期刊投稿百科

关于微生物细菌的论文题目有哪些

发布时间:2024-07-05 16:41:39

关于微生物细菌的论文题目有哪些

题目就叫——习惯与健康,孰轻孰重?

硝苯硫磷酯水解的一种黄杆菌与水沟中的细菌在低炭、低硝酸盐、低硫酸盐的连续培养中的竞争现象

什么时间要,专科本科。资料有一些可以发给你参考下。

利用电脑先查些资料 然后根据题意展开联想 想象要丰富 才能得高分

关于微生物细菌的论文题目

微生物的形态、细胞结构及其功能,微生物的营养、呼吸、物质代谢、生长、繁殖、遗传与变异,废水与饮用水生物处理基本原理,生物修复技术及生物制剂的开发和应用。 目录:第一章 绪论第一节 水处理微生物学的研究对象和任务一、水处理微生物学的研究对象二、水处理微生物学的任务第二节 水处理微生物学在水处理工程中的应用一、在给水工程中的应用二、在排水工程中的应用第三节 微生物概述一、微生物的分类和命名二、原核微生物和真核微生物三、微生物的特点思考题第二章 非细胞微生物--病毒第一节 病毒的形态结构一、病毒的形态二、病毒的化学组成和结构第二节 病毒的繁殖一、病毒的繁殖过程二、病毒的生长规律第三节 病毒在水中存活的影响因素一、物理因素的影响二、化学因素的影响三、生物因素的影响四、去除和破坏水中病毒的方法思考题第三章 原核微生物第一节 细菌一、细菌的形态二、细菌的大小三、细菌的细胞结构四、细菌的繁殖五、细菌的培养特征六、细菌的物理化学性质七、水处理工程中常见的菌属第二节 放线菌一、放线菌的形态结构二、放线菌的菌落特征三、放线菌的繁殖四、放线菌的代表属五、放线菌与细菌的比较第三节 蓝细菌一、蓝细菌的形态与细胞结构二、蓝细菌细胞的异化三、蓝细菌的繁殖方式四、蓝细菌的类群五、蓝细菌的分布与生态第四节 其他与水处理有关的菌属一、鞘细菌二、滑动细菌三、光合细菌思考题第四章 真核微生物第一节 真菌一、酵母菌二、霉菌第二节 藻类一、藻类的微生物学特征二、水处理中常见藻类第三节 原生动物一、原生动物的形态及生理特征二、原生动物的分类第四节 后生生物一、轮虫二、甲壳类动物三、线虫四、寡毛类动物思考题第五章 微生物的营养第一节 微生物细胞的化学组成一、微生物细胞的化学组成及元素组成二、微生物细胞内元素的比例第二节 微生物的营养物质一、水分二、碳源三、氮源四、无机盐五、生长因子第三节 微生物的营养类型一、光能无机营养型二、光能有机营养型三、化能无机营养型四、化能有机营养型第四节 培养基一、配制培养基的原则二、培养基的类型及应用第五节 微生物细胞获得营养的途径一、单纯扩散二、促进扩散三、主动运输四、基团转位五、膜泡运输思考题第六章 微生物的代谢第一节 微生物的酶和酶促反应一、酶的概念二、酶的分类与命名三、酶的组成四、酶的作用原理五、酶促反应第二节 微生物的产能代谢一、化能异养型微生物的产能代谢二、化能自养型微生物的产能代谢三、光能自养型微生物的能量代谢第三节 微生物的有机物质分解一、不含氮有机物的分解二、含氮有机物的分解第四节 微生物的代谢调节一、酶活性的调节二、酶合成的调节思考题第七章 微生物的生长繁殖第一节 微生物的纯培养一、纯培养的分离方法二、微生物生长量的测定方法第二节 微生物的生长曲线一、细菌的生长曲线二、细菌的连续培养三、细菌生长曲线在污(废)水处理中的应用思考题第八章 微生物的遗传和变异第一节 微生物的遗传一、遗传的物质基础二、核酸的种类和结构三、遗传信息的传递第二节 微生物的突变一、突变的实质二、突变的类型第三节 基因重组一、原核生物的基因重组二、真核微生物的基因重组第四节 遗传工程技术在水处理工程中的应用一、遗传工程技术在水处理工程中的应用二、基因工程技术在水处理工程中的应用三、PCR技术的应用思考题第九章 微生物的生态第一节 水体中的微生物一、淡水中的微生物二、海水中的微生物三、水体自净四、污染水体的微生物生态学特征第二节 微生物个体生态学一、生态因子二、生物因子三、非生物因子第三节 微生物种群的生存竞争一、种内的生存竞争二、生态位第四节 生态系统一、生态系统的结构二、生态系统的功能三、生态演替思考题第十章 饮用水生物处理基本原理第一节 水的卫生细菌学一、水中的病原微生物二、大肠菌群和生活饮用水的细菌标准三、水的卫生细菌学检验四、水中的病毒及其检验基因工程学论文(生物)

