职称论文百科

上海科技大学一年能发表多少论文

发布时间:2024-07-04 16:34:37

上海科技大学一年能发表多少论文

3-5万之间。上海科技大学硕士毕业论文的中文摘要字数为1500字左右,学校不一样,专业不一样,字数也就不一样,一般字数是指正文字数,上海科技大学硕士毕业论文的字数上海科技大学有规定的,是在3-5万之间的。硕士论文是硕士研究生所撰写的学术论文,具有一定的理论深度和更高的学术水平,更加强调作者思想观点的独创性,以及研究成果应具备更强的实用价值和更高的科学价值。

这所学校特别的牛,师资力量雄厚,而且所有的学生成绩都非常的好,都是佼佼者,想要进这所学校也不是普通人可以进去的。

上海科技大学( ShanghaiTech University ,简称上科大、 ShanghaiTech )是一所由上海市人民政府与中国科学院共同举办、共同建设,由上海市人民政府主管的全日制普通高等学校, 2013 年 9 月 30 日经教育部批准同意正式建立, 2022 年 2 月 14 日入选第二轮 “ 双一流 ” 建设高校。学校致力于服务国家经济社会发展战略,培养科技创新创业人才,提供科技解决方案及发挥思想库作用,积极投身高等教育改革、参与上海科创中心建设,努力建设一所小规模、高水平、国际化的研究型、创新型大学。,学校位于上海 — 浦东新区 — 张江高科技园中区,是建设中的张江综合性国家科学中心的重要组成部分,与上海同步辐射光源、国家蛋白质科学研究(上海)设施、中科院上海高等研究院、上海微小卫星工程中心、中科院上海药物所新药研发平台等国家级大科学设施和科研机构融为一体,与张江高新区的产业界、投资界有机衔接。学校新校园占地约 900 亩,总建筑面积约 70 万平方米,校园建设充分体现 “ 学生教师为本,教学科研融合,绿色环保智能 ” 的规划设计理念, 2015 年底基本建成, 2016 年全面投入使用。,学校以理工科为主,设立物质科学与技术学院、生命科学与技术学院、信息科学与技术学院、创业与管理学院、创意与艺术学院、人文科学研究院和生物医学工程学院,实行大学院制,学院下不设系。学校设立免疫化学研究所、 iHuman 研究所、数学科学研究所、大科学中心。,学校按照 1:10–1:12 的师生比建设一支 1000 人规模的教授队伍,规划选聘 500 位常任教授和 500 位特聘教授。其中,常任教授主要来源于国际著名大学的知名学者和优秀青年学者,实行常任教授制( Tenure System );特聘教授主要来源于中科院上海分院研究院所的优秀科学家以及国内外著名教授。截至 2021 年 12 月,学校已选聘 622 位教授(特聘教授 291 位,常任教授到位 312 位,教学教授 19 位),其中包括诺贝尔奖获得者 4 位、中国科学院院士 37 位、中国工程院院士 5 位、美国国家科学院院士 10 位、美国人文和科学院院士 7 人、英国皇家学会院士 2 位。,2014 年学校开始招收首届本科生,迄今已连续招收了 8 届 2884 名本科生, 2021 年面向全国 18 个省(市)选拔招录了 430 名本科生。 2013 年 -2016 年,学校与中国科学院大学联合招收培养硕士和硕博连读研究生。从 2017 年起,学校开始独立招收培养硕士和硕博连读研究生。迄今已连续招收了 9 届 5047 名研究生,其中 1421 名已转博。学校规划在校生规模为本科生 2000 名左右,研究生 4000 名左右。截至 2021 年 12 月,学校共有在校生 4995 名,其中本科生 1712 名,硕士研究生 2304 名,博士研究生 979 名。,学校围绕 “ 服务国家经济社会发展战略 ” 的办学使命,建立了学研结合、学创结合,书院学院协同育人的机制,注重培养学生 “ 立志、成才、报国、裕民 ” 的社会责任感,使之成长为具备扎实的科学技术知识和创新创业意识,深入了解中国国情和传统文化,同时具有国际视野,能够从事科学发现、高技术创新与新兴产业创业的拔尖人才。,本科生遵循 “ 宽口径、厚基础、小规模、国际化 ” 的原则,突出 “ 通(通识教育)、专(专业人才)、新(创新创业) ” 特色,不断完善由通识教育、专业教育、个性化教育构成的培养体系。强化中华文明、世界文明、科技文明教育,注重创新创业教育;所有本科生必修数、理、化、生、信息自然科学通识课,打下坚实理工科基础;专业课程与国际一流大学接轨,选用国际经典教材 / 教参。学校为每位本科生配备书院导师,在学习生活、创新实践、生涯规划等多方面为学生提供指导。学校注重将创新实践融入培养全过程:全体本科生前往全国 11 个省 16 个实践基地开展社会实践活动,全体本科生和部分研究生前往 102 家企业和园区开展产业实践活动。学校与国际一流大学建立了良好的合作关系,资助优秀本科生海外学习交流: 2016 年至今,共有 161 名本科生赴哈佛大学、麻省理工学院、加州大学伯克利分校、耶鲁大学、康奈尔大学等参加 “3+1” 交流项目; 2017 年至今,共有 45 名本科生赴牛津大学、加州大学伯克利分校、莱顿大学、卡耐基梅隆大学等参加暑期科研交流项目; 2015 年至今,共有 361 名本科生赴耶鲁大学、加州大学伯克利分校、意大利帕多瓦大学等参加暑期课程项目。,2018 年至今,学校共有 4 届 1114 名本科生毕业并获得上海科技大学学士学位。