期刊投稿百科

遥感在生态环境中的应用论文摘要

发布时间:2024-07-16 16:44:45

遥感在生态环境中的应用论文摘要

哈哈哈哈 我也在找呢 小丹丹你把我忽悠了!!!!!!!

遥感是20世纪60年代在美国创造的技术用语,用来综合以前所使用的摄影测量、影像判读、地理摄影而提出的。1972年,随着第一颗地球观测卫星Landsat的发射成功而迅速得到普及。遥感是一种远离目标,通过非直接接触而判定、测量并分析目标性质的技术。对目标进行信息采集主要是利用了从目标反射或辐射的电磁波。接收从目标中反射或辐射的电磁波的装置叫遥感器(remote sensor)。搭载这些遥感器的移动体叫做遥感平台platform),如飞机及人造卫星等。遥感技术自20世纪60年代初兴起并迅速发展以来,遥感应用的领域在不断地扩大发展,遥感应用从其内容上可概括为资源调查与应用、环境监测评价、区域分析规划及全球宏观研究等(全球宏观研究为一大领域)四大领域。一、环境遥感的特点遥感(Remote sensing)就是遥远感知事物的意思,也就是不直接接触目标物和现象,在距离地物几公里到几百公里、甚至上千公里的飞机、飞船、卫星上,使用光学或电子光学仪器(称为遥感器)接受地面物体反射或发射的电磁波信号,并以图像胶片或数据磁带形式记录下来,传递到地面,经过信息处理、判读分析和野外实地验证,最终服务于资源勘探、环境动态监测和有关部门决策。通常把这一接收、传输、处理、分析判读和应用遥感信息的全过程称为遥感技术。现代遥感技术在地球资源、环境及自然灾害调查、监测和评价中的应用,具有宏观、快速、准确、直观、动态性和适应性等其他技术不能取代的优势。特别是与其他相关技术(如现代通讯、对地定位、常规调查、台站观测、地理信息系统及专业研究)结合起来,更能充分体现其优势。环境遥感是从空中利用遥感器来探测地面物体的现代技术,其特点包括如下几方面:(1)感测范围大,综合、宏观:航摄飞机的飞行高度可达10km左右,陆地卫星的轨道高度可达到910km左右。由于飞得高,观测的面积就广阔。例如每张陆地卫星图像覆盖的地面范围达到3万km2,约相当于中国海南省的面积。遥感从飞机上或人造地球卫星上,居高临下获取的航空相片或卫星图像,不受地形地物阻隔的影响,景观一览无余,为人们研究地面各种自然、社会现象及其分布规律提供了便利条件。如航空相片可提供不同比例尺的地面连续景观相片,并可供像对的立体观察。图像清晰逼真,信息丰富。一张比例尺1/35000的23cm×23cm的航空相片,可展示出地面约60km2范围的地面景观实况。并且可将连续的相片镶嵌成更大区域的相片图,以便总观全区进行分析和研究。卫星图像的感测范围更大,一幅陆地卫星TM图像可反映出34225km2(即185km×185km)景观实况。(2)信息量大、手段多、技术先进:环境遥感技术可以根据不同的目的和任务,选用不同的波段和不同的仪器取得所需的信息。现代遥感技术不仅能利用可见光波段探测物体,而且能利用人眼看不见的紫外线、红外线和微波波段进行探测。不仅能探测地表的性质,而且可以探测到目标物的一定深度。某些波段具有对云、雾、冰、干沙土等的穿透性,可深化对被测目标的认识。例如,可见光的蓝绿光波段对水体有一定的穿透度;用波长较长的微波雷达探测冰层,可以穿透冰层而到达冰层下面的地面或水体。遥感是现代科技的产物,不但能用摄影方式获得信息,而且可以用扫描方式获得信息。遥感技术的运用,扩大了信息量的获取,扩大了人类的观察范围和感知领域,加深了人类对事物和现象的认识。(3)获取信息快,更新周期短,可动态监测:以往进行实地测绘地图,要几年、十几年甚至几十年才能重复一次。应用航空摄影测量方法以后,也要数年才能重复一次。而卫星绕地球运转,能迅速获得所经地区的各种自然现象的最新资料。以陆地卫星4、5为例,每16天可以覆盖地球一遍。因此,利用遥感技术以后,地图更新可以大大缩短,一些地区自然现象的动态变化也能快速地反映出来,并及时作出预报。遥感通常为瞬时成像,可获得同一瞬间大面积区域的景观实况,现势性好,而且可通过不同时相取得的资料进行对比、分析和研究地物动态变化的情况,为环境监测以及研究分析地物发展演化规律提供了基础。(4)用途广、效益高:环境遥感已广泛应用于农业、林业、地质矿产、水文、气象、地理、测绘、海洋研究、军事侦察及环境监测等领域,深入到很多学科中,应用领域在不断扩展,具有明显的社会、经济和生态效益。(5)受地面条件限制少:对于自然条件恶劣、地面工作难以开展的地区,如高山、冰用、沙漠、沼泽等,或因国界限制不易到达的地区,用遥感,特别是航天遥感方法,则比较容易获取资料。二、现代遥感技术的构成遥感技术系统是实现遥感目的的方法、设备和技术的总称,是一个多维、多平台、多层次的立体化观测系统。遥感数据获取是在遥感平台和遥感器构成的数据获取技术系统的支持下实现的。由于各种平台和遥感器都有自己的适用范围和局限性(表1-1、1-2),因此往往随着具体任务的性质和要求的不同而采用不同的组合方式,以取得较好的应用效果。片面地强调某种平台或遥感器的重要性,甚至把它们对立起来,显然是不适宜的。表1-1 各种遥感平台表1-2 主要遥感器的特点(据阎守邕,1990)从遥感数据中提取有用信息,可以通过人工目视判读、计算机数据处理以及两者混合的方法实现。这两种方法及相应的技术系统各具优缺点,需要相互配合,取长补短。三、环境遥感的应用遥感技术自20世纪60年代初兴起并迅速得到发展以来,应用的领域在不断地扩展。环境遥感的应用从其内容上可概括为资源调查与应用、环境监测评价、区域分析规划及全球宏观研究四大领域。遥感在资源调查方面的应用遥感在资源调查中可发挥很大的作用,特别是在自然资源调查中,近年来做了很多工作,取得了丰硕的成果和可观的效益。其主要表现在国民经济建设中的农业、林业、地质矿产、水土保持及水利建设等部门中。在农业、林业方面的应用:遥感在农林方面的应用主要是在农、林土地资源调查,土地利用现状调查,土壤干旱、沙化的调查及监测以及农作物长势的监测与估产,森林资源的清查等方面。近年来,在牧草场资源调查、短中期农林灾害、农用水资源以及生态环境调查等方面也相继开展工作,取得了成果。在地质矿产方面的应用:遥感在地质及其矿产方面的应用主要表现在基础地质工作,矿产地质工作以及工程地质、地震地质、灾害地质的综合调查等方面的应用。遥感已成为地质矿产调查研究中的一种先进的工作手段和重要方法。遥感图像视域宽阔,客观真实地反映出各种地质现象及其相互间的关系,形象地反映出区域地质构造及其空间关系,为跨区域甚至全球的区域地质研究提供了极有利的条件。在水文、水资源方面的应用:遥感在水文、水资源的应用,如水资源的调查、流域规划、水土流失调查、海口海岸带及浅海地形调查、海洋调查研究等方面,都能发挥重要作用。特别是在人类足迹难以到达的荒凉地区,遥感技术可成为水文、水资源调查的有效手段。遥感在环境监测评价方面的应用遥感在环境监测中主要是利用遥感提供的瞬间成像的大范围图像,对大气污染、土地污染以及海洋污染等进行监测。由于遥感所提供的信息具有快速及时,现势性好,真实、客观、形象的特点,可实时地了解和掌握污染源的位置、污染物的性质、污染物的动态变化以及污染对环境的影响,为及时采取防护或疏导措施以及环境评价提供了基础。遥感在对抗自然灾害方面的应用自然灾害是指环境异常或环境的突发性变化,给人类生活和生存带来的灾难。近年来遥感技术在预报灾害方面取得了很多重要成就,成为预报自然灾害的有力工具和手段。气象卫星当前已进入业务性运转,形成多层次的预报网络,在灾害性天气监测、天气分析预报、气象研究等方面,发挥了十分重要的作用。中国“风云一号”、“风云二号”气象卫星的研制和相继发射成功,标志着中国的气象预报技术已从单项、短期、小范围的预报发展成综合性、中长期、大范围的准确预报。为中国的旱情、洪水,以及滑坡、泥石流和病虫害的准确预报提供了可靠资料,为采取减灾措施打下了可靠基础。遥感在区域分析及建设规划方面的应用遥感图像是地表面一定区域景观的真实、客观的记录和形象显示。地理学区域分析亦充分利用和发挥了遥感图像的这一特点和优势,成为遥感在地理学应用的重要方面。近年来随着城市化及城市建设的热潮,城市遥感方兴未艾。城市遥感可提供诸如城市土地利用现状、城市用地分析、城市环境监测及评价、城镇布局结构分析、城市道路交通分析、城市人口分析及城镇生态分析等城市发展的基础信息,为城市建设规划及决策提供了服务。遥感在全球性宏观研究中的应用遥感的全球性研究虽然目前尚未系统地进行,形成规模。但是,随着社会的发展,特别是诸如世界人口增加、资源危机、环境恶化等一系列涉及全球性的问题,越来越引起人们的关注。全球性研究(Global Study)已提到日程上,得到世界各国普遍的重视,全球性研究必将有一个较大的发展。全球研究的目的主要是宏观地、整体性地对人类赖以生存的岩石圈、大气圈、水圈、生物圈的研究,以此带动区域性研究的深化,促进全球环境的改善。因此,这无疑为遥感发挥自身的特点和优势,开拓了又一应用领域。遥感可为全球研究提供各种便利条件,促进全球性研究的进一步开展和深化。例如,可利用全球定位系统(GPS)监测和研究板块的运移,深大断裂活动,研究环形构造的成因及其机制;利用气象卫星资料及其他遥感信息,进行全球性气象研究及世界灾情的预报;海洋动力学研究,地球表面固态水的分布,世界冰川的进退以及世界大环境的监测和治理等。遥感必将在全球性研究中发挥出更大的作用,做出更大的贡献。遥感在其他方面的应用在测绘制图方面的应用:航空摄影测量一直是测绘制图的一种主要资料来源和重要的技术方法,现已形成了完整而系统的学科体系,当代遥感的发展使测绘制图的资料来源更为多样化,资料的准确可靠性及其快速及时性和适时动态性等方面有了较大的改观;成图周期大为缩短;影像地图、数字地图等新图种和制图新工艺大量涌现,使测绘制图产生了新的变化和发展。在历史遗迹、考古调查方面的应用:近年来在进行野外考古调查中,配合应用遥感图像分析,发现了大量重要的历史遗迹。在军事上的应用:遥感在军事上的应用是不言而喻的。事实上,军事应用是遥感最早、最成功的应用,今天遥感的发展是得利于遥感军事上成功的应用而迅速发展起来的。目前发射的绕地球运行的卫星,绝大部分是与军事有关的。四、环境遥感在中国的发展随着遥感技术的发展,获取地球环境信息的手段越来越多,信息越来越丰富。因此,为了充分利用这些信息,建立全面收集、整理、检索以及科学管理这些信息的空间数据库和管理系统,加快进行遥感信息机理研究,研制定量分析模型以及实用的地学模型,进行多种信息源的信息复合及环境信息的综合分析等,构成了当前遥感发展的前沿研究课题。中国国土辽阔,地形复杂,自然资源丰富。为了查清和掌握土地、森林、矿产、水利等自然资源,更好地配合国家建设,积极推广遥感技术的运用尤显必要。首先,国家的重视和支持,以及实行集中统一的领导规划,为中国遥感的发展奠定了基础。中国的遥感发展起步晚,在20世纪70年代初期和中期,仍明显地表现出部门自发的积极性,以及低水平的重复等初期发展的特点。为此,国家科委组织筹建了全国遥感领导组织,继而发展成国家遥感中心,集中领导及协调全国的遥感发展,编制中国遥感的中远期规划,确定了近期主攻的目标。第二,集中人力、物力进行科技攻关,重点突破,缩短了中国与国际遥感先进水平的差距。在1980~1990年,通过科技攻关,中国遥感技术的发展能力已全面形成,遥感专业队伍得到进一步的锻炼和壮大。第三,全国性、大区域遥感工程的实施完成,充分显示出中国遥感的特色和水平。中国疆域辽阔,自然环境复杂,为开展遥感的实验研究提供了优越的环境条件。第四,新的资源卫星的发射,为中国的遥感发展带来了新的机遇。“资源一号”卫星于1999年10月14日成功发射升空,结束了中国没有陆地资源卫星的历史。卫星每26天遍扫地球一次,每幅影像覆盖面积为120km2,空间分辨率达20m。“资源一号”卫星是中国第一颗高速传输式对地遥感卫星,该卫星在太空巡视地球1年有余,拍摄了几十万幅地面遥感影像。中国从20世纪80年代中期开始接收外国卫星拍摄的影像,应用于农业、森林、水利的监测和规划,对国民经济发展起到了很大作用。

