职称论文百科

数学家一生发表论文多少

发布时间:2024-07-03 07:33:09

数学家一生发表论文多少

卡尔.弗里德里希.高斯(Carl Friedrich Gauß,1777.4.30~1855.2.23),德国数学家、物理学家和天文学家,出生于德国布伦兹维克的一个贫苦家庭。父亲格尔恰尔德·迪德里赫先后当过护堤工、泥瓦匠和园丁,第一个妻子和他生活了10多年后因病去世,没有为他留下孩子。迪德里赫后来娶了罗捷雅,第二年他们的孩子高斯出生了,这是他们唯一的孩子。父亲对高斯要求极为严厉,甚至有些过分,常常喜欢凭自己的经验为年幼的高斯规划人生。高斯尊重他的父亲,并且秉承了其父诚实、谨慎的性格。1806年迪德里赫逝世,此时高斯已经做出了许多划时代的成就。 在成长过程中,幼年的高斯主要是力于母亲和舅舅。高斯的外祖父是一位石匠,30岁那年死于肺结核,留下了两个孩子:高斯的母亲罗捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,为人热情而又聪明能干投身于纺织贸易颇有成就。他发现姐姐的儿子聪明伶利,因此他就把一部分精力花在这位小天才身上,用生动活泼的方式开发高斯的智力。若干年后,已成年并成就显赫的高斯回想起舅舅为他所做的一切,深感对他成才之重要,他想到舅舅多产的思想,不无伤感地说,舅舅去世使“我们失去了一位天才”。正是由于弗利德里希慧眼识英才,经常劝导姐夫让孩子向学者方面发展,才使得高斯没有成为园丁或者泥瓦匠。 在数学史上,很少有人象高斯一样很幸运地有一位鼎力支持他成才的母亲。罗捷雅直到34岁才出嫁,生下高斯时已有35岁了。他性格坚强、聪明贤慧、富有幽默感。高斯一生下来,就对一切现象和事物十分好奇,而且决心弄个水落石出,这已经超出了一个孩子能被许可的范围。当丈夫为此训斥孩子时,他总是支持高斯,坚决反对顽固的丈夫想把儿子变得跟他一样无知。 罗捷雅真诚地希望儿子能干出一番伟大的事业,对高斯的才华极为珍视。然而,他也不敢轻易地让儿子投入当时尚不能养家糊口的数学研究中。在高斯19岁那年,尽管他已做出了许多伟大的数学成就,但她仍向数学界的朋友W.波尔约(W.Bolyai,非欧几何创立者之一J.波尔约之父)问道:高斯将来会有出息吗?W.波尔约说她的儿子将是“欧洲最伟大的数学家”,为此她激动得热泪盈眶。 7岁那年,高斯第一次上学了。头两年没有什么特殊的事情。1787年高斯10岁,他进入了学习数学的班次,这是一个首次创办的班,孩子们在这之前都没有听说过算术这么一门课程。数学教师是布特纳(Buttner),他对高斯的成长也起了一定作用。 在全世界广为流传的一则故事说,高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?” 。这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。不过,这很可能是一个不真实的传说。据对高斯素有研究的著名数学史家E·T·贝尔(E.T.Bell)考证,布特纳当时给孩子们出的是一道更难的加法题:81297+81495+81693+…+100899。 当然,这也是一个等差数列的求和问题(公差为198,项数为100)。当布特纳刚一写完时,高斯也算完并把写有答案的小石板交了上去。E·T·贝尔写道,高斯晚年经常喜欢向人们谈论这件事,说当时只有他写的答案是正确的,而其他的孩子们都错了。高斯没有明确地讲过,他是用什么方法那么快就解决了这个问题。数学史家们倾向于认为,高斯当时已掌握了等差数列求和的方法。一位年仅10岁的孩子,能独立发现这一数学方法实属很不平常。贝尔根据高斯本人晚年的说法而叙述的史实,应该是比较可信的。而且,这更能反映高斯从小就注意把握更本质的数学方法这一特点。 高斯的计算能力,更主要地是高斯独到的数学方法、非同一般的创造力,使布特纳对他刮目相看。他特意从汉堡买了最好的算术书送给高斯,说:“你已经超过了我,我没有什么东西可以教你了。”接着,高斯与布特纳的助手巴特尔斯(J.M.Bartels)建立了真诚的友谊,直到巴特尔斯逝世。他们一起学习,互相帮助,高斯由此开始了真正的数学研究。 1788年,11岁的高斯进入了文科学校,他在新的学校里,所有的功课都极好,特别是古典文学、数学尤为突出。经过巴特尔斯等人的引荐,布伦兹维克公爵召见了14岁的高斯。这位朴实、聪明但家境贫寒的孩子赢得了公爵的同情,公爵慷慨地提出愿意作高斯的资助人,让他继续学习。 布伦兹维克公爵在高斯的成才过程中起了举足轻重的作用。不仅如此,这种作用实际上反映了欧洲近代科学发展的一种模式,表明在科学研究社会化以前,私人的资助是科学发展的重要推动因素之一。高斯正处于私人资助科学研究与科学研究社会化的转变时期。 1792年,高斯进入布伦兹维克的卡罗琳学院继续学习。1795年,公爵又为他支付各种费用,送他入德国著名的哥丁根大学,这样就使得高斯得以按照自己的理想,勤奋地学习和开始进行创造性的研究。1799年,高斯完成了博士论文,回到家乡布伦兹维克,正当他为自己的前途、生计担忧而病倒时----虽然他的博士论文顺利通过了,已被授予博士学位,同时获得了讲师职位,但他没有能成功地吸引学生,因此只能回老家,又是公爵伸手救援他。公爵为高斯付诸了长篇博士论文的印刷费用,送给他一幢公寓,又为他印刷了《算术研究》,使该书得以在1801年问世;还负担了高斯的所有生活费用。所有这一切,令高斯十分感动。他在博士论文和《算术研究》中,写下了情真意切的献词:“献给大公”,“你的仁慈,将我从所有烦恼中解放出来,使我能从事这种独特的研究”。 1806年,公爵在抵抗拿破仑统帅的法军时不幸阵亡,这给高斯以沉重打击。他悲痛欲绝,长时间对法国人有一种深深的敌意。大公的去世给高斯带来了经济上的拮据,德国处于法军奴役下的不幸,以及第一个妻子的逝世,这一切使得高斯有些心灰意冷,但他是位刚强的汉子,从不向他人透露自己的窘况,也不让朋友安慰自己的不幸。人们只是在19世纪整理他的未公布于众的数学手稿时才得知他那时的心态。在一篇讨论椭圆函数的手搞中,突然插入了一段细微的铅笔字:“对我来说,死去也比这样的生活更好受些。” 慷慨、仁慈的资助人去世了,因此高斯必须找一份合适的工作,以维持一家人的生计。由于高斯在天文学、数学方面的杰出工作,他的名声从1802年起就已开始传遍欧洲。彼得堡科学院不断暗示他,自从1783年欧拉去世后,欧拉在彼得堡科学院的位置一直在等待着象高斯这样的天才。公爵在世时坚决劝阻高斯去俄国,他甚至愿意给高斯增加薪金,为他建立天文台。现在,高斯又在他的生活中面临着新的选择。 为了不使德国失去最伟大的天才,德国著名学者洪堡(B.A.Von Humboldt)联合其他学者和政界人物,为高斯争取到了享有特权的哥丁根大学数学和天文学教授,以及哥丁根天文台台长的职位。1807年,高斯赴哥丁根就职,全家迁居于此。从这时起,除了一次到柏林去参加科学会议以外,他一直住在哥丁根。