期刊投稿百科

关于发酵的论文3000字免费下载

发布时间:2024-07-07 17:59:18

关于发酵的论文3000字免费下载

发酵工程的前景 2007-08-14 10:36:17 本文已公布到博客频道校园·教育分类 关于发酵工程的个人观点:1 该学科前途无量,需要发展:发酵工程作为最早从事微生物学的研究领域,在过去的3个世纪中为人类的生活、生存、社会的发展作出了重大的贡献。但这些都是过去的成就。发酵工程与现在的生物工程(基因工程)相比,是处于劣势,因为其是个老学科,在很多人看来,其没有什么大的学问,通过一些操作过程的控制和菌种的筛选难以达到基因工程那样迅捷的效果。但目前发酵工程不断在发展自己,不断整合其他学科的优点来发展自己:1 上游方面:在菌种选育方面与基因工程相结合,从源头上来发展自己的优势。但这一方面存在很大的问题,因为搞基因的人对发酵不很熟悉,使得许多基因工程菌难以发酵生产产品,而且基因工程菌发酵的乙酸问题到现在还没有解决;另一方面,基因工程领域的专家对发酵工业具有很大应用价值的菌种还没有做深入研究(我指的是国内情况),国内还没有哪个基因中心对工业微生物进行基因测序,据我知道,华中农业大学已经在农业微生物方面已经与基因中心在进行农业微生物的测序工作,而工业微生物还没有第一个吃螃蟹的人,主要是因为工业微生物这个菌种生产上不行了,换个就是了,舍不得花钱。当然哦,测序的费用也很大,需要基因工程进一步提高技术降低测序成本。2工艺方面: 在过程控制中,与微生物学、微生物生理学、计算机工程、控制工程、化工工程等学科相结合,将过程操作变数与微生物生理状态结合起来。基于微生物反应原理的培养基组成优化;基于微生物代谢特性的分阶段培养策略;基于代谢通量分析的发酵优化策略。等等策略的利用,华东理工大学的多尺度控制策略(叶勤教授等)就是将化工领域的策略运用到微生物学领域的典型范例,并取得很大的成就(华北制药等等)。3 下游方面:也是我个人认为最薄弱、最需要发展的方面。从我所知道的情况,目前我们很多产品都能通过发酵工程发酵生产出来,但我们没有办法将其从发酵液中拿出来,这是我们发酵工程最需要解决的问题。为什么会出现这样的问题呢?因为搞发酵工程的人大多是搞微生物学或者食品方向的,缺乏化学工程的学术背景,而发酵产品提取需要化工背景的人来做,但我们国家化学工程方面的人不屑于做这些事情,一方面是发酵工程方面的人搞不定产品的提取,一方面是化工背景的人不屑于做这样的事情,才导致我们国家很多发酵产品虽然能发酵出来,但不能提出出来进入市场。2 该学科在积极拓展自己的领域:最明显的例子是交叉学科的出现,如发酵工程与环境工程的交叉形成了环境生物技术,与化工交叉的生物化工,与纺织工业交叉的纺织生物工程等的等。

s·cerevisiae就是啤酒酵母,是最早就全基因测序的真核生物,对它的了解已十分清楚,也是一种生产上十分安全的菌种。另外找出的菌种也许发酵木糖很好,但也许又产生其他的有害的代谢产物,所以不能用于生产。如果找到这样一个菌种,并分离到相关基因,把它转到啤酒酵母细胞中,啤酒酵母就也具有这种代谢能力了。

