期刊投稿百科

细胞生物学方面的论文摘要怎么写

发布时间:2024-07-04 05:54:52

细胞生物学方面的论文摘要怎么写

细胞生物学与医学(小组成员:王萌,周蒙,赵晓娇,赵丽葵,郑大芳,朱慧凤)摘要:医学是以人体为对象研究人体生老病死的机制,研究疾病的发生、发展以及转归的规律,从而对疾病进行诊断、治疗和预防,以达到增强人体健康。它是综合的学科,必须吸收或利用其他各种学科的知识和技术服务,使之不断提高和发展。而细胞生物学是研究生命活动基本规律的学科,细胞生物学研究的各项成果、课题当然与医学的理论和实践密切相关。 关键字:细胞信号转导,基因工程,治疗性克隆细胞生物学的某些主要研究领域与医学意义一.细胞信号转导(一) 细胞信号转导的概念指细胞通过胞膜或胞内受体感受信息分子的刺激,经细胞内信号转导系统转换,从而影响细胞生物学功能的过程。水溶性信息分子必须首先与胞膜受体结合,启动细胞内信号转导的级联反应,将细胞外的信号跨膜转导至胞内;脂溶性信息分子可进入胞内,与胞浆或核内受体结合,通过改变靶基因的转录活性,诱发细胞特定的应答反应。(二) 细胞信号转导异常与疾病导致信号转导异常的因素分别有生物学因素;理化因素;遗传因素;免疫学因素和内环境因素无论是受体,配体或者受体后信号转到通路的任何一个环节出现故障都可能会影响到最终效应,使细胞曾之,分化,凋亡,代谢或者功能失常,并导致疾病 1.信息分子异常 2.受体信号转导异常 3.G蛋白信号转导异常 4.细胞内信号的转导异常 5.多个环节细胞信号转导异常 6.同一刺激引起不同的病理反应 7.不同刺激引起相同的病理反应(三)细胞信号转导异常性疾病防治的病理生理学基础 1.调整细胞外信息分子的水平 如帕金森病患者的脑中多巴胺浓度降低,通过补充其前体L-多巴,可起到一定的疗效。 2.调节受体的结构和功能 针对受体的过度激活或不足,可分别采用受体抑制剂或受体激动剂达到治疗目的。 3.调节细胞内信使分子或信号转导蛋白 目前临床应用较多的有调节胞内钙浓度的钙通道阻滞剂,维持细胞cAMP浓度的β受体阻滞剂和cAMP磷酸二酯酶抑制剂。 4.调节核转录因子的水平 如NF-κB的激活是炎症反应的关键环节,早期应用抑制NF-κB活化的药物,对控制一些全身炎症反应过程中炎症介质的失控性释放,改善病情和预后可能有益。(四) 细胞信号转导的医学应用细胞间的协调、细胞与环境的相互作用也是由信号转导来完成的。细胞增殖和凋亡的不 1/4页平衡导致癌症等重大疾病的发生,细胞癌变的本质是细胞信号转导的失调。现在,分子肿瘤学的发展使人们认识到,癌变是因为调控细胞的分子信号从细胞表面向核内转导的过程中某些环节发生病变,使细胞失去正常调节而发生的。以这些病变环节为靶点的信号转导阻遏剂有望成为高效低毒的抗癌药物,因为从理论上它们可以区分癌细胞和正常细胞,干扰引起癌变的根本环节,起到选择性治疗作用 在正常情况下,细胞增殖与死亡处于动态平衡中,这种平衡受到外环境和内在因子通过细胞信号转导分子传递的变化影响 阻断肿瘤相关基因的信号转导途径,能诱导细胞凋亡,抑制肿瘤生长。有四条细胞信号转导途径的异常与肿瘤的发生有密切关系,它们包括TGF-周期素途径、p19-p53途径、端粒酶途径和Ras-MARP途径。这些信号转导途径既独立又相互影响,以这些信号转导途径中的分子为靶点可寻找新型特异性抗肿瘤药物