洪堡等人的努力,不仅使得高斯一家人有了舒适的生活环境,高斯本人可以充分发挥其天才,而且为哥丁根数学学派的创立、德国成为世界科学中心和数学中心创造了条件。同时,这也标志着科学研究社会化的一个良好开端。 高斯的学术地位,历来为人们推崇得很高。他有“数学王子”、“数学家之王”的美称、被认为是人类有史以来“最伟大的三位(或四位)数学家之一”(阿基米德、牛顿、高斯或加上欧拉)。人们还称赞高斯是“人类的骄傲”。天才、早熟、高产、创造力不衰、……,人类智力领域的几乎所有褒奖之词,对于高斯都不过份。 高斯的研究领域,遍及纯粹数学和应用数学的各个领域,并且开辟了许多新的数学领域,从最抽象的代数数论到内蕴几何学,都留下了他的足迹。从研究风格、方法乃至所取得的具体成就方面,他都是18----19世纪之交的中坚人物。如果我们把18世纪的数学家想象为一系列的高山峻岭,那么最后一个令人肃然起敬的巅峰就是高斯;如果把19世纪的数学家想象为一条条江河,那么其源头就是高斯。 虽然数学研究、科学工作在18世纪末仍然没有成为令人羡慕的职业,但高斯依然生逢其时,因为在他快步入而立之年之际,欧洲资本主义的发展,使各国政府都开始重视科学研究。随着拿破仑对法国科学家、科学研究的重视,俄国的沙皇以及欧洲的许多君主也开始对科学家、科学研究刮目相看,科学研究的社会化进程不断加快,科学的地位不断提高。作为当时最伟大的科学家,高斯获得了不少的荣誉,许多世界著名的科学泰斗都把高斯当作自己的老师。 1802年,高斯被俄国彼得堡科学院选为通讯院士、喀山大学教授;1877年,丹麦政府任命他为科学顾问,这一年,德国汉诺威政府也聘请他担任政府科学顾问。 高斯的一生,是典型的学者的一生。他始终保持着农家的俭朴,使人难以想象他是一位大教授,世界上最伟大的数学家。他先后结过两次婚,几个孩子曾使他颇为恼火。不过,这些对他的科学创造影响不太大。在获得崇高声誉、德国数学开始主宰世界之时,一代天骄走完了生命旅程。 在处理相片的软件 photoshop 中,有一种菜单叫高斯模糊,这种功能对模糊一些不必要的地方很有作用。高斯(Gauss 1777~1855)生於Brunswick,位於现在德国中北部。他的祖父是农民,父亲是泥水匠,母亲是一个石匠的女儿,有一个很聪明的弟弟,高斯这位舅舅,对小高斯很照顾,偶而会给他一些指导,而父亲可以说是一名「大老粗」,认为只有力气能挣钱,学问这种劳什子对穷人是没有用的。 高斯很早就展现过人才华,三岁时就能指出父亲帐册上的错误。七岁时进了小学,在破旧的教室里上课,老师对学生并不好,常认为自己在穷乡僻壤教书是怀才不遇。高斯十岁时,老师考了那道著名的「从一加到一百」,终於发现了高斯的才华,他知道自己的能力不足以教高斯,就从汉堡买了一本较深的数学书给高斯读。同时,高斯和大他差不多十岁的助教Bartels变得很熟,而Bartels的能力也比老师高得多,后来成为大学教授,他教了高斯更多更深的数学。 老师和助教去拜访高斯的父亲,要他让高斯接受更高的教育,但高斯的父亲认为儿子应该像他一样,作个泥水匠,而且也没有钱让高斯继续读书,最后的结论是--去找有钱有势的人当高斯的赞助人,虽然他们不知道要到哪里找。经过这次的访问,高斯免除了每天晚上织布的工作,每天和Bartels讨论数学,但不久之后,Bartels也没有什麽东西可以教高斯了。 1788年高斯不顾父亲的反对进了高等学校。数学老师看了高斯的作业后就要他不必再上数学课,而他的拉丁文不久也凌驾全班之上。 1791年高斯终於找到了资助人--布伦斯维克公爵费迪南(Braunschweig),答应尽一切可能帮助他,高斯的父亲再也没有反对的理由。隔年,高斯进入Braunschweig学院。这年,高斯十五岁。在那里,高斯开始对高等数学作研究。并且独立发现了二项式定理的一般形式、数论上的「二次互逆定理」(Law of Quadratic Reciprocity)、质数分布定理(prime numer theorem)、及算术几何平均(arithmetic-geometric mean)。 1795年高斯进入哥廷根(G?ttingen)大学,因为他在语言和数学上都极有天分,为了将来是要专攻古典语文或数学苦恼了一阵子。到了1796年,十七岁的高斯得到了一个数学史上极重要的结果。最为人所知,也使得他走上数学之路的,就是正十七边形尺规作图之理论与方法。 希腊时代的数学家已经知道如何用尺规作出正 2m×3n×5p 边形,其中 m 是正整数,而 n 和 p 只能是0或1。但是对於正七、九、十一边形的尺规作图法,两千年来都没有人知道。而高斯证明了: 一个正 n 边形可以尺规作图若且唯若 n 是以下两种形式之一: 1、n = 2k,k = 2, 3,… 2、n = 2k × (几个不同「费马质数」的乘积),k = 0,1,2,… 费马质数是形如 Fk = 22k 的质数。像 F0 = 3,F1 = 5,F2 = 17,F3 = 257, F4 = 65537,都是质数。高斯用代数的方法解决二千多年来的几何难题,他也视此为生平得意之作,还交待要把正十七边形刻在他的墓碑上,但后来他的墓碑上并没有刻上十七边形,而是十七角星,因为负责刻碑的雕刻家认为,正十七边形和圆太像了,大家一定分辨不出来。 1799年高斯提出了他的博士论文,这论文证明了代数一个重要的定理: 任一多项式都有(复数)根。这结果称为「代数学基本定理」(Fundamental Theorem of Algebra)。 事实上在高斯之前有许多数学家认为已给出了这个结果的证明,可是没有一个证明是严密的。高斯把前人证明的缺失一一指出来,然后提出自己的见解,他一生中一共给出了四个不同的证明。 在1801年,高斯二十四岁时出版了《算学研究》(Disquesitiones Arithmeticae),这本书以拉丁文写成,原来有八章,由於钱不够,只好印七章。 这本书除了第七章介绍代数基本定理外,其余都是数论,可以说是数论第一本有系统的着作,高斯第一次介绍「同余」(Congruent)的概念。「二次互逆定理」也在其中。 二十四岁开始,高斯放弃在纯数学的研究,作了几年天文学的研究。 当时的天文界正在为火星和木星间庞大的间隙烦恼不已,认为火星和木星间应该还有行星未被发现。在1801年,意大利的天文学家Piazzi,发现在火星和木星间有一颗新星。它被命名为「谷神星」(Cere)。现在我们知道它是火星和木星的小行星带中的一个,但当时天文学界争论不休,有人说这是行星,有人说这是彗星。必须继续观察才能判决,但是Piazzi只能观察到它9度的轨道,再来,它便隐身到太阳后面去了。因此无法知道它的轨道,也无法判定它是行星或彗星。 高斯这时对这个问是产生兴趣,他决定解决这个捉摸不到的星体轨迹的问题。高斯自己独创了只要三次观察,就可以来计算星球轨道的方法。他可以极准确地预测行星的位置。果然,谷神星准确无误的在高斯预测的地方出现。这个方法--虽然他当时没有公布--就是「最小平方法」(Method of Least Square)。 