为温室供能用沼气发酵方法及发酵系统摘要:介绍了一种能够为温室供能用的沼气发酵方法及发酵系统的专利技术。发酵系统具体由生物酸化积肥装置、缓冲调节池、高效沼气发生装置、出水沉淀池、出水暂存池和沼气缓存装置等依次经管道和阀门连接组成。发酵方法具体步骤包括生物酸化积肥装置的启动和原料的生物酸化储存,高效沼气发生装置的启动、沼气生产供应、休停和再启动等。该技术与传统沼气技术相比,具有一定的优势能够根据温室生产实际,及时把分散在全年产生的种植业有机废弃物投加到产酸积肥池中,然后根据温室供能需求,随时通过发酵系统生产沼气。发酵残渣根据生产需要分批取出用于温室有机肥。该技术实现了可以根据温室需求对沼气发酵灵活调节的要求。   关键词:沼气;温室;供能;可调控性   1.引言   温室是现代农业工程中重要的技术主题,温室的发展使传统露天农业转化为保护条件下的可控制农业[1]。目前国际上,温室已经广泛应用于花卉、蔬菜栽培[2]。温室栽培的最大优势是通过温室环境的控制,满足作物的最佳生活条件,抵抗自然灾害等,从而获取最大的生产效益。在温室管理中,温室冬季加温、补光和二氧化碳施肥是重要的环境调控措施[3]。这些调控过程都需要能源的消耗,目前的能源消耗以一次化石能源煤和二次能源柴油、电力[4]为主。这些能源的大量消耗一方面加重了全社会的能源供给负担,另一方面也大幅度提高产品的生产成本。受能源价格影响,许多温室不得不放弃温室的冬季加温、补光和二氧化碳施肥,这样不仅不能充分发挥温室的应有功能,甚至会造成温室管理的失败。   在温室管理中,每年会产生大量的种植业有机废弃物。目前,这些被随意堆放的废弃物,造成了严重的农业面源污染[3,4]。然而,这些有机废弃物本身富含大量有机质,是非常好的沼气生产原料。如果能用温室生产管理过程中产生的有机废弃物来生产沼气,从而替代煤、石油、电力等不可再生能源用于温室供能,不仅可以降低温室供能成本,同时废弃物中的营养物质又可以循环利用,减少废弃物排放,改善农业环境。但是,迄今为止没有沼气在温室供能领域应用的成功案例。   2.传统沼气技术与温室供能需求的背离  沼气发酵技术可以分为两类,即传统沼气发酵技术和水溶性有机物高效沼气发酵技术[5, 6]。这两类技术应用于温室沼气供应都存在诸多技术难点。具体分析如下:   传统的沼气发酵技术,利用复杂性有机质发酵沼气,沼气产生具有非常大的周期性,往往开始投料时产气慢,中间产气旺盛,而且一旦沼气发酵系统启动,是否产沼气和产生多少沼气,要受原料特性和发酵规律的内在约束,很难调节。而温室用能表现在取暖、二氧化碳施肥等方面,这些能源需求往往受天气的控制,而天气又变化无常。因此,往往是要气时没有气,不要气时产气,如果满足需求将要建立庞大的储气装置,这在投资和占地上是不允许的。如果根据长期天气预报进行计划式投料,在理论上可行,但在实践上是难操作的。一方面,长期天气预报目前的准确性较差,另一方面,关于复杂有机质的产气规律不可能准确预测。同时,温室产生有机废弃物是分散在全年的各个时段,所产生的废弃物大多易腐烂,很难储存。因此传统的沼气技术基本不能适应温室供能需求。   水溶性有机物高效沼气发酵技术,利用可溶解的简单微生物进行沼气发酵,采用高效反应器可以实现较高的效率[7,8]。一是可溶性有机质非常容易反应,沼气的产生量在反应器负荷允许的范围内,基本决定于短期内的进料量,即进料多产气量大,进料少产气量小,停止进料短期即停止产气。二是成熟反应器中的沼气发酵厌氧微生物具有非常强的耐饥饿性,在长期不进料的情况下,反应器内的微生物能够长期耐受,而且再启动时可以迅速恢复正常高效产气。水溶性有机物高效沼气发酵技术的以上两点技术特征均符合温室需能波动性的要求。但是,如果单独为了温室供能需要而刻意外购水溶性有机物作为发酵原料生产沼气,不仅成本上与化石能源不具竞争优势,而且也达不到生物质废弃物资源就地利用、开展循环经济和环境建设的目的。因此,水溶性有机物高效沼气发酵技术也不适合温室供能需求。   3.技术内容  本文提供一种可以根据温室生产实际,把分散在全年产生的种植业有机废弃物投加到发酵系统中,然后根据温室供能需求,随时通过发酵系统生产沼气,能够为温室提供可用的沼气发酵系统及发酵方法。其中,发酵系统由生物酸化积肥装置、 缓冲调节池、 高效沼气发生装置、出水沉淀池、出水暂存池和沼气缓存装置依次经管道和阀门连接组成。其结构如图1所示。其中,生物酸化积肥装置和缓冲池设置主控制阀,缓冲池与高效沼气发生装置之间设置泵, 高效沼气发生装置、出水沉淀池出水暂存池之间通过水的重力自流完成连接, 出水暂存池同时与缓冲调节池和生物酸化积肥装置相连, 中间依次设泵和配水器,高效沼气发生装置联接沼气缓存装置。  为了保证沼气发酵能够满足温室供能需求,以上发酵系统按如下步骤管理  第一、进行生物酸化积肥装置的启动和原料生物酸化储存,具体方法如下   (1)按相当于温室平均每天产生量的5~5倍质量收集温室种植业有机废弃物或其他种植业有机废弃物作为启动原料,对启动原料进行粉碎预处理;  (2)向步骤(1)所得预处理原料中添加含N元素物质,混合,控制混合料碳氮比为(20:1)~(30:1);  (3)将步骤(2)所得混合料投入到初次使用的生物酸化积肥装置中,加入接种物进行接种,混合,得到发酵原料,接种物的加入量为启动原料干重的3%~5%;  (4)向步骤(3)中生物酸化积肥装置中加水进行发酵,水的加入量为至少高于启动原料平面10cm,发酵温度控制在20~40℃;  (5)经过4~5天发酵后,发酵液pH值降到6以下,即完成酸化积肥装置的启动;  (6)按照步骤(1)~(2)的方法随时收集处理温室生产的有机废弃物,及时投入已经启动的生物酸化积肥装置中,不需接种,直接加水至原料平面以上10cm;  (7)重复步骤(6)直至一个生物酸化积肥装置投满,重新启用另一个生物酸化积肥装置,重复操作步骤(1)~(6) ;  第二、进行高效沼气发生装置启动,调控装置运行满足温室用能与沼气生产的协调,具体方法如下:   (1)高效沼气发生装置启动:投入接种物进入高效沼气发生装置,用水或水与生物酸化积肥装置中抽出的酸液混合物加满沼气发生装置,静止3~5d,接种物加入量为3~10kgVSS/m3;从生物酸化积肥装置抽出有机酸液泵入缓冲调节池中,用出水暂存池中的系统出水或外来水调节,控制有机酸液的化学耗氧量(COD)浓度为2000~5000mg/L,作为沼气发酵料;按5kg COD/( m3·d)~2kg COD/( m3·d)的速率阶段式调整水力负荷,连续进料直到实现水力负荷为5kg COD/( m3·d)~10kg COD/( m3·d),即完成沼气发生装置的启动,整个启动大约需50~80d。启动期间,温度控制为25~35℃。负荷调整的原则为,每次水力负荷调整运行稳定后,才开始进行下一阶段负荷的增加;沼气发生装置的出水经沉淀池沉淀后,流入出水暂存池,部分作为生物酸化积肥装置液体补加,部分用于缓冲调节池酸液的发酵料调节使用(2)沼气生产供应:根据温室生产实际预算沼气需求的时间和数量,按1kg COD产 4~5m3沼气折算有机酸液的需求数量和时间,并按时按量从生物酸化积肥装置中抽机酸液进入缓冲调节池,按步骤(1)中所述方法调节成沼气发酵料;按5kgCOD/( m3·d)~30kg COD/(m3·d)水力负荷的流量,采用间歇或连续方式向已经启动好的沼气发生装置中进料进行沼气生产,产生的沼气进入沼气缓存装置备用;进料的流速控制、间歇或连续方式取决于每次沼气的需求量和沼气缓存装置的体积。沼气需求大、沼气缓存装置体积小时,采用大流量连续进料,反之,使用小流量间歇进料;当一个生物酸化积肥装置中的抽出物小于800~1000mg/L时,即该生物酸化积肥装置停止产酸,停止从该装置继续抽取发酵液。  (3)沼气生产休停:对于启动好而温室不需要使用沼气,或者一个沼气使用周期结束,温室很久不使用沼气时,停止向高效沼气发生装置中继续进料,装置进入休停状态。休停期间,保持每10~30d补加一次发酵料,保证系统内微生物的营养需求。补加发酵料的调节方法同步骤(1)所述;补加发酵料的量为反应器体积1~3倍,补加速度为2~5kg COD/(m3·d)。  (4)沼气生产休停后的再启动:对于步骤(3)中已经处于休停状态的高效沼气装置,再进入新的用气周期前必须进行再启动;再启动的方法是在新用气周期开始前3~10d,按照步骤(1)中所述方法调节发酵料,按8kg COD/(m3·d)~2 kg COD/(m3·d)负荷向高效沼气装置进行适应性进料。