截止 2021 年 9 月,已毕业的本科生中,约 34% 到国(境)外攻读研究生学位,其中进入全球 TOP10 高校深造占比 20% ,进入全球 TOP20 高校深造占比 34% ,进入全球 TOP100 高校深造占比 83% ;约 44% 的毕业生到中国科学院大学、清华大学、上海交通大学、复旦大学、浙江大学、上海科技大学等国内高校攻读研究生学位;约 20% 的毕业生到微软、特斯拉、通用电气、诺华、 AMD 、和辉光电、上证信息、上海银行、汉高等国内外知名企业就业。,学校结合 “ 高水平研究生教育综合改革试点项目 ” ,不断深化研究生培养模式改革,提升研究生的原始创新能力。坚持按照一级学科制定培养方案,突破 “ 流水线式 ” 人才培养模式,注重研究生的 “ 个性化培养 ” ,要求研究生在导师指导下制定个人培养计划,鼓励研究生跨学科、跨学院选修课程。实行实验室轮转制,扩大研究生对学科专业、导师、课题的选择权,扩展研究生的知识结构和能力。坚持以硕博连读为主的连贯培养,实行严格的博士生资格考试。遵循 “ 科研中成长 ” 的研究生培养规律,探索有利于促进科技创新资源向人才培养聚集的新机制。结合重大科学设施和科研项目培养研究生,特别开设围绕大科学装置设施的专业课程、讲座报告、上机培训。鼓励学生利用先进的研究平台和尖端的技术手段,与导师共同开展基础性、战略性、前沿性科学研究。学校积极拓展与国际名校的研究生国际交流项目,资助研究生国际访学、参加国际会议,不断拓展学生的国际视野和学术交流能力。已开展加州大学伯克利分校 BeSTEC 项目、宾夕法尼亚大学交流项目、牛津大学交流项目、基于导师实质性科研合作的博士生国际交流计划等。,2016 年至今,学校已有 6 届硕士研究生、 4 届博士研究生毕业并授予中国科学院大学学位。 2020 年,首届 83 名硕士研究生、 15 名博士研究生毕业并授予上海科技大学学位。截止 2021 年 9 月,已毕业硕士研究生中,约 84% 到百度、华为、联影、国家电网、和辉光电、 AMD 、强生、 3M 、药明康德等国内外知名企业就业,约 14% 在加州大学伯克利分校、斯克利普斯研究所、康涅狄格大学、马普煤炭研究所、慕尼黑大学、东京大学、香港大学、南洋理工大学等国内外知名高校和科研机构攻读博士研究生学位;已毕业的博士研究生中,约 34% 到耶鲁大学、布鲁克海文国家实验室、密歇根大学、南加州大学、鲁汶大学、香港科技大学、清华大学等国内外知名高校做博士后, 62% 到华为、百度、华力、药明康德、联影、中国科学院等国内外知名企业和科研院所工作。,学校瞄准物质科学与技术、生命科学与技术和信息科学与技术的前沿领域,同时开展教授个体科研和围绕重大目标的团队科研,推动学科交叉融合、大学与国家级科研机构融合,构建科技进步驱动产业发展的完整创新价值链,针对国家在转型发展过程中所面临的一系列严峻挑战,探索基于科技创新的解决方案。截至 2021 年 11 月,学校已建立 378 个研究组,科研人员共参与发表科研论文 8580 篇,其中第一作者或通讯作者论文 4642 篇,以第一作者和通讯作者单位在 Nature 、 Science 、 Cell 、 Adv.Materials 、 Cell Stem Cell 、 JACS 、 Angew.Chem.Int.Ed. 、 Nat Comm. 、 TPAMI 、 PRL 等领域代表期刊上发表论文逾 800 篇。 2020 年我校研究团队在国际顶尖学术期刊 Cell 、 Nature 、 Science 上发表了 23 篇重大科研成果,其中 16 篇是以上科大为第一单位和主要完成单位。学校全力推进科技与教育的融合,参与中科院牵头的国家级科研项目,与中科院相关院所建立联合实验室开展全面科研合作。 2017 年 10 月,超强激光光源联合实验室实现 10 拍瓦( 1 拍瓦 =1 千万亿瓦)激光脉冲输出,达到国际领先水平。 2021 年 6 月,软 X 射线自由电子激光暨活细胞成像等线站装置研制成功并取得首批实验数据,当年 12 月生物成像实验站、表面化学实验站和超导转变边 X 射线探测器完成工艺测试,性能指标全面达标,标志我国在软 X 射线自由电子激光光束线站研制和使用方面步入国际先进行列。学校积极推动科教与产业的融合,与多家国内外高科技企业开展产学研合作,技术成果转移转化取得一系列进展。,2016 年 4 月 15 日,国务院发布《上海系统推进全面创新改革试验加快建设具有全球影响力的科技创新中心方案》,明确指出上科大在上海张江综合性国家科学中心建设中承担重要任务。目前,学校正与中科院上海分院科研院所等单位合作,负责或参与建设软 X 射线自由电子激光用户装置、活细胞结构和功能成像等线站工程、超强超短激光实验装置、上海光源二期线站工程(纳米自旋与磁学线站、高性能膜蛋白晶体学线站),牵头硬 X 射线自由电子激光装置的规划和建设,承担 “ 未来医学中心 ” 、 “ 未来科学中心 ” 等科创中心重点建设工作,力争为上海科创中心建设做出重要贡献。,学校积极投身教育国际合作,与多所国际一流大学在学生培养、合作科研、学术交流、课程共享、教师培训等方面开展全方位务实合作,并积极拓展与国内一流大学的交流合作关系。目前学校已与麻省理工学院、耶鲁大学、牛津大学、宾夕法尼亚大学、康奈尔大学、加州大学伯克利分校、约翰霍普金斯大学、杜克大学等欧美知名高校建立了良好的合作关系,合作院校还在不断增加。