微生物是包括细菌、病毒、真菌以及一些小型的原生动物等在内的一大类生物群体,它个体微小,却与人类生活密切相关。微生物在自然界中可谓“无处不在,无处不有”,涵盖了有益有害的众多种类,广泛涉及健康、医药、工农业、环保等诸多领域。 一般地,在中国大陆地区的教科书中,均将微生物划分为以下8大类:细菌、病毒、真菌、放线菌、立克次体、支原体、衣原体、螺旋体。 有些人误将真菌当作细菌,是一种比较普遍的误解。尤其以80年代以前未受过系统生物学教育者。 微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。世界卫生组织公布资料显示:传染病的发病率和病死率在所有疾病中占据第一位。微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。 微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。 微生物间的相互作用机制也相当奥秘。例如健康人肠道中即有大量细菌存在,称正常菌群,其中包含的细菌种类高达上百种。在肠道环境中这些细菌相互依存,互惠共生。食物、有毒物质甚至药物的分解与吸收,菌群在这些过程中发挥的作用,以及细菌之间的相互作用机制还不明了。一旦菌群失调,就会引起腹泻。 随着医学研究进入分子水平,人们对基因、遗传物质等专业术语也日渐熟悉。人们认识到,是遗传信息决定了生物体具有的生命特征,包括外部形态以及从事的生命活动等等,而生物体的基因组正是这些遗传信息的携带者。因此阐明生物体基因组携带的遗传信息,将大大有助于揭示生命的起源和奥秘。在分子水平上研究微生物病原体的变异规律、毒力和致病性,对于传统微生物学来说是一场革命。 以人类基因组计划为代表的生物体基因组研究成为整个生命科学研究的前沿,而微生物基因组研究又是其中的重要分支。世界权威性杂志《科学》曾将微生物基因组研究评为世界重大科学进展之一。通过基因组研究揭示微生物的遗传机制,发现重要的功能基因并在此基础上发展疫苗,开发新型抗病毒、抗细菌、真菌药物,将对有效地控制新老传染病的流行,促进医疗健康事业的迅速发展和壮大! 从分子水平上对微生物进行基因组研究为探索微生物个体以及群体间作用的奥秘提供了新的线索和思路。为了充分开发微生物(特别是细菌)资源,1994年美国发起了微生物基因组研究计划(MGP)。通过研究完整的基因组信息开发和利用微生物重要的功能基因,不仅能够加深对微生物的致病机制、重要代谢和调控机制的认识,更能在此基础上发展一系列与我们的生活密切相关的基因工程产品,包括:接种用的疫苗、治疗用的新药、诊断试剂和应用于工农业生产的各种酶制剂等等。通过基因工程方法的改造,促进新型菌株的构建和传统菌株的改造,全面促进微生物工业时代的来临。 工业微生物涉及食品、制药、冶金、采矿、石油、皮革、轻化工等多种行业。通过微生物发酵途径生产抗生素、丁醇、维生素C以及一些风味食品的制备等;某些特殊微生物酶参与皮革脱毛、冶金、采油采矿等生产过程,甚至直接作为洗衣粉等的添加剂;另外还有一些微生物的代谢产物可以作为天然的微生物杀虫剂广泛应用于农业生产。通过对枯草芽孢杆菌的基因组研究,发现了一系列与抗生素及重要工业用酶的产生相关的基因。乳酸杆菌作为一种重要的微生态调节剂参与食品发酵过程,对其进行的基因组学研究将有利于找到关键的功能基因,然后对菌株加以改造,使其更适于工业化的生产过程。