关于发酵的论文3000字免费

2000字的,可以的。

发酵工程的前景 2007-08-14 10:36:17 本文已公布到博客频道校园·教育分类 关于发酵工程的个人观点:1 该学科前途无量,需要发展:发酵工程作为最早从事微生物学的研究领域,在过去的3个世纪中为人类的生活、生存、社会的发展作出了重大的贡献。但这些都是过去的成就。发酵工程与现在的生物工程(基因工程)相比,是处于劣势,因为其是个老学科,在很多人看来,其没有什么大的学问,通过一些操作过程的控制和菌种的筛选难以达到基因工程那样迅捷的效果。但目前发酵工程不断在发展自己,不断整合其他学科的优点来发展自己:1 上游方面:在菌种选育方面与基因工程相结合,从源头上来发展自己的优势。但这一方面存在很大的问题,因为搞基因的人对发酵不很熟悉,使得许多基因工程菌难以发酵生产产品,而且基因工程菌发酵的乙酸问题到现在还没有解决;另一方面,基因工程领域的专家对发酵工业具有很大应用价值的菌种还没有做深入研究(我指的是国内情况),国内还没有哪个基因中心对工业微生物进行基因测序,据我知道,华中农业大学已经在农业微生物方面已经与基因中心在进行农业微生物的测序工作,而工业微生物还没有第一个吃螃蟹的人,主要是因为工业微生物这个菌种生产上不行了,换个就是了,舍不得花钱。当然哦,测序的费用也很大,需要基因工程进一步提高技术降低测序成本。2工艺方面: 在过程控制中,与微生物学、微生物生理学、计算机工程、控制工程、化工工程等学科相结合,将过程操作变数与微生物生理状态结合起来。基于微生物反应原理的培养基组成优化;基于微生物代谢特性的分阶段培养策略;基于代谢通量分析的发酵优化策略。等等策略的利用,华东理工大学的多尺度控制策略(叶勤教授等)就是将化工领域的策略运用到微生物学领域的典型范例,并取得很大的成就(华北制药等等)。3 下游方面:也是我个人认为最薄弱、最需要发展的方面。从我所知道的情况,目前我们很多产品都能通过发酵工程发酵生产出来,但我们没有办法将其从发酵液中拿出来,这是我们发酵工程最需要解决的问题。为什么会出现这样的问题呢?因为搞发酵工程的人大多是搞微生物学或者食品方向的,缺乏化学工程的学术背景,而发酵产品提取需要化工背景的人来做,但我们国家化学工程方面的人不屑于做这些事情,一方面是发酵工程方面的人搞不定产品的提取,一方面是化工背景的人不屑于做这样的事情,才导致我们国家很多发酵产品虽然能发酵出来,但不能提出出来进入市场。2 该学科在积极拓展自己的领域:最明显的例子是交叉学科的出现,如发酵工程与环境工程的交叉形成了环境生物技术,与化工交叉的生物化工,与纺织工业交叉的纺织生物工程等的等。

为温室供能用沼气发酵方法及发酵系统摘要:介绍了一种能够为温室供能用的沼气发酵方法及发酵系统的专利技术。发酵系统具体由生物酸化积肥装置、缓冲调节池、高效沼气发生装置、出水沉淀池、出水暂存池和沼气缓存装置等依次经管道和阀门连接组成。发酵方法具体步骤包括生物酸化积肥装置的启动和原料的生物酸化储存,高效沼气发生装置的启动、沼气生产供应、休停和再启动等。该技术与传统沼气技术相比,具有一定的优势能够根据温室生产实际,及时把分散在全年产生的种植业有机废弃物投加到产酸积肥池中,然后根据温室供能需求,随时通过发酵系统生产沼气。发酵残渣根据生产需要分批取出用于温室有机肥。该技术实现了可以根据温室需求对沼气发酵灵活调节的要求。   关键词:沼气;温室;供能;可调控性   1.引言   温室是现代农业工程中重要的技术主题,温室的发展使传统露天农业转化为保护条件下的可控制农业[1]。目前国际上,温室已经广泛应用于花卉、蔬菜栽培[2]。温室栽培的最大优势是通过温室环境的控制,满足作物的最佳生活条件,抵抗自然灾害等,从而获取最大的生产效益。在温室管理中,温室冬季加温、补光和二氧化碳施肥是重要的环境调控措施[3]。这些调控过程都需要能源的消耗,目前的能源消耗以一次化石能源煤和二次能源柴油、电力[4]为主。这些能源的大量消耗一方面加重了全社会的能源供给负担,另一方面也大幅度提高产品的生产成本。受能源价格影响,许多温室不得不放弃温室的冬季加温、补光和二氧化碳施肥,这样不仅不能充分发挥温室的应有功能,甚至会造成温室管理的失败。   在温室管理中,每年会产生大量的种植业有机废弃物。目前,这些被随意堆放的废弃物,造成了严重的农业面源污染[3,4]。然而,这些有机废弃物本身富含大量有机质,是非常好的沼气生产原料。如果能用温室生产管理过程中产生的有机废弃物来生产沼气,从而替代煤、石油、电力等不可再生能源用于温室供能,不仅可以降低温室供能成本,同时废弃物中的营养物质又可以循环利用,减少废弃物排放,改善农业环境。但是,迄今为止没有沼气在温室供能领域应用的成功案例。   2.传统沼气技术与温室供能需求的背离  沼气发酵技术可以分为两类,即传统沼气发酵技术和水溶性有机物高效沼气发酵技术[5, 6]。这两类技术应用于温室沼气供应都存在诸多技术难点。具体分析如下:   传统的沼气发酵技术,利用复杂性有机质发酵沼气,沼气产生具有非常大的周期性,往往开始投料时产气慢,中间产气旺盛,而且一旦沼气发酵系统启动,是否产沼气和产生多少沼气,要受原料特性和发酵规律的内在约束,很难调节。而温室用能表现在取暖、二氧化碳施肥等方面,这些能源需求往往受天气的控制,而天气又变化无常。因此,往往是要气时没有气,不要气时产气,如果满足需求将要建立庞大的储气装置,这在投资和占地上是不允许的。如果根据长期天气预报进行计划式投料,在理论上可行,但在实践上是难操作的。一方面,长期天气预报目前的准确性较差,另一方面,关于复杂有机质的产气规律不可能准确预测。