上海科技大学在上海市浦东新区。

上海科技大学(ShanghaiTech University)简称上科大,是一所由上海市人民政府与中国科学院共同举办、共同建设,由上海市人民政府主管的全日制普通高等学校。上海科技大学于2013年9月30日经教育部批准同意正式建立。2013年至2016年,学校与中国科学院大学联合招收了4届硕博连读研究生。2014年,开始招收本科生。从2017年起,学校可独立招收、培养硕士和博士研究生。2018年,学校获批成为博士、硕士学位授予单位。

材料补充:

上海科技大学设置的学院主要有:物质科学与技术学院、生命科学与技术学院、信息科学与技术学院、创业与管理学院、创意与艺术学院。各学院研究领域和方向主要有:材料物理与凝聚态物理、光谱仪器科学、材料系统工程、蛋白质科学与生物技术、系统生物学与转化医学、干细胞生物学与再生医学、定量生物学与分子影像学、化学生物学与创新药物、传感器技术、低能耗与智能系统研究、光电技术、集成电路与设计、电子器件与材料、无线通信技术、信号与信息处理、信息理论与编码。

上海科技大学非常厉害,师资力量非常雄厚,建校历史也非常悠久,培养了许多优秀的本科人才,也有非常好的研究生队伍,整体来说实力非常不错。

上海大学发表科技论文

上海大学经济学院致力于建设“国内一流、国际知名的高水平研究型经济学院”,科研是学院发展的重要引擎。学院旗下有上海大学智库产业研究中心、上海科技金融研究所、中国政府效率研究中心、服务贸易研究中心、产业经济研究中心、金融信息研究中心、城市经济研究所等市级、校级研究中心。学院教师近年来承担了100多项国家自然科学基金、国家哲学社会科学基金、教育部人文社科研究项目、上海市社科基金、上海市决策咨询课题;出版一批学术专著,在国内外核心刊物发表中英文论文数百篇,包括几十篇被SSCI与三大国际索引收录的英文论文;获得国内国际各种科研奖项数十项。学院已初步建立起与上海大学研究型大学定位相匹配的经济、金融研究体系,为上海乃至全国的经济发展提供强大的智力支持。 上海大学智库与智库产业研究中心(以下简称智库产业中心)是为了对接国家及上海市加快智库建设的需求,根据中央领导有关指示精神,于2014年成立的校级智库研究机构,是全球首家智库产业研究机构。中心由十一届全国政协副主席厉无畏担任中心名誉主任、学术委员会主席。上海大学党委副书记、副校长徐旭、中国少数民族文物保护协会执行副会长、东中西部区域发展和改革研究院执行院长于今联合担任主任。智库产业研究中心挂靠上海大学经济学院旗下,以“特色鲜明、功能互补、整体优化、形成合力”的中国特色智库体系”为发展目标,集聚了一大批校内外的经济学、管理学、政治学、国际关系学等领域的专家学者和政府管理人员,立足国家战略,充分发挥专家的智慧, 夯实智库产业的相关理论基础,并在一些全球性问题、国际关系问题、国家发展战略等热点和焦点问题上充分发挥本区域专家和学者的作用,形成一些具有决策咨询和政策指导意义的智囊观点,为国家战略的制定、政策的制定与调整贡献力量。在学术交流方面,除参加各种国内外学术会议外,中心经常邀请国内外著名学者、政要、企业家等来中心讲学和访问。定期举办“经济理论与政策研究”、“智库产业研究”、“智库论坛”、“新政分析”等系列讲座;不定期主办或与国内外其它机构合办国际性学术会议,以加强学术交流和提高研究水平或对国内外重大政策问题进行讨论。中心还设立客座研究项目,每年邀请国内外经济学者到中心进行短期客座研究。中心还出版内部讨论稿、简报以及各种出版物。内部讨论稿为中英文双语刊物,刊登中心研究人员、客座研究人员及其它学者的学术研究成果。内部讨论稿主要用于国内外学术机构、政策研究部门和学者之间的交流。中心不定期出版的简报主要用于向决策部门及媒体报道中心的活动和介绍中心的研究成果。上海大学智库产业研究中心将以国家发展、上海发展为核心议题,立足于中国改革发展与现代化的实践,致力于智库产业国际化、规范化、本土化的理论研究,推进智库产业学科体系、学术观点和研究方法的创新。同时,该研究中心将按照产学研管的科研模式以及跨学科、跨领域、跨行业的运作机制,在智库领域开展学术研究、人才培养、产业实践和国际国内学术交流与合作,前瞻性地提出重大的战略、制度、政策和基础理论问题,成为中国综合性知识的学界思想库。 上海大学产业经济研究中心现有专职研究人员6人,其中正教授2人,副教授4人,中心主任为李骏阳教授,副主任陈秋玲教授。研究中心已基本形成了以李骏阳教授为学科带头人、青年学术骨干为主体的研究团队。上海大学重点学科产业经济学硕士学位授予点挂靠在中心。 主要研究方向: ①流通产业研究②国内外贸易研究③区域与城市产业经济④产业规划与布局研究⑤环保产业与循环经济发展研究⑥产业组织与企业战略管理⑦产业经济理论与政策⑧产业融合及创新研究等 姓名性别职称学位研究专长李骏阳男 教授硕士商贸流通产业陈秋玲女教授博士城市经济与风险管理巫景飞男副教授博士产业经济乌力吉图男副教授博士环境经济祝影女副教授博士区域经济与产业发展张赞女副教授博士商贸流通产业 上海大学中国服务经济研究中心于2002年12月成立(成立时为服务贸易研究中心,后更名)致力于服务经济的教学与研究工作,是国内最早进入该领域的团队之一。中心主任为殷凤教授,成员包括韩太祥、陈秋玲、尹应凯、许玲丽、杨玲等。至今已建立了比较坚实的学术基础,组建起一支结构合理、科研能力强的学术团队,取得了一系列科研成果,近年来纵向课题数量、高质量的专著和论文数稳步上升,取得了广泛的社会认可,产生了较大的学术影响,为促进经济、社会发展以及凝聚和培养人才发挥了重要作用。中心密切跟踪服务经济理论前沿,将服务经济研究纳入现代主流经济学的理论与经验分析框架中,运用微观经济学、宏观经济学、产业经济学、国际贸易学等相关学科的原理与方法,对西方服务经济理论在中国的适用性进行了研究,并根据理论研究和实证检验的结果,初步构建起体现中国特色的服务经济理论框架。同时,动态把握世界与中国服务经济与服务贸易发展状况与趋势,关注与之有关的热点问题,研究中国服务经济发展的内在规律、个性、共性以及存在的问题及解决办法,采用较为先进的研究方法和手段,及时进行多层次和多角度的专题性研究,以期为中国服务经济的发展提供政策建议和思路。近年来,中心共承担国家级课题6项,省部级课题10余项,在国内外高级别学术刊物如《管理世界》、《财贸经济》、《统计研究》、《改革》、《国际贸易问题》、《世界经济研究》等公开发表论文40余篇,并获省部级科研奖5项。自2005年始,中心每年推出《中国服务经济报告》,以主题报告、专题报告、统计资料和法规政策的形式,从不同的角度入手,对服务经济相关问题进行深入探讨,提供翔实的服务经济统计数据及相关的法规政策,并为服务经济在中国的发展提供系统的对策建议,该报告已成为服务经济领域重要的参考书。设计和建立了“中国城市服务经济指数体系”,其作用和目的在于揭示不同城市服务经济发展的总体水平和结构状况,为各有关城市发展服务经济提供一些有益的启示,为城市制定发展战略和相关政策提供依据,进而为中国服务经济的健康持续发展提供智力支持。中心每年都对外公开发布“中国城市服务经济指数”和“长三角地区16城市服务经济指数”。 上海大学金融信息研究中心(The Financial Information Research Center 0f Shanghai University,简称SHHFIRC)成立于2005年4月,是依托于上海大学经济学院的交叉学科研究机构,重点关注金融信息系统、金融信息监测与评估和金融信息管理等方面的学术研究和应用探索。SHHFIRC利用交叉学科的优势,对金融信息的非线性、混沌、突变、自组织和非还原等特征所引起的金融危机展开研究;对金融信息的统计指标监测和用场理论来解释金融定价方面做了些研究;针对网络信息的问题对新的有关金融信息搜集、甄别、分析的理论和方法等新问题开展了研究;除此之外,SHHFIRC也密切关注与当前中国新兴的金融市场机制和交易系统相关的学术探讨和应用研究;密切跟踪和研究上海国际金融中心建设过程中所面临的问题,努力为上海国际金融中心的建设抛砖引玉。希望通过SHHFIRC研究中心这样一个跨学科、高起点的科研平台,整合上海大学在金融信息领域的各方力量和金融界校友的深厚资源,努力打造上海大学的具有实力的研究高地,成为金融信息领域科学研究的高端平台,能够促进金融信息领域的科学研究水平和自主创新能力,成为上海金融、统计、信息科技人才战略高地。中心负责人倪中新博士,成员赵贞玉、刘建桥、李武、周影辉等。 上海大学政府效率研究中心的宗旨是通过对政府行为的研究,探索提升政府管理水平和提高政府运作效率的思路与对策。中心主任聂永有教授,成员张恒龙、钱海梅、余玖玖、祝 影、李 晨、卢正刚、赵蕾等。中心完成国家社科基金项目2项,教育部人文社科规划项目8项,上海市政府决策咨询重点研究课题1项,上海市教委创新重点课题5项,地方政府委托的专项研究课题1项(课题经费37万元)。中心参与主办2013年6月“2013智库筑基‘中国梦’——中国智库国际学术研讨会”。出席嘉宾包括国务院参事、东中西部区域发展和改革研究院院长任玉岭、中国经济体制改革研究会名誉会长高尚全、联合国副秘书长彼德·朗斯基·蒂芬索、著名经济学家、原中国民建中央主席,第九、十届全国人大常委会副委员长成思危,以及卢秋田、闪淳昌、乔良等知名学者。 与上海金融业联合会共建。中心主任为知名学者、上海大学副校长、博士生导师唐豪教授。