激光扫描共聚焦显微镜系统及其在细胞生物学中的应用》 摘要激光扫描共聚焦显微镜是近十年发展起来的医学图象分析仪器,现已广泛应用于荧光定量测量、共焦图象分析、三维图象重建、活细胞动力学参数监测和胞间通讯研究等方面。其性能为普遍光学显微镜质的飞跃,是电子显微镜的一个补充。本文以美国Meridian公司的ACASULTIMA312为例简要介绍了激光扫描共聚显微镜系统的结构,功能和生物学应用前景。 关键词; 激光;共聚焦显微镜;粘附细胞分析与筛选(ACAS) TheLaserScanningConfocalMicroscopySystemanditsBiologicalApplications ChenYaowen,LinJielong,LaiXiaoying,MeiPinchao (ShantouUMCollege,CentralLab,ShantouGuangdong515031) AhstractTheLaserScanningConfocalMicroscopyisanewmedicalimageanalysisinstrument,Nowitiswidelyappliedinsuchfieldsasfluorescentquantitativemeasurement,conpocalimageandlyusis,3-Dreconstruction,Kineticsignalmonitioringoflivingcell,cellcellcommunicationresearches,Inthispaper,ACSAULTIMA312(MeridianCo,USA)istakenasanexampletointroducetheprincipleofconfocalmicroscopy, KeywordsLaserConfocalMicroscopyAdherentCellAnalysisandsorting(ACSA) 激光扫描共聚焦显微镜(LaserscanningConfocalMicroscopy,简称LSCM)是近代生物医学图象仪器的最重要发展之一,它是在荧光显微镜成象的基础上加装激光扫描装置,使用紫外光或可见光激发荧光探针,利用计算机进行图象处理,从而得到细胞或组织内部微细结构的荧光图象,以及在亚细胞水平上观察诸如Ca2+、pH值、膜电位等生理信号及细胞形态的变化。已广泛应用于细胞生物学、生理学、病理学、解剖学、胚胎学、免疫学和神经生物学等领域[1、2、3],对生物样品进行定性、定量、定时和定位研究具有很大的优越性,为这些领域新一代强有力的研究工具。 创建于1983年的美国Meridian公司,在90年代推出的“激光扫描共聚焦显微镜”这一项具有划时代的义意的高科技产品,曾获得美国“政府新产品奖”和两次“高科技领先技术奖”,它能达到每秒120幅画面的高速扫描激光共聚焦观察,可提供实时,真彩色的激光共聚焦原色图象。我院最近引起的ACASuLTIMA312是Meridian公司最新的高科技产品,为同类仪器中档次最高、功能最全的精密仪器。现以该仪器为例介绍激光扫描共聚焦显微镜系统及其在细胞生物学中的应用。 1、激光扫描共聚焦显微镜成像原理及组成 有关共聚焦显微镜的某些技术原理,早在1957年就已提出,二十年后由Brandengoff在高数值孔径透镜装置上改装成功具有高清晰度的共聚焦显微镜[5],1985年WijnaendtsVanResandt发表了第一篇有关激光扫描共聚焦显微镜在生物学中应用的文章,到了1987年,才发展成现在通常意义上的第一代激光扫描共聚焦显微镜。 激光扫描共聚焦显微镜成像原理如图1所示,激光器发出的激光束经过扩束透镜和光束整形镜,变成一束直径较大的平行光束,长通分色反射镜使光束偏转90度,经过物镜会聚在物镜的焦点上,样品中的荧光物质在激光的激发下发射沿各个方向的荧光,一部分荧光经过物镜、长通分色反射镜、聚焦透镜、会聚在聚焦物镜的焦点处,再通过焦点处的针孔,由检测器接收。 从图1中可以看出,只有在物镜的焦平面上发出的荧光才够到达检测器,其它位置发出的光均不能过针孔。由于物镜和会聚透镜的焦点在同一光轴上,因而称这种方式成像的显微镜为共聚焦显微镜为共聚显微镜。在成像过程中针孔起着关键作用,针孔直径的大小不仅决定是以共聚焦扫描方式成像还是以普遍学显微镜扫描方式成像,而且对图像的对比度和分辨率有重要的影响。 ACASULTIMa312采用快速镜扫描或台阶扫描对样品逐点扫描成像,由于样品中不同的扫描点始终在物镜和会聚透镜的光轴上,因而它以相同的信噪比扫描整个样品,扫描精度达1μm,扫描面积最大的为10cm×8cm,当激光逐点扫描样品时,针孔后的光电倍增管也逐点获得对应光点的共聚焦图像,并将之转化为数字信号传输至计算机,最终在屏幕上聚合成清晰的整个焦平面的共聚聚焦图像。一个微动步进马达控制栽物台的升降,使焦平面依次位于标本的不同层面上,可以逐层获得标本相应的光学横断面的图像。这称为“光学切片”。再利用计算机的图像处理及三维重建软件。可以得到高清晰度来表现标本的外形剖面,十分灵活、直观地进行形态学观察。 2、激光扫描共聚焦显微镜硬件和软件系统 1ACASULTIMa312硬件及参数指标 激光光源:氩离子激光(50mW的紫外光、999mW的可见光),能同时/顺序/分别输出紫外光和可见光,激发波长为351-364nm;488nm;514nm。 计算机系统:80586/133MHzPCI/80MBRAM/2000MBSCSI硬盘/150MBBernoulli盘驱动器/17’’大屏幕显示器。 共聚焦系统:计算机自动控制光路准调节;计算机控制孔径校准;计算机调节孔径大小;自动Z轴调节(最小1μm)。 光学探测系统:3个测窗式PMT采集荧光;1个CCD系统;12位的高速A/D转换器。 图像分辨率:图像大小1535×1535;像素最小距离:1μm;灰度为4096级。 扫描方式:快速镜扫描DualScan台阶扫描;扫描精度1μm;扫描面积最大为10cm×8cm;扫描平面:XY和XZ和独特点、线、面扫描。2激光扫描共聚焦显微镜软件系统 ACASULTIMa312系统采用独特设计的软件将激光细胞仪与先进的计算机技术结合,产生快速、高效、灵活的操作系统,完备的数据采集、分析与管理功能。基于生物医学研究有如下的软件。 ImageAnalyze—对于单色、比色和三色标记的二维荧光图像的定量分析,可产生透射光图像重叠,同时AutoImage可多个区域的自动扫描和荧光定量,以及相同区域的时间顺序扫描。 RatioAnalysis和Kinetics—测定细胞内的离子变化,可有点扫描、线扫描及图像扫描三种测定形式,以监测各种速率的生物反应。 Cell–CellCommunicationandFRAP-相邻细胞的FRAP分析。该软件首先用可光淬灭特异的细胞荧光,然后在多个时间点扫描,此扫描可对单一区域或细胞的多个选择区域,可产生透射光图像并与其它图像重叠。 CellList—储存被选择细胞的位置,即可自动对较大样品进行扫描,又可产生较小样品特异部位的网络位置表,以进行自动的测量、筛选和重复测定。 CellSorting—ACAS具备如下四种分选方式: AblationSort:预选定义一个荧光阈值,然后对特定细胞杀伤。②CookieCutterSort在用户定义的中心点四周切割Cookies。③QuickSort:对已定义的细胞表列,用Ablation或CookieCutter作分选。④ManualSort:直接使用鼠标控制载物台位置及激光脉冲,并杀灭和分选细胞,进行细胞显微外科,染色体切割和光隐阱等操作。 ConfocalImaging—共聚焦分析,可实现Z轴定量,三维立体图像分析(包括SFP模拟荧光处理法,DP深度投影法和SP文体投影法),以及视点移动动画。 3激光扫描共聚焦显微镜在细胞生物学中的应用 1定量荧光测量 ACAS可进行重复性极佳的低光探测及活细胞荧光定量分析。利用这一功能既可对单个细胞或细胞群的溶酶体,线粒体、DNA、RNA和受体分子含量、成份及分布进行定性及定量测定,还可测定诸如膜电位和配体结合等生化反应程度。此外,还适用于高灵敏度快速的免疫荧光测定,这种定量可以准确监测抗原表达,细胞结合和杀伤及定量的形态学特性,以揭示诸如肿瘤相关抗原表达的准确定位及定量信息。 2定量共聚焦图像分析 借助于ACAS激光共焦系统,可以获得生物样品高反差、高分辨率、高灵敏度的二维图像。可得到完整活的或固定的细胞及组织的系列及光切片,从而得到各层面的信息,三维重建后可以揭示亚细胞结构的空间关系。能测定细胞光学切片的物理、生物化学特性的变化,如DNA含量、RNA含量、分子扩散、胞内离子等,亦可以对这些动态变化进行准确的定性、定量、定时及定位分析。 3三维重组分析生物结构 ACAS使用SFP进行三维图像重组,SFP将各光学切片的数据组合成一个真实的三维图像,并可从任意角度观察,也可以借助改变照明角度来突出其特征,产生更生动逼真的三维效果。 4动态荧光测定 Ca2+、pH及其它细胞内离子测定,利用ACAS能迅速对样品的点,线或二维图像扫描,测量单次、多次单色、双发射和三发射光比率,使用诸如Indo-1、BCECF、Fluo-3等多种荧光探针对各种离子作定量分析。可以直接得到大分子的扩散速率,能定量测定细胞溶液中Ca2+对肿瘤启动因子、生长因子及各种激素等刺激的反应,以及使用双荧光探针Fluo-3和CNARF进行Ca2+和pH的同时测定。 5荧光光漂白恢复(FRAP)--活细胞的动力学参数 荧光光漂白恢复技术借助高强度脉冲式激光照射细胞某一区域,从而造成该区域荧光分子的光淬灭,该区域周围的非淬灭荧光分子将以一定速率向受照区域扩散,可通过低强度激光扫描探测此扩散速率。通过ACAS可直接测量分子扩散率、恢复速度,并由此而揭示细胞结构及相关的机制。 6胞间通讯研究 动物细胞中由缝隙连接介导的胞间通讯被认为在细胞增殖和分化中起非常重要的作用。ACAS可用于测定相邻植物和动物细胞之间细胞间通讯,测量由细胞缝隙连接介导的分子转移,研究肿瘤启动因子和生长因子对缝隙连接介导的胞间通讯的抑制作用,以及胞内Ca2+,PH和cAMP水平对缝隙连接的调节作用。 7细胞膜流动性测定 ACAS设计了专用的软件用于对细胞膜流动性进行定量和定性分析。荧光膜探针受到极化光线激发后,其发射光极性依赖于荧光分子的旋转,而这种有序的运动自由度依赖于荧光分子周围的膜流动性,因此极性测量间接反映细胞膜流动性。这种膜流动性测定在膜的磷脂酸组成分析、药物效应和作用位点,温度反应测定和物种比较等方面有重要作用。 8笼锁—解笼锁测定 许多重要的生活物质都有其笼锁化合物,在处于笼锁状态时,其功能被封闭,而一旦被特异波长的瞬间光照射后,光活化解笼锁,使其恢复原有活性和功能,在细胞的增值、分化等生物代谢过程中发挥功能。利用ACAS可以人为控制这种瞬间光的照射波长和时间,从而达到人为控制多种生物活性产物和其它化合物在生物代谢中发挥功能的时间和空间作用。 9粘附细胞分选 ACAS是目前唯一能对粘附细胞进行分离筛选的分析细胞学仪器,它对培养皿底的粘附细胞有两种分选方法:(1)Coolie-CutterTM法,它是Meidian公司专利技术,首先将细胞贴壁培养在特制培养皿上,然后用高能量激光的欲选细胞四周切割成八角形几何形状,而非选择细胞则因在八角形之外而被去除,该分选方式特别适用于选择数量较少诸如突变细胞、转移细胞和杂交瘤细胞,即使百万分之一机率的也非常理想。(2)激光消除法,该方法亦基于细胞形态及荧光特性,用高能量激光自动杀灭不需要的细胞,留下完整活细胞亚群继续培养,此方法特别适于对数量较多细胞的选择。 10细胞激光显微外科及光陷阱技术 借助ACAS可将激光当作“光子刀”使用,借此来完成诸如细胞膜瞬间穿孔、切除线粒体、溶酶体等细胞器、染色体切割、神经元突起切除等一系列细胞外科手术。通过ACAS光陷阱操作来移动细胞的微小颗粒和结构,该新技术广泛用于染色体、细胞器及细胞骨架的移动。 4、结语 激光扫描共聚焦显微镜是近十年发展起来的医学图像分析仪器,与传统的光学显微镜相比,大大地提高了分辨率,能得到真正具有三维清晰度的原色图象。并可探测某些低对比度或弱荧光样品,通过目镜直接观察各种生物样品的弱自发荧光。能动态测量Ca2+、pH值,Na1+、Mg2+等影响细胞代谢的各种生理指标[9],对细胞动力学研究有着重要的意义。同时激光扫描共聚显微镜可以处理活的标本,不会对标本造成物理化学特性的破坏,更接近细胞生活状态参数测定。可见激光扫描共聚焦显微镜是普遍显微镜上的质的飞跃,是电子显微镜的一个补充,现已广泛用于荧光定量测量,共焦图像分析,三维图像重建、活细胞动力学参数分析和胞间通讯研究等方面,在整个细胞生物学研究领域有着广阔的应用前景。