国内维生素C两步发酵法生产过程中的关键菌株氧化葡萄糖酸杆菌的基因组研究,将在基因组测序完成的前提下找到与维生素C生产相关的重要代谢功能基因,经基因工程改造,实现新的工程菌株的构建,简化生产步骤,降低生产成本,继而实现经济效益的大幅度提升。对工业微生物开展的基因组研究,不断发现新的特殊酶基因及重要代谢过程和代谢产物生成相关的功能基因,并将其应用于生产以及传统工业、工艺的改造,同时推动现代生物技术的迅速发展。 农业微生物基因组研究认清致病机制发展控制病害的新对策 据资料统计,全球每年因病害导致的农作物减产可高达20%,其中植物的细菌性病害最为严重。除了培植在遗传上对病害有抗性的品种以及加强园艺管理外,似乎没有更好的病害防治策略。因此积极开展某些植物致病微生物的基因组研究,认清其致病机制并由此发展控制病害的新对策显得十分紧迫。 经济作物柑橘的致病菌是国际上第一个发表了全序列的植物致病微生物。还有一些在分类学、生理学和经济价值上非常重要的农业微生物,例如:胡萝卜欧文氏菌、植物致病性假单胞菌以及我国正在开展的黄单胞菌的研究等正在进行之中。日前植物固氮根瘤菌的全序列也刚刚测定完成。借鉴已经较为成熟的从人类病原微生物的基因组学信息筛选治疗性药物的方案,可以尝试性地应用到植物病原体上。特别像柑橘的致病菌这种需要昆虫媒介才能完成生活周期的种类,除了杀虫剂能阻断其生活周期以外,只能通过遗传学研究找到毒力相关因子,寻找抗性靶位以发展更有效的控制对策。固氮菌全部遗传信息的解析对于开发利用其固氮关键基因提高农作物的产量和质量也具有重要的意义。 环境保护微生物基因组研究找到关键基因降解不同污染物 在全面推进经济发展的同时,滥用资源、破坏环境的现象也日益严重。面对全球环境的一再恶化,提倡环保成为全世界人民的共同呼声。而生物除污在环境污染治理中潜力巨大,微生物参与治理则是生物除污的主流。微生物可降解塑料、甲苯等有机物;还能处理工业废水中的磷酸盐、含硫废气以及土壤的改良等。微生物能够分解纤维素等物质,并促进资源的再生利用。对这些微生物开展的基因组研究,在深入了解特殊代谢过程的遗传背景的前提下,有选择性的加以利用,例如找到不同污染物降解的关键基因,将其在某一菌株中组合,构建高效能的基因工程菌株,一菌多用,可同时降解不同的环境污染物质,极大发挥其改善环境、排除污染的潜力。美国基因组研究所结合生物芯片方法对微生物进行了特殊条件下的表达谱的研究,以期找到其降解有机物的关键基因,为开发及利用确定目标。 极端环境微生物基因组研究深入认识生命本质应用潜力极大 在极端环境下能够生长的微生物称为极端微生物,又称嗜极菌。嗜极菌对极端环境具有很强的适应性,极端微生物基因组的研究有助于从分子水平研究极限条件下微生物的适应性,加深对生命本质的认识。 有一种嗜极菌,它能够暴露于数千倍强度的辐射下仍能存活,而人类一个剂量强度就会死亡。该细菌的染色体在接受几百万拉德a射线后粉碎为数百个片段,但能在一天内将其恢复。研究其DNA修复机制对于发展在辐射污染区进行环境的生物治理非常有意义。开发利用嗜极菌的极限特性可以突破当前生物技术领域中的一些局限,建立新的技术手段,使环境、能源、农业、健康、轻化工等领域的生物技术能力发生革命。来自极端微生物的极端酶,可在极端环境下行使功能,将极大地拓展酶的应用空间,是建立高效率、低成本生物技术加工过程的基础,例如PCR技术中的TagDNA聚合酶、洗涤剂中的碱性酶等都具有代表意义。极端微生物的研究与应用将是取得现代生物技术优势的重要途径,其在新酶、新药开发及环境整治方面应用潜力极大