姓名:马宁(Ma Ning) 性别:女 籍贯:河北邢台 生日:1983.11.4 身高:1.73米 体重:80公斤 项目:田径 奥运会报名项目:女子标枪 辉煌战绩 最好成绩: 2003年亚洲田径锦标赛女子标枪冠军,个人最好纪录62米38 运动经历: 1995年在河北省邢台市体校开始田径训练,1997年在河北省体校训练,1998年入选河北省田径队,2003年入选国家田径集训队。 主要成绩: 2002年亚洲田径锦标赛女子标枪冠军 2003年全国田径锦标赛女子标枪冠军 2003年亚洲田径锦标赛女子标枪冠军 2004年全国田径锦标赛女子标枪亚军

姓名:马宁(Ma Ning) 性别:女 籍贯:河北邢台 生日:1983.11.4 身高:1.73米 体重:80公斤 项目:田径 奥运会报名项目:女子标枪

对。sci也就是学术论文,因为上海大学研究生毕业要求完成学位论文,并取得论文答辩通过,完成学位论文答辩后,在指定的时间内,完成学位论文报告,所以要求sci是真的。上海大学简称“上大”,位于上海市,是上海市属的综合性大学,国家“双一流”建设高校、国家“211工程”建设高校。

上海科技大学发表论文

上海科技大学非常厉害,师资力量非常雄厚,建校历史也非常悠久,培养了许多优秀的本科人才,也有非常好的研究生队伍,整体来说实力非常不错。

3-5万之间。上海科技大学硕士毕业论文的中文摘要字数为1500字左右,学校不一样,专业不一样,字数也就不一样,一般字数是指正文字数,上海科技大学硕士毕业论文的字数上海科技大学有规定的,是在3-5万之间的。硕士论文是硕士研究生所撰写的学术论文,具有一定的理论深度和更高的学术水平,更加强调作者思想观点的独创性,以及研究成果应具备更强的实用价值和更高的科学价值。

这所学校特别的牛,师资力量雄厚,而且所有的学生成绩都非常的好,都是佼佼者,想要进这所学校也不是普通人可以进去的。

从简单地剪切致病基因,到开发出不再传播疾病的工程动物,基因编辑技术已经释放出巨大的潜力。随着研究的深入,科学界还发现,除了编辑具有遗传讯息的DNA片段,编辑RNA可以在不改变基因组的情况下,帮助调整基因表达方式,此外,RNA的寿命是相对短暂的,这也意味着它的变化是可以逆转的,从而避免基因工程中的巨大风险。

2017年10月,来自Broad研究所的张锋研究团队在《自然》期刊上发表了题为“RNA targeting with CRISPR-Cas13”的文章,首次将CRISPR-Cas13系统公之于众,证实了CRISPR-Cas13可以靶向哺乳动物细胞中的RNA。仅仅时隔三周,又一篇名为“RNA editing with CRISPR-Cas13”的力作发表于《科学》期刊。在该研究中,张锋研究团队再次展示了这一RNA编辑系统,能有效地对RNA中的腺嘌呤进行编辑。

在CRISPR出现之前,RNAi是调节基因表达的理想方法。但是Cas13a酶一大优势在于更强的特异性,而且这种本身来自细菌的系统对哺乳动物细胞来说,并不是内源性的,因此不太可能干扰细胞中天然的转录。相反,RNAi利用内源性机制进行基因敲除,对本身的影响较大。但CRISPR-Cas13系统还有一个重要的问题,Cas13a酶本质上是一种相对较大的蛋白质,因此很难被包装到靶组织中,这也可能成为RNA编辑技术临床应用的一大障碍。

2018年3月16日,一项发表在《细胞》期刊的重磅成果为RNA编辑技术带来一大步飞跃,来自美国Salk研究所的科学家利用全新的CRISPR家族酶扩展了RNA编辑能力,并将这个新系统命名为“CasRx”。