细胞生物学方面的论文摘要怎么写好

目的:(1)对目前国内经我们检测的三大类医疗器械的细胞生物相容性的现状进行分析。(2)提出医疗器械细胞生物相容性试验的重要影响因素,为医疗器械的生产、改进提供指导性建议。(3)比较活细胞计数法和MTT法两种细胞生物相容性评价试验方法的差异,得到一种准确、。

关于细 胞生物学的 ,是好的, 吧

细胞生物学方面的论文摘要写什么

细胞生物学与医学(小组成员:王萌,周蒙,赵晓娇,赵丽葵,郑大芳,朱慧凤)摘要:医学是以人体为对象研究人体生老病死的机制,研究疾病的发生、发展以及转归的规律,从而对疾病进行诊断、治疗和预防,以达到增强人体健康。它是综合的学科,必须吸收或利用其他各种学科的知识和技术服务,使之不断提高和发展。而细胞生物学是研究生命活动基本规律的学科,细胞生物学研究的各项成果、课题当然与医学的理论和实践密切相关。 关键字:细胞信号转导,基因工程,治疗性克隆细胞生物学的某些主要研究领域与医学意义一.细胞信号转导(一) 细胞信号转导的概念指细胞通过胞膜或胞内受体感受信息分子的刺激,经细胞内信号转导系统转换,从而影响细胞生物学功能的过程。水溶性信息分子必须首先与胞膜受体结合,启动细胞内信号转导的级联反应,将细胞外的信号跨膜转导至胞内;脂溶性信息分子可进入胞内,与胞浆或核内受体结合,通过改变靶基因的转录活性,诱发细胞特定的应答反应。(二) 细胞信号转导异常与疾病导致信号转导异常的因素分别有生物学因素;理化因素;遗传因素;免疫学因素和内环境因素无论是受体,配体或者受体后信号转到通路的任何一个环节出现故障都可能会影响到最终效应,使细胞曾之,分化,凋亡,代谢或者功能失常,并导致疾病 1.信息分子异常 2.受体信号转导异常 3.G蛋白信号转导异常 4.细胞内信号的转导异常 5.多个环节细胞信号转导异常 6.同一刺激引起不同的病理反应 7.不同刺激引起相同的病理反应(三)细胞信号转导异常性疾病防治的病理生理学基础 1.调整细胞外信息分子的水平 如帕金森病患者的脑中多巴胺浓度降低,通过补充其前体L-多巴,可起到一定的疗效。 2.调节受体的结构和功能 针对受体的过度激活或不足,可分别采用受体抑制剂或受体激动剂达到治疗目的。 3.调节细胞内信使分子或信号转导蛋白 目前临床应用较多的有调节胞内钙浓度的钙通道阻滞剂,维持细胞cAMP浓度的β受体阻滞剂和cAMP磷酸二酯酶抑制剂。 4.调节核转录因子的水平 如NF-κB的激活是炎症反应的关键环节,早期应用抑制NF-κB活化的药物,对控制一些全身炎症反应过程中炎症介质的失控性释放,改善病情和预后可能有益。(四) 细胞信号转导的医学应用细胞间的协调、细胞与环境的相互作用也是由信号转导来完成的。细胞增殖和凋亡的不 1/4页平衡导致癌症等重大疾病的发生,细胞癌变的本质是细胞信号转导的失调。现在,分子肿瘤学的发展使人们认识到,癌变是因为调控细胞的分子信号从细胞表面向核内转导的过程中某些环节发生病变,使细胞失去正常调节而发生的。以这些病变环节为靶点的信号转导阻遏剂有望成为高效低毒的抗癌药物,因为从理论上它们可以区分癌细胞和正常细胞,干扰引起癌变的根本环节,起到选择性治疗作用 在正常情况下,细胞增殖与死亡处于动态平衡中,这种平衡受到外环境和内在因子通过细胞信号转导分子传递的变化影响 阻断肿瘤相关基因的信号转导途径,能诱导细胞凋亡,抑制肿瘤生长。有四条细胞信号转导途径的异常与肿瘤的发生有密切关系,它们包括TGF-周期素途径、p19-p53途径、端粒酶途径和Ras-MARP途径。这些信号转导途径既独立又相互影响,以这些信号转导途径中的分子为靶点可寻找新型特异性抗肿瘤药物

