职称论文百科

黎曼只发表8篇论文

发布时间:2024-07-03 12:12:42

黎曼只发表8篇论文

黎曼猜想是纯数学中最重要的未解决的证明,已经伴随着数学家们走过了沧桑百年的历程,下面我们来说说黎曼猜想。

关于黎曼ζ函数ζ(s)的零点分布的猜想,素数的频率紧密相关于一个精心构造的所谓黎曼zeta函数ζ(s)的性态,方程ζ(s)=0的所有有意义的解都在一条直线上。

黎曼猜想是波恩哈德·黎曼1859年提出的,这位数学家于1826年出生在当时属于汉诺威王国的名叫布列斯伦茨的小镇。1859年,黎曼被选为了柏林科学院的通信院士。作为对这一崇高荣誉的回报,他向柏林科学院提交了一篇题为“论小于给定数值的素数个数”的论文。这篇只有短短八页的论文就是黎曼猜想的“诞生地”。

关于黎曼ζ函数ζ(s)的零点分布的猜想,素数的频率紧密相关于一个精心构造的所谓黎曼zeta函数ζ(s)的性态,方程ζ(s)=0的所有有意义的解都在一条直线上。

黎曼那篇论文所研究的是一个数学家们长期以来就很感兴趣的问题,即素数的分布。素数又称质数。质数是像2、5、19、137那样除了1和自身以外不能被其他正整数整除的数。这些数在数论研究中有着极大的重要性,因为所有大于1的正整数都可以表示成它们的乘积。从某种意义上讲,它们在数论中的地位类似于物理世界中用以构筑万物的原子。质数的定义简单得可以在中学甚至小学课上进行讲授,但它们的分布却奥妙得异乎寻常,数学家们付出了极大的心力,却迄今仍未能彻底了解。

黎曼ζ 函数黎曼在1858年写的一篇只长8页关于素数分布的论文,就在这论文里他提出了有名的黎曼猜想(Riemanns Hypoth-esis)。 这猜想提出已有一百多年了,许多有名的数学家曾尝试去证明,就像喜欢爬山的人希望能爬上珠穆朗玛峰一样——因为它的顶峰非常困难到达,目前已有人登上这世界高峰,可是却没有人能证明这猜想!那么这个让上帝如此吝啬的黎曼猜想究竟是一个什么样的猜想呢? 在回答这个问题之前我们先得介绍一个函数:黎曼ζ 函数。 这个函数虽然挂着黎曼的大名, 其实并不是黎曼首先提出的。 但黎曼虽然不是这一函数的提出者, 他的工作却大大加深了人们对这一函数的理解, 为其在数学与物理上的广泛应用奠定了基础。 后人为了纪念黎曼的卓越贡献, 就用他的名字命名了这一函数。 那么究竟什么是黎曼ζ 函数呢?黎曼ζ 函数 ζ(s) 是级数表达式 (n 为正整数) ζ(s) = ∑n n^-s (Re(s) > 1) 在复平面上的解析延拓。 之所以要对这一表达式进行解析延拓, 是因为 - 如我们已经注明的 - 这一表达式只适用于复平面上 s 的实部 Re(s) > 1 的区域 (否则级数不收敛)。黎曼找到了这一表达式的解析延拓 (当然黎曼没有使用 “解析延拓” 这样的现代复变函数论术语)。 运用路径积分, 解析延拓后的黎曼ζ 函数可以表示为: 这里我们采用的是历史文献中的记号, 式中的积分实际是一个环绕正实轴 (即从 +∞ 出发, 沿实轴上方积分至原点附近, 环绕原点积分至实轴下方, 再沿实轴下方积分至 +∞ - 离实轴的距离及环绕原点的半径均趋于 0) 进行的围道积分; 式中的 Γ 函数 Γ(s) 是阶乘函数在复平面上的推广, 对于正整数 s>1: Γ(s)=(s-1)!。 可以证明, 这一积分表达式除了在 s=1 处有一个简单极点外在整个复平面上解析。 这就是黎曼ζ 函数的完整定义。 运用上面的积分表达式可以证明,黎曼ζ 函数满足以下代数关系式: ζ(s) = 2Γ(1-s)(2π)s-1sin(πs/2)ζ(1-s) 从这个关系式中不难发现,黎曼ζ 函数在 s=-2n (n 为正整数) 取值为零 - 因为 sin(πs/2) 为零[注三]。 复平面上的这种使黎曼ζ 函数取值为零的点被称为黎曼ζ 函数的零点。 因此 s=-2n (n 为正整数) 是黎曼ζ 函数的零点。 这些零点分布有序、 性质简单, 被称为黎曼ζ 函数的平凡零点 (trivial zeros)。 除了这些平凡零点外,黎曼ζ 函数还有许多其它零点, 它们的性质远比那些平凡零点来得复杂, 被称为非平凡零点 (non-trivial zeros) 。 对黎曼ζ 函数非平凡零点的研究构成了现代数学中最艰深的课题之一。 我们所要讨论的黎曼猜想就是一个关于这些非平凡零点的猜想, 在这里我们先把它的内容表述一下, 然后再叙述它的来笼去脉:黎曼猜想黎曼ζ 函数的所有非平凡零点都位于复平面上 Re(s)=1/2 的直线上。 在黎曼猜想的研究中, 数学家们把复平面上 Re(s)=1/2 的直线称为 critical line。 运用这一术语,黎曼猜想也可以表述为:黎曼ζ 函数的所有非平凡零点都位于 critical line 上。 这就是黎曼猜想的内容, 它是黎曼在 1859 年提出的。 从其表述上看,黎曼猜想似乎是一个纯粹的复变函数命题, 但我们很快将会看到, 它其实却是一曲有关素数分布的神秘乐章。