CasRx(品红色)在人类细胞核中靶向RNA(灰色),Salk研究所

“生物工程师就像自然界的侦探一样,在DNA模式中寻找线索来帮助解决遗传疾病。CRISPR彻底改变了基因工程,我们希望将编辑工具从DNA扩展到RNA。”研究领导者Patrick Hsu博士表示,“RNA信息是许多生物过程的关键介质。在许多疾病中,这些RNA信息失去了平衡,因此直接靶向RNA的技术将成为DNA编辑的重要补充。”

除了高效性且无明显脱靶效应,新系统的一个关键特征是其依赖于一种比以前研究中物理尺寸更小的酶。 这对RNA编辑技术至关重要,这使得该编辑工具能够更容易被包装到病毒载体,并进入细胞进行RNA编辑。来自东京大学的科学家Hiroshi Nishimasu并未参与这项研究,他表示:“在这项研究中,研究人员发现了一种较Cas13d更加‘紧凑’的酶CasRx。从基础研究到治疗应用,我认为CasRx将成为非常有用的工具。”

此外,在这项研究中,研究人员还展示了利用这种新型RNA编辑系统来纠正RNA过程的能力。他们将CasRx包装到病毒载体中,并将其递送到利用额颞叶痴呆(FTD)患者干细胞中培养的神经细胞,最终使tau蛋白水平恢复到健康水平上,有效率达到80%。

Patrick Hsu博士最后说道:“基因编辑技术通过对DNA的切割带来基因序列的改变。在经过基因编辑的细胞中,其效果是永久的。虽然基因编辑技术能够很好地将基因完全关闭,但对调节基因的表达上并不那么优秀。展望未来,这一最新工具将在RNA生物学研究中发挥重要作用,并有望在未来凭借该技术对RNA相关疾病进行治疗。”

该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向Pten基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了Pten的高效沉默。

3月18日,《蛋白质与细胞》期刊在线发表了《Cas13d介导的肝脏基因表达下调对代谢功能的调控》的研究论文,该研究由中科院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组和上海科技大学生命科学与技术学院黄鹏羽研究组合作完成。该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向Pten基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了Pten的高效沉默,证实了CasRx系统在成体动物体内也具有靶向沉默RNA的活性,通过增强下游蛋白AKT的磷酸化,影响了糖脂代谢相关基因的表达。同时,利用AAV递送CasRx和靶向Pscsk9的sgRNA到小鼠肝脏,有效降低了肝脏中PCSK9的蛋白表达,以及小鼠血液中的胆固醇水平。这为治疗后天性的代谢疾病提供了新方案。

同时,杨辉研究组与上海交通大学医学院附属上海第一人民医院孙晓东研究组合作,也探究了CasRx预防严重的眼部疾病——年龄相关性黄斑变性(AMD)的可能性,研究人员发现在体内使用CasRx敲低Vegfa的mRNA可以显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积,验证了将RNA靶向的CRISPR系统用于治疗应用的潜力。相关研究论文《CasRx介导的RNA靶向策略可防止年龄相关的黄斑变性的小鼠模型中的脉络膜新生血管形成》3月3日在《国家科学评论》在线发表。

近年来,CRISPR/Cas9技术因其强大且便捷的DNA编辑能力而受到广泛关注。2016年,张锋实验室发现了一种新的Cas蛋白Cas13a,可以靶向RNA进行切割。之后人们又陆续发现了靶向RNA的Cas13b, Cas13c。由于Cas13家族蛋白靶向RNA的特点,理论上在一些特定疾病的检测和治疗上具有独特优势,因而成为近年来的研究热点。2018年,加州大学伯克利分校Patrick Hsu实验室发现了Cas13d家族。他们发现与RNA干扰技术相比,Cas13d介导的基因沉默具有更高的特异性(与数百个shRNA脱靶相比,Cas13d没有脱靶)和敲除效率(Cas13d达到96%,shRNA达到65%)。而与Cas9介导的基因敲除技术相比,Cas13d介导的基因沉默不会改变基因组DNA,因此这种基因沉默是可逆的,从而对一些后天性疾病(如因不良生活习惯导致的高血脂等后天代谢性疾病)的治疗更有优势。其中Cas13d家族的CasRx蛋白由于体积小,效率高,被认为是在未来应用中最具有优势的Cas13蛋白。

此前的工作都在细胞水平证明了CasRx的高效性和特异性,杨辉研究组的这两篇文章则更进一步在动物体内证明了CasRx的活性,为临床提供了可能性。为证明CasRx在动物体内的活性,研究人员分别针对目的基因进行了sgRNA的体外筛选,然后采用尾静脉注射敲低Pten的质粒、尾静脉注射敲低Pcsk9的AAV8病毒、眼部注射敲低Vegfa的AAV病毒。对注射后的小鼠进行相应分析,分别得到Pten基因下调及其下游蛋白AKT的磷酸化上调,Pcsk9下调造成血清胆固醇下调;Vegfa下调显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积。

2020年3月18日,《蛋白质与细胞》期刊在线发表了《Cas13d介导的肝脏基因表达下调对代谢功能的调控》的研究论文,该研究由中科院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室杨辉研究组和上海科技大学生命科学与技术学院黄鹏羽研究组合作完成。该研究探索了Cas13d家族蛋白CasRx敲低目的基因的最佳sgRNA组合,通过尾静脉注射质粒的方式,将CasRx系统和靶向 Pten 基因的sgRNA导入到小鼠肝脏细胞中,成功在小鼠肝脏中实现了 Pten 的高效沉默, 证实了CasRx系统在成体动物体内也具有靶向沉默RNA的活性, 通过增强下游蛋白AKT的磷酸化,影响了糖脂代谢相关基因的表达。同时,利用AAV递送CasRx和靶向 Pscsk9 的sgRNA到小鼠肝脏, 有效降低了肝脏中PCSK9的蛋白表达,以及小鼠血液中的胆固醇水平 。这为治疗后天性的代谢疾病提供了新方案。

同时,杨辉研究组与上海交通大学医学院附属上海第一人民医院孙晓东研究组合作,也 探究了CasRx预防严重的眼部疾病——年龄相关性黄斑变性(AMD)的可能性,研究人员发现在体内使用CasRx敲低 Vegfa的mRNA可以显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积**,验证了将RNA靶向的CRISPR系统用于治疗应用的潜力。相关研究论文《CasRx介导的RNA靶向策略可防止年龄相关的黄斑变性的小鼠模型中的脉络膜新生血管形成》3月3日在《国家科学评论》在线发表。