激光扫描共聚焦显微镜系统及其在细胞生物学中的应用》 摘要激光扫描共聚焦显微镜是近十年发展起来的医学图象分析仪器,现已广泛应用于荧光定量测量、共焦图象分析、三维图象重建、活细胞动力学参数监测和胞间通讯研究等方面。其性能为普遍光学显微镜质的飞跃,是电子显微镜的一个补充。本文以美国Meridian公司的ACASULTIMA312为例简要介绍了激光扫描共聚显微镜系统的结构,功能和生物学应用前景。 关键词; 激光;共聚焦显微镜;粘附细胞分析与筛选(ACAS) TheLaserScanningConfocalMicroscopySystemanditsBiologicalApplications ChenYaowen,LinJielong,LaiXiaoying,MeiPinchao (ShantouUMCollege,CentralLab,ShantouGuangdong515031) AhstractTheLaserScanningConfocalMicroscopyisanewmedicalimageanalysisinstrument,Nowitiswidelyappliedinsuchfieldsasfluorescentquantitativemeasurement,conpocalimageandlyusis,3-Dreconstruction,Kineticsignalmonitioringoflivingcell,cellcellcommunicationresearches,Inthispaper,ACSAULTIMA312(MeridianCo,USA)istakenasanexampletointroducetheprincipleofconfocalmicroscopy, KeywordsLaserConfocalMicroscopyAdherentCellAnalysisandsorting(ACSA) 激光扫描共聚焦显微镜(LaserscanningConfocalMicroscopy,简称LSCM)是近代生物医学图象仪器的最重要发展之一,它是在荧光显微镜成象的基础上加装激光扫描装置,使用紫外光或可见光激发荧光探针,利用计算机进行图象处理,从而得到细胞或组织内部微细结构的荧光图象,以及在亚细胞水平上观察诸如Ca2+、pH值、膜电位等生理信号及细胞形态的变化。已广泛应用于细胞生物学、生理学、病理学、解剖学、胚胎学、免疫学和神经生物学等领域[1、2、3],对生物样品进行定性、定量、定时和定位研究具有很大的优越性,为这些领域新一代强有力的研究工具。 创建于1983年的美国Meridian公司,在90年代推出的“激光扫描共聚焦显微镜”这一项具有划时代的义意的高科技产品,曾获得美国“政府新产品奖”和两次“高科技领先技术奖”,它能达到每秒120幅画面的高速扫描激光共聚焦观察,可提供实时,真彩色的激光共聚焦原色图象。我院最近引起的ACASuLTIMA312是Meridian公司最新的高科技产品,为同类仪器中档次最高、功能最全的精密仪器。现以该仪器为例介绍激光扫描共聚焦显微镜系统及其在细胞生物学中的应用。 1、激光扫描共聚焦显微镜成像原理及组成 有关共聚焦显微镜的某些技术原理,早在1957年就已提出,二十年后由Brandengoff在高数值孔径透镜装置上改装成功具有高清晰度的共聚焦显微镜[5],1985年WijnaendtsVanResandt发表了第一篇有关激光扫描共聚焦显微镜在生物学中应用的文章,到了1987年,才发展成现在通常意义上的第一代激光扫描共聚焦显微镜。 激光扫描共聚焦显微镜成像原理如图1所示,激光器发出的激光束经过扩束透镜和光束整形镜,变成一束直径较大的平行光束,长通分色反射镜使光束偏转90度,经过物镜会聚在物镜的焦点上,样品中的荧光物质在激光的激发下发射沿各个方向的荧光,一部分荧光经过物镜、长通分色反射镜、聚焦透镜、会聚在聚焦物镜的焦点处,再通过焦点处的针孔,由检测器接收。 从图1中可以看出,只有在物镜的焦平面上发出的荧光才够到达检测器,其它位置发出的光均不能过针孔。由于物镜和会聚透镜的焦点在同一光轴上,因而称这种方式成像的显微镜为共聚焦显微镜为共聚显微镜。在成像过程中针孔起着关键作用,针孔直径的大小不仅决定是以共聚焦扫描方式成像还是以普遍学显微镜扫描方式成像,而且对图像的对比度和分辨率有重要的影响。 ACASULTIMa312采用快速镜扫描或台阶扫描对样品逐点扫描成像,由于样品中不同的扫描点始终在物镜和会聚透镜的光轴上,因而它以相同的信噪比扫描整个样品,扫描精度达1μm,扫描面积最大的为10cm×8cm,当激光逐点扫描样品时,针孔后的光电倍增管也逐点获得对应光点的共聚焦图像,并将之转化为数字信号传输至计算机,最终在屏幕上聚合成清晰的整个焦平面的共聚聚焦图像。一个微动步进马达控制栽物台的升降,使焦平面依次位于标本的不同层面上,可以逐层获得标本相应的光学横断面的图像。这称为“光学切片”。再利用计算机的图像处理及三维重建软件。可以得到高清晰度来表现标本的外形剖面,十分灵活、直观地进行形态学观察。 2、激光扫描共聚焦显微镜硬件和软件系统 1ACASULTIMa312硬件及参数指标 激光光源:氩离子激光(50mW的紫外光、999mW的可见光),能同时/顺序/分别输出紫外光和可见光,激发波长为351-364nm;488nm;514nm。 计算机系统:80586/133MHzPCI/80MBRAM/2000MBSCSI硬盘/150MBBernoulli盘驱动器/17’’大屏幕显示器。 共聚焦系统:计算机自动控制光路准调节;计算机控制孔径校准;计算机调节孔径大小;自动Z轴调节(最小1μm)。 光学探测系统:3个测窗式PMT采集荧光;1个CCD系统;12位的高速A/D转换器。 图像分辨率:图像大小1535×1535;像素最小距离:1μm;灰度为4096级。 扫描方式:快速镜扫描DualScan台阶扫描;扫描精度1μm;扫描面积最大为10cm×8cm;扫描平面:XY和XZ和独特点、线、面扫描。2激光扫描共聚焦显微镜软件系统 ACASULTIMa312系统采用独特设计的软件将激光细胞仪与先进的计算机技术结合,产生快速、高效、灵活的操作系统,完备的数据采集、分析与管理功能。基于生物医学研究有如下的软件。 ImageAnalyze—对于单色、比色和三色标记的二维荧光图像的定量分析,可产生透射光图像重叠,同时AutoImage可多个区域的自动扫描和荧光定量,以及相同区域的时间顺序扫描。 RatioAnalysis和Kinetics—测定细胞内的离子变化,可有点扫描、线扫描及图像扫描三种测定形式,以监测各种速率的生物反应。 Cell–CellCommunicationandFRAP-相邻细胞的FRAP分析。该软件首先用可光淬灭特异的细胞荧光,然后在多个时间点扫描,此扫描可对单一区域或细胞的多个选择区域,可产生透射光图像并与其它图像重叠。 CellList—储存被选择细胞的位置,即可自动对较大样品进行扫描,又可产生较小样品特异部位的网络位置表,以进行自动的测量、筛选和重复测定。 CellSorting—ACAS具备如下四种分选方式: AblationSort:预选定义一个荧光阈值,然后对特定细胞杀伤。②CookieCutterSort在用户定义的中心点四周切割Cookies。③QuickSort:对已定义的细胞表列,用Ablation或CookieCutter作分选。④ManualSort:直接使用鼠标控制载物台位置及激光脉冲,并杀灭和分选细胞,进行细胞显微外科,染色体切割和光隐阱等操作。 ConfocalImaging—共聚焦分析,可实现Z轴定量,三维立体图像分析(包括SFP模拟荧光处理法,DP深度投影法和SP文体投影法),以及视点移动动画。 3激光扫描共聚焦显微镜在细胞生物学中的应用 1定量荧光测量 ACAS可进行重复性极佳的低光探测及活细胞荧光定量分析。利用这一功能既可对单个细胞或细胞群的溶酶体,线粒体、DNA、RNA和受体分子含量、成份及分布进行定性及定量测定,还可测定诸如膜电位和配体结合等生化反应程度。此外,还适用于高灵敏度快速的免疫荧光测定,这种定量可以准确监测抗原表达,细胞结合和杀伤及定量的形态学特性,以揭示诸如肿瘤相关抗原表达的准确定位及定量信息。 2定量共聚焦图像分析 借助于ACAS激光共焦系统,可以获得生物样品高反差、高分辨率、高灵敏度的二维图像。可得到完整活的或固定的细胞及组织的系列及光切片,从而得到各层面的信息,三维重建后可以揭示亚细胞结构的空间关系。能测定细胞光学切片的物理、生物化学特性的变化,如DNA含量、RNA含量、分子扩散、胞内离子等,亦可以对这些动态变化进行准确的定性、定量、定时及定位分析。 3三维重组分析生物结构 ACAS使用SFP进行三维图像重组,SFP将各光学切片的数据组合成一个真实的三维图像,并可从任意角度观察,也可以借助改变照明角度来突出其特征,产生更生动逼真的三维效果。 4动态荧光测定 Ca2+、pH及其它细胞内离子测定,利用ACAS能迅速对样品的点,线或二维图像扫描,测量单次、多次单色、双发射和三发射光比率,使用诸如Indo-1、BCECF、Fluo-3等多种荧光探针对各种离子作定量分析。可以直接得到大分子的扩散速率,能定量测定细胞溶液中Ca2+对肿瘤启动因子、生长因子及各种激素等刺激的反应,以及使用双荧光探针Fluo-3和CNARF进行Ca2+和pH的同时测定。 5荧光光漂白恢复(FRAP)--活细胞的动力学参数 荧光光漂白恢复技术借助高强度脉冲式激光照射细胞某一区域,从而造成该区域荧光分子的光淬灭,该区域周围的非淬灭荧光分子将以一定速率向受照区域扩散,可通过低强度激光扫描探测此扩散速率。通过ACAS可直接测量分子扩散率、恢复速度,并由此而揭示细胞结构及相关的机制。 6胞间通讯研究 动物细胞中由缝隙连接介导的胞间通讯被认为在细胞增殖和分化中起非常重要的作用。ACAS可用于测定相邻植物和动物细胞之间细胞间通讯,测量由细胞缝隙连接介导的分子转移,研究肿瘤启动因子和生长因子对缝隙连接介导的胞间通讯的抑制作用,以及胞内Ca2+,PH和cAMP水平对缝隙连接的调节作用。 7细胞膜流动性测定 ACAS设计了专用的软件用于对细胞膜流动性进行定量和定性分析。荧光膜探针受到极化光线激发后,其发射光极性依赖于荧光分子的旋转,而这种有序的运动自由度依赖于荧光分子周围的膜流动性,因此极性测量间接反映细胞膜流动性。这种膜流动性测定在膜的磷脂酸组成分析、药物效应和作用位点,温度反应测定和物种比较等方面有重要作用。 8笼锁—解笼锁测定 许多重要的生活物质都有其笼锁化合物,在处于笼锁状态时,其功能被封闭,而一旦被特异波长的瞬间光照射后,光活化解笼锁,使其恢复原有活性和功能,在细胞的增值、分化等生物代谢过程中发挥功能。利用ACAS可以人为控制这种瞬间光的照射波长和时间,从而达到人为控制多种生物活性产物和其它化合物在生物代谢中发挥功能的时间和空间作用。 9粘附细胞分选 ACAS是目前唯一能对粘附细胞进行分离筛选的分析细胞学仪器,它对培养皿底的粘附细胞有两种分选方法:(1)Coolie-CutterTM法,它是Meidian公司专利技术,首先将细胞贴壁培养在特制培养皿上,然后用高能量激光的欲选细胞四周切割成八角形几何形状,而非选择细胞则因在八角形之外而被去除,该分选方式特别适用于选择数量较少诸如突变细胞、转移细胞和杂交瘤细胞,即使百万分之一机率的也非常理想。(2)激光消除法,该方法亦基于细胞形态及荧光特性,用高能量激光自动杀灭不需要的细胞,留下完整活细胞亚群继续培养,此方法特别适于对数量较多细胞的选择。 10细胞激光显微外科及光陷阱技术 借助ACAS可将激光当作“光子刀”使用,借此来完成诸如细胞膜瞬间穿孔、切除线粒体、溶酶体等细胞器、染色体切割、神经元突起切除等一系列细胞外科手术。通过ACAS光陷阱操作来移动细胞的微小颗粒和结构,该新技术广泛用于染色体、细胞器及细胞骨架的移动。 4、结语 激光扫描共聚焦显微镜是近十年发展起来的医学图像分析仪器,与传统的光学显微镜相比,大大地提高了分辨率,能得到真正具有三维清晰度的原色图象。并可探测某些低对比度或弱荧光样品,通过目镜直接观察各种生物样品的弱自发荧光。能动态测量Ca2+、pH值,Na1+、Mg2+等影响细胞代谢的各种生理指标[9],对细胞动力学研究有着重要的意义。同时激光扫描共聚显微镜可以处理活的标本,不会对标本造成物理化学特性的破坏,更接近细胞生活状态参数测定。可见激光扫描共聚焦显微镜是普遍显微镜上的质的飞跃,是电子显微镜的一个补充,现已广泛用于荧光定量测量,共焦图像分析,三维图像重建、活细胞动力学参数分析和胞间通讯研究等方面,在整个细胞生物学研究领域有着广阔的应用前景。