黎曼发表几篇论文

1859年,发表的关于素数分布的论文《论小于某给定值的素数的个数》中,研究了黎曼ζ函数,给出了ζ函数的积分表示与它满足的函数方程,他指出素数的分布与黎曼ζ函数之间存在深刻联系。这一关联的核心就是J(x)的积分表达式。1854年,黎曼在格丁根大学发表的题为《论作为几何学基础的假设》的演说,创立了黎曼几何学。黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧几里得空间中的一个几何实体。1915年,A.爱因斯坦运用黎曼几何和张量分析工具创立了新的引力理论——广义相对论。另外,他对偏微分方程及其在物理学中的应用有重大贡献。甚至对物理学本身,如对热学、电磁非超距作用和激波理论等也作出重要贡献。黎曼的工作直接影响了19世纪后半期的数学发展,许多杰出的数学家重新论证黎曼断言过的定理,在黎曼思想的影响下数学许多分支取得了辉煌成就。黎曼首先提出用复变函数论特别是用ζ函数研究数论的新思想和新方法,开创了解析数论的新时期,并对单复变函数论的发展有深刻的影响 。他是世界数学史上最具独创精神的数学家之一,黎曼的著作不多,但却异常深刻,极富于对概念的创造与想象。 他的名字出现在黎曼ζ函数,黎曼积分,黎曼引理,黎曼流形,黎曼空间,黎曼映照定理,黎曼-希尔伯特问题,柯西-黎曼方程,黎曼思路回环矩阵中。

黎曼几何属于研究生数学教材可以看一些黎曼几何导论之类初步的书籍如果你对物理感兴趣可以参阅很多相对论的书一般都有关于黎曼几何的原理介绍写得都非常好~

黎曼发表了几篇论文

雅可比、狄利克莱、施泰纳、艾森斯坦、高斯

1846年,黎曼进入哥廷根大学学习哲学和神学。在此期间他去听了一些数学讲座,包括高斯关于最小二乘法的讲座。在得到父亲的允许后,他改学数学。在大学期间有两年去柏林大学就读 ,受到 C.G.J.雅可比和P.G.L.狄利克雷的影响。1847年春,黎曼转到柏林大学,投入雅戈比、狄利克雷和Steiner门下。两年后他回到哥廷根。