已发至邮箱,请查收采纳!

关于微生物细菌的论文,酵母菌

利用电脑先查些资料 然后根据题意展开联想 想象要丰富 才能得高分

微生物在单细胞蛋白中的应用一 摘要 微生物细胞含有丰富的蛋白质,而这正是人和动物不可缺少的营养物质,这是微生物食品倍受青睐的一个原因。人们热衷于微生物食品的开发,还有一个重要的原因,就是它可以解决因人们对蛋白质的需求增加而导致的粮食供求矛盾。 关键词 微生物细胞 蛋白质 营养物质二 引言 食品特别是蛋白质的短缺,正在对我们人类构成威胁。在这种情况下,开发新的食品资源就显得十分重要。在我们食用的各种食品中,除了动物食品和植物食品外,还包含了微生物食品。事实上,人类在很早的时候就开始食用微生物了,比如说我们所食用的味道鲜美的香茹,就是真菌形成的菌落,其他还有木耳、猴头、灵芝等,都是极具营养价值和药用价值的食用微生物。现已被人们广泛栽培和利用。三 正文单细胞蛋白定义单细胞蛋白是通过培养单细胞生物而获得的菌体蛋白质。单细胞蛋白的优点一 SCP营养丰富 二 利用原料广 可就地取材,廉价大量地解决原料问题。三 生产速率高 一般蛋白质生产速度同猪、牛、羊等体重的倍增时间成正比。四 劳动生产率高 生产不受季节气候的制约,易于人工控制,同时由于在大型发酵罐中立体式培养占地面积少。五 可以完全工业化生产 单细胞蛋白生产比农业生产需要的劳动力少,又不受地区、季节和气候条件的制约,可在占地有限的小设备上进行,不仅数量大,而且质量好,远远超过现有粮食品种的蛋白质。六 单细胞生物易诱变,比动、植物品种容易改良 可采用物理、化学、生物学方法定向诱变育种,获得蛋白质含量高、质量好、味美,并易于提取蛋白质的优良菌种。单细胞蛋白种类与具备条件及生产过程用于生产单细胞蛋白的微生物种类很多,包括细菌、放线菌、酵母菌、霉菌以及某些原生生物。这些微生物通常要具备下列条件:所生产的蛋白质等营养物质含量高,对人体无致病作用,味道好并且易消化吸收,对培养条件要求简单,生长繁殖迅速等。单细胞蛋白的生产过程也比较简单:在培养液配制及灭菌完成以后,将它们和菌种投放到发酵罐中,控制好发酵条件,菌种就会迅速繁殖;发酵完毕,用离心、沉淀等方法收集菌体,最后经过干燥处理,就制成了单细胞蛋白成品。单细胞蛋白特性(1)在理想情况下,菌种甚易使单细胞蛋白质产量倍加,而其所需时间要比使农作物蛋白质量倍增所消耗时间快500倍,比其他一般饲养家畜产量所耗的时间倍增快1000-5000倍。(2)单细胞蛋白质研究发展的实验要比研究农作物或家畜的实验易于进行,而且在极短的时间内就可得到有价值的数据与结果。(3)单细胞蛋白质的生产不受季节,空间,阳光的种种限制。单细胞蛋白的作用通过微生物发酵可以生产大量的微生物蛋白,不仅可供人类直接食用,也可作为家畜、家禽的高蛋白饲料,为我们提供质优价高的肉类蛋白,它的脂肪含量只有瘦牛肉的10%,深受广大消费者的欢迎。一方面微生物蛋白食品的开发可以缓解耕地减少、粮食紧缺的矛盾,另一方面高蛋白的微生物蛋白食品的开发,也有利于改善人们的食品结构。1 作为畜禽饲料添加剂据分析,酵母单细胞蛋白中蛋白质含量为45%-55%,比大豆高30%以上;细菌的单细胞蛋白中蛋白质的含量高达70%,比大豆高50%,比鱼粉高20%。因此,在各类饲料中加入单细胞蛋白添加剂,可以取得诸如使猪长得更快、牛产奶更多这样的效果。如在畜禽的饲料中,只要添加3%~10%的单细胞蛋白,便能大大提高饲料的营养价值和利用率。2 作为食用蛋白质 单细胞蛋白所含的营养物质极为丰富。其中,蛋白质含量高达40%~80%,比大豆高10%~20%,比肉、鱼、奶酪高20%以上;氨基酸的组成较为齐全,含有人体必需的8种氨基酸,尤其是谷物中含量较少的赖氨酸。单细胞蛋白中还含有多种维生素、碳水化合物、脂类、矿物质,以及丰富的酶类和生物活性物质,如辅酶A、辅酶Q、谷胱甘肽、麦角固醇等。单细胞蛋白不仅能制成“人造肉”供人们直接食用,而且还能提高食品的某些物理性能。开发单细胞蛋白的意义 蛋白质是维持生命的基本物质,它是组成人体器官、组织和体内酶、激素以及免疫球蛋白的主要成分。全世界蛋白质缺乏的问题已存在多年,生物技术开发单细胞蛋白是解决这一问题的重要途径。单细胞蛋白是现代饲料工业和食品工业中重要的蛋白来源。但单细胞蛋白作为当前比较尖端的科技产品,还处于刚刚起步阶段,尤其在我国还不成熟,其发展前景是广阔的。四 参考文献[1]李丽立 杨坤明 现代生物技术与畜牧业[2]栾玉静 单细胞蛋白的开发利用[3]魏瑶 单细胞蛋白