细胞生物学方面的论文摘要是什么

细胞生物学与医学(小组成员:王萌,周蒙,赵晓娇,赵丽葵,郑大芳,朱慧凤)摘要:医学是以人体为对象研究人体生老病死的机制,研究疾病的发生、发展以及转归的规律,从而对疾病进行诊断、治疗和预防,以达到增强人体健康。它是综合的学科,必须吸收或利用其他各种学科的知识和技术服务,使之不断提高和发展。而细胞生物学是研究生命活动基本规律的学科,细胞生物学研究的各项成果、课题当然与医学的理论和实践密切相关。 关键字:细胞信号转导,基因工程,治疗性克隆细胞生物学的某些主要研究领域与医学意义一.细胞信号转导(一) 细胞信号转导的概念指细胞通过胞膜或胞内受体感受信息分子的刺激,经细胞内信号转导系统转换,从而影响细胞生物学功能的过程。水溶性信息分子必须首先与胞膜受体结合,启动细胞内信号转导的级联反应,将细胞外的信号跨膜转导至胞内;脂溶性信息分子可进入胞内,与胞浆或核内受体结合,通过改变靶基因的转录活性,诱发细胞特定的应答反应。(二) 细胞信号转导异常与疾病导致信号转导异常的因素分别有生物学因素;理化因素;遗传因素;免疫学因素和内环境因素无论是受体,配体或者受体后信号转到通路的任何一个环节出现故障都可能会影响到最终效应,使细胞曾之,分化,凋亡,代谢或者功能失常,并导致疾病 1.信息分子异常 2.受体信号转导异常 3.G蛋白信号转导异常 4.细胞内信号的转导异常 5.多个环节细胞信号转导异常 6.同一刺激引起不同的病理反应 7.不同刺激引起相同的病理反应(三)细胞信号转导异常性疾病防治的病理生理学基础 1.调整细胞外信息分子的水平 如帕金森病患者的脑中多巴胺浓度降低,通过补充其前体L-多巴,可起到一定的疗效。 2.调节受体的结构和功能 针对受体的过度激活或不足,可分别采用受体抑制剂或受体激动剂达到治疗目的。 3.调节细胞内信使分子或信号转导蛋白 目前临床应用较多的有调节胞内钙浓度的钙通道阻滞剂,维持细胞cAMP浓度的β受体阻滞剂和cAMP磷酸二酯酶抑制剂。 4.调节核转录因子的水平 如NF-κB的激活是炎症反应的关键环节,早期应用抑制NF-κB活化的药物,对控制一些全身炎症反应过程中炎症介质的失控性释放,改善病情和预后可能有益。(四) 细胞信号转导的医学应用细胞间的协调、细胞与环境的相互作用也是由信号转导来完成的。细胞增殖和凋亡的不 1/4页平衡导致癌症等重大疾病的发生,细胞癌变的本质是细胞信号转导的失调。现在,分子肿瘤学的发展使人们认识到,癌变是因为调控细胞的分子信号从细胞表面向核内转导的过程中某些环节发生病变,使细胞失去正常调节而发生的。以这些病变环节为靶点的信号转导阻遏剂有望成为高效低毒的抗癌药物,因为从理论上它们可以区分癌细胞和正常细胞,干扰引起癌变的根本环节,起到选择性治疗作用 在正常情况下,细胞增殖与死亡处于动态平衡中,这种平衡受到外环境和内在因子通过细胞信号转导分子传递的变化影响 阻断肿瘤相关基因的信号转导途径,能诱导细胞凋亡,抑制肿瘤生长。有四条细胞信号转导途径的异常与肿瘤的发生有密切关系,它们包括TGF-周期素途径、p19-p53途径、端粒酶途径和Ras-MARP途径。这些信号转导途径既独立又相互影响,以这些信号转导途径中的分子为靶点可寻找新型特异性抗肿瘤药物