近年来,CRISPR/Cas9技术因其强大且便捷的DNA编辑能力而受到广泛关注。2016年,张锋实验室发现了一种新的Cas蛋白Cas13a,可以靶向RNA进行切割。之后人们又陆续发现了靶向RNA的Cas13b, Cas13c。由于Cas13家族蛋白靶向RNA的特点,理论上在一些特定疾病的检测和治疗上具有独特优势,因而成为近年来的研究热点。2018年,加州大学伯克利分校Patrick Hsu实验室发现了Cas13d家族。他们发现与RNA干扰技术相比,Cas13d介导的基因沉默具有更高的特异性(与数百个shRNA脱靶相比, Cas13d没有脱靶)和敲除效率(Cas13d达到96% ,shRNA达到65%)。而与Cas9介导的基因敲除技术相比, Cas13d介导的基因沉默不会改变基因组DNA,因此这种基因沉默是可逆的 ,从而对一些后天性疾病(如因不良生活习惯导致的高血脂等后天代谢性疾病)的治疗更有优势。其中Cas13d家族的CasRx蛋白由于体积小,效率高,被认为是在未来应用中最具有优势的Cas13蛋白。

此前的工作都在细胞水平证明了CasRx的高效性和特异性,杨辉研究组的这两篇文章则更进一步在动物体内证明了CasRx的活性,为临床提供了可能性 。为证明CasRx在动物体内的活性,研究人员分别针对目的基因进行了sgRNA的体外筛选,然后采用尾静脉注射敲低 Pten 的质粒、尾静脉注射敲低 Pcsk9 的AAV8病毒、眼部注射敲低 Vegfa 的AAV病毒。对注射后的小鼠进行相应分析,分别得到 Pten 基因下调及其下游蛋白AKT的磷酸化上调, Pcsk9 下调造成血清胆固醇下调; Vegfa 下调显著减少AMD小鼠模型中脉络膜新血管形成(CNV)的面积。

图1 CasRx介导的 Pten 体内体外的下调( Protein & Cell )

A.质粒示意图;B.N2a细胞中 Pten 的下调;C.Western检测PTEN及AKT的表达; D.CasRx与shRNA脱靶比较;E.尾静脉注射质粒示意图;F.G.H.免疫荧光,qPCR,western分别检测 Pten 及p-AKT的表达

图2 血清胆固醇的调节以及 Pcsk9 的可逆调控( Protein & Cell )

A.针对 Pcsk9 的AAV8病毒注射示意图;B.肝组织中 Pcsk9 的表达量;C.血清 PCSK9 的表达量;D.血清胆固醇水平;E.F.血清ALT和AST的测定;G.可逆调节注射示意图; H. Pcsk9 的动态调控。

图3 AAV介导CasRx减少了AMD小鼠模型中CNV的面积(National Science Review)

A.小鼠和人序列比较以及sgRNA示意图;B.C.在293T和N2a细胞中敲低 Vegfa ;D.VEGFA蛋白的表达;E.AAV病毒质粒示意图;F.实验流程图;G.CasRx的mRNA表达水平;H.I.激光烧伤之前或之后7天的 Vegfa mRNA水平;J.CNV诱导3天后的VEGFA蛋白水平;K.激光烧伤7天后,用PBS或AAV-CasRx- Vegfa 注射的代表性CNV图像;L.M.CNV面积统计。

2020 年 4 月 8 日, Cell 期刊在线发表了题为 《Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice》 的研究论文,该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室 杨辉 研究组完成。

该项研究通过运用最新开发的 RNA 靶向 CRISPR 系统 CasRx 特异性地在视网膜穆勒胶质细胞中敲低 Ptbp1 基因的表达,首次在成体中实现了视神经节细胞的再生,并且恢复了永久性视力损伤模型小鼠的视力。同时,该研究还证明了这项技术可以非常高效且特异地将纹状体内的星形胶质细胞转分化成多巴胺神经元,并且基本消除了帕金森疾病的症状。该研究将为未来众多神经退行性疾病的治疗提供一个新的途径。

人类的神经系统包含成百上千种不同类型的神经元细胞。在成熟的神经系统中,神经元一般不会再生,一旦死亡,就是永久性的。神经元的死亡会导致不同的神经退行性疾病,常见的有阿尔兹海默症和帕金森症。此类疾病的病因尚不明确且没有根治的方法,因此对人类的健康造成巨大威胁。据统计,目前全球大约有 1 亿多的人患有神经退行性疾病,而且随着老龄化的加剧,神经退行性疾病患者数量也将逐渐增多。

在常见的神经性疾病中,视神经节细胞死亡导致的永久性失明和多巴胺神经元死亡导致的帕金森疾病是尤为特殊的两类,它们都是由于特殊类型的神经元死亡导致。我们之所以能看到外界绚烂多彩的世界,是因为我们的眼睛和大脑中存在一套完整的视觉通路,而连接眼睛和大脑的神经元就是视神经节细胞。

作为眼睛和大脑的唯一一座桥梁,视神经节细胞对外界的不良刺激非常敏感。研究发现很多眼疾都可以导致视神经节细胞的死亡,急性的如缺血性视网膜病,慢性的如青光眼。视神经节细胞一旦死亡就会导致永久性失明。据统计,仅青光眼致盲的人数在全球就超过一千万人。

帕金森疾病是一种常见的老年神经退行性疾病。它的发生是由于脑内黑质区域中一种叫做多巴胺神经元的死亡,从而导致黑质多巴胺神经元不能通过黑质-纹状体通路将多巴胺运输到大脑的另一个区域纹状体。目前,全球有将近一千万人患有此病,我国尤为严重,占了大约一半的病人。 如何在成体中再生出以上两种特异类型的神经元,一直是全世界众多科学家努力的方向。

该研究中,研究人员首先在体外细胞系中筛选了高效抑制 Ptbp1 表达的 gRNA,设计了特异性标记穆勒胶质细胞和在穆勒胶质细胞中表达 CasRx 的系统。所有元件以双质粒系统的形式被包装在 AAV 中并且通过视网膜下注射,特异性地在成年小鼠的穆勒胶质细胞中下调 Ptbp1 基因的表达。