yeast  以糖类、淀粉和其它工农业副产物为原料,用发酵培养法生产的微生物制品。是酵母菌的简称。酵母是人类直接食用量最大的一种微生物。 1986年,全世界面包酵母的年产量为180万吨 (以30%固形物计)。酵母菌体含有丰富的蛋白质、脂肪、糖分和B族维生素等,以及酶、辅酶、核糖核酸、甾醇和一些新陈代谢的中间产物。有些酵母菌如酿酒酵母在嫌气条件下具有将糖转化为乙醇和二氧化碳的能力。  发展简史 公元前2300年,人类就开始利用含酵母的“老酵”制作面包。从埃及塞倍斯(Thebes)地区出土的面包房和酿酒房的残余模型看,早在公元前2000 年人类就已较好地利用酵母制作发酵食品和酿酒。公元前13世纪,面包焙烤的技术从埃及传到地中海和其它地区。1680年 Avan列文虎克用显微镜从一滴啤酒中发现酵母细胞,不久,人类就开始有意识地利用酵母(啤酒酵母泥)发面。酵母的重要性逐渐引起工业界的注意。  19世纪中期,欧洲工业革命产生了大量人口密集地区,要求工业界大规模的生产面包酵母以满足生产面包的需要。1846年,奥地利人 M马克霍夫在维也纳建立世界上第一个酵母厂。该厂以粮食为原料,采用温和的通风培养法同时得到酵母和酒精,此法被称为“维也纳法”。因为是采用压榨机将 酵母从培养液中分离出来,所以产品称为“压榨酵母”。1876年,法国人L巴斯德关于空气中的氧能促进酵母繁殖理论的发表,为大规模通风培养生产酵母奠定了基础。20世纪初期,由于酵母离心机的问世,丹麦和德国开始采用楚劳夫(Zulauf)法生产酵母,即将糖液缓慢地流入通风的发酵液内,俗称“流加培 养法”、“批式培养法”。楚劳夫法产品得率高,原料消耗低,过程易于控制,一直沿用至今,并不断得到改进和完善。20世纪20年代起,酵母生产用原料扩大 到使用糖蜜、木材水解液、亚硫酸纸浆废液和糖蜜酒精糟液等。60年代,以石油、煤炭和天然气等碳氢化合物及其二次加工产品(如醋酸、乙醇和甲醇等)为原料的工厂相继建立,改变了长期以来人们利用碳水化合物为原料的传统。  第一次世界大战爆发不久,德国开始研究用现代化方法生产酵母,以解决粮食缺乏和生产成本高的问题。至此,生产的实践和科学的发展为活性干酵母的生产提供了条件。第二次世界大战的爆发客观上推动了酵母生产的发展。由于压榨酵母含水量高,易于腐败,需要冷藏车运输等因素,不能满足战时特 殊环境的要求,导致活性干酵母的大规模生产。1945年,美国和欧洲一些军事机构、工厂共生产 400多万磅活性干酵母供战时急需。活性干酵母除主要供应面包和糕点等焙烤行业外,已扩大到在酿酒主要是葡萄酒和其它果酒酿造中应用。由于遗传工程和干燥技术的发展,一种新型的、高发酵力的、可直接与面粉混合使用制成面团的快速活性干酵母在60年代末问世,由荷兰古斯特公司首先开发和生产。  中国的酵母生产始于1922年。1949年以前只有上海大华利卫生食料厂和上海新亚酵素厂生产面包酵母,年产量仅为12t(以干酵 母计)。50年代,中国的酵母生产有了较大的发展,建立了数十家生产厂,并形成了独立的工业体系,80年代初,酵母生产厂已迅速增加到40多家。广东省酵 母生产居全国首位,到1988年,已建成年产2kt快速活性干酵母工厂两家。此外,江苏、河南等地建成利用味精废液、酒精废液等生产饲料酵母的工厂,年产量为 100~500t。面包酵母的种类已由单一的压榨酵母增加了活性干酵母、快速活性干酵母。食用酵母、药用醇母和饲料酵母的生产也有不同程度的发展。 1985年,中国酵母总产量已达11kt,其中面包酵母为5kt左右。  世界酵母生产正向大型化和自动化方向发展,生产过程已由计算机控制,劳动生产率高,如丹麦酒精公司酵母厂平均每人每年生产200t 压榨酵母。面包酵母产量较大的有荷兰吉斯特公司,年产量为200kt,其中一半加工成快速活性干酵母出口;法国勒沙夫公司为150kt;美国环球食品公司 为120kt。  产品种类 酵母产品有几种分类方法。以人类食用和作动物饲料的不同目的可分成食用酵母和饲料酵母。食用酵母中又分成面包酵母、食品酵母和药用酵母等。  