1802年,他又准确预测了小行星二号--智神星(Pallas)的位置,这时他的声名远播,荣誉滚滚而来,俄国圣彼得堡科学院选他为会员,发现Pallas的天文学家Olbers请他当哥廷根天文台主任,他没有立刻答应,到了1807年才前往哥廷根就任。 1809年他写了《天体运动理论》二册,第一册包含了微分方程、圆椎截痕和椭圆轨道,第二册他展示了如何估计行星的轨道。高斯在天文学上的贡献大多在1817年以前,但他仍一直做着观察的工作到他七十岁为止。虽然做着天文台的工作,他仍抽空做其他研究。为了用积分解天体运动的微分力程,他考虑无穷级数,并研究级数的收敛问题,在1812年,他研究了超几何级数(Hypergeometric Series),并且把研究结果写成专题论文,呈给哥廷根皇家科学院。 1820到1830年间,高斯为了测绘汗诺华(Hanover)公国(高斯住的地方)的地图,开始做测地的工作,他写了关於测地学的书,由於测地上的需要,他发明了日观测仪(Heliotrope)。为了要对地球表面作研究,他开始对一些曲面的几何性质作研究。 1827年他发表了《曲面的一般研究》 (Disquisitiones generales circa superficies curva),涵盖一部分现在大学念的「微分几何」 在1830到1840年间,高斯和一个比他小廿七岁的年轻物理学家-韦伯(Withelm Weber) 一起从事磁的研究,他们的合作是很理想的:韦伯作实验,高斯研究理论,韦伯引起高斯对物理问题的兴趣,而高斯用数学工具处理物理问题,影响韦伯的思考工作方法。 1833年高斯从他的天文台拉了一条长八千尺的电线,跨过许多人家的屋顶,一直到韦伯的实验室,以伏特电池为电源,构造了世界第一个电报机。 1835年高斯在天文台里设立磁观测站,并且组织「磁协会」发表研究结果,引起世界广大地区对地磁作研究和测量。 高斯已经得到了地磁的准确理,他为了要获得实验数据的证明,他的书《地磁的一般理论》拖到1839年才发表。 1840年他和韦伯画出了世界第一张地球磁场图,而且定出了地球磁南极和磁北极的位置。1841年美国科学家证实了高斯的理论,找到了磁南极和磁北极的确实位置。 高斯对自己的工作态度是精益求精,非常严格地要求自己的研究成果。他自己曾说:宁可发表少,但发表的东西是成熟的成果。」许多当代的数学家要求他,不要太认真,把结果写出来发表,这对数学的发展是很有帮助的。其中一个有名的例子是关於非欧几何的发展。非欧几何的的开山祖师有三人,高斯、 Lobatchevsky(罗巴切乌斯基,1793~1856), Bolyai(波埃伊,1802~1860)。其中Bolyai的父亲是高斯大学的同学,他曾想试着证明平行公理,虽然父亲反对他继续从事这种看起来毫无希望的研究,小Bolyai还是沉溺於平行公理。最后发展出了非欧几何,并且在1832~1833年发表了研究结果,老Bolyai把儿子的成果寄给老同学高斯,想不到高斯却回信道: to preise it would mean to praise myself. 我无法夸赞他,因为夸赞他就等於夸奖我自己。 早在几十年前,高斯就已经得到了相同的结果,只是怕不能为世人所接受而没有公布而已。美国的着名数学家贝尔(E.T.Bell),在他着的《数学工作者》(Men of Mathematics)一书里曾经这样批评高斯: 在高斯死后,人们才知道他早就预见一些十九世的数学,而且在1800年之前已经期待它们的出现。如果他能把他所知道的一些东西泄漏,很可能现在数学早比目前还要先进半个世纪或更多的时间。阿贝尔(Abel)和雅可比(Jacobi)可以从高斯所停留的地方开始工作,而不是把他们最好的努力花在发现高斯早在他们出生时就知道的东西。而那些非欧几何学的创造者,可以把他们的天才用到其他力面去。 在1855年二月23日清晨,高斯在他的睡梦中安详的去世了 [2]物理单位 高斯(G),非国际通用的磁感应强度单位。为纪念德国物理学家和数学家高斯而命名。 一段导线,若放在磁感应强度均匀的磁场中,方向与磁感应强度方向垂直的长直导在线通有1电磁系单位(emu)的稳恒电流(等于10安培)时,在每厘米长度的导线受到电磁力为1达因,则该磁感应强度就定义为1高斯。 高斯是很小的单位,10000高斯等于1特斯拉。 补充 高斯是德国数学家 ,也是科学家,他和牛顿、阿基米德,被誉为有史以来的三大数学家。高斯是近代数学奠基者之一,在历史上影响之大, 可以和阿基米德、牛顿、欧拉并列,有“数学王子”之称。 他幼年时就表现出超人的数学天才。1795年进入格丁根大学学习。第二年他就发现正十七边形的尺规作图法。并给出可用尺规作出的正多边形的条件,解决了欧几里得以来悬而未决的问题。 高斯的数学研究几乎遍及所有领域,在数论、代数学、非欧几何、复变函数和微分几何等方面都做出了开创性的贡献。他还把数学应用于天文学、大地测量学和磁学的研究,发明了最小二乘法原理。高理的数论研究 总结 在《算术研究》(1801)中,这本书奠定了近代数论的基础,它不仅是数论方面的划时代之作,也是数学史上不可多得的经典着作之一。高斯对代数学的重要贡献是证明了代数基本定理,他的存在性证明开创了数学研究的新途径。高斯在1816年左右就得到非欧几何的原理。他还深入研究复变函数,建立了一些基本概念发现了着名的柯西积分定理。他还发现椭圆函数的双周期性,但这些工作在他生前都没发表出来。1828年高斯出版了《关于曲面的一般研究》,全面系统地阐述了空间曲面的微分几何学,并提出内蕴曲面理论。高斯的曲面理论后来由黎曼发展。 高斯一生共发表155篇论文,他对待学问十分严谨,只是把他自己认为是十分成熟的作品发表出来。其著作还有《地磁概念》和《论与距离平方成反比的引力和斥力的普遍定律》等。 高斯最出名的故事就是他十岁时,小学老师出了一道算术难题:“计算1+2+3…+100=?”。 这可难为初学算术的学生,但是高斯却在几秒后将答案解了出来,他利用算术级数(等差级数)的对称性,然后就像求得一般算术级数和的过程一样,把数目一对对的凑在一起:1+100,2+ 99,3+98,……49+52,50+51 而这样的组合有50组,所以答案很快的就可以求出是: 101×50=5050。 1801年高斯有机会戏剧性地施展他的优势的计算技巧。那年的元旦,有一个后来被证认为小行星并被命名为谷神星的天体被发现当时它好像在向太阳靠近,天文学家虽然有40天的时间可以观察它,但还不能计算出它的轨道。高斯只作了3次观测就提出了一种计算轨道参数的方法,而且达到的精确度使得天文学家在1801年末和1802年初能够毫无困难地再确定谷神星的位置。高斯在这一计算方法中用到了他大约在1794年创造的最小二乘法(一种可从特定计算得到最小的方差和中求出最佳估值的方法在天文学中这一成就立即得到公认。他在《天体运动理论》中叙述的方法今天仍在使用,只要稍作修改就能适应现代计算机的要求。高斯在小行星”智神星”方面也获得类似的成功。 由于高斯在数学、天文学、大地测量学和物理学中的杰出研究成果,他被选为许多科学院和学术团体的成员。“数学之王”的称号是对他一生恰如其分的赞颂。