遥感原理与应用第一章 电磁波及遥感物理基础名词解释:1、 遥感 2、遥感技术 3、电磁波 4、电磁波谱 5、绝对黑体 6、绝对白体7、灰体 8、绝对温度 9、辐射温度 10、光谱辐射通量密度 11、大气窗口12、发射率 13、热惯量 14、热容量 15、光谱反射率 16、光谱反射特性曲线 填空题:1、电磁波谱按频率由高到低排列主要由 、 、 、 、 、 、 等组成。2、绝对黑体辐射通量密度是 和 的函数。3、一般物体的总辐射通量密度与 和 成正比关系。4、维恩位移定律表明绝对黑体的 乘 是常数8。当绝对黑体的温度增高时,它的辐射峰值波长向 方向移动。5、大气层顶上太阳的辐射峰值波长为 μm选择题:(单项或多项选择)1、 绝对黑体的 ①反射率等于1 ②反射率等于0 ③发射率等于1 ④发射率等于0。2、 物体的总辐射功率与以下那几项成正比关系 ①反射率 ②发射率 ③物体温度一次方 ④物体温度二次方 ⑤物体温度三次方 ⑥物体温度四次方。3、 大气窗口是指 ①没有云的天空区域 ②电磁波能穿过大气层的局部天空区域 ③电磁波能穿过大气的电磁波谱段 ④没有障碍物阻挡的天空区域。4、 大气瑞利散射①与波长的一次方成正比关系 ②与波长的一次方成反比关系 ③与波长的二次方成正比关系 ④与波长的二次方成反比关系 ⑤与波长的四次方成正比关系 ⑥与波长的四次方成反比关系 ⑦与波长无关。5、 大气米氏散射 ①与波长的一次方成正比关系 ②与波长的一次方成反比关系 ③与波长无关。问答题:1、 电磁波谱由哪些不同特性的电磁波组成?它们有哪些不同点,又有哪些共性?2、 物体辐射通量密度与哪些因素有关?常温下黑体的辐射峰值波长是多少?3、 叙述沙土、植物和水的光谱反射率随波长变化的一般规律。4、 地物光谱反射率受哪些主要的因素影响?5、 何为大气窗口?分析形成大气窗口的原因,并列出用于从空间对地面遥感的大气窗口的波长范围。6、 传感器从大气层外探测地面物体时,接收到哪些电磁波能量?第二章 遥感平台及运行特点名词解释:1、 遥感平台 2、遥感传感器 3、卫星轨道参数 4、升交点赤经 5、轨道倾角6、近地点角距 7、地心直角坐标系 8、大地地心直角坐标系 9、卫星姿态角10、开普勒第三定理 11、重复周期 12、近圆形轨道 13、与太阳同步轨道14、近极地轨道 15、偏移系数 16、GPS 17、ERTS_1 18、LANDSAT_1 19、SPOT 20、IRS 21、CBERS 22、ZY_1 23、Space Shuttle 24、MODIS 25、IKONOS 26、Quick Bird 27、Radarsat 28、ERS 29、小卫星填空题:1、遥感卫星轨道的四大特点 。2、卫星轨道参数有 。3、卫星姿态角是 。4、遥感平台的种类可分为 、 、 三类。5、卫星姿态角可用 、 、 等 方法测定。6、与太阳同步轨道有利于 。7、LANDSAT系列卫星带有TM探测器的是 ;带有TM探测器的是 。8、SPOT系列卫星可产生异轨立体影像的是 ;可产生同轨立体影像的是 。9、ZY-1卫星空间分辨率为 。10、美国高分辨率民用卫星有 。11、小卫星主要特点包括 。12、可构成相干雷达影像的欧空局卫星是 。选择题:(单项或多项选择)1、 卫星轨道的升交点和降交点是卫星轨道与地球①黄道面的交点②地球赤道面的交点③地球子午面的交点。2、 卫星与太阳同步轨道指①卫星运行周期等于地球的公转周期②卫星运行周期等于地球的自转周期③卫星轨道面朝向太阳的角度保持不变。3、 卫星重复周期是卫星①获取同一地区影像的时间间隔②经过地面同一地点上空的间隔时间③卫星绕地球一周的时间。4、 以下哪种仪器可用作遥感卫星的姿态测量仪①AMS②TM③HRV④GPS⑤星相机。5、 问答题:1、 根据Landsat-1的运行周期,求该卫星的轨道高度。2、 根据Landsat-4/5的运行周期、重复周期和偏移系数,通过计算排出其轨道(赤道处)的分布图。3、 以Landsat-1为例,说明遥感卫星轨道的四大特点及其在遥感中的作用。4、 叙述地心直角坐标系与地心大地直角坐标系的差别和联系。5、 获得传感器姿态的方法有哪些?简述其原理。6、 简述遥感平台的发展趋势。7、 LANDSAT系列卫星、SPOT系列卫星、RADARSAT系列卫星传感器各有何特点?第三章 遥感传感器及其成像原理名词解释:1、遥感传感器 2、探测器 3、致冷器 4、红外扫描仪 5、多光谱扫描仪6、推扫式成像仪 7、成像光谱仪 8、瞬时视场 9、MSS 10、TM 11、HRV 12、SAR 14、INSAR 15、CCD 16、真实孔径侧视雷达17、合成孔径侧视雷达18、全景畸变 19、动态全景畸变 20、 静态全景畸变 21、距离分辨率22、方位分辨率23、雷达盲区24、角隅反射 25、粗加工产品 26、精加工产品27、多中心投影 28、多中心斜距投影填空题:1、MODIS影像含有 个波段,其中250米分辨率的包括 波段。2、RADARSAT-1卫星空间分辨率最高可达 ,共有 种工作模式。3、多极化的卫星为 。4、目前遥感中使用的传感器大体上可分为 等几种。5、遥感传感器大体上包括 几部份。6、MSS成像板上有 个探测单元;TM有 个探测单元。7、LANDSAT系列卫星具有全色波段的是 ,其空间分辨率为 。8、利用合成孔径技术能堤高侧视雷达的 分辨率。9、扫描仪产生的全景畸变,使影像分辨率发生变化,x方向以 变化,y方向以 变化。10、实现扫描线衔接应满足 。选择题:(单项或多项选择)1、 全景畸变引起的影像比例尺变化在X方向①与COSθ成正比②在X方向与COSθ成反比③在X方向与COS²θ成正比④在X方向与COS²θ成反比。2、 全景畸变引起的影像比例尺变化在Y方向①与COSθ成正比②与COSθ成反比③与COS²θ成正比④与COS²θ成反比。3、 TM专题制图仪有① 4个波段②6个波段③7个波段④9个波段。4、 TM专题制图仪每次同时扫描①6条扫描线②12条扫描线③16条扫描线④20条扫描线。5、 HRV成像仪获得的影像①有全景畸变②没有全景畸变。6、 SPOT卫星获取邻轨立体影像时,HRV中的平面镜最大可侧旋①10º②16º③27º④32º。7、真实孔径侧视雷达的距离分辨率与①天线孔径有关②脉冲宽度有关③发射的频率有关。7、 径侧视雷达的方位分辨率与①天线孔径有关②天线孔径无关③斜距有关④斜距无关。问答题:1、叙述侧视雷达图像的影像特征2、MSS、TM、ETM+影像各有何特点?3、有哪几种方法可以获得多光谱摄影影像?4、对物面扫描的成像仪为什么会产生全景畸变?扫描角为θ时的影像的畸变多大?5、叙述Landsat-1上的MSS多光谱扫描仪获取全球(南北纬度81°之间)表面影像的过程。6、TM专题制图仪与MSS多光谱扫描仪有何不同?7、SPOT卫星上的HRV推扫式扫描仪与TM专题制图仪有何不同?8、侧视雷达影像的分辨力、比例尺、投影性质和投影差与中心投影航空或航天像片影像有何不同?9、侧视雷达为什么要往飞机侧方发射脉冲并接收其回波成像?如果向飞机或卫星正下方发射脉冲并接收回波成像会是什么情景?10、简述INSAR测量高程的基本原理。第四章 遥感图像数字处理的基础知识名词解释:1、光学影像 2、数字影像 3、空间域图像 4、频率域图像 5、图像采样6、灰度量化7、BSQ 8、BIL 9、BMP 10、TIFF 11、ERDAS 12、PCI 13、3S集成填空题:1、光学图像是一个 函数。2、数字图像是一个 函数。3、光学图像转换成数字影像的过程包括 等步骤。4、图像数字化中采样间隔取决于图像的 ,应满足 (公式)。5、一般图像都由不同的 、 、 、 的周期性函数构成。6、3S集成一般指 、 和 的集成。选择题:(单项或多项选择)1、 数字图像的①空间坐标是离散的,灰度是连续的②灰度是离散的,空间坐标是连续的③两者都是连续的④两者都是离散的。2、 采样是对图像①取地类的样本②空间坐标离散化③灰度离散化。3、 量化是对图像①空间坐标离散化②灰度离散化③以上两者。4、 图像数字化时最佳采样间隔的大小①任意确定②取决于图像频谱的截止频率③依据成图比例尺而定。5、 图像灰度量化用6比特编码时,量化等级为①32个②64个③128个④256个。6、 BSQ是数字图像的①连续记录格式②行、波段交叉记录格式③象元、波段交叉记录格式。问答题:1、 叙述光学影像与数字影像的关系和不同点。2、 怎样才能将光学影像变成数字影像。3、 叙述空间域图像与频率域图像的关系和不同点。4、 叙述储存遥感图像有哪几种方法,列举2—3种数字图像存储格式,并说明其特点。5、叙述3S集成的形式和作用。第五章 遥感图像几何处理名词解释:1、 共线方程2、外方位元3、像点位移4、几何变形5、几何校正6、粗加工处理7、精加工处理8、多项式纠正9、间接法纠正10、直接法纠正11、灰度重采样12、最邻近像元重采样13、双线性内插14、双三次卷积15、图像配准16、数字镶嵌17、数字地面模型18、正射影像19、地理编码图象 20、DEM填空题:1、 分别写出中心投影,推扫式传感器(旁向,航向倾斜),扫描式传感器的共线方程表达式 , , , 。2、 遥感图像的变形误差可以分为 和 ,又可以分为 和 。3、 外部误差是指在 处于正常的工作状态下,由 所引起的误差。包括 , , , 等因素引起的变形误差。4、 传感器的六个外方位元素中 的变化对图像的综合影响使图像产生线性变化,而 使图像产生非线性变形。 5、 地球自转对于多中心投影影像产生像点位移在 方向上,位移量bb’= 。6、 TM卫星图像的粗纠正使用的参数有 , , , 纠正的变形有 , 。7、 遥感图像几何纠正的常用方法有 , , 。8、 多项式拟合法纠正中,项数N与其阶数n的关系 。9、 多项式拟合法纠正中,一次项纠正 ,二次项纠正 ,三次项纠正 。10、项式拟合法纠正中控制点的要求是 , , 。11、多项式拟合法纠正中控制点的数量要求,一次项最少需要 个控制点,二次项最少项需要 个控制点,三次项最少需要 个控制点。12、SPOT图像采用共线方程纠正时需要 ,有 未知参数,最少需要 个控制点。13、常用的灰度采样方法有 , , 。14、数字图象配准的方式有 , 。15、数字图像镶嵌的关键 , , 。16、在姿态角都为0的情况下,中心投影像片的投影差为 ,推扫式影像(HRV)的投影差为 ,扫描仪影像(MSS)的投影差 ,侧视雷达影像(SAR)的投影差 。17、灰度采样中,双线性内插的权矩阵采用 函数求取, 双三卷积的权矩阵采用 函数求取。选择题:(单项或多项选择)1、 垂直航线方向距离越远比例尺越小的影像是①中心投影影像②推扫式影像(如SPOT影像)③逐点扫描式影像(如TM影像)④真实孔径侧视雷达影像。2、 垂直航线方向距离越远比例尺越大的影像是①中心投影影像②推扫式影像(如SPOT影像)③逐点扫描式影像(如TM影像)④真实孔径侧视雷达影像。3、 真实孔径天线侧视雷达影像上高出地面的物点其象点位移(投影差)①向底点方向位移②背向底点方向位移③不位移。4、 逐点扫描式影像(如TM影像)上高差引起的像点位移(投影差)发生在①像底点的辐射方向②扫描方向。5、 多项式纠正用一次项时必须有①1个控制点②2个控制点③3个控制点④4个控制点。6、 多项式纠正用二次项时必须有①3个控制点②4个控制点③5个控制点④6个控制点。7、 多项式纠正用一次项可以改正图像的①线性变形误差②非线性变形误差③前两者。8、 共线方程的几何意义是在任何情况下①像主点、像底点和等角点在一直线上②像点、物点和投影中心在一直线上③ 主点、灭点和像点在一直线上。问答题:1. 叙述中心投影的航空像片,MSS多光谱扫描仪影像,SPOT的HRV推扫式影像和真实孔径侧视雷达图像的几何特征。2. 列出中心投影影像、推扫式影像(旁向和航向)、逐点扫描影像和侧视雷达影像的构像方程和共线方程表达式。3. 列出中心投影影像、推扫式影像、逐点扫描影像和侧视雷达影像的投影差公式,并说明投影差产生的像点位移各自不同点。 已知中心投影影像姿态产生的变形误差公式为推导出推扫式影像、逐点扫描影像和侧视雷达影像的像点位移公式。5. 叙述最邻近法、双线性内插、双三次卷积重采样原理(可作图说明)和优缺点。6. 两幅影像进行数字镶嵌应解决哪些关键问题?解决的基本方法是什么?7. 叙述多项式拟合法纠正卫星图像的原理和步骤。8. 多项式拟合法选用一次项、二次项和三次项,各纠正遥感图像中的哪些变形误差?9. 多项式拟合法平差后精度应控制在什么范围内?超限了怎么办?10.叙述共线方程法纠正SPOT卫星图像的原理和步骤。11.在几何纠正的重采样中,内插像元4*4图像亮度值矩阵为:在间接法纠正过程中,某地面点反算到原始像点的坐标值为(6 ,4),利用最邻近法和双线性内插法求像点的亮度值。12.叙述数字图像镶嵌的过程。13.画出各个外方位元素变化引起的图形变化情况第六章 遥感图像辐射处理名词解释:1、辐射误差2、辐射定标3、大气校正4、图像增强 5、图像直方图 6、假彩色合成 7、密度分割 8、真彩色合成 9、假彩色合成 10、伪彩色图像 11、图像平滑 12、图像锐化 13、边缘检测 14、低通滤波 15、高通滤波 17、图像融合 18、直方图正态化 19、梯度算子 20、线性拉伸 21、拉氏算子 22、直方图均衡 23、邻域法处理 填空题:1、辐射传输方程可以知道,辐射误差主要有 , , 。2、常用的图像增强处理技术有 , 。3、增强的常用方法有 , , , , , , 等。子4、直方图均衡效果 , , 。5、3*3的拉普拉斯算子 。6、图像平滑和锐化的关系 。 7、NDVI= 。8、图像融合的层次 , , 。9、HIS中的H指 ,I指 , S指 。 图像融合的常用算法 , , , , 等。选择题:(单项或多项选择)1、 图像增强的目的① 增加信息量②改善目视判读效果。2、 图像增强①只能在空间域中进行②只能在频率域中进行③可在两者中进行。3、 从图面上看直方图均衡后的效果是①增强了占图面面积小的灰度(地物)与周围地物的反差②减弱甚至于淹没了占图面面积小的灰度(地物)与周围地物的反差③增强了占图面面积大的灰度(地物)与周围地物的反差④减弱占图面面积大的灰度(地物)与周围地物的反差。4、 标准假彩色合成(如TM4、3、2合成)的卫星影像上大多数植被的颜色是①绿色②红色③蓝色。5、 图像边缘增强采用①低通滤波②高通滤波。6、 消弱图像噪声采用①低通滤波②高通滤波。7、 图像融合前必须先进行①图像配准②图像增强③图像分类。8、 图像融合①必须在相同分辨率图像间进行②只能在同一传感器的图像间进行③可在不同分辨率图像间进行④可在不同传感器的图像间进行⑤只限于遥感图像间进行⑥可在遥感图像和非遥感图像间进行。 问答题:10、 根据辐射传输方程,指出传感器接收的能量包含哪几方面,辐射误差及辐射误差纠正内容是什么,11、 简述遥感数字影像增强处理的目的,例举一种增强处理方法,说明其原理和步骤。12、 什么是遥感图像大气校正?为什么要进行遥感图像大气校正?请以多光谱扫描仪(MSS)资料为例,说明大气校正的原理和方法。13、 以美国陆地卫星TM图像的波段为例,分别说明遥感图像的真彩色合成与假彩色合成方案。与真彩色合成图像相比,假彩色合成图像在地物识别上有何优越性?14、 叙述美国陆地卫星ETM图像分辨率30米的5、4、3波段影像与分辨率15米的全色影像进行融合的步骤和方法。15、 说明以下直方图的影像特征。第七章 遥感图像判读名词解释:1、遥感图像判读 2、景物特征 3、判读标志 4、几何分辨率 5、辐射分辨率6、光谱分辨率 7、时间分辨率 8、波谱响应曲线 9、热阴影 10、冷阴影11、雷达盲区 12、角隅反射 13、体散射 14、影像几何特性 15、影像辐射特性16、 地物光谱特征 17、地物空间特征 18、地物时间特征填空题:1、遥感图像信息提取中使用的景物特征有 。2、遥感图像空间特征的判读标志主要有 等。3、传感器特性对判读标志影响最大的是 等。4、光谱分辨率根据 三项指标来判定。5、热红外图像上的亮度与地物的 和 有关, 比 影响更大。6、 侧视雷达图像上的亮度变化与 等有关。选择题:(单项或多项选择) 1、 遥感图像的几何分辨率指 ①象元相应地面的宽度 ②传感器瞬时视场内观察到地面的宽度 ③能根据光谱特征判读出地物性质的最小单元的地面宽度。2、 热红外图像是 ①接收地物反射的红外光成的像 ②接收地物发射的红外光成的像。3、 热红外图像上的亮度与地物的 ①反射率大小有关 ②发射率大小有关 ③反射太阳光中的红外光强度有关 ④温度高低有关。4、 侧视雷达图像垂直飞行方向的比例尺 ①离底点近的比例尺大 ②离底点远的比例尺大 ③比例尺不变。问答题:1、 遥感图像判读主要应用景物的哪些特征?2、 何为传感器的空间分辨率、辐射分辨率、光谱分辨率?3、 叙述TM多光谱图像的几何特征和辐射特征。4、 叙述地物光谱特性曲线与波谱响应曲线之间的关系和不同点?(可作图说明)5、 举例说明为什么多光谱图像比单波段图像能判读出更多的信息?6、 叙述热红外图像的几何特征和辐射特征。7、 叙述侧视雷达图像的几何特征和辐射特征。第八章 遥感图像自动识别分类名词解释:1、模式识别 2、遥感图像自动分类了 3、统计模式识别 4、结构模式识别5、光谱特征向量 6、特征空间 7、特征变换 8、特征选择 9、主分量变换10、哈达玛变换 11、穗帽变换 12、生物量指标变换 13、标准化距离14、类间离散度15、类间离散度16、类内离散度17、判别函数18、判别边界19、监督法分类20、非监督法分类21、条件概率22、先验概率23、后验概率24、贝叶斯判别规则25、马氏距离26、欧氏距离27、计程距离28、错分概率29、训练样区 30、最大似然法分类 31、最小距离法分类32、ISODATA法分类33、混淆矩阵填空题:1、遥感图像上的地物在特征空间聚类的一般特点是 等。2、特征变换在遥感图像分类中的作用是 。3、遥感图像特征变换的主要方法有 等。4、特征选择的目的是 。5、标准化距离的公式 。6、马氏距离公式 ,欧氏距离公式 ,计程距离公式 。7、最大似然法分类判别函数 。8、分类后处理主要包括 , 。选择题:(单项或多项选择)1、 同类地物在特征空间聚在①同一点上②同一个区域③不同区域。2、 同类地物在特征空间聚类呈①随机分布②近似正态分布③均匀分布。3、 标准化距离大可以说明①类间离散度大,类内离散度也大②类间离散度小,类内离散度大③类间离散度大,和/或类内离散度小④类间离散度小,类内离散度也小。4、 监督分类方法是①先分类后识别的方法②边学习边分类的方法③人工干预和监督下的分类方法。5、 两类地物的最大似然法分类判别边界在①两类地物分布概率相等处②两类地物均值的中值位置③其中一类地物分布概率的最大处。6、 ISODATA法分类的样区①尽量选在同一类别中②尽量包含所需识别的类别③类别是已知的④类别是未知的。问答题:1、 什么叫特征空间?地物在特征空间聚类有哪些特性?2、 作图并说明遥感影像主分量变换的原理和它在遥感中的主要作用。3、 叙述生物量指标变换的原理及其作用。4、 为什么要进行特征选择?列举几种特征选择的主要方法和原理。5、 叙述监督分类与非监督分类的区别。6、 叙述最大似然法分类原理及存在的缺点。7、 叙述最小距离法分类的原理和步骤。8、 叙述ISODATA法非监督分类的原理和步骤。9、 叙述图像增强中的平滑处理与分类后的平滑处理的异同点。10、述改善仅用光谱特征的统计模式识别自动分类的主要方法和基本原理。11、评价以下的混淆矩阵,并求出平均可信度和加权可信度。类 别 1 2 3 4 5 12345其它类 4 2 8 3 5 象元数 135 276 463 178 30512、根据下图中两类地物在一维特征空间中的分布,画出最大似然法、最小距离法的判别边界并分析和比较它们的错分概率。第九章 遥感技术的应用名词解释:1、卫星影像地图 2、DRG 3、DLG 4、GIS 5、同轨立体影像 6、邻轨立体影像 7、沙尘暴 8、海洋赤潮 9、地质构造 10、植被指数 11、森林立地条件12、臭氧空洞 13、土壤侵蚀 14、遥感考古 15、蓝冰填空题:1、 利用遥感图像修测地形图,修测的主要内容有 等。2、遥感图像制作影像图时控制点来源有 等。3、森林立地因子包括 等。4、多时遥感影像监测冰川流速的步骤是 等。选择题:(单项或多项选择) 1、 分辨率30米的TM影像,按规范要求的平面精度(图上5mm),适合制作哪种比例尺的影像图 ①1:10000 ②1:100000 ③1:500000。2、 按规范要求的平面精度制作卫星影像图,选控制点用的地形图比例尺,应比影像图的比例尺 ①大一个等级 ②小一个等级。问答题:1、 举例说明制作不同比例尺卫星影像地图时怎样选择遥感图像?2、 叙述遥感监测南极冰川流速和流量的基本方法。3、 中国南方草场三级分类的内容是什么?TM影像可能提取出哪些信息?4、 叙述遥感调查中国南方草场资源的基本方法。5、 叙