大约一个月后,研究人员在视网膜视神经节细胞层发现了由穆勒胶质细胞转分化而来的视神经节细胞,并且转分化而来的视神经节细胞可以像正常的细胞那样对光刺激产生相应的电信号。

研究人员进一步发现,转分化而来的视神经节细胞可以通过视神经和大脑中正确的脑区建立功能性的联系,并且将视觉信号传输到大脑。在视神经节细胞损伤的小鼠模型中,研究人员发现转分化的视神经细胞可以让永久性视力损伤的小鼠重新建立对光的敏感性。

为进一步发掘 Ptbp1 介导的胶质细胞向神经元转分化的治疗潜能,研究人员证明了该策略还能特异性地将纹状体中的星形胶质细胞非常高效的转分化为多巴胺神经元,并且证明了转分化而来的多巴胺神经元能够展现出和黑质中多巴胺神经元相似的特性。

在行为学测试中,研究人员发现这些转分化而来的多巴胺神经元可以弥补黑质中缺失的多巴胺神经元的功能,从而将帕金森模型小鼠的运动障碍逆转到接近正常小鼠的水平。

需要指出的是,虽然科学家们在实验室里取得了重要进展,但是要将研究成果真正应用于人类疾病的治疗,还有很多工作要做:人类的视神经节细胞能否再生?帕金森患者是否能通过该方法被治愈?这些问题有待全世界的科研工作者共同努力去寻找答案。

(上)CasRx 通过靶向的降解 Ptbp1 mRNA 从而实现 Ptbp1 基因表达的下调。

(中)视网膜下注射 AAV-GFAP-CasRx-Ptbp1 可以特异性的将视网膜穆勒胶质细胞转分化为视神经节细胞,转分化而来视神经节细胞可以和正确的脑区建立功能性的联系,并且提高永久性视力损伤模型小鼠的视力。

(下)在纹状体中注射 AAV-GFAP-CasRx-Ptbp1 可以特异性的将星形胶质细胞转分化为多巴胺神经元,从而基本消除了帕金森疾病模型小鼠的运动症状。

RNA-editing Cas13 enzymes have taken the CRISPR world by storm. Like RNA interference, these enzymes can knock down RNA without altering the genome , but Cas13s have higher on-target specificity. New work from Konermann et al. and Yan et al. describes new Cas13d enzymes that average only 2.8 kb in size and are easy to package in low-capacity vectors! These small, but mighty type VI-D enzymes are the latest tools in the transcriptome engineering toolbox.

Microbial CRISPR diversity is impressive, and researchers are just beginning to tap the wealth of CRISPR possibilities. To identify Cas13d, both groups used very general bioinformatic screens that looked for a CRISPR repeat array near a putative effector nuclease. The Cas13d proteins they identified have little sequence similarity to previously identified Cas13a-c orthologs, but they do include HEPN nuclease domains characteristic of the Cas13 superfamily. Yan et al. proceeded to study orthologs from Eubacterium siraeum (EsCas13d) and Ruminococcus sp. (RspCas13d), while Konermann et al. characterized orthologs from “Anaerobic digester metagenome” (AdmCas13d) and Ruminococcus flavefaciens (nicknamed CasRx), as well as EsCas13d.

Like other Cas13 enzymes, the Cas13d orthologs described in these papers can independently process their own CRISPR arrays into guide RNAs. crRNA cleavage is retained in dCas13d and is thus HEPN-independent. These enzymes also do not require a protospacer flanking sequence, so you can target virtually any RNA sequence ! In bacteria, Cas13d-mediated cleavage promotes collateral cleavage of other RNAs. As with other Cas13s, this collateral cleavage does not occur when Cas13d is expressed in a mammalian system.

Since Cas13d is functionally similar to previously discovered Cas13 enzymes - what makes these orthologs so special? The first property is size - Cas13d enzymes have a median length of ~930aa - making them 17-26% smaller than other Cas13s and a whopping 33% smaller than Cas9! Their small size makes then easy to package in low-capacity vectors like AAV, a popular vector due to its low immunogenicity. But these studies also identified other advantages, including Cas13d-specific regulatory proteins and high targeting efficiency, both of which are described below.

The majority of Type VI-D loci contain accessory proteins with WYL domains (named for the three conserved amino acids in the domain). Yan et al. from Arbor Biotechnologies found that RspCas13d accessory protein RspWYL1 increases both targeted and collateral RNA degradation by RspCas13d. RspWYL1 also increased EsCas13d activity, indicating that WYL domain-containing proteins may be broader regulators of Cas13d activity. This property makes WYL proteins an intriguing counterpart to anti-CRISPR proteins that negatively modulate the activity of Cas enzymes, some of which are also functional in multiple species (read Arbor Biotechnologies' press release about their Cas13d deposit here ).

Not all Cas13d proteins are functional in mammalian cells, but Konermann et al. saw great results with CasRx and AdmCas13d fused to a nuclear localization signal (NLS). In a HEK293 mCherry reporter assay, CasRx and AdmCas13d produced 92% and 87% mCherry protein knockdown measured by flow cytometry, respectively. Cas13d CRISPR array processing is robust, with CasRx and either an unprocessed or processed gRNA array (22 nt spacer with 30 nt direct repeat) mediating potent knockdown. Multiplexing from the CRISPR array yielded >90% knockdown by CasRx for each of four targets, including two mRNAs and two nuclear long non-coding RNAs.

One interesting twist to Cas13d enzymes is their cleavage pattern: EsCas13d produced very similar cleavage products even when guides were tiled across a target RNA, indicating that this enzyme does not cleave at a predictable distance from the targeted region. Konermann et al. show that EsCas13d favors cleavage at uracils, but a more detailed exploration of this cleavage pattern is necessary.

Konermann et al. compared CasRx to multiple RNA regulating methods: small hairpin RNA interference, dCas9-mediated transcriptional inhibition (CRISPRi), and Cas13a/Cas13b RNA knockdown. CasRx was the clear winner with median knockdown of 96% compared to 65% for shRNA, 53% for CRISPRi, and 66-80% for other Cas13a and Cas13b effectors. Like previously characterized Cas13 enzymes, CasRx also displays very high on-target efficiency; where shRNA treatment produced 500-900 significant off-targets, CasRx displayed zero. Unlike Cas9, for which efficiency varies widely across guide RNAs, each guide tested with CasRx yielded >80% knockdown. It seems that CasRx may make it possible to target essentially any RNA in a cell.