高斯贡献:正十七边形、谷神星的轨道、天体运动理论、第一台电报机、日光反射镜。

1、正十七边形。1796年,19岁的高斯发现了如何只用一把尺子和一个圆规来构造一个正十七边形。这是自2000多年前古希腊人以来,多边形构造的首次进步。高斯用代数来证明他的构造,桥接了代数和几何之间的一个关键鸿沟。

2、谷神星的轨道。这颗矮行星最初是由天文学家朱塞普·皮亚齐在1800年发现的,谷神星在天文学家计算出它的轨道之前,就已经消失在太阳的后面。

高斯创立了一种叫做最小二乘法的模型,这是一种计算观测误差的方法,可以准确预测这颗矮行星的位置。直到现在,高斯发明的这种计算方法仍然是在两个变量之间找到精确关系的首选方法。

3、天体运动理论。1809年,高斯出版了关于天体在太空中运动的专著《天体运动理论》。该著作中描述了被大行星干扰的小行星运动,简化了轨道预测的繁琐数学运算。时至今日,高斯当年的研究仍然是天文学计算的基石。

4、第一台电报机。这也许不是高斯最著名的成就,但相当有创意。在1833年,高斯和物理学教授威廉·韦伯发明了第一台电磁电报机。在哥廷根大学,他们俩一直在磁学领域不断合作。他们建造了第一台电报机,以连接天文台和物理研究所,这个系统能够每分钟发送8个单词。

5、日光反射镜。从1818年到1832年,高斯对汉诺威进行了大地测量。在这段时间里他发明了日光反射镜,这是一种大大改善长距离土地测量的仪器。

日光反射镜用一面镜子把太阳光反射到遥远的地方,可以达到几百千米远,这能够为测量员标记位置。可惜,这种仪器需要在天气晴朗的情况下才有很好的效果。到了20世纪80年代,GPS技术取代了它。

最小二乘法原理总结巜算术研究》

高斯生于布伦瑞克,卒于哥廷根。德国著名数学家、物理学家、天文学家、几何学家,大地测量学家。享有“数学王子”的美誉。

高斯在数个领域进行研究,但只把他认为已经成熟的理论发表出来。他经常对他的同事表示,该同事的结论已经被自己以前证明过了,只是因为基础理论的不完备而没有发表。批评者说他这样做是因为喜欢抢出风头。事实上高斯把他的研究结果都记录起来了。他死后,他的20部纪录着他的研究结果和想法的笔记被发现,证明高斯所说的是事实。一般人认为,20部笔记并非高斯笔记的全部。