面包酵母 又分压榨酵母、活性干酵母和快速活性干酵母。  ①压榨酵母:采用酿酒酵母生产的含水分70~73%的块状产品。呈淡黄色,具有紧密的结构且易粉碎,有强的发面能力。在4℃可保藏1个 月左右,在0℃能保藏2~3个月。产品最初是用板框压滤机将离心后的酵母乳压榨脱水得到的,因而被称为压榨酵母,俗称鲜酵母。发面时,其用量为面粉量的 1~2%,发面温度为28~30℃,发面时间随酵母用量、发面温度和面团含糖量等因素而异,一般为1~3小时。  ②活性干酵母:采用酿酒酵母生产的含水分8%左右、颗粒状、具有发面能力的干酵母产品。采用具有耐干燥能力、发酵力稳定的醇母经培养得到鲜酵母,再经挤压成型和干燥而制成。发酵效果与压榨酵母相近。产品用真空或充惰性气体(如氮气或二氧化碳)的铝箔袋或金属罐包装,货架寿命为半年到 1年。与压榨酵母相比,它具有保藏期长,不需低温保藏,运输和使用方便等优点。  ③快速活性干酵母:一种新型的具有快速高效发酵力的细小颗粒状(直径小于1mm)产品。水分含量为4~6%。它是在活性干酵母的基 础上,采用遗传工程技术获得高度耐干燥的酿酒酵母菌株,经特殊的营养配比和严格的增殖培养条件以及采用流化床干燥设备干燥而得。与活性干酵母相同,采用真 空或充惰气体保藏,货架寿命为1年以上。与活性干酵母相比,颗粒较小,发酵力高,使用时不需先水化而可直接与面粉混合加水制成面团发酵,在短时间内发酵完毕即可焙烤成食品。该产品在本世纪70年代才在市场上出现,深受消费者的欢迎。  食品酵母 不具有发酵力的繁殖能力,供人类食用的干酵母粉或颗粒状产品。它可通过回收啤酒厂的酵母泥、或为了人类营养的要求专门培养并干燥而得。美国、日本及欧洲一些国家在普通的粮食制品如面包、蛋糕、饼干和烤饼中掺入 5%左右的食用酵母粉以提高食品的营养价值。酵母自溶物可作为肉类、果酱、汤类、奶酪、面包类食品、蔬菜及调味料的添加剂;在婴儿食品、健康食品中作为食品营养强化剂。由酵母自溶浸出物制得的5′-核苷酸与味精配合可作为强化食品风味的添加剂(见核苷酸类调味料)。从酵母中提取的浓缩转化酶用作方蛋夹心巧克力的液化剂。从以乳清为原料生产的酵母中提取的乳糖酶,可用于牛奶加工以增加甜度,防止乳清浓缩液中乳糖的结晶,适应不耐乳糖症的消费者的需要。  药用酵母 制造方法和性质与食品酵母相同。由于它含有丰富的蛋白质、维生素和酶等生理活性物质,医药上将其制成酵母片如食母生片,用于治疗因不合理的饮食引起的消化不良症。体质衰弱的人服用后能起到一定程度的调整新陈代谢机能的作用。在酵母培养过程中,如添加一些特殊的元素制成含硒、铬等微量元素的酵母,对一些疾 病具有一定的疗效。如含硒酵母用于治疗克山病和大骨节病,并有一定防止细胞衰老的作用;含铬酵母可用于治疗糖尿病等。  饲料酵母 通常用假丝酵母或脆壁克鲁维酵母经培养、干燥制成。是不具有发酵力,细胞呈死亡状态的粉末状或颗粒状产品。它含有丰富的蛋白质(30~40%左右)、B 族维生素、氨基酸等物质,广泛用作动物饲料的蛋白质补充物。它能促进动物的生长发育,缩短饲养期,增加肉量和蛋量,改良肉质和提高瘦肉率,改善皮毛的光泽度,并能增强幼禽畜的抗病能力。  产品质量 面包酵母的主要质量指针是发酵力,即在一定时间、温度和一定种类的面团中发酵排出的二氧化碳量(以ml数表示)。目前世界上通用的测定方法为黑达克面团 法。美国、西欧国家和中国等采用此法。苏联采用面团发酵后增加的体积量计算酵母的发酵力。罗马尼亚采用将面团沉入水中,计算面团浮到水面所需的时间计算酵母的发酵力。由于各酵母厂采用的测定条件如温度、时间、酵母用量、面团种类不同,尚没有统一的国际标准。一般发酵力的范围为500~1200,数值越大表 明酵母的发酵力越高,产品质量越好。食品酵母和药用酵母主要以蛋白质和 B族维生素含量为标准。饲料酵母主要以蛋白质含量为分级标准。  生理  酵母营专性或兼性好氧生活,目前未知专性厌氧的酵母。在缺乏氧气时,发酵型的酵母通过将糖类转化成为二氧化碳和乙醇来获取能量。  