黄文星1,2 万荣胜1,2(广州海洋地质调查局 广州 510760;国土资源部海底矿产资源重点实验室 广州 510760)第一作者简介:黄文星(1985—),硕士,助理工程师,主要从事遥感地质和构造地貌研究,Email:。摘要 近几十年来,随着沿海经济的发展,环境问题突出,海岸带环境地质问题得到越来越多的重视。卫星遥感以其实时、快速、高效的特点在海岸带环境地质调查中得到广泛应用。这些应用包括海岸带类型划分、岸线提取、近岸水深探测以及近岸悬浮泥沙、海表温度(SST)盐度(SSS)、叶绿素浓度反演等环境地质内容。本文简要介绍这些应用的主要原理方法和不足。关键词 卫星遥感 海岸带 环境地质调查1 前言海岸带是海陆交互作用的地带,同时也是人类生存和发展的重要区域。由于自然环境的变化和人类活动的干扰,海岸带地区环境地质问题日益突出,主要表现为海平面上升、海水倒灌、地面沉降、海岸侵蚀、风暴、赤潮等,因此,进行海岸带环境地质调查具有重要意义。卫星遥感是20世纪60年代发展起来的新技术,具有宏观、快速、动态、综合的特点。目前已经在海岸带地质调查中广泛应用——近岸水域地形地貌探测、海岸类型识别、岸线变迁历史、滩涂演变过程、岛礁分布、航道变迁、海面温度分布、海水盐度分布、海水悬移质及叶绿素分布、海流及波浪状况等[1]。本文主要介绍海岸带类型划分、岸线提取、近岸水深探测以及近岸悬浮泥沙、海表温度(SST)盐度(SSS)、叶绿素浓度反演等的原理方法和存在问题。2 海岸带类型调查海岸带类型是海岸带环境地质调查的基本内容之一。不同的海岸带类型具有不同的物质组成、形态特征和空间分布特点,一般可以通过卫星影像中的色调、形状、纹理、阴影,以及与相关地物的空间配置关系进行识别。砂质海岸表层砂体干出地表时,对可见光具有很强的反射作用,一般呈亮白色;靠近水体,随着含水量的增加,对近红外波段的反射强度快速减弱,呈暗色调;空间配置上,砂质海岸一般地形较为开阔平坦,往往分布在砂质来源丰富、侵蚀作用相对较弱的河口和海湾附近。泥质海岸主要的物质成分为淤泥和粉砂,一般含水量较高,对近红外波段的反射较弱,影调偏暗,多分布于封闭海湾和潮滩。基岩海岸一般位于岬角位置,多为陆上山脉向海的延伸,与海分界截然,纹理色调与岩性、地貌和覆盖的植被有关。实际调查发现,不同海岸类型有相互交叉的情况。以海南文昌铜鼓岭石头公园附近的海湾为例(图1),该区高潮位-中潮位间,表层砂质覆盖;中潮位-低潮位,大量的基岩礁石出露,这为海岸带类型的定性带来很大的困难,进一步的精细划分对遥感影像的分辨率和时相(低潮位)提出了更高的要求。图1 海南文昌石头公园附近的海湾F1 A bay near by the Stone Park in Hainan Province3 岸线提取岸线调查也是海岸带环境地质调查的基本内容,通过解译多个时相的岸线,可以研究岸线的变迁演化历史,对分析海平面升降、港口淤积、航道淤塞等具有重要作用,同时也可以为区域经济环境规划提供参考。一般情况下,在遥感影像中,海水和陆地的分界线是非常明显的,这条线我们称之为水边线(图1)。水边线是动态变化的,随着潮水涨落,与影像的获取时间有关。而海岸线是多年平均大潮高潮所形成的海水与陆地分界的痕迹线。基岩海岸和人工海岸,岸线陡直,在出图精度容许的情况下,可以直接将水边线作为岸线。砂质海岸和泥质海岸,海岸地势平缓,延伸宽广,水边线与岸线往往有较大的偏差,一般不能直接将水边线作为岸线。这种情况下,往往采用沙滩泥滩与陆生植被的分界线作为岸线(图1)。在大型河口和三角洲附近,岸滩开阔,地物复杂,识别与陆生植被的分界难度较大,有学者[2]提出潮汐模型的方法进行岸线识别。其基本思路是:首先,提取同一地区多个时相的遥感影像的水边线;然后通过潮汐模型或者当地实测的验潮数据,推算出各个时相水边线的高程值,并以此构建研究区海岸带的地形数据;最后依据潮汐模型或者验潮数据推算最大高潮线的位置,即岸线。当前潮汐模型方法面临的主要问题是海岸带的地形资料缺乏,影像数据不多,精度检验困难等。为了提高遥感影像的解译效率,近年来,有研究者尝试进行岸线的自动识别。识别的算法主要有阈值法、边缘检测算子法、主动轮廓模型方法、面向对象法、马尔科夫场方法等[3],目前岸线自动识别技术尚处于探索阶段。4 近海水深调查传统上水深调查多依靠声纳回声测量,然而,海岸带附近水深较浅,波浪潮汐作用强烈,利用船舶进行声纳水深测量难度大,遥感是一个很好的补充手段。当前应用卫星遥感进行水深调查,主要有两种方法:微波遥感和光学遥感。微波对海水的穿透能力非常有限,只能达到厘米级,不能直接探测海底地形,但海流与水下地形的相互作用会使海表产生起伏(海浪),而微波遥感对海浪形态的测量具有很好的效果,也就是说,微波遥感可以通过测量海浪形态来反推海底地形。这种方法在实际应用过程中受海流和海风的方向、速度的影响较为明显[4],并且探测的深度有限[5]。可见光对水体具有一定的穿透力(10~30米),假如水体足够清澈,太阳辐射可以到达浅水区底部,并反射回传感器,传感器接收的亮度信息中包含了水深信息。当前应用光学遥感进行水深反演的方法主要有三种[6,7]:一是纯理论模型,主要依据遥感水深的原理和水体光谱特性进行理论计算,这种方法的主要问题是水体光学参数难以获取,且计算过程复杂,目前难以推广使用;二是数学统计模型,将实测的水深数据与遥感影像的灰度值进行统计分析,拟合出方程曲线,再外推计算水深值,这种方法简单易行,但影像灰度值与水深的相关度不能保证,计算结果往往不理想;三是半经验半理论模型,主要通过简化理论模型结合统计数据进行模拟计算,这种方法集合了前两种的优点,是目前使用较多的方法。目前,光学遥感用于水深调查,在清澈水体已经取得一定的进展,对近岸浑浊水体还处在探索阶段,其关键的技术难题在于如何减轻悬浮物质和底质(底泥)颜色对水深反演模型的影响[6]。5 近岸水环境调查近年来,随着沿海社会经济的发展,海岸带环境问题愈加突出,海岸带的地质调查也相应地增加了近岸水环境调查的内容[1],如:近海悬浮泥沙调查、海表温度(SST)、盐度(SSS)和叶绿素浓度等,卫星遥感在这些项目的调查中同样发挥着重要作用。1 近岸海水悬浮泥沙遥感水体中悬沙含量的时空分布是分析河口海岸的冲淤变化、估算河流入海物质通量和研究海洋沉积速率的重要参数。因此,对海水悬浮泥沙的调查具有重要意义。目前,应用卫星遥感进行悬浮泥沙定量反演最为常用的是经验模式——建立野外实测数据与遥感反射率或者归一化离水辐射率之间的关系。常见的关系式有:线性关系、对数关系、Gordon关系、负指数关系等。其主要的依据是悬沙水体的波谱反射曲线具有如下特征:一般情况下悬沙水体的反射率,随着悬沙浓度的增大而增大;悬沙的波谱曲线有黄光波段和近红外波段两个反射峰[8],在悬沙浓度较低时,第一个峰高于第二个峰,随着悬沙浓度的增加,第二个峰增加,并最终略高于第一个峰[9]。然而,悬沙水体的反射不只与悬沙的浓度有关,还与悬沙的颗粒大小、种类和形状等有关,因此,上述构建的关系模式在推广应用中往往有很大的局限性。研究更具有可操作性和普适性的水体悬沙遥感算法,需要有更多的标定、检验和发展分析模型。2 近岸海水表层温度反演目前在全球海水表层温度(SST)调查中常用的数据源为AVHRR和MODIS,但是由于这两个数据的空间分辨率均为千米级,不能满足大比例尺近岸海温调查的要求。TM和ETM+的热红外波段具有较高空间分辨力(分别为120米和90米),在近海的海水表层温度调查中得到广泛应用,并取得不错的效果[10-13]。利用陆地卫星做海水表层温度反演的难点主要在于大气校正,因为TM和ETM+数据只有一个热红外波段,无法通过不同波段对大气的吸收和发射率的差异来构建大气校正方程,而同步实测的大气轮廓线数据和辐射传输模型往往也缺乏。3 近岸叶绿素浓度反演叶绿素浓度可用于估算浮游植物的生物量和生产力,同时也是反映水体营养化程度的一个重要参数[14]。在开阔大洋的一类水体中,蓝绿比值法取得较好的效果,应用较为成熟,而该方法并不适用于浑浊的近岸二类水体。目前在二类水体的叶绿素浓度调查中多采用荧光法。荧光法的原理是[15]:浮游植物在波长为400~700nm的太阳光激发下,可以在683nm波段附近产生红光辐射,辐射强度与叶绿素浓度具有很强的相关性,并且大气辐射和海水中的黄色物质与悬浮泥沙对该辐射峰的影响较小。通过量测680nm与660nm之间的辐射量,再进行反演即可得到叶绿素的浓度。当前,荧光法主要存在三个问题[15]:一是叶绿素产生荧光的过程复杂多变,有待于生物学和生态学方面的进一步研究;二是叶绿素发射的荧光只占叶绿素吸收能量的5%,当叶绿素浓度较低时,传感器难以探测;三是随着叶绿素浓度的增加,叶绿素的荧光峰将发生“红移”,而传感器的通道是固定的,这将影响荧光峰辐射量计算时的准确度。4 近岸海水表层盐度反演对近岸盐度变化进行监测是我们认识河口海岸生态环境,了解其物理过程的重要手段[16]。传统上主要采用取水样或者使用CTD来测量海水盐度,但是这种方法野外工作量大,且无法同步获取大面积海水表层盐度数据。目前主要应用微波遥感进行海水表层盐度的反演,其原理是:海水盐度的变化会改变海水的介电常数,进而改变微波辐射特性,通过微波辐射计量测海面的微波发射率,即可从辐射计的亮温中反演出海水表面层盐度(SST)。目前常用于海表盐度反演的电磁波是以413GHz为中心的宽度为20MHz的波段,该波段主要的优点是,它属于受国际条约保护的用于无线电天文学研究的波段,不存在人为信号干扰,并且使用该波段除大雨外,几乎可以实现全天候的观测[17]。问题在于目前卫星搭载的传感器空间分辨率极低,无法满足近岸观测的要求。6 结论和讨论遥感海岸带环境地质调查,具有高效率、低成本的特点,目前已经得到广泛应用。在一些领域,如海岸类型调查和岸线调查都已经比较成熟。难点在于近岸水体部分,水深调查、悬沙调查、温度盐度和叶绿素浓度反演,这几个方面都还处于探索阶段。面临的最重大的技术瓶颈在于传感器。遥感近岸环境地质调查对传感器提出了苛刻的“三高”要求(高空间分辨率、高波谱分辨率和高时间分辨率)。首先,海岸带环境地质调查以岸线以外20公里的海区和岸线以内5公里的陆区作为核心调查区。因此,高的空间分辨率尤为重要,传统的海洋水色卫星,分辨率多为公里级,难以达到1:10万和更大比例尺海岸带调查的制图精度要求。其次,海岸带环境地质调查的内容复杂多样,包含了陆地和水体,水体又涉及浅表的温度盐度、悬浮的泥沙以及水下的地形地貌。要满足这些需求,必须要有足够高的波谱分辨率,才能有效地去除干扰信息,获得准确的波谱传导模型。最后,海岸带是岩石圈、生物圈、水圈和大气圈强烈交互作用的区域,同时,还是人类的集中居住区,受人类改造强烈,环境变化快速。传感器没有高的时间分辨率,便无法准确把握海岸带环境地质变化的规律。以目前的技术而言,建立一个低轨道的小卫星群,搭载高分辨率(空间分辨率和波谱分辨率)传感器,是最有效的解决办法。参考文献[1]夏真,林进清,郑志昌海岸带海洋地质环境综合调查方法[J]地质通报24(6):570-575[2]申家双,翟京生,郭海涛海岸线提取技术研究[J]海洋测绘29(6):74-77[3]张明,蒋雪中,张俊儒,等遥感影像海岸线特征提取研究进展[J]人民黄河30(6):7-9[4]范开国,傅斌,黄韦艮,等浅海水下地形的SAR遥感仿真研究[J]海洋学研究27(2):79-83[5]郑宗生RS与GIS在海洋地质调查中的应用[J]海洋地质动态22(1):27-33[6]张鹰,张东,王艳姣,等含沙水体水深遥感方法的研究[J]海洋学报(中文版)30(1):51-58[7]陶菲经泥沙遥感参数校正的辐射沙洲水深遥感模型研究[D]南京:南京师范大学[8]李炎,李京基于海面—遥感器光谱反射率斜率传递现象的悬浮泥沙遥感算法[J]科学通报44(17):1892-1897[9]刘芳南黄海及东海北部海域悬沙的遥感研究[D]北京:中国科学院研究生院[10]于杰,李永振,陈丕茂,等利用Landsat TM6数据反演大亚湾海水表层温度[J]国土资源遥感(3):24-29[11]邢前国,陈楚群,施平利用Landsat数据反演近岸海水表层温度的大气校正算法[J]海洋学报(中文版)29(3):23-30[12]Suga Y,Ogawa H,Ohno K,et Detection of surface temperature from LANDSAT-7/ETM+[J]Advanced Space R32(11):2235-2240[13]Thomas A,Byrne D,Weatherbee RCoastal sea surface temperature variability from Landsat infrared data[J]Remote Sensing of E81(2-3):262-272[14]李素菊,吴倩,王学军,等巢湖浮游植物叶绿素含量与反射光谱特征的关系[J]湖泊科学14(3):228-234[15]邢小罡,赵冬至,刘玉光,等叶绿素a 荧光遥感研究进展[J]遥感学报11(1):137-144[16]王永红,M L Heron,Peter R航空微波遥感观测海水表层盐度的研究进展[J]海洋地质与第四纪地质27(1):139-145[17]杨斌利用于海洋盐度观测的主被动联合遥感器[J]空间电子技术(2):49-54The application of Satellite Remote Sensing to Geo-environment in Coastal ZonesHuang Wenxing1,2Wan Rongshen1,2(Guangzhou Marine Geological Survey,Guangzhou,510760;Key Laboratory of Marine Mineral Reasources,MLR,Guangzhou,510760)Abstract:In recent decades,as China's coastal economic development,coastal environmental geology problems are becoming increasingly Satellite Remote Sensing has features of rapid,real-time and high efficiency,which make it widely used in the coastal geo⁃environment These applications include coastal zone Type Classification,coastline extraction,water⁃depth measurement in coastal zone,suspended sediment detection,sea surface temperature(SST),sea surface salinity(SSS),chlorophyll concentration detection and other environmental This paper introduces the principles and shortcomings of these Key words:Satellite Remote Sensing;Coastal Zones;Geo⁃environment Survey

遥感在生态环境中的应用论文

近来来温室效应与全球变暖、臭氧层破坏和海面上升、森林锐减与物种灭绝、耕地草场退化、干旱沙漠化和淡水资源乏缺、海洋开发与海域环境动荡、人口过速增殖和资源耗损、工业社会与现代农业污染加剧以及频繁的地质、海洋、水文、气象、生物灾害等一系列重大环境问题困扰着人类社会的发展,甚至出现地球可居住性和地区能否持续发展等严峻的战略性科学问题。联合国国际科学联合会组织各地区的科学家、科研机构正在开展宏伟的全球生态环境变化研究计划(即国际地圈、生物圈计划IGBP)。由于这一课题牵涉地球科学的很多专业学科,需要进行深入的综合解析,甚至有待发展一系列边缘交叉和渗透衍变的基础理论学科,目前的单学科理论水平和地球科学结构都还不适应这种严重的局势,有待有关学科联合攻关,才能对人类生存、发展的奥秘和各圈层的内在联系作深刻探讨,更好地规划开展全球变化与持续发展对策的研究,从而找出更符合客观实际的规律。纵观以往的研究工作,其中地质环境的研究显得薄弱了些,其实自有人类以来的250万年内,地球环境变迁留下了广泛的迹象,内容很丰富,例如塔里木盆地中的罗布泊湖岸的萎缩过程在遥感图像上表现为154个韵律条带;第四纪以来的冰川、河流、湖泊变迁、地貌定量形态分析都可以找到很可贵的依据;海岸带活动、古地震、古洪涝、古干旱等也有待深入研究,总之从地质学范畴对地球环境变化的研究仍有很大的开发潜力。遥感技术的应用则更显不足,急待加强。以往地质环境的研究多偏重于表浅、外生条件的分析,对于更重要的地球内部原因则很少讨论,为了扭转这种舍本求末的趋势,寻求以地质学为“砧木”广泛与其他学科的“嫁接”发展,我们需要从地球整体结构着眼,综述地内热动力为本的观点,从而再构建新的地球科学大体系与技术监测系统。目前由于学科体系发育尚处于初级阶段,在理论综合能力有限的情况下,只从现有学科出发注意到某几个方面,忽略了整个太阳系、地球内部高能级自然本底的运动(变化),过高地估计并夸大了人类社会的低能级可察觉影响,抚片舟而论沧海,推导出一些耸人听闻的危机和警告,人云亦云,传真导谬,很难说全是扎实可靠的科学结论,世界各国各地区的领导决策部门却出于惜世忧民的良好愿望,闻风而搏,推出这样那样的行动与承诺,盖世之举如因科学依据欠妥,必将劳民伤财,甚至人为地加剧环境恶化,自绝良好发展的路径。追溯全球变化研究的历史、教训,评估科技现状,只能说是全球变化的研究刚刚起步,而且是较低水平的开始,切不可作出过早、过偏的结论,更不可轻举妄动,而要深思熟虑地将重点调整到认真深入发展地球科学大体系的基点上,探索理论、发展探测技术,以期尽快形成与擎天任务相适应的科学理论研究水平和技术测量能力,为确实改善地球生态环境、谋求更大持续发展作出更有效的科学贡献。为了思考全球变化地球内因、热动力为主的观点,不妨列述一下地球各圈层的一些基本参数(见表1)。表1 地球各圈层的基本参数续表从表内数据可知,地球的质量、蓄能主要聚集在固体地球之中,而水圈、大气圈和生物圈只是内热外温大球体表层的一层附着薄膜,从质量、能量分布看来作为生态环境(水圈、大气圈)的下垫面的固体地球的主导地位就很明显了,温床上的薄被,我们能体察到的沧海桑田、风霜旱涝、生物兴衰、环境变迁都离不开地球这个母体,依附于地球的热动力场,大自然的综合运动可以概括为低能级、长周期的缓慢演变和高能级、急剧明显的灾变,就其本质而言,强烈的灾变事件是主要形式,而缓慢的演变则是主运动的低能级蕴成和事件后的平衡协调,无论从地球地质历史和现态看来都是被大量遗痕和现实所证明,特别是近代人类观测能力的提高,这种本底与环境、内因与外果、灾变与演化的主从关系愈来愈清楚了。同时发现地球各圈层之间、各类事件之间存在系列的相关性,称为辐向深源热动力地质、环境、生态动力链 ,地球不同时期发生过若干点状热活跃中心,主要由地内放射性高热能形成热反应中心,大体上分布在上地幔到下地壳界面上下,岩浆体剧烈热熔,成为热根,或称岩浆灶、岩浆房,即地球表面的灾变点、敏感区,热能-物质交换通道。一个岩浆中心的演化期可长达几千万年到1亿年之久,在其发生、演化过程中存在比较独立的热动力体系,从弱到强,由强转弱迭替兴衰,形成强旋涡式的热熔物质分异中心,自创通道向地球表浅部上涌、喷射热动力-物质流(固塑态、固液气混熔、气液混合态),在热力-物质外散过程中形成矿床,导致地球表面的环境变化,深部形成岩浆岩的上涌侵入,形成潜火山、火山喷发、热力-气液喷射,岩石圈加温,水圈和大气圈升温,海底局部加温、喷涌热的气液,引起地震、海啸和海水强烈涡流、强风场、强磁场变化,产生强粒子射束流、地内强热爆炸、地面急剧增温、强湍流,百慕大型海空灾难点等现象。不断改变着地壳表浅处的热力、物质加注,导致发生一系列自然灾变和环境突变。地球上分布着无数大大小小的环形地质结构和强旋涡气液运动中心,它们多属燕山-喜马拉雅期岩浆活动的残留继续,即现实的地内热活动中心,“活地球热动力喷口”。这些埋藏在地壳中的“烟囱”时强时弱地向地球水圈、大气圈喷射热力-物质流,主要形成为气液热上涌。近年来在大洋深海沟、裂谷系中发现很多个高温富含金属的气液泉,例如东太平洋南部海膨在520km2之内发现26个上涌热通道,推动本地段每年隆升15cm以上,喷出物包括了高热流、水汽、H2S、CO2、氯气类、烃类和大量金属元素。这样的现象在红海、太平洋东西火山带都有大量的发现报道。实际上大陆内部也有很多的隐火山、气火山、气液高金属涌泉、地震、陆内飓风、强高地热点、奇异突变点的活动,不过并没有引起人们重视和组织系统观测而已。1908年举世闻名的通古斯大爆炸事件,尽管对其成因揣测纷纭,但确属地球上的一次大型自然热动力试验,估计中央地带温度在105℃以上,总热能为1030J,喷出的可燃天然气数亿立方米,还有大量放射性粒子,铂铱微粒自上地幔喷射出来。人类历史阶段地球内部向地表、水圈、大气圈喷射的热能总量约为6×1020J/a,排放的固、液、气热物质总量为5×109t/a,远远超过人类社会能耗和形成物质产品的总量,相当全球2000年总能耗量加储备的核能总和。再从地质历史上追溯,这种事实就更明显了,在8亿年前,地球上并没有大量水体,气体也很稀薄,在8亿~6亿年前的两亿年期间固体地球向地表喷射了大量的水气,才形成海洋,出现了生物,目前地内每年要向地表释放30~50km3的水分和其他气体,以弥补水分和气体向地球外层空间的散失量,如果补给小于向外弥散量,地球的水圈、大气圈就在几亿年前消失了。晚古生代以来伴随剧烈的全球地质运动带来全球性的生物大绝灭灾殃,如47亿年前(晚二叠世)、63亿年前(中侏罗世)、44亿年前(晚侏罗世)、25亿年前(早白垩世)、9100万年前(晚白垩世)、6500万年前(白垩纪末的恐龙绝灭事件)、3800万年前(始新世)、1100万年前(上新世),每隔2600万年就全球性地剧烈变动一次,期间当然也有局部地段和较低能态的变异。人类社会存在的250万年期间尽管未出现过全球性的剧变,但也经历过各种各样的局部性古人类群落夭亡的惨剧,其生态效益急待重新评估。例如迄今各大地构造学派多只限于表浅地壳的研究,对于更有活动意义的百十千米岩石圈几千千米深的地幔、地核却甚少考虑,就连最流行的板块学说很多结论与地壳、岩石圈的结构运动并不相符。近年来古老结晶地块、大陆火山学、遥感所发现的环形结构和旋涡状运动、海洋与大气层中的旋涡运动、类地行星、月球上发现的环形构造就很有助于岩石圈、壳幔交界、地幔与地核交界不同形式的流变运动,热湍流等机理的探索,也具体发展了热点和岩石圈、水圈、大气圈的热对流学说,使地球演化与太阳系演化研究相应深化,引出天体地质学、比较行星地质学的新概念。深部地球物理、地球化学和超深钻探、卫星测地、大陆与海洋火山学、地震学、太古宙、元古宙早期岩系的研究,太阳系类地星体、特别是月球、火星的遥感资料,以及海底热旋涡流的发现、强气旋的多年遥感记录,地球强烈的气液迸发动摇了地质构造的传统概念,进一步表明地球大系统的主导物质运动形式是比较急速的、强劲的热旋涡流。固体地壳中表现为环形结构与强爆喷射,地幔的上涌热柱(热力物质筒状喷射流),岩石中的垂直热力-物质流变上涌(包括流体和气体析离),海洋中的热旋涡、大气层中的强气旋运动,由此导引出地球不同圈层的统一深源岩浆热动力学理论,揭示出地球生态环境的热动力链背景、垂直热动力灾害系列链(源、根、树)的高层次概念。根据现代高技术观测手段所提供的深部多层次、宏观资料已初步展示新的理论趋势,如岩石圈结构和动力的不均匀性、突变与蠕变、主动与随动、固体与液态气态共系、表浅与深源耦合等。从而为全球和区域性对比、时序分析、历史迹象与现实地球运动对比提供了新的可能。如果有意识地开发现代化观测技术的潜力,设计新的仪器,建立多源地学信息系统,就可能提供更齐备的新科学信息。逐步探索支配能源-资源形成和分布、环境变迁、自然灾变的地内和天体热动力机理,促进地球固态、液态、气态各圈层的总体解析,建立地球大系统的热动力学基础理论,在新的理论指引下活化各分支学科的交流、渗透、融汇贯通,形成各组学科更深广的理论综合,诸如地球动力学、理论地质学、理论地理学、灾害动力学等,从而综合出地球科学的大理论体系,海洋学、气象学、环境灾害学、生态环境学方面也有很多新的发现表明热动力现象是主导的物质-能量运动形式。地球科学大体系将来可能有更高深的发展,仅从现阶段认识到的纵向强热动力理论出发,就可以带来各分支学科的理论跃迁,提高解决实际问题的技术经济效能。例如根据深源岩浆热动力理论,矿产资源的聚集形成有很强的中心式时空规律性,矿产系列严格按温压条件呈垂直、水平分带,有较固定的通道和容矿构造空间,金属矿床、内生非金属矿床、沉积矿产、煤炭、石油、天然气、水资源均受控于统一的岩浆热动力场,克服了仅限于表浅地质、地球化学环境的分析,因而就大大提高了矿产的探索预测能力,扩大了大型、特大型系列矿床的发现几率,将低水平的描述性搜索提高到理论预测的新水平。如果投入系统试验复原,有望取得多种矿产资源的重大突破。根据深源岩浆热动力理论新创建的灾害学则可以与生态等类台站结合,规划一次全球性的三年大搜索行动,奠定基础后台站可以大量归并减少,以后可分年总结一次。集中一批与生态环境变化有关的科学家,从而建立适应生态环境变化的科学队伍和科研数据网络。全球生态环境变化与可持续发展问题已引起各国家、各地区领导人和公众的高度重视,科研工作也取得了很大的进展。在新世纪到来之前,为了人类的生存与发展,为了未来环境科学的繁荣,遥感学界要充分利用遥感科技的优势和信息储备,不负时代的使命,调整好方向,发挥遥感等高科技的潜能,开拓遥感科技的揭示、综合能力,全面介入全球生态环境变化的研究,开拓遥感技术应用的新前景。———录自:CNC-IGBP学术交流论文集,1984(10)