同时,温室产生有机废弃物是分散在全年的各个时段,所产生的废弃物大多易腐烂,很难储存。因此传统的沼气技术基本不能适应温室供能需求。   水溶性有机物高效沼气发酵技术,利用可溶解的简单微生物进行沼气发酵,采用高效反应器可以实现较高的效率[7,8]。一是可溶性有机质非常容易反应,沼气的产生量在反应器负荷允许的范围内,基本决定于短期内的进料量,即进料多产气量大,进料少产气量小,停止进料短期即停止产气。二是成熟反应器中的沼气发酵厌氧微生物具有非常强的耐饥饿性,在长期不进料的情况下,反应器内的微生物能够长期耐受,而且再启动时可以迅速恢复正常高效产气。水溶性有机物高效沼气发酵技术的以上两点技术特征均符合温室需能波动性的要求。但是,如果单独为了温室供能需要而刻意外购水溶性有机物作为发酵原料生产沼气,不仅成本上与化石能源不具竞争优势,而且也达不到生物质废弃物资源就地利用、开展循环经济和环境建设的目的。因此,水溶性有机物高效沼气发酵技术也不适合温室供能需求。   3.技术内容  本文提供一种可以根据温室生产实际,把分散在全年产生的种植业有机废弃物投加到发酵系统中,然后根据温室供能需求,随时通过发酵系统生产沼气,能够为温室提供可用的沼气发酵系统及发酵方法。其中,发酵系统由生物酸化积肥装置、 缓冲调节池、 高效沼气发生装置、出水沉淀池、出水暂存池和沼气缓存装置依次经管道和阀门连接组成。其结构如图1所示。其中,生物酸化积肥装置和缓冲池设置主控制阀,缓冲池与高效沼气发生装置之间设置泵, 高效沼气发生装置、出水沉淀池出水暂存池之间通过水的重力自流完成连接, 出水暂存池同时与缓冲调节池和生物酸化积肥装置相连, 中间依次设泵和配水器,高效沼气发生装置联接沼气缓存装置。  为了保证沼气发酵能够满足温室供能需求,以上发酵系统按如下步骤管理  第一、进行生物酸化积肥装置的启动和原料生物酸化储存,具体方法如下   (1)按相当于温室平均每天产生量的5~5倍质量收集温室种植业有机废弃物或其他种植业有机废弃物作为启动原料,对启动原料进行粉碎预处理;  (2)向步骤(1)所得预处理原料中添加含N元素物质,混合,控制混合料碳氮比为(20:1)~(30:1);  (3)将步骤(2)所得混合料投入到初次使用的生物酸化积肥装置中,加入接种物进行接种,混合,得到发酵原料,接种物的加入量为启动原料干重的3%~5%;  (4)向步骤(3)中生物酸化积肥装置中加水进行发酵,水的加入量为至少高于启动原料平面10cm,发酵温度控制在20~40℃;  (5)经过4~5天发酵后,发酵液pH值降到6以下,即完成酸化积肥装置的启动;  (6)按照步骤(1)~(2)的方法随时收集处理温室生产的有机废弃物,及时投入已经启动的生物酸化积肥装置中,不需接种,直接加水至原料平面以上10cm;  (7)重复步骤(6)直至一个生物酸化积肥装置投满,重新启用另一个生物酸化积肥装置,重复操作步骤(1)~(6) ;  第二、进行高效沼气发生装置启动,调控装置运行满足温室用能与沼气生产的协调,具体方法如下:   (1)高效沼气发生装置启动:投入接种物进入高效沼气发生装置,用水或水与生物酸化积肥装置中抽出的酸液混合物加满沼气发生装置,静止3~5d,接种物加入量为3~10kgVSS/m3;从生物酸化积肥装置抽出有机酸液泵入缓冲调节池中,用出水暂存池中的系统出水或外来水调节,控制有机酸液的化学耗氧量(COD)浓度为2000~5000mg/L,作为沼气发酵料;按5kg COD/( m3·d)~2kg COD/( m3·d)的速率阶段式调整水力负荷,连续进料直到实现水力负荷为5kg COD/( m3·d)~10kg COD/( m3·d),即完成沼气发生装置的启动,整个启动大约需50~80d。启动期间,温度控制为25~35℃。负荷调整的原则为,每次水力负荷调整运行稳定后,才开始进行下一阶段负荷的增加;沼气发生装置的出水经沉淀池沉淀后,流入出水暂存池,部分作为生物酸化积肥装置液体补加,部分用于缓冲调节池酸液的发酵料调节使用(2)沼气生产供应:根据温室生产实际预算沼气需求的时间和数量,按1kg COD产 4~5m3沼气折算有机酸液的需求数量和时间,并按时按量从生物酸化积肥装置中抽机酸液进入缓冲调节池,按步骤(1)中所述方法调节成沼气发酵料;按5kgCOD/( m3·d)~30kg COD/(m3·d)水力负荷的流量,采用间歇或连续方式向已经启动好的沼气发生装置中进料进行沼气生产,产生的沼气进入沼气缓存装置备用;进料的流速控制、间歇或连续方式取决于每次沼气的需求量和沼气缓存装置的体积。沼气需求大、沼气缓存装置体积小时,采用大流量连续进料,反之,使用小流量间歇进料;当一个生物酸化积肥装置中的抽出物小于800~1000mg/L时,即该生物酸化积肥装置停止产酸,停止从该装置继续抽取发酵液。  (3)沼气生产休停:对于启动好而温室不需要使用沼气,或者一个沼气使用周期结束,温室很久不使用沼气时,停止向高效沼气发生装置中继续进料,装置进入休停状态。休停期间,保持每10~30d补加一次发酵料,保证系统内微生物的营养需求。补加发酵料的调节方法同步骤(1)所述;补加发酵料的量为反应器体积1~3倍,补加速度为2~5kg COD/(m3·d)。  (4)沼气生产休停后的再启动:对于步骤(3)中已经处于休停状态的高效沼气装置,再进入新的用气周期前必须进行再启动;再启动的方法是在新用气周期开始前3~10d,按照步骤(1)中所述方法调节发酵料,按8kg COD/(m3·d)~2 kg COD/(m3·d)负荷向高效沼气装置进行适应性进料。