C6H12O6 (葡萄糖) →2C2H5OH + 2CO2  在酿酒过程中,乙醇被保留下来;在烤面包或蒸馒头的过程中,二氧化碳将面团发起,而酒精则挥发。  生殖  酵母可以通过出芽进行无性生殖,也可以通过形成子囊孢子进行有性生殖。无性生殖即在环境条件适合时,从母细胞上长出一个芽,逐渐长到成熟大小后与母体分离。在营养状况不好时,一些可进行有性生殖的酵母会形成孢子,在条件适合时再萌发。一些酵母,如假丝酵母(或称念珠菌,Candida)不能进行无性繁殖。  生产方法  利用发酵工业中常用的通风流加培养法,将琼脂斜面试管内的纯种酵母经过数次逐级扩大增殖培养,再在发酵罐内增殖培养后,经过离心分离、压榨和干燥得到酵母产品。下图表示以糖蜜为原料生产面包酵母的流程。  分离  多数酵母可以分离于富含糖类的环境中,比如一些水果(葡萄、苹果、桃等)或者植物分泌物(如仙人掌的汁)。一些酵母在昆虫体内生活。  用途  最常提到的酵母酿酒酵母(也称面包酵母)(Saccharomyces cerevisiae),自从几千年前人类就用其发酵面包和酒类,在酦酵面包和馒头的过程中面团中会放出二氧化碳。  在医药工业中,酵母及其制品用于治疗某些消化不良症,并能提高和调整人体的新陈代谢机能。因此,药用酵母的生产在酵母工业中占有重要的地位。  因酵母属于简单的单细胞真核生物,易于培养,且生长迅速,被广泛用于现代生物学研究中。如酿酒酵母作为重要的模式生物,也是遗传学和分子生物学的重要研究材料。  危害  有些酵母菌对生物或用具是有害的,例如红酵母(Rhodotorula)会生长在浴帘等潮湿的家具上;白色假丝酵母(或称白色念珠菌)(Candida albicans)会生长在阴道衬壁等湿润的人类上皮组织。  酵母菌  在畜牧业中,酵母广泛用作精饲料以增加饲料中的蛋白质含量,对提高禽畜的出肉率、产蛋率和产乳率,对肉质的改良和毛皮质量的提高均有明显的效果。  ①菌种:用于生产面包酵母的菌种为酿酒酵母。用于生产食品酵母和药用酵母的菌种有酿酒酵母和葡萄汁酵母。用于生产饲料酵母的菌种有产朊假丝酵母和脆壁克鲁维酵母,后者也可用于生产食用酵母和用于制备酵母自溶物等产品。  ②原料:主要是甜菜糖蜜(见甜菜制糖)、甘蔗糖蜜(见甘蔗制糖)和粮食原料。甜菜糖蜜含糖量高(还原糖50%左右),生产出的酵母颜色较浅。由于其含有不能被酵母利用的甜菜碱,因此酵母废水中的生物需氧量(BOD)较 高。甘蔗糖蜜的含糖量稍低于甜菜糖蜜,酵母生长时必需的生物素含量较高,灰分含量也较高。生产酵母时,如能采用80%甜菜糖蜜和20%甘蔗糖蜜,得到的酵 母无论在质量上还是数量上都比较好。但不论何种糖蜜都含有妨害酵母生长和繁殖、影响最终产品质量的杂质,必须经过处理才能用于生产。常用的处理方法有硫酸或磷酸加热处理澄清法。糖蜜稀释后,加少量酸并升温到90~100℃,在该温度下维持5~0小时,然后加石灰乳中和至糖液的pH为0左右,用 自然沉清法或机械分离法得到澄清的糖液供酵母生长和繁殖用。  玉米、小麦和土豆等也可作为生产酵母的原料。但由于酵母不能直接利用淀粉,必须用酸或酶法将淀粉水解为糖。由于淀粉水解和其它因素的影响,培养酵母的条件亦与糖蜜不同。此外,亚硫酸纸浆废液、木材水解液、乳清以及酒精废液和味精废液等都可作为生产饲料酵母的原料。苏联等国利用正烷烃和 甲醇等石油加工产品作为生产饲料酵母的原料。  为了保证酵母生长繁殖,除供应上述的碳源外,还必需添加一定量的营养盐如磷酸铵、硫酸铵、硫酸镁、氨水和尿素等作为氮源和磷源。为了使面包酵母具有高的发酵力,添加的氮源与磷源量应有一定的比例。此外,生物素、泛酸、肌醇和硫胺素等都是酵母生长和繁殖的基本要素,可根据产品的种类及所用的原料加以适量补充。  ③增殖培养:从实验室的斜面试管纯种开始,在严格的无菌条件下,经三角瓶(500~5000ml)、卡氏罐(10l)、种母罐 (500~10000l)等逐级扩大培养,使酵母细胞量成倍增加,然后将种母罐内的酵母作为种母接入发酵罐,用通风流加培养法得到酵母,称为第一代酵母。