下萨克森州和哥廷根大学图书馆已经将高斯的全部著作数位化,并放置于互联网上。

高斯的肖像曾被印刷在从1989年至2001年流通的10元德国马克纸币上。

扩展资料

虽然高斯作为一个数学家而闻名于世,但这并不意味着他热爱教书。尽管如此,他越来越多的学生成为有影响的数学家,如后来闻名于世的戴德金和黎曼。

高斯非常信教且保守。他的父亲死于1808年4月14日,晚些时候的1809年10月11日,他的第一位妻子Johanna也离开人世。次年8月4日高斯迎娶第二位妻子Friederica Wilhelmine (1788-1831)。

18岁的高斯发现了质数分布定理和最小二乘法。通过对足够多的测量数据的处理后,可以得到一个新的、概率性质的测量结果。在这些基础之上,高斯随后专注于曲面与曲线的计算,并成功得到高斯钟形曲线(正态分布曲线)。其函数被命名为标准正态分布(或高斯分布),并在概率计算中大量使用。

在高斯19岁时,仅用尺规便构造出了17边形。并为流传了2000年的欧氏几何提供了自古希腊时代以来的第一次重要补充。

参考资料来源:百度百科-约翰·卡尔·弗里德里希·高斯

数学家王元发表多少论文

华罗庚(1910~1985),数学家,中国科学院院士。1910年11月12日生于江苏金坛,1985年6月12日卒于日本东京。研究领域:解析数论 ▪ 典型群 ▪ 矩阵几何学 ▪ 自守函数论 ▪ 多元复变函数.1924年金坛中学初中毕业,后刻苦自学。1930年后在清华大学任教。1936年赴英国剑桥大学访问、学习。1938年回国后任西南联合大学教授。1946年赴美国,任普林斯顿数学研究所研究员、普林斯顿大学和伊利诺斯大学教授,1950年回国。历任清华大学教授,中国科学院数学研究所、应用数学研究所所长、名誉所长,中国数学学会理事长、名誉理事长,全国数学竞赛委员会主任,美国国家科学院国外院士,第三世界科学院院士,联邦德国巴伐利亚科学院院士,中国科学院物理学数学化学部副主任、副院长、主席团成员,中国科学技术大学数学系主任、副校长,中国科协副主席,国务院学位委员会委员等职。曾任一至六届全国人大常务委员,六届全国政协副主席。曾被授予法国南锡大学、香港中文大学和美国伊利诺斯大学荣誉博士学位。主要从事解析数论、矩阵几何学、典型群、自守函数论、多复变函数论、偏微分方程、高维数值积分等领域的研究与教授工作并取得突出成就。40年代,解决了高斯完整三角和的估计这一历史难题,得到了最佳误差阶估计(此结果在数论中有着广泛的应用);对G.H.哈代与J.E.李特尔伍德关于华林问题及E.赖特关于塔里问题的结果作了重大的改进,至今仍是最佳纪录。在代数方面,证明了历史长久遗留的一维射影几何的基本定理;给出了体的正规子体一定包含在它的中心之中这个结果的一个简单而直接的证明,被称为嘉当-布饶尔-华定理。其专著《堆垒素数论》系统地总结、发展与改进了哈代与李特尔伍德圆法、维诺格拉多夫三角和估计方法及他本人的方法,发表40余年来其主要结果仍居世界领先地位,先后被译为俄、匈、日、德、英文出版,成为20世纪经典数论著作之一。其专著《多个复变典型域上的调和分析》以精密的分析和矩阵技巧,结合群表示论,具体给出了典型域的完整正交系,从而给出了柯西与泊松核的表达式。这项工作在调和分析、复分析、微分方程等研究中有着广泛深入的影响,曾获中国自然科学奖一等奖。倡导应用数学与计算机的研制,曾出版《统筹方法平话》、《优选学》等多部著作并在中国推广应用。与王元教授合作在近代数论方法应用研究方面获重要成果,被称为“华-王方法”。在发展数学教育和科学普及方面做出了重要贡献。发表研究论文200多篇,并有专著和科普性著作数十种。 陈景润(1933~1996),数学家, 中国科学院院士。 1933年5月22日生于福建福州。1953年毕业于厦门大学数学系。1957年进入中国科学院数学研究所并在华罗庚教授指导下从事数论方面的研究。历任中国科学院数学研究所研究员、学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。主要成果:1742年6月7日,德国数学家哥德巴赫提出一个未经证明的数学猜想“任何一个偶数均可表示两个素数之和”简称:“ 1+1”。这一猜想被称为“哥德巴赫猜想”。中国人运用新的方法,打开了“哥德巴赫猜想”的奥秘之门,摘取了此项桂冠,为世人所瞩目。这个人就是世界上攻克“哥德巴赫猜想”的第一个人——陈景润。并且到2015年仍然没有人能超过他。 王元(1930— ),著名数学家,华罗庚数学奖得主,主要研究领域是解析数论。 华罗庚数学奖得主,中国科学院数学研究所研究员。曾任中国科学院数学研究所研究室主任、所长、所学术委员会主任、中国数学会理事长、《数学学报》主编,联邦德国《分析》杂志编辑,新加坡世界科学出版社顾问等。1980年,王元当选为中国科学院院士(当时称学部委员)。 20世纪50年代至60年代初,王元首先将解析数论中的筛法用于哥德巴赫猜想的研究,并证明了命题3+4,1957年又证明了2+3。王元证明的2+3表示的是:每个充分大的偶数都可以表示成至多两个质数的乘积再加上至多3个质数的乘积。这是中国学者首次在这一研究领域跃居世界领先的地位。其成果为国内外有关文献频繁引用。此时的王元只有27岁。其后,他与华罗庚合作致力于数论在近似分析中的应用,他们于1973年证明的定理,受到国际学术界推崇,被称为华-王方法。七十年代后期又对这方面的成果做了系统总结,产生了广泛的国际影响。20世纪80年代在丢番图分析方面,将施密特定理推广到任何代数数域,即在丢番图不等式组等方面取得先进的成果。 王元不仅是一位在数学专业领域里取得杰出成就的科学家,通过数学研究,他进一步关注到数学的本质,数学和数学家在教育、社会和人类发展中的影响,将数学这门科学通俗解析,让大众感受数学中的乐趣。他将关于这方面的思考部分汇集在论文集《王元论哥德巴赫猜想》、传记《华罗庚》、文章汇编在《王元文集》和《华罗庚的数学生涯》等书中。王元教授在他的文章中提到数学的美的论述是:什么是好的数学?评价数学的标准是什么?“数学的评价标准和艺术一样,主要是美学标准。美学标准对物理科学也很重要,但对数学,它是第一标准。《华罗庚》可以说是王元科普创作的代表作,花费八、九年的时光,写了一本数学家的传记。由一位著名的数学家来写的另一位著名数学家的传记,正是这本书的独到之处。