关于发酵的论文3000字免费复制

发酵工程的前景 2007-08-14 10:36:17 本文已公布到博客频道校园·教育分类 关于发酵工程的个人观点:1 该学科前途无量,需要发展:发酵工程作为最早从事微生物学的研究领域,在过去的3个世纪中为人类的生活、生存、社会的发展作出了重大的贡献。但这些都是过去的成就。发酵工程与现在的生物工程(基因工程)相比,是处于劣势,因为其是个老学科,在很多人看来,其没有什么大的学问,通过一些操作过程的控制和菌种的筛选难以达到基因工程那样迅捷的效果。但目前发酵工程不断在发展自己,不断整合其他学科的优点来发展自己:1 上游方面:在菌种选育方面与基因工程相结合,从源头上来发展自己的优势。但这一方面存在很大的问题,因为搞基因的人对发酵不很熟悉,使得许多基因工程菌难以发酵生产产品,而且基因工程菌发酵的乙酸问题到现在还没有解决;另一方面,基因工程领域的专家对发酵工业具有很大应用价值的菌种还没有做深入研究(我指的是国内情况),国内还没有哪个基因中心对工业微生物进行基因测序,据我知道,华中农业大学已经在农业微生物方面已经与基因中心在进行农业微生物的测序工作,而工业微生物还没有第一个吃螃蟹的人,主要是因为工业微生物这个菌种生产上不行了,换个就是了,舍不得花钱。当然哦,测序的费用也很大,需要基因工程进一步提高技术降低测序成本。2工艺方面: 在过程控制中,与微生物学、微生物生理学、计算机工程、控制工程、化工工程等学科相结合,将过程操作变数与微生物生理状态结合起来。基于微生物反应原理的培养基组成优化;基于微生物代谢特性的分阶段培养策略;基于代谢通量分析的发酵优化策略。等等策略的利用,华东理工大学的多尺度控制策略(叶勤教授等)就是将化工领域的策略运用到微生物学领域的典型范例,并取得很大的成就(华北制药等等)。3 下游方面:也是我个人认为最薄弱、最需要发展的方面。从我所知道的情况,目前我们很多产品都能通过发酵工程发酵生产出来,但我们没有办法将其从发酵液中拿出来,这是我们发酵工程最需要解决的问题。为什么会出现这样的问题呢?因为搞发酵工程的人大多是搞微生物学或者食品方向的,缺乏化学工程的学术背景,而发酵产品提取需要化工背景的人来做,但我们国家化学工程方面的人不屑于做这些事情,一方面是发酵工程方面的人搞不定产品的提取,一方面是化工背景的人不屑于做这样的事情,才导致我们国家很多发酵产品虽然能发酵出来,但不能提出出来进入市场。2 该学科在积极拓展自己的领域:最明显的例子是交叉学科的出现,如发酵工程与环境工程的交叉形成了环境生物技术,与化工交叉的生物化工,与纺织工业交叉的纺织生物工程等的等。