继续用这种酵母为种母进行培养得到第二代酵母。用同样方法得到第三代酵母即为商品酵母。从三角瓶培养到种母罐培养一般采用12°Be′麦芽汁为培养基, 30℃微量通风培养12~24小时。如种母罐较大,可采用部分麦芽汁和部分糖蜜为培养基,30℃通风培养12~14小时,培养结束时,用显微镜检查酵母的 生长情况,酵母细胞应大小均匀,强壮,无杂菌。一般500l种母罐内培养可得到鲜酵母约5kg(以压榨酵母计)。  商品酵母的繁殖是在发酵罐 (50~200m3)内用通风流加培养法进行。将种母罐内的酵母加入发酵罐与一定量水混合成一定浓度,在通风条件下将糖液和营养盐按比例流加,30℃培养12~18小时。培养过程中残糖量控制在10~50g/100ml,并用氢氧化钠或碳酸钠调节培养液pH为5±5范围。通风量随发酵罐类型、培养条件及酵母种类而异,一般为1:1左右,即每分钟通入与发酵培养液体积 等量的空气。培养过程中产生的泡沫用食用油或合成消泡剂消泡。培养结束时,酵母浓度一般为4~6%(干基计)。在理想条件下,酵母细胞可在5小时内成 倍增长,可将100g糖转化为7g干细胞物质。  ④分离和压榨:酵母繁殖培养阶段结束后,用离心机将酵母从发酵液内分离出,用水将酵母乳洗涤2~3次,除去发酵液内酵母代谢副产物、 杂质和杂菌等。一般最终酵母乳内含有18~20%酵母(以压榨酵母计)。如酵母乳的颜色较深,可增加水洗涤次数和水量,或添加少量的酸至洗涤水中以增加洗涤效果。正常的酵母乳为乳白色或略带米黄色。酵母乳再经板框压滤机或真空转鼓过滤机脱水。脱水后的酵母成饼状,水分含量为70~73%,加入少许食油及调 整水分后,经挤压机挤压成一定形状和重量的块状产品(如50g和500g),用蜡纸包装成为产品,在0~4℃贮藏、销售。  ⑤干燥:将鲜酵母制成活性干酵母的干燥是技术要求很高的过程,要避免酵母在干燥过程中受热而丧失发酵力。传统的干燥方法是先将鲜酵母挤压成圆柱形(2~3mm长)后,在箱式干燥机内采用连续或间歇式干燥,热空气温度不超过40℃。此法所用设备简单,但干燥时间较长,发酵力损失较大。现采用此法生产活性干酵母的厂家已为数不多。  国际上普遍采用流化床干燥设备用于商品活性干酵母和快速活性干酵母的生产,分连续和间歇式两种。干燥过程中,酵母颗粒处于沸腾状态。干燥初期,酵母含水分较高,进入的空气温度可达100~150℃,酵母脱水速度较快;干燥后期空气温度应适当降低,使酵母温度始终维持在30~40℃ 之间,总的干燥时间约 1小时左右,随干燥机的形状、装料量、空气状况等而异。在干燥前,往鲜酵母内加入某些种类的乳化剂可以改善干醇母的再水化性能,增强酵母对热干燥的抵抗能 力,减少发酵力的损失。通常采用的乳化剂有单硬脂酸山梨糖醇酐、蔗糖酯和柠檬酸酯等,添加量为酵母干物质量的5~0%。为防止干酵母的氧化,亦可 添加少量的抗氧化剂如丁酰羟基苯甲醚等,添加量为1%。由于这些化合物的添加,使活性干酵母的贮藏稳定性大为改善。  食品酵母、药用酵母和饲料酵母的干燥较为简单。由于这些产品不要求保留酵母的发酵力,可采用离心喷雾干燥法和滚筒干燥法。

关于微生物细菌的论文选题

利用电脑先查些资料 然后根据题意展开联想 想象要丰富 才能得高分

什么时间要,专科本科。资料有一些可以发给你参考下。

微生物生态学是研究微生物与生物、非生物环境之间相互作用的现象、过程和机理。主要研究内容有:1 研究微生物生态学所用的传统和现代分子生物学方法;2 在正常自然环境中的微生物种类、分布及其随着不同的环境条件变化而发生的变化规律;3 在极端自然环境中的微生物种类和它们所起的作用,在极端环境中微生物的生命机理;4 在自然界中微生物之间的相互关系,微生物与动植物之间的相互关系,这些相互关系对自然界的影响和环境因素对这些相互关系的影响

关于微生物细菌的论文题目大全

利用电脑先查些资料 然后根据题意展开联想 想象要丰富 才能得高分

硝苯硫磷酯水解的一种黄杆菌与水沟中的细菌在低炭、低硝酸盐、低硫酸盐的连续培养中的竞争现象

相关百科
热门百科
首页
发表服务