网上的论文很多,你可以找“城市遥感”“环境遥感”之类的关键词。

遥感原理与应用第一章 电磁波及遥感物理基础名词解释:1、 遥感 2、遥感技术 3、电磁波 4、电磁波谱 5、绝对黑体 6、绝对白体7、灰体 8、绝对温度 9、辐射温度 10、光谱辐射通量密度 11、大气窗口12、发射率 13、热惯量 14、热容量 15、光谱反射率 16、光谱反射特性曲线 填空题:1、电磁波谱按频率由高到低排列主要由 、 、 、 、 、 、 等组成。2、绝对黑体辐射通量密度是 和 的函数。3、一般物体的总辐射通量密度与 和 成正比关系。4、维恩位移定律表明绝对黑体的 乘 是常数8。当绝对黑体的温度增高时,它的辐射峰值波长向 方向移动。5、大气层顶上太阳的辐射峰值波长为 μm选择题:(单项或多项选择)1、 绝对黑体的 ①反射率等于1 ②反射率等于0 ③发射率等于1 ④发射率等于0。2、 物体的总辐射功率与以下那几项成正比关系 ①反射率 ②发射率 ③物体温度一次方 ④物体温度二次方 ⑤物体温度三次方 ⑥物体温度四次方。3、 大气窗口是指 ①没有云的天空区域 ②电磁波能穿过大气层的局部天空区域 ③电磁波能穿过大气的电磁波谱段 ④没有障碍物阻挡的天空区域。4、 大气瑞利散射①与波长的一次方成正比关系 ②与波长的一次方成反比关系 ③与波长的二次方成正比关系 ④与波长的二次方成反比关系 ⑤与波长的四次方成正比关系 ⑥与波长的四次方成反比关系 ⑦与波长无关。5、 大气米氏散射 ①与波长的一次方成正比关系 ②与波长的一次方成反比关系 ③与波长无关。问答题:1、 电磁波谱由哪些不同特性的电磁波组成?它们有哪些不同点,又有哪些共性?2、 物体辐射通量密度与哪些因素有关?常温下黑体的辐射峰值波长是多少?3、 叙述沙土、植物和水的光谱反射率随波长变化的一般规律。4、 地物光谱反射率受哪些主要的因素影响?5、 何为大气窗口?分析形成大气窗口的原因,并列出用于从空间对地面遥感的大气窗口的波长范围。6、 传感器从大气层外探测地面物体时,接收到哪些电磁波能量?第二章 遥感平台及运行特点名词解释:1、 遥感平台 2、遥感传感器 3、卫星轨道参数 4、升交点赤经 5、轨道倾角6、近地点角距 7、地心直角坐标系 8、大地地心直角坐标系 9、卫星姿态角10、开普勒第三定理 11、重复周期 12、近圆形轨道 13、与太阳同步轨道14、近极地轨道 15、偏移系数 16、GPS 17、ERTS_1 18、LANDSAT_1 19、SPOT 20、IRS 21、CBERS 22、ZY_1 23、Space Shuttle 24、MODIS 25、IKONOS 26、Quick Bird 27、Radarsat 28、ERS 29、小卫星填空题:1、遥感卫星轨道的四大特点 。2、卫星轨道参数有 。3、卫星姿态角是 。4、遥感平台的种类可分为 、 、 三类。5、卫星姿态角可用 、 、 等 方法测定。6、与太阳同步轨道有利于 。7、LANDSAT系列卫星带有TM探测器的是 ;带有TM探测器的是 。8、SPOT系列卫星可产生异轨立体影像的是 ;可产生同轨立体影像的是 。9、ZY-1卫星空间分辨率为 。10、美国高分辨率民用卫星有 。11、小卫星主要特点包括 。12、可构成相干雷达影像的欧空局卫星是 。选择题:(单项或多项选择)1、 卫星轨道的升交点和降交点是卫星轨道与地球①黄道面的交点②地球赤道面的交点③地球子午面的交点。2、 卫星与太阳同步轨道指①卫星运行周期等于地球的公转周期②卫星运行周期等于地球的自转周期③卫星轨道面朝向太阳的角度保持不变。3、 卫星重复周期是卫星①获取同一地区影像的时间间隔②经过地面同一地点上空的间隔时间③卫星绕地球一周的时间。4、 以下哪种仪器可用作遥感卫星的姿态测量仪①AMS②TM③HRV④GPS⑤星相机。5、 问答题:1、 根据Landsat-1的运行周期,求该卫星的轨道高度。2、 根据Landsat-4/5的运行周期、重复周期和偏移系数,通过计算排出其轨道(赤道处)的分布图。3、 以Landsat-1为例,说明遥感卫星轨道的四大特点及其在遥感中的作用。4、 叙述地心直角坐标系与地心大地直角坐标系的差别和联系。5、 获得传感器姿态的方法有哪些?简述其原理。6、 简述遥感平台的发展趋势。7、 LANDSAT系列卫星、SPOT系列卫星、RADARSAT系列卫星传感器各有何特点?第三章 遥感传感器及其成像原理名词解释:1、遥感传感器 2、探测器 3、致冷器 4、红外扫描仪 5、多光谱扫描仪6、推扫式成像仪 7、成像光谱仪 8、瞬时视场 9、MSS 10、TM 11、HRV 12、SAR 14、INSAR 15、CCD 16、真实孔径侧视雷达17、合成孔径侧视雷达18、全景畸变 19、动态全景畸变 20、 静态全景畸变 21、距离分辨率22、方位分辨率23、雷达盲区24、角隅反射 25、粗加工产品 26、精加工产品27、多中心投影 28、多中心斜距投影填空题:1、MODIS影像含有 个波段,其中250米分辨率的包括 波段。2、RADARSAT-1卫星空间分辨率最高可达 ,共有 种工作模式。3、多极化的卫星为 。4、目前遥感中使用的传感器大体上可分为 等几种。5、遥感传感器大体上包括 几部份。6、MSS成像板上有 个探测单元;TM有 个探测单元。7、LANDSAT系列卫星具有全色波段的是 ,其空间分辨率为 。8、利用合成孔径技术能堤高侧视雷达的 分辨率。9、扫描仪产生的全景畸变,使影像分辨率发生变化,x方向以 变化,y方向以 变化。10、实现扫描线衔接应满足 。选择题:(单项或多项选择)1、 全景畸变引起的影像比例尺变化在X方向①与COSθ成正比②在X方向与COSθ成反比③在X方向与COS²θ成正比④在X方向与COS²θ成反比。2、 全景畸变引起的影像比例尺变化在Y方向①与COSθ成正比②与COSθ成反比③与COS²θ成正比④与COS²θ成反比。3、 TM专题制图仪有① 4个波段②6个波段③7个波段④9个波段。4、 TM专题制图仪每次同时扫描①6条扫描线②12条扫描线③16条扫描线④20条扫描线。5、 HRV成像仪获得的影像①有全景畸变②没有全景畸变。6、 SPOT卫星获取邻轨立体影像时,HRV中的平面镜最大可侧旋①10º②16º③27º④32º。7、真实孔径侧视雷达的距离分辨率与①天线孔径有关②脉冲宽度有关③发射的频率有关。7、 径侧视雷达的方位分辨率与①天线孔径有关②天线孔径无关③斜距有关④斜距无关。问答题:1、叙述侧视雷达图像的影像特征2、MSS、TM、ETM+影像各有何特点?3、有哪几种方法可以获得多光谱摄影影像?4、对物面扫描的成像仪为什么会产生全景畸变?扫描角为θ时的影像的畸变多大?5、叙述Landsat-1上的MSS多光谱扫描仪获取全球(南北纬度81°之间)表面影像的过程。6、TM专题制图仪与MSS多光谱扫描仪有何不同?7、SPOT卫星上的HRV推扫式扫描仪与TM专题制图仪有何不同?8、侧视雷达影像的分辨力、比例尺、投影性质和投影差与中心投影航空或航天像片影像有何不同?9、侧视雷达为什么要往飞机侧方发射脉冲并接收其回波成像?如果向飞机或卫星正下方发射脉冲并接收回波成像会是什么情景?10、简述INSAR测量高程的基本原理。第四章 遥感图像数字处理的基础知识名词解释:1、光学影像 2、数字影像 3、空间域图像 4、频率域图像 5、图像采样6、灰度量化7、BSQ 8、BIL 9、BMP 10、TIFF 11、ERDAS 12、PCI 13、3S集成填空题:1、光学图像是一个 函数。2、数字图像是一个 函数。3、光学图像转换成数字影像的过程包括 等步骤。4、图像数字化中采样间隔取决于图像的 ,应满足 (公式)。5、一般图像都由不同的 、 、 、 的周期性函数构成。6、3S集成一般指 、 和 的集成。选择题:(单项或多项选择)1、 数字图像的①空间坐标是离散的,灰度是连续的②灰度是离散的,空间坐标是连续的③两者都是连续的④两者都是离散的。2、 采样是对图像①取地类的样本②空间坐标离散化③灰度离散化。3、 量化是对图像①空间坐标离散化②灰度离散化③以上两者。4、 图像数字化时最佳采样间隔的大小①任意确定②取决于图像频谱的截止频率③依据成图比例尺而定。5、 图像灰度量化用6比特编码时,量化等级为①32个②64个③128个④256个。6、 BSQ是数字图像的①连续记录格式②行、波段交叉记录格式③象元、波段交叉记录格式。问答题:1、 叙述光学影像与数字影像的关系和不同点。2、 怎样才能将光学影像变成数字影像。3、 叙述空间域图像与频率域图像的关系和不同点。4、 叙述储存遥感图像有哪几种方法,列举2—3种数字图像存储格式,并说明其特点。5、叙述3S集成的形式和作用。第五章 遥感图像几何处理名词解释:1、 共线方程2、外方位元3、像点位移4、几何变形5、几何校正6、粗加工处理7、精加工处理8、多项式纠正9、间接法纠正10、直接法纠正11、灰度重采样12、最邻近像元重采样13、双线性内插14、双三次卷积15、图像配准16、数字镶嵌17、数字地面模型18、正射影像19、地理编码图象 20、DEM填空题:1、 分别写出中心投影,推扫式传感器(旁向,航向倾斜),扫描式传感器的共线方程表达式 , , , 。2、 遥感图像的变形误差可以分为 和 ,又可以分为 和 。3、 外部误差是指在 处于正常的工作状态下,由 所引起的误差。包括 , , , 等因素引起的变形误差。4、 传感器的六个外方位元素中 的变化对图像的综合影响使图像产生线性变化,而 使图像产生非线性变形。 5、 地球自转对于多中心投影影像产生像点位移在 方向上,位移量bb’= 。6、 TM卫星图像的粗纠正使用的参数有 , , , 纠正的变形有 , 。7、 遥感图像几何纠正的常用方法有 , , 。8、 多项式拟合法纠正中,项数N与其阶数n的关系 。9、 多项式拟合法纠正中,一次项纠正 ,二次项纠正 ,三次项纠正 。10、项式拟合法纠正中控制点的要求是 , , 。11、多项式拟合法纠正中控制点的数量要求,一次项最少需要 个控制点,二次项最少项需要 个控制点,三次项最少需要 个控制点。12、SPOT图像采用共线方程纠正时需要 ,有 未知参数,最少需要 个控制点。13、常用的灰度采样方法有 , , 。14、数字图象配准的方式有 , 。15、数字图像镶嵌的关键 , , 。16、在姿态角都为0的情况下,中心投影像片的投影差为 ,推扫式影像(HRV)的投影差为 ,扫描仪影像(MSS)的投影差 ,侧视雷达影像(SAR)的投影差 。17、灰度采样中,双线性内插的权矩阵采用 函数求取, 双三卷积的权矩阵采用 函数求取。选择题:(单项或多项选择)1、 垂直航线方向距离越远比例尺越小的影像是①中心投影影像②推扫式影像(如SPOT影像)③逐点扫描式影像(如TM影像)④真实孔径侧视雷达影像。2、 垂直航线方向距离越远比例尺越大的影像是①中心投影影像②推扫式影像(如SPOT影像)③逐点扫描式影像(如TM影像)④真实孔径侧视雷达影像。3、 真实孔径天线侧视雷达影像上高出地面的物点其象点位移(投影差)①向底点方向位移②背向底点方向位移③不位移。4、 逐点扫描式影像(如TM影像)上高差引起的像点位移(投影差)发生在①像底点的辐射方向②扫描方向。5、 多项式纠正用一次项时必须有①1个控制点②2个控制点③3个控制点④4个控制点。6、 多项式纠正用二次项时必须有①3个控制点②4个控制点③5个控制点④6个控制点。7、 多项式纠正用一次项可以改正图像的①线性变形误差②非线性变形误差③前两者。8、 共线方程的几何意义是在任何情况下①像主点、像底点和等角点在一直线上②像点、物点和投影中心在一直线上③ 主点、灭点和像点在一直线上。问答题:1. 叙述中心投影的航空像片,MSS多光谱扫描仪影像,SPOT的HRV推扫式影像和真实孔径侧视雷达图像的几何特征。2. 列出中心投影影像、推扫式影像(旁向和航向)、逐点扫描影像和侧视雷达影像的构像方程和共线方程表达式。3. 列出中心投影影像、推扫式影像、逐点扫描影像和侧视雷达影像的投影差公式,并说明投影差产生的像点位移各自不同点。 已知中心投影影像姿态产生的变形误差公式为推导出推扫式影像、逐点扫描影像和侧视雷达影像的像点位移公式。5. 叙述最邻近法、双线性内插、双三次卷积重采样原理(可作图说明)和优缺点。6. 两幅影像进行数字镶嵌应解决哪些关键问题?解决的基本方法是什么?7. 叙述多项式拟合法纠正卫星图像的原理和步骤。8. 多项式拟合法选用一次项、二次项和三次项,各纠正遥感图像中的哪些变形误差?9. 多项式拟合法平差后精度应控制在什么范围内?超限了怎么办?10.叙述共线方程法纠正SPOT卫星图像的原理和步骤。11.在几何纠正的重采样中,内插像元4*4图像亮度值矩阵为:在间接法纠正过程中,某地面点反算到原始像点的坐标值为(6 ,4),利用最邻近法和双线性内插法求像点的亮度值。12.叙述数字图像镶嵌的过程。13.画出各个外方位元素变化引起的图形变化情况第六章 遥感图像辐射处理名词解释:1、辐射误差2、辐射定标3、大气校正4、图像增强 5、图像直方图 6、假彩色合成 7、密度分割 8、真彩色合成 9、假彩色合成 10、伪彩色图像 11、图像平滑 12、图像锐化 13、边缘检测 14、低通滤波 15、高通滤波 17、图像融合 18、直方图正态化 19、梯度算子 20、线性拉伸 21、拉氏算子 22、直方图均衡 23、邻域法处理 填空题:1、辐射传输方程可以知道,辐射误差主要有 , , 。2、常用的图像增强处理技术有 , 。3、增强的常用方法有 , , , , , , 等。子4、直方图均衡效果 , , 。5、3*3的拉普拉斯算子 。6、图像平滑和锐化的关系 。 7、NDVI= 。8、图像融合的层次 , , 。9、HIS中的H指 ,I指 , S指 。 图像融合的常用算法 , , , , 等。选择题:(单项或多项选择)1、 图像增强的目的① 增加信息量②改善目视判读效果。2、 图像增强①只能在空间域中进行②只能在频率域中进行③可在两者中进行。3、 从图面上看直方图均衡后的效果是①增强了占图面面积小的灰度(地物)与周围地物的反差②减弱甚至于淹没了占图面面积小的灰度(地物)与周围地物的反差③增强了占图面面积大的灰度(地物)与周围地物的反差④减弱占图面面积大的灰度(地物)与周围地物的反差。4、 标准假彩色合成(如TM4、3、2合成)的卫星影像上大多数植被的颜色是①绿色②红色③蓝色。5、 图像边缘增强采用①低通滤波②高通滤波。6、 消弱图像噪声采用①低通滤波②高通滤波。7、 图像融合前必须先进行①图像配准②图像增强③图像分类。8、 图像融合①必须在相同分辨率图像间进行②只能在同一传感器的图像间进行③可在不同分辨率图像间进行④可在不同传感器的图像间进行⑤只限于遥感图像间进行⑥可在遥感图像和非遥感图像间进行。 问答题:10、 根据辐射传输方程,指出传感器接收的能量包含哪几方面,辐射误差及辐射误差纠正内容是什么,11、 简述遥感数字影像增强处理的目的,例举一种增强处理方法,说明其原理和步骤。12、 什么是遥感图像大气校正?为什么要进行遥感图像大气校正?请以多光谱扫描仪(MSS)资料为例,说明大气校正的原理和方法。13、 以美国陆地卫星TM图像的波段为例,分别说明遥感图像的真彩色合成与假彩色合成方案。与真彩色合成图像相比,假彩色合成图像在地物识别上有何优越性?14、 叙述美国陆地卫星ETM图像分辨率30米的5、4、3波段影像与分辨率15米的全色影像进行融合的步骤和方法。15、 说明以下直方图的影像特征。第七章 遥感图像判读名词解释:1、遥感图像判读 2、景物特征 3、判读标志 4、几何分辨率 5、辐射分辨率6、光谱分辨率 7、时间分辨率 8、波谱响应曲线 9、热阴影 10、冷阴影11、雷达盲区 12、角隅反射 13、体散射 14、影像几何特性 15、影像辐射特性16、 地物光谱特征 17、地物空间特征 18、地物时间特征填空题:1、遥感图像信息提取中使用的景物特征有 。2、遥感图像空间特征的判读标志主要有 等。3、传感器特性对判读标志影响最大的是 等。4、光谱分辨率根据 三项指标来判定。5、热红外图像上的亮度与地物的 和 有关, 比 影响更大。6、 侧视雷达图像上的亮度变化与 等有关。选择题:(单项或多项选择) 1、 遥感图像的几何分辨率指 ①象元相应地面的宽度 ②传感器瞬时视场内观察到地面的宽度 ③能根据光谱特征判读出地物性质的最小单元的地面宽度。2、 热红外图像是 ①接收地物反射的红外光成的像 ②接收地物发射的红外光成的像。3、 热红外图像上的亮度与地物的 ①反射率大小有关 ②发射率大小有关 ③反射太阳光中的红外光强度有关 ④温度高低有关。4、 侧视雷达图像垂直飞行方向的比例尺 ①离底点近的比例尺大 ②离底点远的比例尺大 ③比例尺不变。问答题:1、 遥感图像判读主要应用景物的哪些特征?2、 何为传感器的空间分辨率、辐射分辨率、光谱分辨率?3、 叙述TM多光谱图像的几何特征和辐射特征。4、 叙述地物光谱特性曲线与波谱响应曲线之间的关系和不同点?(可作图说明)5、 举例说明为什么多光谱图像比单波段图像能判读出更多的信息?6、 叙述热红外图像的几何特征和辐射特征。7、 叙述侧视雷达图像的几何特征和辐射特征。第八章 遥感图像自动识别分类名词解释:1、模式识别 2、遥感图像自动分类了 3、统计模式识别 4、结构模式识别5、光谱特征向量 6、特征空间 7、特征变换 8、特征选择 9、主分量变换10、哈达玛变换 11、穗帽变换 12、生物量指标变换 13、标准化距离14、类间离散度15、类间离散度16、类内离散度17、判别函数18、判别边界19、监督法分类20、非监督法分类21、条件概率22、先验概率23、后验概率24、贝叶斯判别规则25、马氏距离26、欧氏距离27、计程距离28、错分概率29、训练样区 30、最大似然法分类 31、最小距离法分类32、ISODATA法分类33、混淆矩阵填空题:1、遥感图像上的地物在特征空间聚类的一般特点是 等。2、特征变换在遥感图像分类中的作用是 。3、遥感图像特征变换的主要方法有 等。4、特征选择的目的是 。5、标准化距离的公式 。6、马氏距离公式 ,欧氏距离公式 ,计程距离公式 。7、最大似然法分类判别函数 。8、分类后处理主要包括 , 。选择题:(单项或多项选择)1、 同类地物在特征空间聚在①同一点上②同一个区域③不同区域。2、 同类地物在特征空间聚类呈①随机分布②近似正态分布③均匀分布。3、 标准化距离大可以说明①类间离散度大,类内离散度也大②类间离散度小,类内离散度大③类间离散度大,和/或类内离散度小④类间离散度小,类内离散度也小。4、 监督分类方法是①先分类后识别的方法②边学习边分类的方法③人工干预和监督下的分类方法。5、 两类地物的最大似然法分类判别边界在①两类地物分布概率相等处②两类地物均值的中值位置③其中一类地物分布概率的最大处。6、 ISODATA法分类的样区①尽量选在同一类别中②尽量包含所需识别的类别③类别是已知的④类别是未知的。问答题:1、 什么叫特征空间?地物在特征空间聚类有哪些特性?2、 作图并说明遥感影像主分量变换的原理和它在遥感中的主要作用。3、 叙述生物量指标变换的原理及其作用。4、 为什么要进行特征选择?列举几种特征选择的主要方法和原理。5、 叙述监督分类与非监督分类的区别。6、 叙述最大似然法分类原理及存在的缺点。7、 叙述最小距离法分类的原理和步骤。8、 叙述ISODATA法非监督分类的原理和步骤。9、 叙述图像增强中的平滑处理与分类后的平滑处理的异同点。10、述改善仅用光谱特征的统计模式识别自动分类的主要方法和基本原理。11、评价以下的混淆矩阵,并求出平均可信度和加权可信度。类 别 1 2 3 4 5 12345其它类 4 2 8 3 5 象元数 135 276 463 178 30512、根据下图中两类地物在一维特征空间中的分布,画出最大似然法、最小距离法的判别边界并分析和比较它们的错分概率。第九章 遥感技术的应用名词解释:1、卫星影像地图 2、DRG 3、DLG 4、GIS 5、同轨立体影像 6、邻轨立体影像 7、沙尘暴 8、海洋赤潮 9、地质构造 10、植被指数 11、森林立地条件12、臭氧空洞 13、土壤侵蚀 14、遥感考古 15、蓝冰填空题:1、 利用遥感图像修测地形图,修测的主要内容有 等。2、遥感图像制作影像图时控制点来源有 等。3、森林立地因子包括 等。4、多时遥感影像监测冰川流速的步骤是 等。选择题:(单项或多项选择) 1、 分辨率30米的TM影像,按规范要求的平面精度(图上5mm),适合制作哪种比例尺的影像图 ①1:10000 ②1:100000 ③1:500000。2、 按规范要求的平面精度制作卫星影像图,选控制点用的地形图比例尺,应比影像图的比例尺 ①大一个等级 ②小一个等级。问答题:1、 举例说明制作不同比例尺卫星影像地图时怎样选择遥感图像?2、 叙述遥感监测南极冰川流速和流量的基本方法。3、 中国南方草场三级分类的内容是什么?TM影像可能提取出哪些信息?4、 叙述遥感调查中国南方草场资源的基本方法。5、 叙

哈哈哈哈 我也在找呢 小丹丹你把我忽悠了!!!!!!!