中国淀粉协会顾问赵继湘教授说,进入21世纪,随着国民经济的进一步发展和人民生活的不断提高,特别是“十五”计划开始启动,面临西部大开发和加入世贸组织后的机遇和挑战,在未来5~10年内淀粉深加工产品必将有一个更健康、快速、持续发展的好前景。 赵继湘介绍说,国内淀粉和淀粉深加工的发展形势比国外更好,一是由于我国国民经济发展速度较快,各个产业间的联动发展促使淀粉工业有较快的发展速度;二是人民生活水平总体上进入小康水平,市场需求的扩大拉动了淀粉工业的发展;三是由于加入世贸组织的影响,我国玉米等淀粉原料价将与国际接轨,总体价格下降,有利于淀粉工业的发展。特别是我国淀粉工业的基数较低,有较大的发展空间,如美国年人均消费80多公斤,日本年人均消费30多公斤,欧洲年人均消费25公斤,印尼年人均消费6.6公斤,泰国年人均占有淀粉37公斤,中国台湾1999年人均消费21.14公斤,而国内尽管这几年淀粉工业发展较快,但人均消费还只有3.7公斤。由于发展潜力较大,所以这几年的发展速度都超过了国民经济的发展速度,达到年均递增15.9%。 赵继湘分析说,今后淀粉及深加工产品的发展主要表现在六个方面: 首先是淀粉质原料降价会给淀粉工业发展创造有利条件。我国淀粉工业的主要原料--玉米的价格一直高于国际价格,最高时达1500元/吨,1998年开始价格回落,到2000年降到最低水平,主产区的价格到800元/吨以下,淀粉价格在1400元/吨。由于玉米阶段性过剩,各地减少了播种面积,再加上遇上了旱灾,2000年玉米减产。2001年初价格有所回升,主产区回升至1000元/吨,淀粉价格在1800元/吨。但在正常年景情况下,今后我国玉米质量将有所提高(国家已颁布淀粉、发酵工业用玉米淀粉、发酵工业用玉米的质量标准,GB/1351-1999原定2000年4月执行,现延缓一年),价格由于加入世贸组织的影响将与国际接轨,已经不可能回到1998年以前的高价位上。据专家估计,今后5年内,国内玉米价会维持在1000元/吨上下。其他淀粉质原料如木薯占第二位,1999年木薯淀粉产量占总量7.5%,由于邻国泰国是世界木薯和木薯淀粉均占第一位的国家,我国每年还进口一定量的木薯淀粉,如1999年就进口8万吨。因此木薯和木薯淀粉价格受泰国的影响,国内价格不会有太大的波动。 其次,人民生活水平提高对淀粉深加工产品的需求增加。有关部门提出的“十五”发展设想,是到2005年味精发展到85万吨,比1999年提高30%;变性淀粉70万吨,是1999年的1.8倍;淀粉糖浆200万吨,是1999年的1.8倍;山梨醇20万吨,是1999年提高1.8倍;食用发酵酒精250万吨,比1999年提高38%;淀粉产量1999年超额17%完成2000年规划指标,因此业内人士预测中国淀粉工业协会原规划2010年产量700万吨,将在2005年完成,这样年平均递增6.8%是一个稳妥的增长速度。

s·cerevisiae就是啤酒酵母,是最早就全基因测序的真核生物,对它的了解已十分清楚,也是一种生产上十分安全的菌种。另外找出的菌种也许发酵木糖很好,但也许又产生其他的有害的代谢产物,所以不能用于生产。如果找到这样一个菌种,并分离到相关基因,把它转到啤酒酵母细胞中,啤酒酵母就也具有这种代谢能力了。

关于超导体的论文3000字免费下载

关于超导体的研究,班门弄斧一下,研究人员可以往这个思路去研究一下,就是在莫种半导体的表面镀莫种金属或者合金,然后利用接触面,横向导电。

品 名:超导陶瓷  拼音:chao1dao3tao2ci2  英文名称:superconductivity ceramics  说明:具有超导性的陶瓷材料。其主要特性是在一定临界温度下电阻为零即所谓零阻现象。在磁场中其磁感应强度为零,即抗磁现象或称迈斯纳效应(Meissner effect)。高临界温度(90开以上)的超导陶瓷材料组成有YBa2Cu3O7-δ,Bi2Sr2Ca2Cu3O10,Tl2Ba2Ca2Cu3O10。超导陶瓷在诸如磁悬浮列车、无电阻损耗的输电线路、超导电机、超导探测器、超导天线、悬浮轴承、超导陀螺以及超导计算机等强电和弱电方面有广泛应用前景。  奇异的超导陶瓷  1973年,人们发现了超导合金――铌锗合金,其临界超导温度为2K,该记录保持了13年。1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧-钡-铜-氧)具有35K的高温超导性,打破了传统“氧化物陶瓷是绝缘体”的观念,引起世界科学界的轰动。此后,科学家们争分夺秒地攻关,几乎每隔几天,就有新的研究成果出现。  1986年底,美国贝尔实验室研究的氧化物超导材料,其临界超导温度达到40K,液氢的“温度壁垒”(40K)被跨越。1987年2月,美国华裔科学家朱经武和中国科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的禁区(77K)也奇迹般地被突破了。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。从1986-1987年的短短一年多的时间里,临界超导温度竟然提高了100K以上,这在材料发展史,乃至科技发展史上都堪称是一大奇迹!  高温超导材料的不断问世,为超导材料从实验室走向应用铺平了道路。