对教学提出了很多建议,而且也赢得了很多的冠军,给学生们安排了一些轻松的解题方法,让学生有更加不错的升学率。

他在解析数论、代数数论以及数论方法应用等方面均作出了卓越贡献。他关于哥德巴赫猜想的研究为中国夺得了该领域的第一个重要成果:他与华罗庚一起开拓了高维数值积分的研究方向并创造了“华—王方法”,他们的专著《数论在近似分析中的应用》英译本由斯普林格出版社出版后,英、德、日、奥等十多个国家的14种数学杂志予以好评。

其实你在baidu找下就可以的 我帮你找了点.以后还是少悬赏啦 分不容易的数学家李善兰在级数求和方面的研究成果,在国际上被命名为“李氏恒等式”。 数学家华罗庚关于完整三角和的研究成果被国际数学界称为“华氏定理”;另外他与数学家王元提出多重积分近似计算的方法被国际上誉为“华—王方法”。 数学家苏步青在仿射微分几何学方面的研究成果在国际上被命名为“苏氏锥面”。 数学家熊庆来关于整函数与无穷级的亚纯函数的研究成果被国际数学界誉为“熊氏无穷级”。 数学家陈省身关于示性类的研究成果被国际上称为“陈示性类”。 数学家周炜良在代数几何学方面的研究成果被国际数学界称为“周氏坐标;另外还有以他命名的“周氏定理”和“周氏环”。 数学家吴文俊关于几何定理机器证明的方法被国际上誉为“吴氏方法”;另外还有以他命名的“吴氏公式”。 数学家王浩关于数理逻辑的一个命题被国际上定为“王氏悖论”。 数学家柯召关于卡特兰问题的研究成果被国际数学界称为“柯氏定理”;另外他与数学家孙琦在数论方面的研究成果被国际上称为“柯—孙猜测”。 数学家陈景润在哥德巴赫猜想研究中提出的命题被国际数学界誉为“陈氏定理”。 数学家杨乐和张广厚在函数论方面的研究成果被国际上称为“杨—张定理”。 数学家陆启铿关于常曲率流形的研究成果被国际上称为“陆氏猜想”。 数学家夏道行在泛函积分和不变测度论方面的研究成果被国际数学界称为“夏氏不等式”。 数学家姜伯驹关于尼尔森数计算的研究成果被国际上命名为“姜氏空间”;另外还有以他命名的“姜氏子群”。 数学家侯振挺关于马尔可夫过程的研究成果被国际上命名为“侯氏定理”。 数学家周海中关于梅森素数分布的研究成果被国际上命名为“周氏猜测”。 数学家王戌堂关于点集拓扑学的研究成果被国际数学界誉为“王氏定理”。

数学家田刚发表多少论文

田刚1982年毕业于南京大学数学系后,在北京大学张恭庆院士指导下攻读硕士学位,完成了一篇高质量的硕士论文(发表于《科学通报》)。1984年田刚获得北京大学硕士学位,同年,他被北京大学公派赴美国,跟随菲尔兹奖得主丘成桐攻读博士。1988年田刚获美国哈佛大学博士学位。 获得博士学位之后,田刚先后在普林斯顿大学,纽约州立大学石溪分校,纽约大学柯朗研究所任教。1992年在柯朗研究所被提升为正教授。这时他的研究视野更加开阔,除了微分几何,他还把研究领域拓展到代数几何、数学物理。1990年在日本京都召开的国际数学家大会上应邀作45分钟报告。1994年,田刚获得美国国家科学基金(National Science Foundation)授予的沃特曼奖(Alan T. Waterman Award);1996年,获得由美国数学会颁发的五年一度(2001年后为三年一度)的韦伯伦几何学奖(Oswald Veblen Prize in Geometry)。1995年田刚开始担任麻省理工学院教授。自1998年起,田刚受聘为教育部“长江计划”在北京大学的特聘教授(后转为讲座教授),开始担任国内的教职。2001年,田刚当选为中国科学院院士。田刚为2002年北京举行的国际数学家大会的筹备工作投入极大精力。他也在这次数学家大会上受邀请作大会报告(1小时报告)。2004年他当选为美国艺术与科学院院士。2005年田刚主持筹建北京国际数学研究中心,担任中心主任。现在他还是美国普林斯顿大学Higgins讲座教授(Eugene Higgins Professor)。2012年当选中国民主同盟中央副主席。 2013年3月任北京大学数学科学学院院长(兼)。2015年,任国务院学位委员会第七届学科评议组成员 第十一届全国政协常委,十二届全国政协委员会常务委员。