遥感在生态环境中的应用论文题目

哈哈哈哈 我也在找呢 小丹丹你把我忽悠了!!!!!!!

遥感是20世纪60年代在美国创造的技术用语,用来综合以前所使用的摄影测量、影像判读、地理摄影而提出的。1972年,随着第一颗地球观测卫星Landsat的发射成功而迅速得到普及。遥感是一种远离目标,通过非直接接触而判定、测量并分析目标性质的技术。对目标进行信息采集主要是利用了从目标反射或辐射的电磁波。接收从目标中反射或辐射的电磁波的装置叫遥感器(remote sensor)。搭载这些遥感器的移动体叫做遥感平台platform),如飞机及人造卫星等。遥感技术自20世纪60年代初兴起并迅速发展以来,遥感应用的领域在不断地扩大发展,遥感应用从其内容上可概括为资源调查与应用、环境监测评价、区域分析规划及全球宏观研究等(全球宏观研究为一大领域)四大领域。一、环境遥感的特点遥感(Remote sensing)就是遥远感知事物的意思,也就是不直接接触目标物和现象,在距离地物几公里到几百公里、甚至上千公里的飞机、飞船、卫星上,使用光学或电子光学仪器(称为遥感器)接受地面物体反射或发射的电磁波信号,并以图像胶片或数据磁带形式记录下来,传递到地面,经过信息处理、判读分析和野外实地验证,最终服务于资源勘探、环境动态监测和有关部门决策。通常把这一接收、传输、处理、分析判读和应用遥感信息的全过程称为遥感技术。现代遥感技术在地球资源、环境及自然灾害调查、监测和评价中的应用,具有宏观、快速、准确、直观、动态性和适应性等其他技术不能取代的优势。特别是与其他相关技术(如现代通讯、对地定位、常规调查、台站观测、地理信息系统及专业研究)结合起来,更能充分体现其优势。环境遥感是从空中利用遥感器来探测地面物体的现代技术,其特点包括如下几方面:(1)感测范围大,综合、宏观:航摄飞机的飞行高度可达10km左右,陆地卫星的轨道高度可达到910km左右。由于飞得高,观测的面积就广阔。例如每张陆地卫星图像覆盖的地面范围达到3万km2,约相当于中国海南省的面积。遥感从飞机上或人造地球卫星上,居高临下获取的航空相片或卫星图像,不受地形地物阻隔的影响,景观一览无余,为人们研究地面各种自然、社会现象及其分布规律提供了便利条件。如航空相片可提供不同比例尺的地面连续景观相片,并可供像对的立体观察。图像清晰逼真,信息丰富。一张比例尺1/35000的23cm×23cm的航空相片,可展示出地面约60km2范围的地面景观实况。并且可将连续的相片镶嵌成更大区域的相片图,以便总观全区进行分析和研究。卫星图像的感测范围更大,一幅陆地卫星TM图像可反映出34225km2(即185km×185km)景观实况。(2)信息量大、手段多、技术先进:环境遥感技术可以根据不同的目的和任务,选用不同的波段和不同的仪器取得所需的信息。现代遥感技术不仅能利用可见光波段探测物体,而且能利用人眼看不见的紫外线、红外线和微波波段进行探测。不仅能探测地表的性质,而且可以探测到目标物的一定深度。某些波段具有对云、雾、冰、干沙土等的穿透性,可深化对被测目标的认识。例如,可见光的蓝绿光波段对水体有一定的穿透度;用波长较长的微波雷达探测冰层,可以穿透冰层而到达冰层下面的地面或水体。遥感是现代科技的产物,不但能用摄影方式获得信息,而且可以用扫描方式获得信息。遥感技术的运用,扩大了信息量的获取,扩大了人类的观察范围和感知领域,加深了人类对事物和现象的认识。(3)获取信息快,更新周期短,可动态监测:以往进行实地测绘地图,要几年、十几年甚至几十年才能重复一次。应用航空摄影测量方法以后,也要数年才能重复一次。而卫星绕地球运转,能迅速获得所经地区的各种自然现象的最新资料。以陆地卫星4、5为例,每16天可以覆盖地球一遍。因此,利用遥感技术以后,地图更新可以大大缩短,一些地区自然现象的动态变化也能快速地反映出来,并及时作出预报。遥感通常为瞬时成像,可获得同一瞬间大面积区域的景观实况,现势性好,而且可通过不同时相取得的资料进行对比、分析和研究地物动态变化的情况,为环境监测以及研究分析地物发展演化规律提供了基础。(4)用途广、效益高:环境遥感已广泛应用于农业、林业、地质矿产、水文、气象、地理、测绘、海洋研究、军事侦察及环境监测等领域,深入到很多学科中,应用领域在不断扩展,具有明显的社会、经济和生态效益。(5)受地面条件限制少:对于自然条件恶劣、地面工作难以开展的地区,如高山、冰用、沙漠、沼泽等,或因国界限制不易到达的地区,用遥感,特别是航天遥感方法,则比较容易获取资料。二、现代遥感技术的构成遥感技术系统是实现遥感目的的方法、设备和技术的总称,是一个多维、多平台、多层次的立体化观测系统。遥感数据获取是在遥感平台和遥感器构成的数据获取技术系统的支持下实现的。由于各种平台和遥感器都有自己的适用范围和局限性(表1-1、1-2),因此往往随着具体任务的性质和要求的不同而采用不同的组合方式,以取得较好的应用效果。片面地强调某种平台或遥感器的重要性,甚至把它们对立起来,显然是不适宜的。表1-1 各种遥感平台表1-2 主要遥感器的特点(据阎守邕,1990)从遥感数据中提取有用信息,可以通过人工目视判读、计算机数据处理以及两者混合的方法实现。这两种方法及相应的技术系统各具优缺点,需要相互配合,取长补短。三、环境遥感的应用遥感技术自20世纪60年代初兴起并迅速得到发展以来,应用的领域在不断地扩展。环境遥感的应用从其内容上可概括为资源调查与应用、环境监测评价、区域分析规划及全球宏观研究四大领域。遥感在资源调查方面的应用遥感在资源调查中可发挥很大的作用,特别是在自然资源调查中,近年来做了很多工作,取得了丰硕的成果和可观的效益。其主要表现在国民经济建设中的农业、林业、地质矿产、水土保持及水利建设等部门中。在农业、林业方面的应用:遥感在农林方面的应用主要是在农、林土地资源调查,土地利用现状调查,土壤干旱、沙化的调查及监测以及农作物长势的监测与估产,森林资源的清查等方面。近年来,在牧草场资源调查、短中期农林灾害、农用水资源以及生态环境调查等方面也相继开展工作,取得了成果。在地质矿产方面的应用:遥感在地质及其矿产方面的应用主要表现在基础地质工作,矿产地质工作以及工程地质、地震地质、灾害地质的综合调查等方面的应用。遥感已成为地质矿产调查研究中的一种先进的工作手段和重要方法。遥感图像视域宽阔,客观真实地反映出各种地质现象及其相互间的关系,形象地反映出区域地质构造及其空间关系,为跨区域甚至全球的区域地质研究提供了极有利的条件。在水文、水资源方面的应用:遥感在水文、水资源的应用,如水资源的调查、流域规划、水土流失调查、海口海岸带及浅海地形调查、海洋调查研究等方面,都能发挥重要作用。特别是在人类足迹难以到达的荒凉地区,遥感技术可成为水文、水资源调查的有效手段。遥感在环境监测评价方面的应用遥感在环境监测中主要是利用遥感提供的瞬间成像的大范围图像,对大气污染、土地污染以及海洋污染等进行监测。由于遥感所提供的信息具有快速及时,现势性好,真实、客观、形象的特点,可实时地了解和掌握污染源的位置、污染物的性质、污染物的动态变化以及污染对环境的影响,为及时采取防护或疏导措施以及环境评价提供了基础。遥感在对抗自然灾害方面的应用自然灾害是指环境异常或环境的突发性变化,给人类生活和生存带来的灾难。近年来遥感技术在预报灾害方面取得了很多重要成就,成为预报自然灾害的有力工具和手段。气象卫星当前已进入业务性运转,形成多层次的预报网络,在灾害性天气监测、天气分析预报、气象研究等方面,发挥了十分重要的作用。中国“风云一号”、“风云二号”气象卫星的研制和相继发射成功,标志着中国的气象预报技术已从单项、短期、小范围的预报发展成综合性、中长期、大范围的准确预报。为中国的旱情、洪水,以及滑坡、泥石流和病虫害的准确预报提供了可靠资料,为采取减灾措施打下了可靠基础。遥感在区域分析及建设规划方面的应用遥感图像是地表面一定区域景观的真实、客观的记录和形象显示。地理学区域分析亦充分利用和发挥了遥感图像的这一特点和优势,成为遥感在地理学应用的重要方面。近年来随着城市化及城市建设的热潮,城市遥感方兴未艾。城市遥感可提供诸如城市土地利用现状、城市用地分析、城市环境监测及评价、城镇布局结构分析、城市道路交通分析、城市人口分析及城镇生态分析等城市发展的基础信息,为城市建设规划及决策提供了服务。遥感在全球性宏观研究中的应用遥感的全球性研究虽然目前尚未系统地进行,形成规模。但是,随着社会的发展,特别是诸如世界人口增加、资源危机、环境恶化等一系列涉及全球性的问题,越来越引起人们的关注。全球性研究(Global Study)已提到日程上,得到世界各国普遍的重视,全球性研究必将有一个较大的发展。全球研究的目的主要是宏观地、整体性地对人类赖以生存的岩石圈、大气圈、水圈、生物圈的研究,以此带动区域性研究的深化,促进全球环境的改善。因此,这无疑为遥感发挥自身的特点和优势,开拓了又一应用领域。遥感可为全球研究提供各种便利条件,促进全球性研究的进一步开展和深化。例如,可利用全球定位系统(GPS)监测和研究板块的运移,深大断裂活动,研究环形构造的成因及其机制;利用气象卫星资料及其他遥感信息,进行全球性气象研究及世界灾情的预报;海洋动力学研究,地球表面固态水的分布,世界冰川的进退以及世界大环境的监测和治理等。遥感必将在全球性研究中发挥出更大的作用,做出更大的贡献。遥感在其他方面的应用在测绘制图方面的应用:航空摄影测量一直是测绘制图的一种主要资料来源和重要的技术方法,现已形成了完整而系统的学科体系,当代遥感的发展使测绘制图的资料来源更为多样化,资料的准确可靠性及其快速及时性和适时动态性等方面有了较大的改观;成图周期大为缩短;影像地图、数字地图等新图种和制图新工艺大量涌现,使测绘制图产生了新的变化和发展。在历史遗迹、考古调查方面的应用:近年来在进行野外考古调查中,配合应用遥感图像分析,发现了大量重要的历史遗迹。在军事上的应用:遥感在军事上的应用是不言而喻的。事实上,军事应用是遥感最早、最成功的应用,今天遥感的发展是得利于遥感军事上成功的应用而迅速发展起来的。目前发射的绕地球运行的卫星,绝大部分是与军事有关的。四、环境遥感在中国的发展随着遥感技术的发展,获取地球环境信息的手段越来越多,信息越来越丰富。因此,为了充分利用这些信息,建立全面收集、整理、检索以及科学管理这些信息的空间数据库和管理系统,加快进行遥感信息机理研究,研制定量分析模型以及实用的地学模型,进行多种信息源的信息复合及环境信息的综合分析等,构成了当前遥感发展的前沿研究课题。中国国土辽阔,地形复杂,自然资源丰富。为了查清和掌握土地、森林、矿产、水利等自然资源,更好地配合国家建设,积极推广遥感技术的运用尤显必要。首先,国家的重视和支持,以及实行集中统一的领导规划,为中国遥感的发展奠定了基础。中国的遥感发展起步晚,在20世纪70年代初期和中期,仍明显地表现出部门自发的积极性,以及低水平的重复等初期发展的特点。为此,国家科委组织筹建了全国遥感领导组织,继而发展成国家遥感中心,集中领导及协调全国的遥感发展,编制中国遥感的中远期规划,确定了近期主攻的目标。第二,集中人力、物力进行科技攻关,重点突破,缩短了中国与国际遥感先进水平的差距。在1980~1990年,通过科技攻关,中国遥感技术的发展能力已全面形成,遥感专业队伍得到进一步的锻炼和壮大。第三,全国性、大区域遥感工程的实施完成,充分显示出中国遥感的特色和水平。中国疆域辽阔,自然环境复杂,为开展遥感的实验研究提供了优越的环境条件。第四,新的资源卫星的发射,为中国的遥感发展带来了新的机遇。“资源一号”卫星于1999年10月14日成功发射升空,结束了中国没有陆地资源卫星的历史。卫星每26天遍扫地球一次,每幅影像覆盖面积为120km2,空间分辨率达20m。“资源一号”卫星是中国第一颗高速传输式对地遥感卫星,该卫星在太空巡视地球1年有余,拍摄了几十万幅地面遥感影像。中国从20世纪80年代中期开始接收外国卫星拍摄的影像,应用于农业、森林、水利的监测和规划,对国民经济发展起到了很大作用。

网上的论文很多,你可以找“城市遥感”“环境遥感”之类的关键词。

遥感在环境监测中的应用论文摘要

土地覆盖监测:土地覆盖是人地相互作用过程的最终体现,也是地球表层系统最明显的景观标志,土地覆盖变化又会引发一系列环境的改变。遥感技术因其能提供动态、丰富和廉价的数据源已成为获取土地覆盖信息最为行之有效的手段。森林覆盖监测:森林是陆地生态系统的主体,是人类赖以生存的基础资源。传统五年一次的一类调查和十年一次的二类调查存在更新周期长、历经时间长、样地易被特殊对待、数据可比性差等缺陷,难以科学、准确评估森林资源和生态状况变化。遥感具有宏观性、客观性、周期性、便捷性等特点,已经在森林资源清查(一类调查)和规划设计调查(二类调查)中大显身手。草地覆盖监测:草地是仅次于森林资源的陆地植物资源。遥感技术在草地资源调查、分类和制图中得到应用,大大地提高了草地资源调查与制图的精度,促使草地分类由定性逐渐走向定量化,可以完成草地退化监测与评估,节省了人力、物力和财力。湿地资源监测:湿地是地球上水陆相互作用形成的独特的生态系统,是自然界最富生态多样性的景观和人类最重要的生存环境之一。实时监测湿地种类及其数量,为湿地的保护提供第一手材料显得尤为重要。遥感技术具有观测范围广,信息量大,获取信息快,更新周期短,节省人力物力和人为干扰因素少等诸多优势,已经成为湿地研究的有力手段。可以提取湿地边界、进行湿地分类、湿地动态变化监测等 。