物理学的发展,促进了科学技术的进步。现代物理学更成为高新技术的基础。1、在牛顿力学和万有引力定律的基础上发展起来的空间物理,能把宇宙飞船送上太空,使人类实现了飞天的梦想。也使中国人“九天揽月”成为可能。(2007年我们国家要登月,那时就是神州7号)。杨得伟是神州6号。(学完万有引力定律可窥一斑)2、带电粒子在电场磁场中的偏转的规律在科学技术中的应用。电视机显像管等。(学完带电粒子在电场磁场中的偏转会了解了。)刀。如核磁共振,超声波,X光机等。3、核物理的研究使放射线的应用成为可能。医疗上的放疗。在医疗上还有很多,如用于治疗脑瘤的4、20世纪初相对论和量子力学的建立,诞生了近代物理,开创了微电子技术的时代。半导体芯片。电子计算机。没有量子力学也就没有现代科技 。5、20世纪60年代,激光器诞生。激光物理的进展使激光在制造业、医疗技术和国防工业中的得到了广泛的应用。大家熟悉的微机光盘就是用激光读的。光导纤维等。6、20世纪80年代高温超导体的研究取得了重大突破,为超导体的实际应用开辟了道路。磁悬浮列车等。80年代,我国高温超导的研究走在世界的前列。7、20世纪90年代发展起来的纳米技术,使人们可以按照自己的需要设计并重新排列原子或者原子团,使其具有人们希望的特性。纳米材料的应用现是一个新兴的又应用很广泛的前沿技术。秦始皇兵马俑的色彩防脱。8、生命科学的发展也离不开物理学。脱氧核糖核酸(DNA)是存在于细胞核中的一种重要物质,它是储存和传递生命信息的物质基础。1953年生物学家沃森和物理学家克里克利用X射线衍射的方法在卡文迪许(著名实验物理学家)的实验室成功地测定了DNA的双螺旋结构。可以说物理学的发展,促进了各个领域科学技术的进步。使人类的生产和生活发生了翻天覆地的变化。物理学的发展引发了一次又一次的产业革命,推动着社会和人类文明的发展。可以说社会的每一次大的进步都与物理学的发展紧密相连。18世纪中叶,在热学发展的基础上发明并改进了蒸汽机。蒸汽机的广泛使用,促成了手工业向机械化的大生产的转变,并使陆上和海上的大规模的长途运输成为可能。大大推动了社会的发展。古人云:一日千里。火车、飞机的使用使每一个地球人实现了“一日千里”甚至日行万里的梦想。蒸汽机的使用是第一次产业革命。1840年,法拉弟发现了电磁感应现象,并逐渐形成了完整的电磁场理论。在此基础上发展起来的电力工业,使人类进入电气化的时代,给人类的生产和生活带来翻天覆地的变化。大家想想现在使用的电灯、电话、电视、微机等一切的电力设施就能体会了。这是第二次产业革命。20世纪70年代,微观物理方面取得重大突破,开创了微电子工业,使世界开始进入了以电子计算机应用为特征的信息时代。这是第三次产业革命。可以说社会的每一次巨大的进步都是在物理学发展的基础上完成的。没有物理学的发展就没有人类社会和文明的巨大进步

关于太阳能的论文3000字免费下载

环保——我们的责任不知道大家是否注意到一篇文字——《中国国民环保素养调查报告》,报告内容大体如下:善良指数世界第一;科学素养指数中等水平;环保素养和环保发达国家差距较大:和北欧环保发达国家相差30年;和美国等环保发展中国家相差20年;和日本/韩国/新加坡等亚洲环保先进国家相差20年;和非洲/拉丁美洲等国家相差10年;国家在环保理念和政策和环保发达国家持平:国民在执行国家环保理念和政策的能力无法对接;环保盲在人口比重较大是解决环保发展的瓶径;精英群体在环保理论上世界第一/在环保实践上被潜规则架空;先发展,后治理(干部群体/潜规则)在目前国家生活生产理念根深蒂固;国民处在略懂环保知识,能说,坚决不做的环保疲劳期;国民认定环保ngo有问题/不了解/解决不了环保教育宣传问题的人口几乎是全部;企业对国家组织环保活动感兴趣,对长线的环保公益宣传道义上支持,决不参与;国民对环保工作者持观望,不理解,潜规则的不尊重(因为他们是麻烦的制造者/还有不挣钱)但新闻及国家媒体道义上支持;有环保素养的国民不到整体人群的5%;具备环保素养的群体有:海外留学背景的少数精英,高层智库,少数白领,直接环保利益受侵犯人群;大部分户外运动人群。国家给与的参考解决办法如下:1 教育体系紧急需要完善环保素养教育;2 国民环保素养教育的手段急需强化和实践;3大力提倡国民走进自然,亲近自然的户外活动;4 强化现有环保法规的执行力度;5 环保盲的再教育要列入国家意识形态。至今,各种环保节能的的政策及措施都已成为我们耳熟能详的文明生活发展趋势,然而我们对其真正深入了解认识了吗?我们的日常工作和生活中是否真正的做到了呢?是不是还是一副听的时候专心,过后说起开心,做的时候不用心呢?节能环保并不是我们多喊几句口号就可以实现的,它需要我们真正的从实际生活中去改善,去实践,从身边的每一件事情开始做起。 作为每一个家庭,对社会发展及人类进步起着不可替代的推动作用,是我们社会发展的主要力量支柱。因此,我们更应该提高家庭的综合素质,切实了解节能环保的现实意义和重大作用,将每个家庭成员组织起来,牢牢抱成一团,从生活的方方面面着手去认识,去改进,将节能环保的主题落到实处。 倡导节能环保,首先要减少了解我们日常生活中到底能源耗费在哪里?污染在哪里?针对主要问题,提高节能环保效率。那么家庭污染和社会污染到底哪一个更严重呢? 新近研究表明:社会工业生产造成的污染只占污染源的百分之四十一,现代家庭造成的污染却占百分之五十九。与社会相比,虽然家庭只是社会的一个细胞,而就污染的危害程度来说,家庭却相对严重一些,已经检测到的有毒有害物质达数百种,常见的也有十种以上,。有一组统计数据可进一步证实家庭污染的危害性:即一个家庭一天平均要制造一点八公斤垃圾,丢弃五个不可分解的塑料袋、二至三个一次性饭盒;一个家庭因洗头、洗澡、洗衣服等,一天平均制造二百公斤废水;一个家庭每天平均使用二十克化学用品等。这些污染物和汇流成河的生活废水,每时每刻都在污染着我们的土地、河流和海洋。 据媒体报道,在一项针对2000多个家庭住户样本的室内污染状况调查中,结果显示:50%以上的家庭室内存在着污染,而“罪魁祸首”就是家用电器。更令人担忧的是,在被调查的家庭中,绝大多数还没有意识到家中的家电污染问题。目前家庭中常见由家电导致的污染包括细菌污染、辐射污染及噪声污染等,重则危害健康,甚至危及人的生命安全。 看到这组数据不由得让我们惊讶,一直以来我们都要将污染的矛头指向工业生产,殊不知,其实最大的污染源就是我们自己,就是我们每一个家庭。我们平时不注重环保节能的后果,最后危害最大的,依然是我们自己,是我们赖以生存的美好家园,是我们原本洁净清悠的地球村。 在能源浪费方面,家庭也占有相当大的比重。多台电视机同时开;多个电脑同时用;电视没看时不切断电源,长期处于待机状态;几十上百瓦的白炽灯同时开好几个;声控灯感应器坏了,灯就没日没夜地亮着;饮水机24小时运作;有的电热户冬天用几个上千瓦的大电炉眼睛眨也不眨;打开水龙头哗哗一放就是好几分钟,等到热水出来了,才慢悠悠地洗漱…… 点点滴滴,看来是微不足道的。但正是这样的点点滴滴,使居民区能源浪费现象显得相当突出。检查我们的行为,司空见惯的“无意识浪费”,在家庭生活中浪费掉的宝贵能源实在太多了。习惯成自然,且有很多浪费现象是人们长期养成的习惯,又习以为常,因此在节约家庭能源方面考虑得不多。然而在现实生活中,我们要改掉那些不经意的浪费“习惯”,其实很简单,只需要举手之劳。 良好的生活和工作环境是我们人类赖以生存的条件,保护环境就是保护我们自己。面对地球生态环境日益恶化、资源日益短缺的现实,我们应该清醒地认识到:拯救地球、保护环境、节约能源,是我们共同的责任。家庭节能环保和我们的生活息息相关,而且很容易进行,做好家庭的节能环保工作,不仅节约了资源,也为家庭节约了一定开支,一举两得。由此我们发出倡议: 一、从家庭用电开始,节约每一度电,杜绝家家电污染。 每个家庭都应努力做到以下几点: a、把白炽灯改成第四代LED绿色光源,在同样的亮度下,其耗电量只是白炽灯的十分之一,但寿命却是白炽灯的50倍。 b、要选用无氯绿色环保家电和太阳能家电系列,比如:使用太阳能发电器、太阳灶、太阳能灯、太阳能帽、太阳能手电筒、太阳能干燥器、太阳能热水器、地板采暖系统等,既节能环保,又安全方便,既为国家的节能环保工作做出贡献,又使家庭引导了绿色生尚生活新潮流。 c、选购空调时要考虑最适合房间大小的匹数。而且夏季空调温度设定在26-28℃。 d、冰箱内贮存食物不宜过满,冰箱内食品之间及食品与箱壁之间应留有100mm以上的空隙。 这比紧贴墙面每天可以节能20%。 e、洗衣机的耗电量取决于使用时间的长当我们在享受富足的小康生活时,你可曾意识到资源短缺问题已在日益逼近我们的生活。水危机、电短缺、石油危机……,这一切深刻地告诉我们资源是有限的、不可生的,而人类的繁衍却将代代相传。对矿产的滥采,森林的砍伐、水源的污染……已经使我们国家不再“地大物博”,也让我们当代的人们尝到了急功近利所带来的苦果。 因此,为了保护我们人类有限的资源,保护我们赖以生存发展的基础已刻不容缓,为此我们向全区的同学们大力倡议:节约资源,从你我做起,节约每一度电,每一滴水,每一张纸,每一粒粮食,在共建节约型学校行动中切实发挥生力军和模范带头作用。 一、树立正确的节约观。充分了解我国资源短缺的严峻现实,认真学习落实科学发展观,崇尚节约光荣、浪费可耻的观念,增强节约意识,做到身体力行。 二、节约用电。光线充足时,不要开灯;能用一盏灯时,不开多盏灯;杜绝白昼灯、长明灯 三、节约用水。避免大开水龙头,提倡使用脸盆洗脸、洗手,合理减少洗澡时间;用完水后,要及时拧紧水龙头,见到滴水的龙头,随手关闭。 四、节约用餐。积极倡导文明用餐之风,在食堂就餐坚持饭菜适量,不浪费每一粒粮食。 五、节约用纸。纸张提倡尽量能双面使用。 六、节约用钱。适度消费,合理支出,精打细算,坚持每天节省一点,养成善于理财的好习惯。 七、积极参加环保活动。大力开展废电池、生活用品的分类回收利用,推广使用再生纸;尽量不使用一次性筷子,使用可降解的一次性饭盒;坚持每月参与一次环保志愿服务活动。 八、积极开展节约技术的发明创造活动。要勇于创新,善于创造,通过小窍门、小创造、小发明,努力为节约资源提供强有力的技术支撑,不断推动资源的节约。 九、积极广泛宣传节约意识,大力开展资源节约合理化建议活动。为建设节约型社会献计策、尽职责、做贡献,争创节约型家庭、节约型班级、节约型学校、节约型社团(集体)和个人等。传播节约意识,推动全校形成珍惜资源、节约资源的良好风尚。

