决问题的内 容.为了突出电子发现的重大意义,讲清电子发现的过程,同时也为了理清思路,不在某一问题上花费更多的时间,教材将电子的发现作为阅读材料放在后面,希望教师能给予充分的 重视.� 2�由汤姆生发现电子后提出“枣式”原子模型,到卢瑟福提出“核式”结构原子模型,直至玻尔把量子说引入核式结构的原子模型,提出原子的量子态理论,这其中存在着一系列发现问题→提出新的假说的过程,这对培养学生的逻辑推理能力和掌握科学的分析问题和解决 问题的方法都是很有益的.为了引导学生思考、活跃学生的思维,教材在课文中许多地方提 出了供学生思考的问题,希望能引起教师和学生的注意.这些思考题主要是为了引起学生的 思维、阐述自己的观点而设,并不要求问题一定要有一个唯一正确的答案.� 3�α粒子散射实验既是一个很重要的实验,也是一个锻炼学生分析问题、解决问题的很好 的知识点.学生通过对卢瑟福如何分析α散射实验、否定汤姆生的原子模型、提出自己的原子模型的了解,学习科学的方法,提高自己的能力.在分析卢瑟福的原子模型的困难时,要用到电学、力学和光谱发射的知识,其中有些知识学生没有学过.如根据经典电磁理论,绕核做加速运动的电子要向外辐射电磁波,电磁波的频率等于电子绕核旋转的频率等.这些知 识主要是为了说明卢瑟福的原子模型与经典电磁理论的矛盾,因此教学中可直接把这些知识介绍给学生,避免造成不必要的难点.� 4�玻尔的氢原子模型虽然不是最终的正确的模型,但是它在建立正确的原子模型过程中的功绩是不可磨灭的.它最大的功绩就是将量子概念运用在原子模型中,同时它在一定程度上反映了原子的真实情况,也比较适合中学生的理解能力和认识水平.因此,在玻尔理论的知识教学中,我们主要应把重点放在玻尔解决问题的思想上.� 5�原子理论的应用部分——激光,虽然是介绍性的,但是这部分知识却是近代物理中应用 比较广、生命力比较强的内容.讲好这部分知识对于培养学生理论联系实际、提高学生分析问题解决问题的能力以及增强学生学习物理的兴趣,都是很有好处的.�详细的可到百度百科看看

相关百科
热门百科
首页
发表服务