华罗庚陈景润苏步青

Kaehler流形上Kaehler度量恰是其Ricci曲率的常数倍,则称为Kaehler-Einstein度量。Kaehler-Einstein度量存在性的基本问题是要确定Kaehler流形上存在这一度量的充分必要条件。一个明显的必要条件是第一陈示性类是正定、负定、或者为零,而在第一陈示性类正定时,更需要全纯向量场的李代数是约化的。Calabi猜测这个必要条件也是充分条件。第一陈示性类负定时,Calabi猜测被法国数学家Aubin和美籍华裔数学家丘成桐分别独立解决。第一陈示性类为零时,Calabi猜测由丘成桐解决。由于上述成果有广泛应用,因此人们希望在第一陈示性类正定时也有所突破。但是,这一问题非常困难。在田刚的研究以前,这方面所知甚少,所获甚微。例如,当时还没有已知的没有非平凡全纯向量场,第一陈示性类正定的Kaehler-Einstein 流形。1987年,田刚引入了一个全纯不变量,给出了Kaehler-Einstein度量存在性的充分条件。作为应用,他给出了第一组没有非平凡全纯向量场,第一陈示性类正定的Kaehler-Einstein 流形。利用这个新的不变量以及田刚发展起来的其他工具,他彻底解决了复曲面上的Calabi猜测。这是非常重要的研究成果。高维的情形更加困难。他首先给出例子说明,此时即使全纯向量场的李代数是约化的,也有可能不存在Kaehler-Einstein度量。利用他与丁伟岳合作引入的广义Futaki不变量,田刚首先提出K稳定概念,证明若Kaehler流形上存在Kaehler-Einstein度量则是K稳定的,并且猜测Kaehler流形上存在Kaehler-Einstein度量与K稳定等价。田刚的思想引发了广泛而深入的研究。随后的研究者中包括Donaldson,Mabuchi等。K稳定概念现已推广到极化的Kaehler流形,成为几何不变理论中重要的稳定概念之一。 田刚与阮勇斌合作,建立了量子上同调理论的严格数学基础,首次证明了量子上同调的可结合性。这是具有里程碑意义的研究工作。它使得原来形式上的计算有了严格数学意义。在现代数学物理领域做出杰出贡献的Fields奖获得者Witten,从物理学的观点提出了拓扑σ模型,它在弦论、量子上同调、镜对称等领域都有重要应用。在田刚与阮勇斌的研究工作之前,拓扑σ模型及其应用在数学上是不严格的。田刚与阮勇斌的主要贡献是提出了一个新的不变量,这个不变量包含了已知的Gromov不变量,以及Witten的拓扑σ模型在数学上隐含的不变量,现称之为Gromov-Witten不变量。他们并且给出了Gromov-Witten不变量所诱导的量子上同调乘积的结合律的严格数学证明。田刚与李骏合作,用代数方法,在具有0特征或充分大特征的代数闭域上的非异射影子族中定义了类似的不变量;并给出了一般的紧辛流形上Gromov-Witten不变量的严格定义(推广了田刚和阮勇斌的工作)。田刚还与刘刚合作,解决了辛几何Arnold猜想的非退化情形。Arnold猜想起源于 Poincare有关环面保面积映射的固定点定理(这一定理由Birkhoff证明),在辛几何的发展中有重要影响。 田刚在高维规范场数学理论研究中做出了很大贡献,建立了自对偶Yang-Mills联络与标度几何间的深刻联系。著名数学家Donaldson,利用规范场论中的Yang-Mills联络模空间定义了四维流形新的拓扑不变量,得到令人惊喜的成果,这一不变量被称为Donaldson不变量。该理论的解析基础是Uhlenbeck有关四维Yang-Mills联络模空间的紧化及可去奇点定理。田刚建立了高维Yang-Mills联络模空间的紧化定理。实际上,他研究了包括自对偶Yang-Mills联络,Hermitian-Yang-Mills联络等经典场方程在内的一般自对偶联络,导出了单调不等式,证明能量集中集是m-4维可求长集合,而且由广义的极小闭链组成。特别地,Hermitian-Yang-Mills联络能量集中集是全纯闭链,Spin(7)方程能量集中集是Cayley闭链。他还与陶哲轩(Terence Tao)证明了高维Yang-Mills方程的可去奇点定理。 紧Einstein流形及其模空间的研究在微分几何中占有重要地位。二维和三维Einstein流形一定具有常曲率,因而是空间形式的商空间。但是,四维流形中,Einstein度量比常曲率度量多得多。无论是研究Einstein度量的存在性还是研究Einstein度量的模空间,都要理解它的退化情况。田刚与Cheeger在这方面做了开创性的研究。他们利用“能量”(曲率平方积分)控制度量退化点数,证明了小能量正则性,给出了流形塌缩时体积的下阶估计。这些结果以及他们在研究中提出的克服流形倒塌所带来巨大困难的新技术在四维Einstein流形的研究中具有重大意义。 复流形上具有相同上同调类的所有Kaehler形式所成的空间是无穷维流形。Mabuchi在其上引入了一种自然的黎曼度量,使之成为无穷维黎曼流形,其测地线方程为退化的复Monge-Ampere方程。与有限维黎曼流形不同,无穷维黎曼流形中的测地线问题极其困难。因而,退化复Monge-Ampere方程的研究不仅是Kaehler几何中新的极具挑战性的问题,也是无穷维黎曼流形中测地线问题的例子。田刚与陈秀雄合作,利用全纯圆盘的叶化,建立了退化复Monge-Ampere方程部分正则性的理论,利用之证明了Kaehler极值度量的唯一性。这项研究在Kaehler几何,非线性偏微分方程,与无穷维黎曼流形中都有非常重要的意义。 1904年,法国数学家庞加莱提出猜想:单联通、闭的三维微分流形微分同胚于三维圆球。这就是著名的“庞加莱猜想”,被认为是几何学和拓扑学中最重要的问题。1982年,Hamilton开始了Ricci流的研究,近二十年后,Perelman利用Ricci流解决了这一世纪难题。实际上,Perelman的工作比较顺利地得到公认,田刚起了非常重要的作用。Perelman发布自己的第一篇文章以后,又通过电子邮件将文章寄给一些最好的专家,包括Hamilton、丘成桐和田刚。田刚经过研读觉得文章有新的思想,于是邀请Perelman来MIT访问,介绍他的工作,并且自己对Perelman的工作做了系统研究。Hamilton的Ricci流理论在20世纪90年代就遇上了瓶颈,最大的困难是处理那些可能随Ricci流演化出来的奇点,而这一障碍被Perelman克服了。2003年春,Perelman应田刚之邀来MIT讲解自己的工作,继而在美国东岸的各大学演讲,遂使他的工作受到更为广泛的注意。其后受克雷数学研究所的赞助,田刚参与组织了2004年9月在普林斯顿大学举行的庞加莱猜想及几何化猜想证明的研讨会。2005年夏天,克雷研究所又委托田刚主持在伯克利举行的关于Ricci流与Perelman工作的暑期学校。田刚与J. Morgan的专著帮助验证和解释了Perelman一些细节问题,也阐述了一些他们自己的思想。例如,Perelman用7页纸,仅给出了Ricci 流有限时间消没的证明思路,而田刚和Morgan则以八十几页纸给出了详细的证明,其中处理了带边极小曲面和边界沿曲线流运动等奇点问题。无疑,这是对庞加莱猜想的重要贡献。此外,田刚提出了Kaehler-Ricci流奇点理论分析研究纲领,指出它与代数流形分类的紧密联系。田刚及其合作者在Kaehler-Ricci流,Kaehler-Ricci孤立子唯一性,调和映射紧性,高余维平均曲率流等方面都做出了根本性的贡献。 除去自己的研究,田刚还担任一些国际一流数学刊物的编委,其中包括公认的数学界顶级杂志《数学年刊》(Annals of Mathematics)以及Advances in Mathematics。中国数学会主办的《数学学报》是一份比较新的杂志,自1998年创刊以来,田刚一直对之悉心提携,有时候也往上面投文章,在增强杂志的国际影响力和吸引力方面,发挥了很大作用。在一些有影响力的学术委员会里,田刚积极发挥自己的作用,如美国国家科技委员会主办的科学前沿论坛组委会(1995)、2002年北京第二十四届国际数学家大会学术委员会、加拿大Banff国际数学研究所的科学顾问委员会(2001-2005)、2003-2004年伯克利MSRI几何年项目主席等。在2006年的马德里第二十五届国际数学家大会上,田刚是几何方面的演讲者选委会主席。田刚还是阿贝尔奖(The Abel Prize)评委 。