黄文星1,2 万荣胜1,2(广州海洋地质调查局 广州 510760;国土资源部海底矿产资源重点实验室 广州 510760)第一作者简介:黄文星(1985—),硕士,助理工程师,主要从事遥感地质和构造地貌研究,Email:。摘要 近几十年来,随着沿海经济的发展,环境问题突出,海岸带环境地质问题得到越来越多的重视。卫星遥感以其实时、快速、高效的特点在海岸带环境地质调查中得到广泛应用。这些应用包括海岸带类型划分、岸线提取、近岸水深探测以及近岸悬浮泥沙、海表温度(SST)盐度(SSS)、叶绿素浓度反演等环境地质内容。本文简要介绍这些应用的主要原理方法和不足。关键词 卫星遥感 海岸带 环境地质调查1 前言海岸带是海陆交互作用的地带,同时也是人类生存和发展的重要区域。由于自然环境的变化和人类活动的干扰,海岸带地区环境地质问题日益突出,主要表现为海平面上升、海水倒灌、地面沉降、海岸侵蚀、风暴、赤潮等,因此,进行海岸带环境地质调查具有重要意义。卫星遥感是20世纪60年代发展起来的新技术,具有宏观、快速、动态、综合的特点。目前已经在海岸带地质调查中广泛应用——近岸水域地形地貌探测、海岸类型识别、岸线变迁历史、滩涂演变过程、岛礁分布、航道变迁、海面温度分布、海水盐度分布、海水悬移质及叶绿素分布、海流及波浪状况等[1]。本文主要介绍海岸带类型划分、岸线提取、近岸水深探测以及近岸悬浮泥沙、海表温度(SST)盐度(SSS)、叶绿素浓度反演等的原理方法和存在问题。2 海岸带类型调查海岸带类型是海岸带环境地质调查的基本内容之一。不同的海岸带类型具有不同的物质组成、形态特征和空间分布特点,一般可以通过卫星影像中的色调、形状、纹理、阴影,以及与相关地物的空间配置关系进行识别。砂质海岸表层砂体干出地表时,对可见光具有很强的反射作用,一般呈亮白色;靠近水体,随着含水量的增加,对近红外波段的反射强度快速减弱,呈暗色调;空间配置上,砂质海岸一般地形较为开阔平坦,往往分布在砂质来源丰富、侵蚀作用相对较弱的河口和海湾附近。泥质海岸主要的物质成分为淤泥和粉砂,一般含水量较高,对近红外波段的反射较弱,影调偏暗,多分布于封闭海湾和潮滩。基岩海岸一般位于岬角位置,多为陆上山脉向海的延伸,与海分界截然,纹理色调与岩性、地貌和覆盖的植被有关。实际调查发现,不同海岸类型有相互交叉的情况。以海南文昌铜鼓岭石头公园附近的海湾为例(图1),该区高潮位-中潮位间,表层砂质覆盖;中潮位-低潮位,大量的基岩礁石出露,这为海岸带类型的定性带来很大的困难,进一步的精细划分对遥感影像的分辨率和时相(低潮位)提出了更高的要求。图1 海南文昌石头公园附近的海湾F1 A bay near by the Stone Park in Hainan Province3 岸线提取岸线调查也是海岸带环境地质调查的基本内容,通过解译多个时相的岸线,可以研究岸线的变迁演化历史,对分析海平面升降、港口淤积、航道淤塞等具有重要作用,同时也可以为区域经济环境规划提供参考。一般情况下,在遥感影像中,海水和陆地的分界线是非常明显的,这条线我们称之为水边线(图1)。水边线是动态变化的,随着潮水涨落,与影像的获取时间有关。而海岸线是多年平均大潮高潮所形成的海水与陆地分界的痕迹线。基岩海岸和人工海岸,岸线陡直,在出图精度容许的情况下,可以直接将水边线作为岸线。砂质海岸和泥质海岸,海岸地势平缓,延伸宽广,水边线与岸线往往有较大的偏差,一般不能直接将水边线作为岸线。这种情况下,往往采用沙滩泥滩与陆生植被的分界线作为岸线(图1)。在大型河口和三角洲附近,岸滩开阔,地物复杂,识别与陆生植被的分界难度较大,有学者[2]提出潮汐模型的方法进行岸线识别。其基本思路是:首先,提取同一地区多个时相的遥感影像的水边线;然后通过潮汐模型或者当地实测的验潮数据,推算出各个时相水边线的高程值,并以此构建研究区海岸带的地形数据;最后依据潮汐模型或者验潮数据推算最大高潮线的位置,即岸线。当前潮汐模型方法面临的主要问题是海岸带的地形资料缺乏,影像数据不多,精度检验困难等。为了提高遥感影像的解译效率,近年来,有研究者尝试进行岸线的自动识别。识别的算法主要有阈值法、边缘检测算子法、主动轮廓模型方法、面向对象法、马尔科夫场方法等[3],目前岸线自动识别技术尚处于探索阶段。4 近海水深调查传统上水深调查多依靠声纳回声测量,然而,海岸带附近水深较浅,波浪潮汐作用强烈,利用船舶进行声纳水深测量难度大,遥感是一个很好的补充手段。当前应用卫星遥感进行水深调查,主要有两种方法:微波遥感和光学遥感。微波对海水的穿透能力非常有限,只能达到厘米级,不能直接探测海底地形,但海流与水下地形的相互作用会使海表产生起伏(海浪),而微波遥感对海浪形态的测量具有很好的效果,也就是说,微波遥感可以通过测量海浪形态来反推海底地形。这种方法在实际应用过程中受海流和海风的方向、速度的影响较为明显[4],并且探测的深度有限[5]。可见光对水体具有一定的穿透力(10~30米),假如水体足够清澈,太阳辐射可以到达浅水区底部,并反射回传感器,传感器接收的亮度信息中包含了水深信息。当前应用光学遥感进行水深反演的方法主要有三种[6,7]:一是纯理论模型,主要依据遥感水深的原理和水体光谱特性进行理论计算,这种方法的主要问题是水体光学参数难以获取,且计算过程复杂,目前难以推广使用;二是数学统计模型,将实测的水深数据与遥感影像的灰度值进行统计分析,拟合出方程曲线,再外推计算水深值,这种方法简单易行,但影像灰度值与水深的相关度不能保证,计算结果往往不理想;三是半经验半理论模型,主要通过简化理论模型结合统计数据进行模拟计算,这种方法集合了前两种的优点,是目前使用较多的方法。目前,光学遥感用于水深调查,在清澈水体已经取得一定的进展,对近岸浑浊水体还处在探索阶段,其关键的技术难题在于如何减轻悬浮物质和底质(底泥)颜色对水深反演模型的影响[6]。5 近岸水环境调查近年来,随着沿海社会经济的发展,海岸带环境问题愈加突出,海岸带的地质调查也相应地增加了近岸水环境调查的内容[1],如:近海悬浮泥沙调查、海表温度(SST)、盐度(SSS)和叶绿素浓度等,卫星遥感在这些项目的调查中同样发挥着重要作用。1 近岸海水悬浮泥沙遥感水体中悬沙含量的时空分布是分析河口海岸的冲淤变化、估算河流入海物质通量和研究海洋沉积速率的重要参数。因此,对海水悬浮泥沙的调查具有重要意义。目前,应用卫星遥感进行悬浮泥沙定量反演最为常用的是经验模式——建立野外实测数据与遥感反射率或者归一化离水辐射率之间的关系。常见的关系式有:线性关系、对数关系、Gordon关系、负指数关系等。其主要的依据是悬沙水体的波谱反射曲线具有如下特征:一般情况下悬沙水体的反射率,随着悬沙浓度的增大而增大;悬沙的波谱曲线有黄光波段和近红外波段两个反射峰[8],在悬沙浓度较低时,第一个峰高于第二个峰,随着悬沙浓度的增加,第二个峰增加,并最终略高于第一个峰[9]。然而,悬沙水体的反射不只与悬沙的浓度有关,还与悬沙的颗粒大小、种类和形状等有关,因此,上述构建的关系模式在推广应用中往往有很大的局限性。研究更具有可操作性和普适性的水体悬沙遥感算法,需要有更多的标定、检验和发展分析模型。2 近岸海水表层温度反演目前在全球海水表层温度(SST)调查中常用的数据源为AVHRR和MODIS,但是由于这两个数据的空间分辨率均为千米级,不能满足大比例尺近岸海温调查的要求。TM和ETM+的热红外波段具有较高空间分辨力(分别为120米和90米),在近海的海水表层温度调查中得到广泛应用,并取得不错的效果[10-13]。利用陆地卫星做海水表层温度反演的难点主要在于大气校正,因为TM和ETM+数据只有一个热红外波段,无法通过不同波段对大气的吸收和发射率的差异来构建大气校正方程,而同步实测的大气轮廓线数据和辐射传输模型往往也缺乏。3 近岸叶绿素浓度反演叶绿素浓度可用于估算浮游植物的生物量和生产力,同时也是反映水体营养化程度的一个重要参数[14]。在开阔大洋的一类水体中,蓝绿比值法取得较好的效果,应用较为成熟,而该方法并不适用于浑浊的近岸二类水体。目前在二类水体的叶绿素浓度调查中多采用荧光法。荧光法的原理是[15]:浮游植物在波长为400~700nm的太阳光激发下,可以在683nm波段附近产生红光辐射,辐射强度与叶绿素浓度具有很强的相关性,并且大气辐射和海水中的黄色物质与悬浮泥沙对该辐射峰的影响较小。通过量测680nm与660nm之间的辐射量,再进行反演即可得到叶绿素的浓度。当前,荧光法主要存在三个问题[15]:一是叶绿素产生荧光的过程复杂多变,有待于生物学和生态学方面的进一步研究;二是叶绿素发射的荧光只占叶绿素吸收能量的5%,当叶绿素浓度较低时,传感器难以探测;三是随着叶绿素浓度的增加,叶绿素的荧光峰将发生“红移”,而传感器的通道是固定的,这将影响荧光峰辐射量计算时的准确度。4 近岸海水表层盐度反演对近岸盐度变化进行监测是我们认识河口海岸生态环境,了解其物理过程的重要手段[16]。传统上主要采用取水样或者使用CTD来测量海水盐度,但是这种方法野外工作量大,且无法同步获取大面积海水表层盐度数据。目前主要应用微波遥感进行海水表层盐度的反演,其原理是:海水盐度的变化会改变海水的介电常数,进而改变微波辐射特性,通过微波辐射计量测海面的微波发射率,即可从辐射计的亮温中反演出海水表面层盐度(SST)。目前常用于海表盐度反演的电磁波是以413GHz为中心的宽度为20MHz的波段,该波段主要的优点是,它属于受国际条约保护的用于无线电天文学研究的波段,不存在人为信号干扰,并且使用该波段除大雨外,几乎可以实现全天候的观测[17]。问题在于目前卫星搭载的传感器空间分辨率极低,无法满足近岸观测的要求。6 结论和讨论遥感海岸带环境地质调查,具有高效率、低成本的特点,目前已经得到广泛应用。在一些领域,如海岸类型调查和岸线调查都已经比较成熟。难点在于近岸水体部分,水深调查、悬沙调查、温度盐度和叶绿素浓度反演,这几个方面都还处于探索阶段。面临的最重大的技术瓶颈在于传感器。遥感近岸环境地质调查对传感器提出了苛刻的“三高”要求(高空间分辨率、高波谱分辨率和高时间分辨率)。首先,海岸带环境地质调查以岸线以外20公里的海区和岸线以内5公里的陆区作为核心调查区。因此,高的空间分辨率尤为重要,传统的海洋水色卫星,分辨率多为公里级,难以达到1:10万和更大比例尺海岸带调查的制图精度要求。其次,海岸带环境地质调查的内容复杂多样,包含了陆地和水体,水体又涉及浅表的温度盐度、悬浮的泥沙以及水下的地形地貌。要满足这些需求,必须要有足够高的波谱分辨率,才能有效地去除干扰信息,获得准确的波谱传导模型。最后,海岸带是岩石圈、生物圈、水圈和大气圈强烈交互作用的区域,同时,还是人类的集中居住区,受人类改造强烈,环境变化快速。传感器没有高的时间分辨率,便无法准确把握海岸带环境地质变化的规律。以目前的技术而言,建立一个低轨道的小卫星群,搭载高分辨率(空间分辨率和波谱分辨率)传感器,是最有效的解决办法。参考文献[1]夏真,林进清,郑志昌海岸带海洋地质环境综合调查方法[J]地质通报24(6):570-575[2]申家双,翟京生,郭海涛海岸线提取技术研究[J]海洋测绘29(6):74-77[3]张明,蒋雪中,张俊儒,等遥感影像海岸线特征提取研究进展[J]人民黄河30(6):7-9[4]范开国,傅斌,黄韦艮,等浅海水下地形的SAR遥感仿真研究[J]海洋学研究27(2):79-83[5]郑宗生RS与GIS在海洋地质调查中的应用[J]海洋地质动态22(1):27-33[6]张鹰,张东,王艳姣,等含沙水体水深遥感方法的研究[J]海洋学报(中文版)30(1):51-58[7]陶菲经泥沙遥感参数校正的辐射沙洲水深遥感模型研究[D]南京:南京师范大学[8]李炎,李京基于海面—遥感器光谱反射率斜率传递现象的悬浮泥沙遥感算法[J]科学通报44(17):1892-1897[9]刘芳南黄海及东海北部海域悬沙的遥感研究[D]北京:中国科学院研究生院[10]于杰,李永振,陈丕茂,等利用Landsat TM6数据反演大亚湾海水表层温度[J]国土资源遥感(3):24-29[11]邢前国,陈楚群,施平利用Landsat数据反演近岸海水表层温度的大气校正算法[J]海洋学报(中文版)29(3):23-30[12]Suga Y,Ogawa H,Ohno K,et Detection of surface temperature from LANDSAT-7/ETM+[J]Advanced Space R32(11):2235-2240[13]Thomas A,Byrne D,Weatherbee RCoastal sea surface temperature variability from Landsat infrared data[J]Remote Sensing of E81(2-3):262-272[14]李素菊,吴倩,王学军,等巢湖浮游植物叶绿素含量与反射光谱特征的关系[J]湖泊科学14(3):228-234[15]邢小罡,赵冬至,刘玉光,等叶绿素a 荧光遥感研究进展[J]遥感学报11(1):137-144[16]王永红,M L Heron,Peter R航空微波遥感观测海水表层盐度的研究进展[J]海洋地质与第四纪地质27(1):139-145[17]杨斌利用于海洋盐度观测的主被动联合遥感器[J]空间电子技术(2):49-54The application of Satellite Remote Sensing to Geo-environment in Coastal ZonesHuang Wenxing1,2Wan Rongshen1,2(Guangzhou Marine Geological Survey,Guangzhou,510760;Key Laboratory of Marine Mineral Reasources,MLR,Guangzhou,510760)Abstract:In recent decades,as China's coastal economic development,coastal environmental geology problems are becoming increasingly Satellite Remote Sensing has features of rapid,real-time and high efficiency,which make it widely used in the coastal geo⁃environment These applications include coastal zone Type Classification,coastline extraction,water⁃depth measurement in coastal zone,suspended sediment detection,sea surface temperature(SST),sea surface salinity(SSS),chlorophyll concentration detection and other environmental This paper introduces the principles and shortcomings of these Key words:Satellite Remote Sensing;Coastal Zones;Geo⁃environment Survey

遥感在环境监测中的应用论文摘要怎么写

This article in the analysis comparison spatial databases and ESRI in Corporation's spatial databases engine ArcSDE foundation, proposed that uses ArcSDE to save the magnanimous phantom data the solution, realizes the remote sensing phantom spatial data and the attribute data unification integration This article in Visual under the Stutio environment, based on ArcEngine, the c# language design has developed the remote sensing phantom inquiry demonstration demonstration prototype system, has used for reference based on the content retrieval and the spatial data Yuan data management way, has designed one new remote sensing phantom data bank administration way, namely based on the phantom interpretation content with the Yuan data's remote sensing phantom retrieval, realizes the phantom fast inquiry and the localization In the article introduced emphatically system's database design and the system major function realize the method, as well as the system realizes some key