化石能源和核能被认为是不可再生能源 类型。不可再生能源的来源,得到的速率超过 的速度的来源补充。例如,如果生源 起源的化石燃料是正确的,我们可以考虑化石燃料的可再生能源 经过一段几百万年的时间,但现有的商店是化石燃料 被消耗了一段百年。因为我们是消费 化石燃料的速度超过了补充率,我们认为 化石燃料的不可再生。类似的评论适用于核燃料等 铀,因为我们观察在以后的章节。太阳能被认为是 可再生能源用于下列1 可再生能源是能源的来源获得的速度小于 大于或等于速度源补充。如 太阳能,我们可以只使用的能源总量提供的 太阳。因为剩下的寿命测量太阳百万 多年来,许多人认为太阳能取之不尽的 能源。事实上,太阳能来自太阳是有限的,但应当提供 使用的许多代人。太阳能因此认为 可再生能源。能源相关的太阳能,如 风能和生物物质,也被视为可再生能源。 太阳辐射可能会转化为其他形式的能源由几个 转换过程。热转换依靠吸收太阳能 能源热酷表面。生物转化的太阳能依赖 光合作用。光电转换产生电力的 产生电流由于量子力学 进程。风力发电和海洋能源转换依靠大气 压力梯度和海洋温度梯度产生电 力量。在这一章中,我们侧重于热We第一次讨论 来源可获得太阳能,然后考虑太阳能技术 在两年的三种形式:被动式太阳能,以及太阳活动。第三形式 太阳能,太阳能发电,是讨论在下一章。我们结束这一 本章讨论的太阳能发电厂。Fossil energy and nuclear energy are considered nonrenewable Nonrenewable energy is obtained from sources at a rate that exceedsthe rate at which the sources are For example, if the biogenicorigin of fossil fuels is correct, we could consider fossil fuels renewableover a period of millions of years, but the existing store of fossil fuels isbeing consumed over a period of Because we are consumingfossil fuels at a rate that exceeds the rate of replenishment, we considerfossil fuels Similar comments apply to nuclear fuels suchas uranium, as we observe in later Solar energy is considereda renewable energy for the following 1Renewable energy is energy obtained from sources at a rate that is lessthan or equal to the rate at which the source is In the caseof solar energy, we can use only the amount of energy provided by Because the remaining lifetime of the sun is measured in millionsof years, many people consider solar energy an inexhaustible supply In fact, solar energy from the sun is finite, but should be availablefor use by many generations of Solar energy is therefore Energy sources that are associated with solar energy, such aswind and biomass, are also considered Solar radiation may be converted to other forms of energy by severalconversion Thermal conversion relies on the absorption of solarenergy to heat a cool Biological conversion of solar energy relieson Photovoltaic conversion generates electrical power bythe generation of an electrical current as a result of a quantum Wind power and ocean energy conversion rely on atmosphericpressure gradients and oceanic temperature gradients to generate In this chapter we focus on thermal We first discuss thesource of available solar energy, and then consider solar energy technologyin two of its three forms: passive solar, and active The third form ofsolar energy, solar electric, is discussed in the next We end thischapter with a discussion of solar power Fossil fuels in the petroleum and natural gas is the world's major one-time energy World Energy Council, according to statistics, has proven oil and gas recoverable reserves, according to the output of countries in 1992 terms, respectively, only the exploitation of 44 years and 60 years; although they may be recoverable reserves there will be new discoveries, but also the growth needs of the community, especially taking into account the economic development of Third World countries, the exploitation of oil and gas fuel for a long In fossil fuels, although the most abundant coal reserves, but the serious pollution caused by coal-fired so that it can not become large the major source of energy On the other hand, nuclear fusion reactions can provide clean energy, in the ocean contains about 42 trillion tons of the major nuclear fusion of deuterium-reactive substances; fusion reactor but it is very difficult to study, it is estimated that the next century to the late nuclear poly substation be possible to achieve widespread Therefore, in the 21st century, the prospects for energy, you may have to face the depletion of oil and gas resources, the commercialization of fusion power failure during the period of temporary shortage of such During this period in order to ensure sufficient human clean energy supply, use of solar energy for power generation is an inevitable Solar energy is the most important renewable sources of energy, the planet with all kinds of energy are closely In fact, the sun in Earth's evolution, biological reproduction and human development, plays a very important role, but also provides a human inexhaustible source of Solar interior ongoing response to the release of a high-temperature nuclear fusion power of about 8 × 1026 watts of huge radiation, of which only arrived in regard to the atmospheric level二十亿分之一; through the atmosphere, about 30% reflected, 23% be absorbed, only half (approximately 8 × 1016 watts) of energy reaching the earth's Even so, as long as they can make use of the very few, will be able to meet all the needs of humanity However, due to its low energy density, but also by the day and night, seasons, climate, location and other factors, on the ground by the use of solar energy to power a lot of In order to avoid these shortcomings, natural to consider the use of solar power in space of the feasibility of the Power generation in 2010 is expected to the practical use of space Space Solar Power is the first way of Engineers first proposed by P G The basic idea is in the earth's outer space or the moon to establish a base of solar power satellites, and then through the microwave energy transmitted to the scene to the receiving device, and then beam microwave energy into electrical energy for human Advantage of this program is to make full use of solar energy outside the atmosphere, the elimination of solar energy in the ground, changes in the density of small and large shortcomings, without a huge energy storage device, not only to reduce the square, but also save a lot of equipment It can be expected, with the photoelectric conversion materials and delivery areas such as technology, space solar power generation costs will be greatly The idea is proposed, subject to national 1977 -1980 in the United States Department of Energy and NASA organizations to the concept of space solar power study, believe that its implementation does not exist insurmountable technical At that time, a design known as the "reference system" of power generation systems; from 60 to solar panels, each block 10 kilometers long, five kilometers wide, generating 5,000,000 kilowatts, with a total capacity of 300 million With such a power generation satellites, the United States will be able to replace all of the ground As the system is too large, about 3,000 of the money to invest 100 billion US dollars, at that time under the conditions of the Cold War can hardly be With the energy of all the outstanding progress in space technology in 1995, NASA set up a study group to re-examine this issue, a more comprehensive analysis of space solar power generation technical and economic feasibility of the program also are very different: adopted a progressive self-development model, that is, the first 100-150 to launch a 100 million US dollars investment for 250,000 kilowatts of power satellites, the sale of electricity in order to recover their investment and profit, and then expand the scale of power generation The research group estimates that after 2010, space power will be At present, a number of other countries and international organizations, space solar power generation is also carried out 化石燃料中的石油天然气是当今世界的主要一次性能源据世界能源委员会统计,已探明的石油、天然气可采储量,按 1992 年各国的产量计算,分别只能开采 44 年和 60 年;虽然可采储量还会有新的发现,但社会需求也有增长,特别是考虑到第三世界国家的经济发展,油气燃料可供开采的时间不会很长。在化石燃料中,尽管煤炭的储量最为丰富,但燃煤造成的严重污染使其大不可能成为世界范围的主要能源。另一方面,核聚变反应可提供清洁的能源,在海洋中蕴藏着约 42 万亿吨核聚变的主要反应物质氘;但核聚变堆研究的难度很大,估计要到下一世纪后期核聚变电站广泛出现才有可能实现商品化。因此, 在展望 21 世纪能源问题的前景时,可能不得不对油气资源面临枯竭、核聚变发电又未能商品化的一段青黄不接时期。为保证这一时期内人类有充足的清洁能源供应,利用太阳能来发电是一种必然的选择 。 太阳能是最重要的可再生能源,地球上各种能源无不与之密切相关。事实上,太阳在地球的演化、生物的繁衍和人类的发展中,起了无比重要的作用,也为人类提供了取之不尽的能源。太阳内部不断进行的高温核聚变反应释放着功率约为 8 × 1026 瓦的巨大辐射能,其中只有二十亿分之一到达至于大气高层;经过大气时,约 30% 被反射, 23% 被吸收,仅有一半(约 8 × 1016 瓦)的能量到达地球表面。即使如此,只要能够利用其万分之几,便可满足今日人类的全部需要。但是,由于其能量密度低,还要受昼夜、季节、气候、地点等因素的影响,在地面上利用太阳能来发电受到很大限制。为了避免这些缺点,自然要考虑在空间利用太阳能发电的可能性各可行性。 2010 年空间发电可望实用化 空间太阳能发电方式最初是 美国工程师 PGlaser 首先提出的。其基本构想是在地球的外层空间或月球上建立太阳能卫星发电基地,然后通过微波将电能传输到场面的接收装置,再把微波能束转变成电能供人类使用 。这一方案的优点是在大气层外充分利用太阳能,消除了在地面上太阳能密度小而变化大的缺点,无需庞大的储能装置,既减少占地,又节约大量设备投资。可以预计,随着光电转化材料和运载等方面技术的进步,太阳能空间发电的成本将大大降低。 这一设想提出后,受到了各国的重视。 1977 年 —1980 年美国能源部和航天航空局组织对空间太阳发电的概念进行研究,认为其实施不存在不可克服的技术困难。当时设计了一种称为“参考系”的发电系统;由 60 地太阳能面板组成,每块长 10 公里,宽 5 公里,发电 500 万千瓦,总发电量为 3 亿千瓦。用这样一颗发电卫星,便可取代美国所有的地面电站。由于该系统过于庞大,约需 3000 千亿美元的巨资投资,在当时冷战的条件下难以得到支持。随着能源问题的突出各航天技术的进步, 1995 年美国航天航空局成立研究组,重新审视这一问题,较全面地分析了空间太阳能发电的技术经济可行性,在方案上也有很大不同:采用渐进的自我发展模式,即先发射一颗投资为 100—150 亿美元的 25 万千瓦发电卫星,出售电力以回收投资并获取利润,然后再扩大发电卫星的规模。该研究组估计, 2010 年以后,空间发电将实用化。目前,其他一些国家和国际组织也在进行太阳能空间发电方面的工作。

嘿嘿 姐 你不是让我帮你写吗 到学校就给你了 你非得到这问来 100分给我吧~~~

相关百科
热门百科
首页
发表服务