科学家一年发表多少论文

■上海交通大学教授 专栏·熊丙奇 中国科学院院士郝柏林近日在其博客贴出一篇书面发言(这篇发言是写给中国科学院学部科学道德建设委员会在北京举行“科学道德和科技伦理专题研讨会”的,但被研讨会“留中不发”),批评科学界领导和政府官员的不端行为和不正之风,并列出一名领导做博士后以来的20年中,每年发表SCI论文的统计,其中2003年高达51篇。郝院士认为,在自己没有实质性贡献、甚至根本没有看过稿子的文章上署名,而且官做得越大,每年所出文章越多,是目前有一定普遍性的现象。 按理说,官做得越大,做科学研究的时间和精力越少,发表的文章会越少,而且真正搞过学术研究的学者都知道,全身心投入研究,一年能发表三五篇论文就相当不错了。某些领导能一周发表一篇学术论文,实在令人难以置信。但是,要这些领导认识并检讨自己的“不端行为”,却不是一件容易的事。 这些领导会认为自己是占据别人的劳动果实吗?今天,主动把领导作为自己论文和研究的第一作者和第一完成人的群体,规模不小。这个群体,大致包括领导所带硕士、博士(其实大多是以领导名义招收、由其他教师所带),领导所在学科的教授、副教授,下级研究人员,等等。领导没有参与的论文、成果,一些学者、专家却署上领导的大名,显然等于变相的学术行贿。 这些领导会认为自己没有为研究“作出贡献”吗?不会。领导都会认为自己对学科发展、学术研究作用巨大,因为正是他利用自己手中的资源配置权力,为学者、专家获得项目、课题、经费,这不就是贡献么?也正是他利用自己与企业界、科技界的交往,为本学科、本部门获得更多的研究资源,这不也是贡献么?至于参加立项会、开题会、座谈会等,那更是直接的研究行为了。 学者、专家会检举这些领导的“不端”,认为自己的劳动成果被侵吞,人格尊严被践踏么?他们深知“靠着大树好乘凉、朝中有人好办事”的道理,得到领导的赏识,树起领导的大旗,可以获得更多的课题、经费;否则便立项难,论文发表也难。领导在外通过自己的权力争取资源,学者在内做好研究,把领导放在论文作者首位,实现资源共享、利益均沾,何乐而不为呢? 显然,问题的根源在于当前行政导向的学术资源配置体制和学术行政化评价机制,让领导和学者、专家们紧密配合、“各取所需”。如果学术资源的配置权不在行政领导手中,如果学术评价权不被行政领导所掌控,那么,行政领导就不可能在学术圈里左右逢源,不可能有那么多的学者、专家放弃尊严,心甘情愿地为他们服务,替他们做学问、写论文。所以,只有行政领导不再从事学术研究,专心做自己的行政管理工作,以及把学术资源配置权、评价权交给学者、专家,才能解决以上问题。 在国外,即便担任大学校长,不管此前有多大学术成就,担任行政职务之后,往往就做职业校长,不再从事科学研究。原因之一便是一个人的精力有限,不允许有额外的精力去搞研究,而校董事会(理事会)对其的业绩评价,是校长当得怎样,而非学问做得如何。另一个重要原因是,校长再做科学研究,难免利用手中的职权,为自己获取学术资源谋求方便。既担任行政领导,又能获得更多学术资源、取得更大“学术成就”,不导致学术的严重行政化,不出现严重的学术腐败才怪呢。

一些知名专家发表许多论文,是通过不断学习专业文献加以借鉴和总结,有条件还可以用于实践检验,逐步成就一篇篇论文发表。

新中国成立以来我国在Nature、 Science、cell三大期刊共发表2362篇文章,2018年我国在三大期刊发表论文332篇,占这三种期刊当年全部论文总数(2157篇)的15.49%。

一些知名专家发表多少论文怎么写?答案如下:第一步是写明白它的含义,意义和满足程度的一种价值判断。在以结果为导向,工作职责最终体现什么样的价值,并对价值进行优化即可。

国家级论文发表一篇要多少字数

文章的字数一般的单位是没有要求的,发表的文章一般是按版面发表。杂志社也是按版面收费的,不过一般的作者都是发一个版就可以了。评职称够用就行了,一般版面大概是2400字符-2700字符。具体的还是要看杂志,期刊不同字符数也是不一样的。不知道我说的详细不,你能不能明白。要是有什么疑问你可以随时咨询国信论文网的张老师。

刊大师:为作者投发学术期刊提供智能化解决方案。职称论文及所有要投稿的论文都应该知道的十大注意事项之字数控制篇!快点进来看看吧!(侵、私、删)

一般的普通期刊字数要求都在3000字左右(即3-4页),核心期刊一般对论文字数要求比较高,在5000-6000字左右。具体情况各种杂志有不同限制。

,如果你一篇论文8000字,你摘抄个4000字,那就很有问题了

相关百科
热门百科
首页
发表服务