森林资源调查中SPOT5遥感图像处理方法探讨  王照利、黄生、张敏中、马胜利  (国家林业局西北林业规划设计院,遥感计算中心,西安710048)  本文发表于<陕西林业科技>2005 N1 P27-29,55  摘要:  目前,多光谱、高空间分辨率的SPOT5卫星遥感数据被广泛应用到森林资源调查中。本文结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的处理和信息提取。探讨性地提出了适应于森林资源调查的SPOT5遥感数据处理方法。  关键词:SPOT5 遥感数据,森林资源调查、数据处理  DISCUSSION ON SPOT5 IMAGE DATA PROCESSING FOR FOREST INVENTORY  Wang Zhaoli, Huangsheng,Zhangminzhong,Ma Shengli  (Northwest Institute for Forest Inventory, Planning &Design, Xi’an China 710048)  Abstract: Now days, high spatial resolution and multispectral SPOT5 image data are widely applied in forest inventory in C Based on the characteristics of SPOT5 image and requirements of forest inventory, this paper discusses the processing procedures of ordering image data, ortho-rectification, image bands composition and image data The complete steps of image processing for forest inventory are   Key words: SPOT5 image data,forest inventory, data processing  前言  卫星遥感影像具有空间宏观性、视角广、多分辨率(光谱和空间)、多时相、周期性、信息量丰富等特点,所以卫星遥感影像既可以提供森林资源的宏观空间分布信息又能提供局部的详细信息以及随时间、空间变化的信息等[1]。目前在林业领域卫星遥感数据被广泛的应用于不同尺度层次的森林资源调查、资源监测、病虫害、火灾监测等方面。  2002年5月法国SPOT地球观测卫星系列之5号卫星(即SPOT5星)发射。SPOT5遥感数据的多光谱波段空间分辨率为10米(短波红外空间分辨率为20米),但全色波段空间分辨率达到5米。SPOT5遥感数据的高空间分辨率和多光谱分辨率为森林资源调查提供了丰富的、可靠的、高精度的基础数据源。从性价比分析,在其他高分辨率遥感数据目前比较昂贵的状况下,SPOT5遥感数据比较适宜应用于大面积的森林资源调查,可大幅度的森林调查的减少外业工作量、提高工作效率。在我国SPOT5卫星数据已被大量地应用于森林资源调查工作中,尤其,是在森林资源“二类”调查中被作基本的森林资源信息源提取各类信息。针对于将多光谱分辨率和高空间分辨率的SPOT5遥感数据应用于森林资源调查的数据处理技术和方法鲜有报道。本文总结工作实践,结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的订购、正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的基本处理方法。  1.SPOT5卫星遥感数据特点  SPOT卫星系统采用线性阵列传感器和推扫式扫描技术,具有旋转式平面镜可以进行倾斜观察获得倾斜图像和立体像对。采用与太阳同步的近极地的椭圆形轨道,轨道高度约832Km,轨道倾角7o ,每天绕地球14圈多,重复覆盖周期26天[2]。由于有倾斜观测功能,使重复覆盖周期减少到2-3天。SPOT5卫星载有2台高分辨率几何成像仪(HRG)、1台高分辨率立体成像装置(HRS)和1台宽视域植被探测仪(VGT)。高分辨率几何成像仪的波段选择是总结了多年的研究成果,认为HRG的波段设置(见表1)足以取得辨别作物和植被类型的最佳效果。本文主要探讨HRG高空间分辨率数据的处理。  2.SPOT5数据的处理方法和过程  SPOT5数据处理工作流程:  1 遥感数据的订购  订购数据时,用户需向数据代理商提供购买区域的四个角的大地坐标或者数据的景号(PATH/ROW)。特别应该注意数据订购时间和用户拿到数据之间有时间差,间隔时间长短因用户的要求、天气、卫星重复覆盖周期而异。相对于其他卫星数据,比较有利的一面是SPOT5卫星装置有旋转式平面镜可以进行倾斜观察,用户可向代理商申请红色编程提前得到调查区域的遥感数据,但要支付编程费。对于遥感数据的时相、云量、入射角、阴影量、是否购买高空间分辨率的全色波段等用户根据自己具体的工作需要向代理商提出限制要求。  根据我们对SPOT5遥感数据的使用,对于森林资源调查,北方9,10月份和11月初的遥感影像比较适宜。代理商向用户提供经过处理的不同级别的影像产品,在森林资源调查中建议购买SPOT1A级产品,用户可根据自己的工作需要进行处理,同时也可减少费用。  2 基础数据准备  大比例尺地形图和高精度DEM是进行SPOT5遥感数据高精度正射校正必需的基础地理数据。建议购买1:10000地形图和1:25000数字高程模型(DEM)。  将1:1万地形图扫描,扫描分辨率设置为300DPI。将扫描好的地形图进行几何精纠正,纠正精度控制在3毫米内。从测绘部门购买的1:1万地形图为北京54坐标系3度分带高斯克吕格投影,而1:5万DEM为北京54坐标系6度分带投影。在数据准备时,将校正好的1:1万地形图通过换带转换转成和DEM一致的6度分带投影。  对于没有1:1万地形图的地区,建议使用差分GPS接收机采集地面控制点。  3几何正射校正  正射校正过程应用了法国SPOT公司发行的GEOIMAGE软件。GEOIMAGE软件有针对SPOT5卫星数据开发的SPOT5物理模型。模型模块自动读取DEM信息。SPOT 物理模型可读取卫星在获取遥感数据的瞬间状态参数,这些参数存贮在数据的头文件中[3]。卫星状态参数包括:卫星成像瞬间的经纬度、高度、倾角等。卫星状态参数能够帮助提高几何校正的精度。  以校正好的1:1万地形图为基准,在影像图上找出和地形图上地物相匹配的明显地物作为地面控制点。在进行正射校正时,应先进行全色波段数据校正,然后以校正好的全色波段数据为基准进行多光谱数据校正。以全色波段数据为基准校正多光谱波段就比较容易校正,且能提高两者的匹配精度。地面控制点应分布均匀,影像的边缘部分布要有控制点分布,同时在不同的高程范围最好都有控制点。地面控制点的数量因地形地貌的复杂程度而定,根据我们的经验,一景60KmX60Km的SPOT5数据,一般地势平缓的地区20个左右控制点即可达到满意的结果,在高山区25个左右控制点就可使正射校正精度满足要求。重采样方法采用双线性内插法。  4 辐射校正  用户购买的SPOT5的各级数据,数据提供商已经根据卫星的记录参数对遥感数据做了辐射校正,即消除了传感器自身引起的、大气辐射引起的辐射噪声。若果影像存在薄雾或地形高差较大引起的辐射误差情况,用户应进一步进行辐射校正处理。薄雾的简单消除原理是基于近红外波段不受大气辐射影响,清澈的水体或死阴影区的数值应为零。从各波段数据中减去近红外波段的水体或阴影的不为零值。地形起伏引起的辐射误差校正公式: f (x,y)=g(x,y)/cosa,g(x,y)为坡度为a的倾斜面上的地物影像;f (x,y)为校正后的影像。由于坡度因子参与校正所以需要DEM支持。  5 波段组合  根据SPOT5数据波谱特征(表1),各波段分别记录反映了植被的不同特征方面:B4(SWIR)短波红外反映植物和土壤的含水量,利于植被水分状况和长势分析;B3(NIR)近红外波段对植被类别、密度、生长力、病虫害等的变化敏感;B2(RED)红光波段对植被的覆盖度、植被的生长状况敏感;B1(VIS)可见光波段对植物的叶绿素和叶绿素浓度敏感。经过比较分析和实际应用发现SPOT5的B3、B4、B2波段组合对植被类型的识别要优于B3、B2和B1的组合。但由于B4波段的空间分辨率为20米,使B342组合对植被空间几何细节表达没有B321组合清晰,例如林缘界线信息表达方面B321要优于B342。  6 影像数据融合  对于购买有高空间分辨率全色波段数据的用户,进行数据融合是必不可少的。影像数据融合能够综合不同波段、不同空间分辨率数据(层)的特征,融合后的数据具有更丰富、更可靠的信息[4]。 根据影像数据融合的水平阶段,影像融合分为:像元级、特征级和决策级三个层次。为了最大限度的从SPOT5遥感数据中提取森林植被信息,应进行像元级的数据融合,将5米的全色波段和10米多光谱数据进行融合。融合得到的新数据既具有全色波段数据的高空间分辨率特征又具有多光谱特征。  像元级数据融合的方法多种多样,根据数据融合的目的,即最大限度的突显森林植被信息,应选取B4、B3、B2和PAN波段,根据我们的试验Brovey 融合算法方法比较理想:  7遥感影像地图  将融合好的数据按Rfused、Gfused、Bfused组合,叠加上行政界线、公里格网、坐标、比例尺等辅助信息,按1:1万地形图分幅生成1:1万纸质图作为外业手图。   结果和讨论  1 几何精度  利用SPOT5物理模型,采用1:1万地形图和5万DEM ,经过正射校正处理,可使影像的几何精度控制在2个像元内(<10米),达到1:1万制图标准要求。为以遥感影像为基础信息源提取林分调查因子、区划林班界线生成大比例尺的林相图、森林分布图提供了几何精度保障。  2 波段选择  对于没有全色波段的情况,SPOT5数据的B342组合有利于森林植被类型的识别。在应用遥感技术进行森林资源调查区划中,林分类型信息提取是最为重要的环节,所以B342波段组合是小班区划和外业手图的最佳组合。  3 融合效果  融合数据技术使SPOT5遥感影像既具有全色波段的高空间分辨率又拥有多光谱数据的光谱分辨率,丰富了遥感影像的信息量。采用Brovey算法使SPOT5遥感影像从色彩、纹理等方面增强了影像的可判读性,提高了小班因子正判率和林分小班的区划精度。  参考文献  1.周成虎,杨晓梅,骆剑承等《遥感影像地学理解与分析》,科学出版社,北京,2001,3-  2.赵英时《遥感应用分析原理与方法》,科学出版社,北京,88-90  3.北京视宝卫星图像有限公司《专业制图工作室GEOIMAGE用户指南》,2004,68-  4.Christine P Geometric Aspects of Multisensor Image Fusion for Topographic Map Updating in The Humid Tropics, ITC Publication, 1996,51-  21世纪遥感与GIS的发展  来源: 李德仁 时间: 2005-08-11-23:09 浏览次数: 79  21世纪遥感与GIS的发展  李德仁  (武汉大学测绘遥感信息工程国家重点实验室,武汉市珞瑜路129号,430079)  摘要:在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测,并将所得到的数据和信息存储在计算机网络上,为人类社会的可持续发展服务。在短短的30年中,遥感和GIS作为一个边缘交叉学科已发展成为一门科学、技术和经济实体。本文深入地论述了21世纪中遥感的6大发展趋势和GIS的5个发展特征。  关键词:发展趋势;航空航天遥感;地理信息系统;对地观测  中图法分类号:P208;P9  随着计算机技术、空间技术和信息技术的发展,人类实现了从空中和太空来观测和感知人类赖以生存的地球的理想,并能将所感知到的结果通过计算机网络在全球流通,为人类的生存、繁荣和可持续发展服务。在20世纪后半叶,遥感和地理信息系统作为一门新兴的科学和技术,迅速地成长起来。  1 遥感技术的主要发展趋势  1 航空航天遥感传感器数据获取技术趋向三多(多平台、多传感器、多角度)和三高(高空间分辨率、高光谱分辨率和高时相分辨率)  从空中和太空观测地球获取影像是20世纪的重大成果之一,短短几十年,遥感数据获取手段迅猛发展。遥感平台有地球同步轨道卫星(35000km)、太阳同步卫星(600—1000km)、太空飞船(200—300km)、航天飞机(240—350km)、探空火箭(200—1000km),并且还有高、中、低空飞机、升空气球、无人飞机等;传感器有框幅式光学相机、缝隙、全景相机、光机扫描仪、光电扫描仪、CCD线阵、面阵扫描仪、微波散射计雷达测高仪、激光扫描仪和合成孔径雷达等,它们几乎覆盖了可透过大气窗口的所有电磁波段。三行CCD阵列可以同时得到3个角度的扫描成像,EOS Terra卫星上的MISR可同时从9个角度对地成像。  卫星遥感的空间分辨率从Ikonos Ⅱ的1m,进一步提高到Quckbird(快鸟)的62m,高光谱分辨率已达到5—6nm,500—600个波段。在轨的美国EO-1高光谱遥感卫星,具有220个波段,EOS AM-1(Terra)和EOS PM-1(Aqua)卫星上的MODIS具有36个波段的中等分辨率成像光谱仪。时间分辨率的提高主要依赖于小卫星技术的发展,通过发射地球同步轨道卫星和合理分布的小卫星星座,以及传感器的大角度倾斜,可以以1—3d的周期获得感兴趣地区的遥感影像。由于具有全天候、全天时的特点,以及用INSAR和D-INSAR,特别是双天线INSAR进行高精度三位地形及其变化测定的可能性,SAR雷达卫星为全世界各国所普遍关注。例如,美国宇航局的长远计划是要发射一系列太阳同步和地球同步的长波SAR,美国国防部则要发射一系列短波SAR,实现干涉重访问间隔为8d、3d和1d,空间分辨率分别为20m、5m和2m。我国在机载和星载SAR传感器及其应用研究方面正在形成体系。“十五”期间,我国将全方位地推进遥感数据获取的手段,形成自主的高分辨率资源卫星、雷达卫星、测图卫星和对环境与灾害进行实时监测的小卫星群。  2 航空航天遥感对地定位趋向于不依赖地面控制  确定影像目标的实地位置(三维坐标),解决影像目标在哪儿(Where)是摄影测量与遥感的主要任务之一。在已成功用于生产的全自动化GPS空中三角测量的基础上,利用DGPS和INS惯性导航系统的组合,可形成航空/航天影像传感器的位置与姿态的自动测量和稳定装置(POS),从而可实现定点摄影成像和无地面控制的高精度对地直接定位。在航空摄影条件下的精度可达到dm级,在卫星遥感的条件下,其精度可达到m级。该技术的推广应用,将改变目前摄影测量和遥感的作业流程,从而实现实时测图和实时数据库更新。若与高精度激光扫描仪集成,可实现实时三维测量(LIDAR),自动生成数字表面模型(DSM),并可推算出数字高程模型(DEM)。  美国NASA在1994年和1997年两次将航天激光测高仪(SLA)安装在航天飞机上,企图建立基于SLA的全球控制点数据库,激光点大小为100m,间隔为750m,每秒10个脉冲;随后又提出了地学激光测高系统(GLAS)计划,已于2002年12月19日将该卫星IICESat(cloud and land elevation satellite)发射上天。该卫星装有激光测距系统、GPS接收机和恒星跟踪姿态测定系统。GLAS发射近红外光(1064nm)和可见绿光(532nm)的短脉冲(4ns)。激光脉冲频率为40次/s,激光点大小实地为70m,间隔为170m,其高程精度要明显高于SRTM,可望达到m级。他们的下一步计划是要在2015年之前使星载LIDAR的激光测高精度达到dm和cm级。  法国利用设在全球的54个站点向卫星发射信号,通过测定多普勒频移,以精确解求卫星的空间坐标,具有极高的精度。测定距地球1300km的Topex/Poseidon卫星的高度,精度达到±3cm。用来测定SPOT 4卫星的轨道,3个坐标方向达到±5cm精度,对于SPOT 5和Envisat,可望达到±1m精度。若忽略SPOT 5传感器的角元素,直接进行无地面控制的正射像片制作,精度可达到±15m,完全可以满足国家安全和西部开发的需求。  3 摄影测量与遥感数据的计算机处理更趋向自动化和智能化  从影像数据中自动提取地物目标,解决它的属性和语义(What)是摄影测量与遥感的另一大任务。在已取得影像匹配成果的基础上,影像目标的自动识别技术主要集中在影像融合技术,基于统计和基于结构的目标识别与分类,处理的对象既包括高分辨率影像,也更加注重高光谱影像。随着遥感数据量的增大,数据融合和信息融合技术逐渐成熟。压缩倍率高、速度快的影像数据压缩方法也已商业化。我国学者在这些方面取得了不少可喜的成果。  4 利用多时像影像数据自动发现地表覆盖的变化趋向实时化  利用遥感影像自动进行变化监测(What change)关系到我国的经济建设和国防建设。过去人工方法投入大,周期长。随着各类空间数据库的建立和大量新的影像数据源的出现,实时自动化监测已成为研究的一个热点。  自动变化监测研究包括利用新旧影像(DOM)的对比、新影像与旧数字地图(DLS)的对比来自动发现变化和更新数据库。目前的变化监测是先将新影像与旧影像(或数字地图)进行配准,然后再提取变化目标,这在精度、速度与自动化处理方面都有不足之处。笔者提出了把配准与变化监测同步的整体处理[1]。最理想的方法是将影像目标三维重建与变化监测一起进行,实现三维变化监测和自动更新。进一步的发展则是利用智能传感器,将数据处理在轨完成,发送回来的直接为信息,而不一定为影像数据。  5 摄影测量与遥感在构建“数字地球”、“数字中国”、“数字省市”和“数字文化遗产”中正在发挥愈来愈大的作用  “数字地球”概念是在全球信息化浪潮推进下形成的。1999年12月在北京成功地召开了第一届国际“数字地球”大会后,我国正积极推进“数字中国”和“数字省市”的建设,2001年国家测绘局完成了构建“数字中国”地理空间基础框架的总体战略研究。在已完成1∶100万和1∶25万全国空间数据库的基础上,2001年全国各省市测绘局开始1∶5万空间数据库的建库工作。在这个数据量达11TB的巨型数据库中,摄影测量与遥感将用来建设DOM(数字正射影像)、DEM(数字高程模型)、DLG(数字线划图)和CP(控制点数据库)。如果要建立全国1m分辨率影像数据库,其数据量将达到60TB。如果整个“数字地球”均达到1m分辨率,其数据量之大可想而知。本世纪内可望建成这一分辨率的数字地球。  “数字文化遗产”是目前联合国和许多国家关心的一个问题,涉及到近景成像、计算机视觉和虚拟现实技术。在近景成像和近景三位量测方面,有室内各种三维激光扫描与成像仪器,还可以直接由视频摄像机的系列图像获取目标场三维重建信息。它们所获取的数据经过计算机自动处理后,可以在虚拟现实技术支持下形成文化遗迹的三维仿真,而且可以按照时间序列,将历史文化在时间隧道中再现,对文化遗产保护、复原与研究具有重要意义。  6 全定量化遥感方法将走向实用  从遥感科学的本质讲,通过对地球表层(包括岩石圈、水圈、大气圈和生物圈4大圈层)的遥感,其目的是为了获得有关地物目标的几何与物理特性,所以需要通过全定量化遥感方法进行反演。几何方程式是有显式表示的数学方程,而物理方程一直是隐式。目前的遥感解译与目标识别并没有通过物理方程反演,而是采用了基于灰度或加上一定知识的统计、结构和纹理的影像分析方法。但随着对成像机理、地物波谱反射特征、大气模型、气溶胶的研究深入和数据积累,多角度、多传感器、高光谱及雷达卫星遥感技术的成熟,相信在21世纪,估计几何与物理方程式的全定量化遥感方法将逐步由理论研究走向实用化,遥感基础理论研究将迈上新的台阶。只有实现了遥感定量化,才可能真正实现自动化和实时化。  2 GIS技术的主要发展趋势  1 空间数据库趋向图形、影像和DEM三库一体化和面向对象[2]  GIS发展曾经历过栅格、矢量两个不同数据结构发展阶段,目前随着高分辨率卫星遥感数据的飞快增长和数字地球、数码城市的需求,形成了面向对象的数据模型和三库(图形矢量库、影像栅格库和DEM格网库)一体化的数据结构。这样的数据库结构使GIS的发展更加趋向自然化、逼真化,更加贴近用户。以面向应用的GIS软件为前台,以大型关系数据库(Oracle 8i,9i等)为后台数据库管理,成为当前GIS技术的主流趋势。  2 空间数据表达趋向多比例尺、多尺度、动态多位和实时三维可视化  在传统的GIS中,空间数据是以二维形式存储并挂接相应的属性数据。目前,空间数据表达的趋势是基于金字塔和LOD(level of detail)技术的多比例尺空间数据库,在不同尺度表示时可自动显示出相应比例尺或相应分辨率的数据,多比例尺数据集的跨度要比传统地图的比例尺大,在显示不同比例尺数据时,可采用LOD或地图综合技术。真三维GIS的空间数据要存储三维坐标。动态GIS在土地变更调查、土地覆盖变化监测中已有较好的应用,真四维的时空GIS将有望从理论研究转入实用阶段。基于三库一体化的时空3D可视化技术发展势头迅猛,已能再PC机上实现GIS环境下的三维建筑物室外室内漫游、信息查询、空间分析、剖面分析和阴影分析等,基于虚拟现实技术的真三维GIS将使人们在现实空间外,可以同时拥有一个Cyber空间。  3 空间分析和辅助决策智能化需要利用数据挖掘方法从空间数据库和属性数据库中发现更多的有用知识  GIS是以应用导向的空间信息技术,空间分析与辅助决策支持是GIS的高水平应用,它需要基于知识的智能系统。知识的获取是专家系统中最困难的任务。随着各种类型数据库的建立,从数据库中挖掘知识成为当今计算机界一个非常引人注目的课题。从GIS空间数据库中发现的知识可以有效的支持遥感图像解译,以解决“同物异谱”和“同谱异物”的问题。反过来,从属性数据库中挖掘的知识又具有优化资源配置等一些列空间分析的功能[3]。尽管数据挖掘和知识发现这一命题仍处于理论研究阶段,但随着数据库的快速增大和对数据挖掘工具的深入研究,其应用前景是不可估量的。  4 通过Web服务器和WAP服务器的互联网和移动GIS将推进联邦数据库和互操作的研究及地学信息服务事业  随着计算机通讯网络(包括有线和无线网)的大容量和高速化,GIS已成为在网络上的分布式异构系统。许多不同单位、不同组织维护管理的既独立又互联互用的联邦数据库,将可提供全社会各行各业的应用需要。因此,联邦数据库和互操作(federal databases & interoperability)问题成为当前国际GIS联合研究的一个热点。互操作意味着数据库中数据的直接共享,GIS规律功能模块的互操作与共享,以及多点之间的相同工作,这方面的研究已显示出明显的成效。未来的GIS用户将可能在网络上缴纳为其需要所选用数据和软件功能模块的使用费,而不必购买这个数据库和整套的GIS软硬件,这些成果产生的直接效果是GIS应用将走向地学信息服务。  目前已兴起的LBS和MLS,即基于位置的服务和移动定位服务,突出地反映了这种变化趋势。它引起的革命性变化使GIS将走出研究院所和政府机关,成为全社会人人具备的信息服务工具。我国目前已有2亿个手机用户,若每人每月为MLS支付10元费用,全国一年的产值将达到240亿。可以预测在不久的将来,地学信息将能随时随地为任何人和任何事情进行4A服务(geo-in-formation for anyone and anything at anywhere and anytime)。  5 地理信息科学的研究有望在本世纪形成较完整的理论框架体系  笔者曾扼要地叙述了地球空间信息科学的7大理论问题[4]:(1)地球空间信息的基准,包括几何基准、物理基准和时间基准;(2)地球空间信息标准,包括空间数据采集、存储与交换标准、空间数据精度与质量标准、空间信息的分类与代码标准、空间信息的安全