激光扫描共聚焦显微镜系统及其在细胞生物学中的应用》 摘要激光扫描共聚焦显微镜是近十年发展起来的医学图象分析仪器,现已广泛应用于荧光定量测量、共焦图象分析、三维图象重建、活细胞动力学参数监测和胞间通讯研究等方面。其性能为普遍光学显微镜质的飞跃,是电子显微镜的一个补充。本文以美国Meridian公司的ACASULTIMA312为例简要介绍了激光扫描共聚显微镜系统的结构,功能和生物学应用前景。 关键词; 激光;共聚焦显微镜;粘附细胞分析与筛选(ACAS) TheLaserScanningConfocalMicroscopySystemanditsBiologicalApplications ChenYaowen,LinJielong,LaiXiaoying,MeiPinchao (ShantouUMCollege,CentralLab,ShantouGuangdong515031) AhstractTheLaserScanningConfocalMicroscopyisanewmedicalimageanalysisinstrument,Nowitiswidelyappliedinsuchfieldsasfluorescentquantitativemeasurement,conpocalimageandlyusis,3-Dreconstruction,Kineticsignalmonitioringoflivingcell,cellcellcommunicationresearches,Inthispaper,ACSAULTIMA312(MeridianCo,USA)istakenasanexampletointroducetheprincipleofconfocalmicroscopy, KeywordsLaserConfocalMicroscopyAdherentCellAnalysisandsorting(ACSA) 激光扫描共聚焦显微镜(LaserscanningConfocalMicroscopy,简称LSCM)是近代生物医学图象仪器的最重要发展之一,它是在荧光显微镜成象的基础上加装激光扫描装置,使用紫外光或可见光激发荧光探针,利用计算机进行图象处理,从而得到细胞或组织内部微细结构的荧光图象,以及在亚细胞水平上观察诸如Ca2+、pH值、膜电位等生理信号及细胞形态的变化。已广泛应用于细胞生物学、生理学、病理学、解剖学、胚胎学、免疫学和神经生物学等领域[1、2、3],对生物样品进行定性、定量、定时和定位研究具有很大的优越性,为这些领域新一代强有力的研究工具。 创建于1983年的美国Meridian公司,在90年代推出的“激光扫描共聚焦显微镜”这一项具有划时代的义意的高科技产品,曾获得美国“政府新产品奖”和两次“高科技领先技术奖”,它能达到每秒120幅画面的高速扫描激光共聚焦观察,可提供实时,真彩色的激光共聚焦原色图象。我院最近引起的ACASuLTIMA312是Meridian公司最新的高科技产品,为同类仪器中档次最高、功能最全的精密仪器。现以该仪器为例介绍激光扫描共聚焦显微镜系统及其在细胞生物学中的应用。 1、激光扫描共聚焦显微镜成像原理及组成 有关共聚焦显微镜的某些技术原理,早在1957年就已提出,二十年后由Brandengoff在高数值孔径透镜装置上改装成功具有高清晰度的共聚焦显微镜[5],1985年WijnaendtsVanResandt发表了第一篇有关激光扫描共聚焦显微镜在生物学中应用的文章,到了1987年,才发展成现在通常意义上的第一代激光扫描共聚焦显微镜。 激光扫描共聚焦显微镜成像原理如图1所示,激光器发出的激光束经过扩束透镜和光束整形镜,变成一束直径较大的平行光束,长通分色反射镜使光束偏转90度,经过物镜会聚在物镜的焦点上,样品中的荧光物质在激光的激发下发射沿各个方向的荧光,一部分荧光经过物镜、长通分色反射镜、聚焦透镜、会聚在聚焦物镜的焦点处,再通过焦点处的针孔,由检测器接收。 从图1中可以看出,只有在物镜的焦平面上发出的荧光才够到达检测器,其它位置发出的光均不能过针孔。由于物镜和会聚透镜的焦点在同一光轴上,因而称这种方式成像的显微镜为共聚焦显微镜为共聚显微镜。在成像过程中针孔起着关键作用,针孔直径的大小不仅决定是以共聚焦扫描方式成像还是以普遍学显微镜扫描方式成像,而且对图像的对比度和分辨率有重要的影响。 ACASULTIMa312采用快速镜扫描或台阶扫描对样品逐点扫描成像,由于样品中不同的扫描点始终在物镜和会聚透镜的光轴上,因而它以相同的信噪比扫描整个样品,扫描精度达1μm,扫描面积最大的为10cm×8cm,当激光逐点扫描样品时,针孔后的光电倍增管也逐点获得对应光点的共聚焦图像,并将之转化为数字信号传输至计算机,最终在屏幕上聚合成清晰的整个焦平面的共聚聚焦图像。一个微动步进马达控制栽物台的升降,使焦平面依次位于标本的不同层面上,可以逐层获得标本相应的光学横断面的图像。这称为“光学切片”。再利用计算机的图像处理及三维重建软件。可以得到高清晰度来表现标本的外形剖面,十分灵活、直观地进行形态学观察。 2、激光扫描共聚焦显微镜硬件和软件系统 1ACASULTIMa312硬件及参数指标 激光光源:氩离子激光(50mW的紫外光、999mW的可见光),能同时/顺序/分别输出紫外光和可见光,激发波长为351-364nm;488nm;514nm。 计算机系统:80586/133MHzPCI/80MBRAM/2000MBSCSI硬盘/150MBBernoulli盘驱动器/17’’大屏幕显示器。 共聚焦系统:计算机自动控制光路准调节;计算机控制孔径校准;计算机调节孔径大小;自动Z轴调节(最小1μm)。 光学探测系统:3个测窗式PMT采集荧光;1个CCD系统;12位的高速A/D转换器。 图像分辨率:图像大小1535×1535;像素最小距离:1μm;灰度为4096级。 扫描方式:快速镜扫描DualScan台阶扫描;扫描精度1μm;扫描面积最大为10cm×8cm;扫描平面:XY和XZ和独特点、线、面扫描。2激光扫描共聚焦显微镜软件系统 ACASULTIMa312系统采用独特设计的软件将激光细胞仪与先进的计算机技术结合,产生快速、高效、灵活的操作系统,完备的数据采集、分析与管理功能。基于生物医学研究有如下的软件。 