Since catalytically dead dCasRx maintains its RNA-binding properties, Konermann et al. tested its ability to manipulate RNA species through exon skipping. Previous CRISPR exon-skipping approaches used two guide RNAs to remove a given exon from the genome, and showed success in models of muscular dystrophy . In this case, Konermann et al. targeted MAPT , the gene encoding dementia-associated tau, delivering dCasRx and a 3-spacer array targeting the MAPT exon 10 splice acceptor and two putative splice enhancers. After AAV-mediated delivery to iPS-derived cortical neurons, dCasRx-mediated exon skipping improved the ratio of pathogenic to non-pathogenic tau by nearly 50%, showing proof-of-concept for pre-clinical and clinical applications of dCasRx.

The identification of Type VI Cas13d enzymes is another win for bioinformatic data mining. As we continue to harness the natural diversity of CRISPR systems, only time will tell how large the genome and transcriptome engineering toolbox will be. It is, however, certain that the impact of CRISPR scientific sharing will continue to grow, and we at Addgene appreciate our depositors for making their tools available to the broader community.

References

Konermann, Silvana, et al. “Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors.” Cell (2018) pii: S0092-8674(18)30207-1. PubMed PMID: 29551272

Yan, Winston X., et al. “Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein.” Mol Cell. (2018) pii: S1097-2765(18)30173-4. PubMed PMID: 29551514

\1. Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors

\2. CRISPR genetic editing takes another big step forward, targeting RNA

\3. How Editing RNA—Not DNA—Could Cure Disease in the Future

[ https://www.obiosh.com/kyfw/zl/aav/209.html](

科学家一年发表多少论文

■上海交通大学教授 专栏·熊丙奇 中国科学院院士郝柏林近日在其博客贴出一篇书面发言(这篇发言是写给中国科学院学部科学道德建设委员会在北京举行“科学道德和科技伦理专题研讨会”的,但被研讨会“留中不发”),批评科学界领导和政府官员的不端行为和不正之风,并列出一名领导做博士后以来的20年中,每年发表SCI论文的统计,其中2003年高达51篇。郝院士认为,在自己没有实质性贡献、甚至根本没有看过稿子的文章上署名,而且官做得越大,每年所出文章越多,是目前有一定普遍性的现象。 按理说,官做得越大,做科学研究的时间和精力越少,发表的文章会越少,而且真正搞过学术研究的学者都知道,全身心投入研究,一年能发表三五篇论文就相当不错了。某些领导能一周发表一篇学术论文,实在令人难以置信。但是,要这些领导认识并检讨自己的“不端行为”,却不是一件容易的事。 这些领导会认为自己是占据别人的劳动果实吗?今天,主动把领导作为自己论文和研究的第一作者和第一完成人的群体,规模不小。这个群体,大致包括领导所带硕士、博士(其实大多是以领导名义招收、由其他教师所带),领导所在学科的教授、副教授,下级研究人员,等等。领导没有参与的论文、成果,一些学者、专家却署上领导的大名,显然等于变相的学术行贿。 这些领导会认为自己没有为研究“作出贡献”吗?不会。领导都会认为自己对学科发展、学术研究作用巨大,因为正是他利用自己手中的资源配置权力,为学者、专家获得项目、课题、经费,这不就是贡献么?也正是他利用自己与企业界、科技界的交往,为本学科、本部门获得更多的研究资源,这不也是贡献么?至于参加立项会、开题会、座谈会等,那更是直接的研究行为了。 学者、专家会检举这些领导的“不端”,认为自己的劳动成果被侵吞,人格尊严被践踏么?他们深知“靠着大树好乘凉、朝中有人好办事”的道理,得到领导的赏识,树起领导的大旗,可以获得更多的课题、经费;否则便立项难,论文发表也难。领导在外通过自己的权力争取资源,学者在内做好研究,把领导放在论文作者首位,实现资源共享、利益均沾,何乐而不为呢? 显然,问题的根源在于当前行政导向的学术资源配置体制和学术行政化评价机制,让领导和学者、专家们紧密配合、“各取所需”。如果学术资源的配置权不在行政领导手中,如果学术评价权不被行政领导所掌控,那么,行政领导就不可能在学术圈里左右逢源,不可能有那么多的学者、专家放弃尊严,心甘情愿地为他们服务,替他们做学问、写论文。所以,只有行政领导不再从事学术研究,专心做自己的行政管理工作,以及把学术资源配置权、评价权交给学者、专家,才能解决以上问题。 在国外,即便担任大学校长,不管此前有多大学术成就,担任行政职务之后,往往就做职业校长,不再从事科学研究。原因之一便是一个人的精力有限,不允许有额外的精力去搞研究,而校董事会(理事会)对其的业绩评价,是校长当得怎样,而非学问做得如何。另一个重要原因是,校长再做科学研究,难免利用手中的职权,为自己获取学术资源谋求方便。既担任行政领导,又能获得更多学术资源、取得更大“学术成就”,不导致学术的严重行政化,不出现严重的学术腐败才怪呢。

一些知名专家发表许多论文,是通过不断学习专业文献加以借鉴和总结,有条件还可以用于实践检验,逐步成就一篇篇论文发表。

新中国成立以来我国在Nature、 Science、cell三大期刊共发表2362篇文章,2018年我国在三大期刊发表论文332篇,占这三种期刊当年全部论文总数(2157篇)的15.49%。

一些知名专家发表多少论文怎么写?答案如下:第一步是写明白它的含义,意义和满足程度的一种价值判断。在以结果为导向,工作职责最终体现什么样的价值,并对价值进行优化即可。

nature一年能发表多少论文

新中国成立以来我国在Nature、 Science、cell三大期刊共发表2362篇文章,2018年我国在三大期刊发表论文332篇,占这三种期刊当年全部论文总数(2157篇)的15.49%。

21年20,Nature发表了1000篇学术论文 (按照论文上线日期计算),其中,2022年前6月的143篇论文,根据Nature官网的信息,经统计,2022年1-6月,Nature共出版研究论文528篇,其中材料类(含物质科学相关领域)共143篇,占比~27%,作为一本综合性期刊,与材料领域有关的论文占比符合期刊的学科分布特征,即各学科尽可能实现相对平衡。这也从另一个角度说明,想在这本期刊发表一篇材料有关的论文难度不低。

相关百科
热门百科
首页
发表服务