森林资源调查中SPOT5遥感图像处理方法探讨王照利、黄生、张敏中、马胜利(国家林业局西北林业规划设计院,遥感计算中心,西安710048)本文发表于<陕西林业科技>2005 N1 P27-29,55 摘要: 目前,多光谱、高空间分辨率的SPOT5卫星遥感数据被广泛应用到森林资源调查中。本文结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的处理和信息提取。探讨性地提出了适应于森林资源调查的SPOT5遥感数据处理方法。 关键词:SPOT5 遥感数据,森林资源调查、数据处理DISCUSSION ON SPOT5 IMAGE DATA PROCESSING FOR FOREST INVENTORYWang Zhaoli, Huangsheng,Zhangminzhong,Ma Shengli(Northwest Institute for Forest Inventory, Planning &Design, Xi’an China 710048) Abstract: Now days, high spatial resolution and multispectral SPOT5 image data are widely applied in forest inventory in C Based on the characteristics of SPOT5 image and requirements of forest inventory, this paper discusses the processing procedures of ordering image data, ortho-rectification, image bands composition and image data The complete steps of image processing for forest inventory are Key words: SPOT5 image data,forest inventory, data processing 前言 卫星遥感影像具有空间宏观性、视角广、多分辨率(光谱和空间)、多时相、周期性、信息量丰富等特点,所以卫星遥感影像既可以提供森林资源的宏观空间分布信息又能提供局部的详细信息以及随时间、空间变化的信息等[1]。目前在林业领域卫星遥感数据被广泛的应用于不同尺度层次的森林资源调查、资源监测、病虫害、火灾监测等方面。2002年5月法国SPOT地球观测卫星系列之5号卫星(即SPOT5星)发射。SPOT5遥感数据的多光谱波段空间分辨率为10米(短波红外空间分辨率为20米),但全色波段空间分辨率达到5米。SPOT5遥感数据的高空间分辨率和多光谱分辨率为森林资源调查提供了丰富的、可靠的、高精度的基础数据源。从性价比分析,在其他高分辨率遥感数据目前比较昂贵的状况下,SPOT5遥感数据比较适宜应用于大面积的森林资源调查,可大幅度的森林调查的减少外业工作量、提高工作效率。在我国SPOT5卫星数据已被大量地应用于森林资源调查工作中,尤其,是在森林资源“二类”调查中被作基本的森林资源信息源提取各类信息。针对于将多光谱分辨率和高空间分辨率的SPOT5遥感数据应用于森林资源调查的数据处理技术和方法鲜有报道。本文总结工作实践,结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的订购、正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的基本处理方法。 1.SPOT5卫星遥感数据特点 SPOT卫星系统采用线性阵列传感器和推扫式扫描技术,具有旋转式平面镜可以进行倾斜观察获得倾斜图像和立体像对。采用与太阳同步的近极地的椭圆形轨道,轨道高度约832Km,轨道倾角7o ,每天绕地球14圈多,重复覆盖周期26天[2]。由于有倾斜观测功能,使重复覆盖周期减少到2-3天。SPOT5卫星载有2台高分辨率几何成像仪(HRG)、1台高分辨率立体成像装置(HRS)和1台宽视域植被探测仪(VGT)。高分辨率几何成像仪的波段选择是总结了多年的研究成果,认为HRG的波段设置(见表1)足以取得辨别作物和植被类型的最佳效果。本文主要探讨HRG高空间分辨率数据的处理。 2.SPOT5数据的处理方法和过程 SPOT5数据处理工作流程: 1 遥感数据的订购 订购数据时,用户需向数据代理商提供购买区域的四个角的大地坐标或者数据的景号(PATH/ROW)。特别应该注意数据订购时间和用户拿到数据之间有时间差,间隔时间长短因用户的要求、天气、卫星重复覆盖周期而异。相对于其他卫星数据,比较有利的一面是SPOT5卫星装置有旋转式平面镜可以进行倾斜观察,用户可向代理商申请红色编程提前得到调查区域的遥感数据,但要支付编程费。对于遥感数据的时相、云量、入射角、阴影量、是否购买高空间分辨率的全色波段等用户根据自己具体的工作需要向代理商提出限制要求。 根据我们对SPOT5遥感数据的使用,对于森林资源调查,北方9,10月份和11月初的遥感影像比较适宜。代理商向用户提供经过处理的不同级别的影像产品,在森林资源调查中建议购买SPOT1A级产品,用户可根据自己的工作需要进行处理,同时也可减少费用。 2 基础数据准备 大比例尺地形图和高精度DEM是进行SPOT5遥感数据高精度正射校正必需的基础地理数据。建议购买1:10000地形图和1:25000数字高程模型(DEM)。 将1:1万地形图扫描,扫描分辨率设置为300DPI。将扫描好的地形图进行几何精纠正,纠正精度控制在3毫米内。从测绘部门购买的1:1万地形图为北京54坐标系3度分带高斯克吕格投影,而1:5万DEM为北京54坐标系6度分带投影。在数据准备时,将校正好的1:1万地形图通过换带转换转成和DEM一致的6度分带投影。 对于没有1:1万地形图的地区,建议使用差分GPS接收机采集地面控制点。 3几何正射校正 正射校正过程应用了法国SPOT公司发行的GEOIMAGE软件。GEOIMAGE软件有针对SPOT5卫星数据开发的SPOT5物理模型。模型模块自动读取DEM信息。SPOT 物理模型可读取卫星在获取遥感数据的瞬间状态参数,这些参数存贮在数据的头文件中[3]。卫星状态参数包括:卫星成像瞬间的经纬度、高度、倾角等。卫星状态参数能够帮助提高几何校正的精度。 以校正好的1:1万地形图为基准,在影像图上找出和地形图上地物相匹配的明显地物作为地面控制点。在进行正射校正时,应先进行全色波段数据校正,然后以校正好的全色波段数据为基准进行多光谱数据校正。以全色波段数据为基准校正多光谱波段就比较容易校正,且能提高两者的匹配精度。地面控制点应分布均匀,影像的边缘部分布要有控制点分布,同时在不同的高程范围最好都有控制点。地面控制点的数量因地形地貌的复杂程度而定,根据我们的经验,一景60KmX60Km的SPOT5数据,一般地势平缓的地区20个左右控制点即可达到满意的结果,在高山区25个左右控制点就可使正射校正精度满足要求。重采样方法采用双线性内插法。 4 辐射校正 用户购买的SPOT5的各级数据,数据提供商已经根据卫星的记录参数对遥感数据做了辐射校正,即消除了传感器自身引起的、大气辐射引起的辐射噪声。若果影像存在薄雾或地形高差较大引起的辐射误差情况,用户应进一步进行辐射校正处理。薄雾的简单消除原理是基于近红外波段不受大气辐射影响,清澈的水体或死阴影区的数值应为零。从各波段数据中减去近红外波段的水体或阴影的不为零值。地形起伏引起的辐射误差校正公式: f (x,y)=g(x,y)/cosa,g(x,y)为坡度为a的倾斜面上的地物影像;f (x,y)为校正后的影像。由于坡度因子参与校正所以需要DEM支持。 5 波段组合 根据SPOT5数据波谱特征(表1),各波段分别记录反映了植被的不同特征方面:B4(SWIR)短波红外反映植物和土壤的含水量,利于植被水分状况和长势分析;B3(NIR)近红外波段对植被类别、密度、生长力、病虫害等的变化敏感;B2(RED)红光波段对植被的覆盖度、植被的生长状况敏感;B1(VIS)可见光波段对植物的叶绿素和叶绿素浓度敏感。经过比较分析和实际应用发现SPOT5的B3、B4、B2波段组合对植被类型的识别要优于B3、B2和B1的组合。但由于B4波段的空间分辨率为20米,使B342组合对植被空间几何细节表达没有B321组合清晰,例如林缘界线信息表达方面B321要优于B342。 6 影像数据融合 对于购买有高空间分辨率全色波段数据的用户,进行数据融合是必不可少的。影像数据融合能够综合不同波段、不同空间分辨率数据(层)的特征,融合后的数据具有更丰富、更可靠的信息[4]。 根据影像数据融合的水平阶段,影像融合分为:像元级、特征级和决策级三个层次。为了最大限度的从SPOT5遥感数据中提取森林植被信息,应进行像元级的数据融合,将5米的全色波段和10米多光谱数据进行融合。融合得到的新数据既具有全色波段数据的高空间分辨率特征又具有多光谱特征。像元级数据融合的方法多种多样,根据数据融合的目的,即最大限度的突显森林植被信息,应选取B4、B3、B2和PAN波段,根据我们的试验Brovey 融合算法方法比较理想: 7遥感影像地图 将融合好的数据按Rfused、Gfused、Bfused组合,叠加上行政界线、公里格网、坐标、比例尺等辅助信息,按1:1万地形图分幅生成1:1万纸质图作为外业手图。 结果和讨论 1 几何精度 利用SPOT5物理模型,采用1:1万地形图和5万DEM ,经过正射校正处理,可使影像的几何精度控制在2个像元内(<10米),达到1:1万制图标准要求。为以遥感影像为基础信息源提取林分调查因子、区划林班界线生成大比例尺的林相图、森林分布图提供了几何精度保障。 2 波段选择 对于没有全色波段的情况,SPOT5数据的B342组合有利于森林植被类型的识别。在应用遥感技术进行森林资源调查区划中,林分类型信息提取是最为重要的环节,所以B342波段组合是小班区划和外业手图的最佳组合。 3 融合效果 融合数据技术使SPOT5遥感影像既具有全色波段的高空间分辨率又拥有多光谱数据的光谱分辨率,丰富了遥感影像的信息量。采用Brovey算法使SPOT5遥感影像从色彩、纹理等方面增强了影像的可判读性,提高了小班因子正判率和林分小班的区划精度。 参考文献 1.周成虎,杨晓梅,骆剑承等《遥感影像地学理解与分析》,科学出版社,北京,2001,3- 2.赵英时《遥感应用分析原理与方法》,科学出版社,北京,88-90 3.北京视宝卫星图像有限公司《专业制图工作室GEOIMAGE用户指南》,2004,68- 4.Christine P Geometric Aspects of Multisensor Image Fusion for Topographic Map Updating in The Humid Tropics, ITC Publication, 1996,51-21世纪遥感与GIS的发展 来源: 李德仁 时间: 2005-08-11-23:09 浏览次数: 79 21世纪遥感与GIS的发展李德仁 (武汉大学测绘遥感信息工程国家重点实验室,武汉市珞瑜路129号,430079) 摘要:在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测,并将所得到的数据和信息存储在计算机网络上,为人类社会的可持续发展服务。在短短的30年中,遥感和GIS作为一个边缘交叉学科已发展成为一门科学、技术和经济实体。本文深入地论述了21世纪中遥感的6大发展趋势和GIS的5个发展特征。 关键词:发展趋势;航空航天遥感;地理信息系统;对地观测 中图法分类号:P208;P9 随着计算机技术、空间技术和信息技术的发展,人类实现了从空中和太空来观测和感知人类赖以生存的地球的理想,并能将所感知到的结果通过计算机网络在全球流通,为人类的生存、繁荣和可持续发展服务。在20世纪后半叶,遥感和地理信息系统作为一门新兴的科学和技术,迅速地成长起来。 1 遥感技术的主要发展趋势 1 航空航天遥感传感器数据获取技术趋向三多(多平台、多传感器、多角度)和三高(高空间分辨率、高光谱分辨率和高时相分辨率) 从空中和太空观测地球获取影像是20世纪的重大成果之一,短短几十年,遥感数据获取手段迅猛发展。遥感平台有地球同步轨道卫星(35000km)、太阳同步卫星(600—1000km)、太空飞船(200—300km)、航天飞机(240—350km)、探空火箭(200—1000km),并且还有高、中、低空飞机、升空气球、无人飞机等;传感器有框幅式光学相机、缝隙、全景相机、光机扫描仪、光电扫描仪、CCD线阵、面阵扫描仪、微波散射计雷达测高仪、激光扫描仪和合成孔径雷达等,它们几乎覆盖了可透过大气窗口的所有电磁波段。三行CCD阵列可以同时得到3个角度的扫描成像,EOS Terra卫星上的MISR可同时从9个角度对地成像。 卫星遥感的空间分辨率从Ikonos Ⅱ的1m,进一步提高到Quckbird(快鸟)的62m,高光谱分辨率已达到5—6nm,500—600个波段。在轨的美国EO-1高光谱遥感卫星,具有220个波段,EOS AM-1(Terra)和EOS PM-1(Aqua)卫星上的MODIS具有36个波段的中等分辨率成像光谱仪。时间分辨率的提高主要依赖于小卫星技术的发展,通过发射地球同步轨道卫星和合理分布的小卫星星座,以及传感器的大角度倾斜,可以以1—3d的周期获得感兴趣地区的遥感影像。由于具有全天候、全天时的特点,以及用INSAR和D-INSAR,特别是双天线INSAR进行高精度三位地形及其变化测定的可能性,SAR雷达卫星为全世界各国所普遍关注。例如,美国宇航局的长远计划是要发射一系列太阳同步和地球同步的长波SAR,美国国防部则要发射一系列短波SAR,实现干涉重访问间隔为8d、3d和1d,空间分辨率分别为20m、5m和2m。我国在机载和星载SAR传感器及其应用研究方面正在形成体系。“十五”期间,我国将全方位地推进遥感数据获取的手段,形成自主的高分辨率资源卫星、雷达卫星、测图卫星和对环境与灾害进行实时监测的小卫星群。 2 航空航天遥感对地定位趋向于不依赖地面控制 确定影像目标的实地位置(三维坐标),解决影像目标在哪儿(Where)是摄影测量与遥感的主要任务之一。在已成功用于生产的全自动化GPS空中三角测量的基础上,利用DGPS和INS惯性导航系统的组合,可形成航空/航天影像传感器的位置与姿态的自动测量和稳定装置(POS),从而可实现定点摄影成像和无地面控制的高精度对地直接定位。在航空摄影条件下的精度可达到dm级,在卫星遥感的条件下,其精度可达到m级。该技术的推广应用,将改变目前摄影测量和遥感的作业流程,从而实现实时测图和实时数据库更新。若与高精度激光扫描仪集成,可实现实时三维测量(LIDAR),自动生成数字表面模型(DSM),并可推算出数字高程模型(DEM)。 美国NASA在1994年和1997年两次将航天激光测高仪(SLA)安装在航天飞机上,企图建立基于SLA的全球控制点数据库,激光点大小为100m,间隔为750m,每秒10个脉冲;随后又提出了地学激光测高系统(GLAS)计划,已于2002年12月19日将该卫星IICESat(cloud and land elevation satellite)发射上天。该卫星装有激光测距系统、GPS接收机和恒星跟踪姿态测定系统。GLAS发射近红外光(1064nm)和可见绿光(532nm)的短脉冲(4ns)。激光脉冲频率为40次/s,激光点大小实地为70m,间隔为170m,其高程精度要明显高于SRTM,可望达到m级。他们的下一步计划是要在2015年之前使星载LIDAR的激光测高精度达到dm和cm级。 法国利用设在全球的54个站点向卫星发射信号,通过测定多普勒频移,以精确解求卫星的空间坐标,具有极高的精度。测定距地球1300km的Topex/Poseidon卫星的高度,精度达到±3cm。用来测定SPOT 4卫星的轨道,3个坐标方向达到±5cm精度,对于SPOT 5和Envisat,可望达到±1m精度。若忽略SPOT 5传感器的角元素,直接进行无地面控制的正射像片制作,精度可达到±15m,完全可以满足国家安全和西部开发的需求。 3 摄影测量与遥感数据的计算机处理更趋向自动化和智能化 从影像数据中自动提取地物目标,解决它的属性和语义(What)是摄影测量与遥感的另一大任务。在已取得影像匹配成果的基础上,影像目标的自动识别技术主要集中在影像融合技术,基于统计和基于结构的目标识别与分类,处理的对象既包括高分辨率影像,也更加注重高光谱影像。随着遥感数据量的增大,数据融合和信息融合技术逐渐成熟。压缩倍率高、速度快的影像数据压缩方法也已商业化。我国学者在这些方面取得了不少可喜的成果。 4 利用多时像影像数据自动发现地表覆盖的变化趋向实时化 利用遥感影像自动进行变化监测(What change)关系到我国的经济建设和国防建设。过去人工方法投入大,周期长。随着各类空间数据库的建立和大量新的影像数据源的出现,实时自动化监测已成为研究的一个热点。 自动变化监测研究包括利用新旧影像(DOM)的对比、新影像与旧数字地图(DLS)的对比来自动发现变化和更新数据库。目前的变化监测是先将新影像与旧影像(或数字地图)进行配准,然后再提取变化目标,这在精度、速度与自动化处理方面都有不足之处。笔者提出了把配准与变化监测同步的整体处理[1]。最理想的方法是将影像目标三维重建与变化监测一起进行,实现三维变化监测和自动更新。进一步的发展则是利用智能传感器,将数据处理在轨完成,发送回来的直接为信息,而不一定为影像数据。 5 摄影测量与遥感在构建“数字地球”、“数字中国”、“数字省市”和“数字文化遗产”中正在发挥愈来愈大的作用 “数字地球”概念是在全球信息化浪潮推进下形成的。1999年12月在北京成功地召开了第一届国际“数字地球”大会后,我国正积极推进“数字中国”和“数字省市”的建设,2001年国家测绘局完成了构建“数字中国”地理空间基础框架的总体战略研究。在已完成1∶100万和1∶25万全国空间数据库的基础上,2001年全国各省市测绘局开始1∶5万空间数据库的建库工作。在这个数据量达11TB的巨型数据库中,摄影测量与遥感将用来建设DOM(数字正射影像)、DEM(数字高程模型)、DLG(数字线划图)和CP(控制点数据库)。如果要建立全国1m分辨率影像数据库,其数据量将达到60TB。如果整个“数字地球”均达到1m分辨率,其数据量之大可想而知。本世纪内可望建成这一分辨率的数字地球。 “数字文化遗产”是目前联合国和许多国家关心的一个问题,涉及到近景成像、计算机视觉和虚拟现实技术。在近景成像和近景三位量测方面,有室内各种三维激光扫描与成像仪器,还可以直接由视频摄像机的系列图像获取目标场三维重建信息。它们所获取的数据经过计算机自动处理后,可以在虚拟现实技术支持下形成文化遗迹的三维仿真,而且可以按照时间序列,将历史文化在时间隧道中再现,对文化遗产保护、复原与研究具有重要意义。 6 全定量化遥感方法将走向实用 从遥感科学的本质讲,通过对地球表层(包括岩石圈、水圈、大气圈和生物圈4大圈层)的遥感,其目的是为了获得有关地物目标的几何与物理特性,所以需要通过全定量化遥感方法进行反演。几何方程式是有显式表示的数学方程,而物理方程一直是隐式。目前的遥感解译与目标识别并没有通过物理方程反演,而是采用了基于灰度或加上一定知识的统计、结构和纹理的影像分析方法。但随着对成像机理、地物波谱反射特征、大气模型、气溶胶的研究深入和数据积累,多角度、多传感器、高光谱及雷达卫星遥感技术的成熟,相信在21世纪,估计几何与物理方程式的全定量化遥感方法将逐步由理论研究走向实用化,遥感基础理论研究将迈上新的台阶。只有实现了遥感定量化,才可能真正实现自动化和实时化。 2 GIS技术的主要发展趋势 1 空间数据库趋向图形、影像和DEM三库一体化和面向对象[2] GIS发展曾经历过栅格、矢量两个不同数据结构发展阶段,目前随着高分辨率卫星遥感数据的飞快增长和数字地球、数码城市的需求,形成了面向对象的数据模型和三库(图形矢量库、影像栅格库和DEM格网库)一体化的数据结构。这样的数据库结构使GIS的发展更加趋向自然化、逼真化,更加贴近用户。以面向应用的GIS软件为前台,以大型关系数据库(Oracle 8i,9i等)为后台数据库管理,成为当前GIS技术的主流趋势。 2 空间数据表达趋向多比例尺、多尺度、动态多位和实时三维可视化 在传统的GIS中,空间数据是以二维形式存储并挂接相应的属性数据。目前,空间数据表达的趋势是基于金字塔和LOD(level of detail)技术的多比例尺空间数据库,在不同尺度表示时可自动显示出相应比例尺或相应分辨率的数据,多比例尺数据集的跨度要比传统地图的比例尺大,在显示不同比例尺数据时,可采用LOD或地图综合技术。真三维GIS的空间数据要存储三维坐标。动态GIS在土地变更调查、土地覆盖变化监测中已有较好的应用,真四维的时空GIS将有望从理论研究转入实用阶段。基于三库一体化的时空3D可视化技术发展势头迅猛,已能再PC机上实现GIS环境下的三维建筑物室外室内漫游、信息查询、空间分析、剖面分析和阴影分析等,基于虚拟现实技术的真三维GIS将使人们在现实空间外,可以同时拥有一个Cyber空间。 3 空间分析和辅助决策智能化需要利用数据挖掘方法从空间数据库和属性数据库中发现更多的有用知识 GIS是以应用导向的空间信息技术,空间分析与辅助决策支持是GIS的高水平应用,它需要基于知识的智能系统。知识的获取是专家系统中最困难的任务。随着各种类型数据库的建立,从数据库中挖掘知识成为当今计算机界一个非常引人注目的课题。从GIS空间数据库中发现的知识可以有效的支持遥感图像解译,以解决“同物异谱”和“同谱异物”的问题。反过来,从属性数据库中挖掘的知识又具有优化资源配置等一些列空间分析的功能[3]。尽管数据挖掘和知识发现这一命题仍处于理论研究阶段,但随着数据库的快速增大和对数据挖掘工具的深入研究,其应用前景是不可估量的。 4 通过Web服务器和WAP服务器的互联网和移动GIS将推进联邦数据库和互操作的研究及地学信息服务事业 随着计算机通讯网络(包括有线和无线网)的大容量和高速化,GIS已成为在网络上的分布式异构系统。许多不同单位、不同组织维护管理的既独立又互联互用的联邦数据库,将可提供全社会各行各业的应用需要。因此,联邦数据库和互操作(federal databases & interoperability)问题成为当前国际GIS联合研究的一个热点。互操作意味着数据库中数据的直接共享,GIS规律功能模块的互操作与共享,以及多点之间的相同工作,这方面的研究已显示出明显的成效。未来的GIS用户将可能在网络上缴纳为其需要所选用数据和软件功能模块的使用费,而不必购买这个数据库和整套的GIS软硬件,这些成果产生的直接效果是GIS应用将走向地学信息服务。 目前已兴起的LBS和MLS,即基于位置的服务和移动定位服务,突出地反映了这种变化趋势。它引起的革命性变化使GIS将走出研究院所和政府机关,成为全社会人人具备的信息服务工具。我国目前已有2亿个手机用户,若每人每月为MLS支付10元费用,全国一年的产值将达到240亿。可以预测在不久的将来,地学信息将能随时随地为任何人和任何事情进行4A服务(geo-in-formation for anyone and anything at anywhere and anytime)。 5 地理信息科学的研究有望在本世纪形成较完整的理论框架体系 笔者曾扼要地叙述了地球空间信息科学的7大理论问题[4]:(1)地球空间信息的基准,包括几何基准、物理基准和时间基准;(2)地球空间信息标准,包括空间数据采集、存储与交换标准、空间数据精度与质量标准、空间信息的分类与代码标准、空间信息的安全

遥感在环境监测中的应用 1 水环境污染监测 水体的遥感监测主要是以污染水与清洁水的反射光谱特征研究作为基础的。总的看来,清洁水体反射率比较低,水体对光有较强的吸收性能,而较强的分子散射性仅存在于光谱区较短的谱段上。故在一般遥感影像上,水体表现为暗色色调,在红外谱段上尤其明显。为了进行水质监测,可以采用以水体光谱特性和水色为指标的遥感技术。海洋石油污染和向海洋倾倒废弃物是海洋环境恶化的重要原因。全世界每年排入海洋的石油及其制品多达 1000多万吨,这对海洋生态所造成的灾害性影响是无法估量的。人海河流把沿岸农田的化学肥料、城市中的生活废水和工业污水不断排人海洋,使海洋污染范围不断扩展,生态环境恶化,环境质量下降。应用遥感卫星,特别是海洋遥感卫星,可以在大范围内对石油污染和化学污染进行搜索,还可以估算出污染的范围及其扩散情况,从而为海洋环保部门提供了必需的数据和资料。2 大气污染监测 大气遥感监测主要利用气象卫星定期地监控大气温度和水蒸汽垂直分布。影响大气环境质量的主要因素是气溶胶含量和各种有害气体,而这些物理量通常不可能用遥感手段直接识别。水汽、二氧化碳、臭氧、甲烷等微量气体成分具有各 自分子所固有的辐射和吸收光谱,所以,实际上是通过测量大气的散射、吸收及辐射的光谱而从其结果中反演推算出来的。通过对穿过大气层的太阳(月亮、星星)的直射光,来 自大气和云的散射光,来 自地表的反射光,以及来 自大气和地表的热辐射进行吸收光谱分析或发射光谱分析,从而测量它们的光谱特性来求出大气气体分子的密度。通过遥感图像可以直接分析出大气气溶胶的分布和含量,而有害气体通常不能在遥感图像上直接显示出来,只能利用间接解译标志——植物对有害气体的敏感性来推断大气污染的程度和性质。3 地面污染及土地利用发展监测 地面污染也是利用间接解译,通过污染区作物的生长所起的特殊变化,与正常生长区的作物有不同的光谱表现来确定。通过定期地监测地面的作业就能查清土地利用形式的变化,以便管理资源。人工建筑物特别容易测定,这是由于它们的高反射率和形状的规则性所致。因此通过遥感图像,在城市规划中可以可靠地跟踪都市扩大的规模和速度,还能查清像隔热不佳的建筑物的热损失这类特殊问题。最后遥感还可以被用来监视森林砍伐,估计牧场开垦的规模和速度。

相关百科
热门百科
首页
发表服务