ImageAnalyze—对于单色、比色和三色标记的二维荧光图像的定量分析,可产生透射光图像重叠,同时AutoImage可多个区域的自动扫描和荧光定量,以及相同区域的时间顺序扫描。 RatioAnalysis和Kinetics—测定细胞内的离子变化,可有点扫描、线扫描及图像扫描三种测定形式,以监测各种速率的生物反应。 Cell–CellCommunicationandFRAP-相邻细胞的FRAP分析。该软件首先用可光淬灭特异的细胞荧光,然后在多个时间点扫描,此扫描可对单一区域或细胞的多个选择区域,可产生透射光图像并与其它图像重叠。 CellList—储存被选择细胞的位置,即可自动对较大样品进行扫描,又可产生较小样品特异部位的网络位置表,以进行自动的测量、筛选和重复测定。 CellSorting—ACAS具备如下四种分选方式: AblationSort:预选定义一个荧光阈值,然后对特定细胞杀伤。②CookieCutterSort在用户定义的中心点四周切割Cookies。③QuickSort:对已定义的细胞表列,用Ablation或CookieCutter作分选。④ManualSort:直接使用鼠标控制载物台位置及激光脉冲,并杀灭和分选细胞,进行细胞显微外科,染色体切割和光隐阱等操作。 ConfocalImaging—共聚焦分析,可实现Z轴定量,三维立体图像分析(包括SFP模拟荧光处理法,DP深度投影法和SP文体投影法),以及视点移动动画。 3激光扫描共聚焦显微镜在细胞生物学中的应用 1定量荧光测量 ACAS可进行重复性极佳的低光探测及活细胞荧光定量分析。利用这一功能既可对单个细胞或细胞群的溶酶体,线粒体、DNA、RNA和受体分子含量、成份及分布进行定性及定量测定,还可测定诸如膜电位和配体结合等生化反应程度。此外,还适用于高灵敏度快速的免疫荧光测定,这种定量可以准确监测抗原表达,细胞结合和杀伤及定量的形态学特性,以揭示诸如肿瘤相关抗原表达的准确定位及定量信息。 2定量共聚焦图像分析 借助于ACAS激光共焦系统,可以获得生物样品高反差、高分辨率、高灵敏度的二维图像。可得到完整活的或固定的细胞及组织的系列及光切片,从而得到各层面的信息,三维重建后可以揭示亚细胞结构的空间关系。能测定细胞光学切片的物理、生物化学特性的变化,如DNA含量、RNA含量、分子扩散、胞内离子等,亦可以对这些动态变化进行准确的定性、定量、定时及定位分析。 3三维重组分析生物结构 ACAS使用SFP进行三维图像重组,SFP将各光学切片的数据组合成一个真实的三维图像,并可从任意角度观察,也可以借助改变照明角度来突出其特征,产生更生动逼真的三维效果。 4动态荧光测定 Ca2+、pH及其它细胞内离子测定,利用ACAS能迅速对样品的点,线或二维图像扫描,测量单次、多次单色、双发射和三发射光比率,使用诸如Indo-1、BCECF、Fluo-3等多种荧光探针对各种离子作定量分析。可以直接得到大分子的扩散速率,能定量测定细胞溶液中Ca2+对肿瘤启动因子、生长因子及各种激素等刺激的反应,以及使用双荧光探针Fluo-3和CNARF进行Ca2+和pH的同时测定。 5荧光光漂白恢复(FRAP)--活细胞的动力学参数 荧光光漂白恢复技术借助高强度脉冲式激光照射细胞某一区域,从而造成该区域荧光分子的光淬灭,该区域周围的非淬灭荧光分子将以一定速率向受照区域扩散,可通过低强度激光扫描探测此扩散速率。通过ACAS可直接测量分子扩散率、恢复速度,并由此而揭示细胞结构及相关的机制。 6胞间通讯研究 动物细胞中由缝隙连接介导的胞间通讯被认为在细胞增殖和分化中起非常重要的作用。ACAS可用于测定相邻植物和动物细胞之间细胞间通讯,测量由细胞缝隙连接介导的分子转移,研究肿瘤启动因子和生长因子对缝隙连接介导的胞间通讯的抑制作用,以及胞内Ca2+,PH和cAMP水平对缝隙连接的调节作用。 7细胞膜流动性测定 ACAS设计了专用的软件用于对细胞膜流动性进行定量和定性分析。荧光膜探针受到极化光线激发后,其发射光极性依赖于荧光分子的旋转,而这种有序的运动自由度依赖于荧光分子周围的膜流动性,因此极性测量间接反映细胞膜流动性。这种膜流动性测定在膜的磷脂酸组成分析、药物效应和作用位点,温度反应测定和物种比较等方面有重要作用。 8笼锁—解笼锁测定 许多重要的生活物质都有其笼锁化合物,在处于笼锁状态时,其功能被封闭,而一旦被特异波长的瞬间光照射后,光活化解笼锁,使其恢复原有活性和功能,在细胞的增值、分化等生物代谢过程中发挥功能。利用ACAS可以人为控制这种瞬间光的照射波长和时间,从而达到人为控制多种生物活性产物和其它化合物在生物代谢中发挥功能的时间和空间作用。 9粘附细胞分选 ACAS是目前唯一能对粘附细胞进行分离筛选的分析细胞学仪器,它对培养皿底的粘附细胞有两种分选方法:(1)Coolie-CutterTM法,它是Meidian公司专利技术,首先将细胞贴壁培养在特制培养皿上,然后用高能量激光的欲选细胞四周切割成八角形几何形状,而非选择细胞则因在八角形之外而被去除,该分选方式特别适用于选择数量较少诸如突变细胞、转移细胞和杂交瘤细胞,即使百万分之一机率的也非常理想。(2)激光消除法,该方法亦基于细胞形态及荧光特性,用高能量激光自动杀灭不需要的细胞,留下完整活细胞亚群继续培养,此方法特别适于对数量较多细胞的选择。 10细胞激光显微外科及光陷阱技术 借助ACAS可将激光当作“光子刀”使用,借此来完成诸如细胞膜瞬间穿孔、切除线粒体、溶酶体等细胞器、染色体切割、神经元突起切除等一系列细胞外科手术。通过ACAS光陷阱操作来移动细胞的微小颗粒和结构,该新技术广泛用于染色体、细胞器及细胞骨架的移动。 4、结语 激光扫描共聚焦显微镜是近十年发展起来的医学图像分析仪器,与传统的光学显微镜相比,大大地提高了分辨率,能得到真正具有三维清晰度的原色图象。并可探测某些低对比度或弱荧光样品,通过目镜直接观察各种生物样品的弱自发荧光。能动态测量Ca2+、pH值,Na1+、Mg2+等影响细胞代谢的各种生理指标[9],对细胞动力学研究有着重要的意义。同时激光扫描共聚显微镜可以处理活的标本,不会对标本造成物理化学特性的破坏,更接近细胞生活状态参数测定。可见激光扫描共聚焦显微镜是普遍显微镜上的质的飞跃,是电子显微镜的一个补充,现已广泛用于荧光定量测量,共焦图像分析,三维图像重建、活细胞动力学参数分析和胞间通讯研究等方面,在整个细胞生物学研究领域有着广阔的应用前景。

细胞生物学方面的论文摘要是什么写的

The English papers cell biologyNature Publishing Group (NPG) and the European Molecular Biology Organization (EMBO) are pleased to announce the launch of an exciting new online-only journal, Molecular Systems B The quality of the journal is guaranteed by the editorial and advisory boards, consisting of leading researchers in the field of systems biology, together with the commitment to scientific excellence and the professionalism of EMBO and NPG Molecular Systems Biology covers all aspects of the rapidly growing and interdisciplinary field of systems biology at the molecular level, and will attract and help shape the highest quality research in the evolving areas of genomics, proteomics, metabolomics, bioinformatics, microbial systems, and the integration of cell signaling and regulatory The journal will work together with the systems biology community to establish guidelines, standards and metrics for global complex

细胞生物学:研究细胞基本的生命活动规律的学科。从显微,亚显微和分子水平上研究细胞结构与功能,细胞增殖,分化,代谢,运动,死亡,衰老,以及细胞信号转导,细胞基因表达与调控,细胞起源与进化等重大生命过程。细胞生物学的主要研究内容:生物膜和细胞器,细胞信号转导,细胞骨架体系,细胞核染色体及其表达,细胞增殖及其调控,细胞分化及干细胞生物学,细胞死亡,细胞衰老,细胞工程,细胞的起源与进化。

关于细 胞生物学的 ,是好的, 吧

相关百科
热门百科
首页
发表服务