黎曼几何是非欧几何的一种,亦称椭圆几何。德国数学家黎曼,对空间与几何的概念作了深入的研究,于1854年发表《论作为几何学基础的假设》一文,创立了黎曼几何。 黎曼几何是德国数学家黎曼创立的。他在1851年所作的一篇论文《论几何学作为基础的假设》中明确的提出另一种几何学的存在,开创了几何学的一片新的广阔领域。 黎曼几何中的一条基本规定是:在同一平面内任何两条直线都有公共点(交点)。在黎曼几何学中不承认平行线的存在,它的另一条公设讲:直线可以无限延长,但总的长度是有限的。 欧氏几何、罗氏几何、黎曼几何是三种各有区别的几何。这三中几何各自所有的命题都构成了一个严密的公理体系,各公理之间满足和谐性、完备性和独立性。因此这三种几何都是正确的。 近代黎曼几何在广义相对论里得到了重要的应用。在物理学家爱因斯坦的广义相对论中的空间几何就是黎曼几何。

1847年春,黎曼转到柏林大学,投入雅戈比、狄利克雷和Steiner门下。两年后他回到哥廷根。

1851年,在哥廷根大学获博士学位 。

1851年,论证了复变函数可导的必要充分条件( 即柯西-黎曼方程) 。借助狄利克雷原理阐述了黎曼映射定理 ,成为函数的几何理论的基础。

1853年,定义了黎曼积分并研究了三角级数收敛的准则。

1854年,发扬了高斯关于曲面的微分几何研究,提出用流形的概念理解空间的实质,用微分弧长度的平方所确定的正定二次型理解度量,建立了黎曼空间的概念,把欧氏几何、非欧几何包进了他的体系之中。

主要贡献

1859年,发表的关于素数分布的论文《论小于某给定值的素数的个数》中,研究了黎曼ζ函数,给出了ζ函数的积分表示与它满足的函数方程,他指出素数的分布与黎曼ζ函数之间存在深刻联系。这一关联的核心就是J(x)的积分表达式。

1854年,黎曼在格丁根大学发表的题为《论作为几何学基础的假设》的演说,创立了黎曼几何学。黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧几里得空间中的一个几何实体。1915年,A.爱因斯坦运用黎曼几何和张量分析工具创立了新的引力理论——广义相对论。

另外,他对偏微分方程及其在物理学中的应用有重大贡献。甚至对物理学本身,如对热学、电磁非超距作用和激波理论等也作出重要贡献。

黎曼发表的十篇论文

黎曼1826年9月17日,黎曼生于德国北部汉诺威的布雷塞伦茨村,父亲是一个乡村的穷苦牧师。他六岁开始上学,14岁进入大学预科学习,19岁按其父亲的意愿进入哥廷根大学攻读哲学和神学,以便将来继承父志也当一名牧师。 由于从小酷爱数学,黎曼在学习哲学和神学的同时也听些数学课。当时的哥廷根大学是世界数学的中心之一,—些著名的数学家如高斯、韦伯、斯特尔都在校执教。黎曼被这里的数学教学和数学研究的气氛所感染,决定放弃神学,专攻数学。 1847年,黎曼转到柏林大学学习,成为雅可比、狄利克莱、施泰纳、艾森斯坦的学生。1849年重回哥丁很大学攻读博士学位,成为高斯晚年的学生。 l851年,黎曼获得数学博士学位;l854年被聘为哥廷根大学的编外讲师;1857年晋升为副教授;1859年接替去世的狄利克雷被聘为教授。 因长年的贫困和劳累,黎曼在1862年婚后不到一个月就开始患胸膜炎和肺结核,其后四年的大部分时间在意大利治病疗养。1866年7月20日病逝于意大利,终年39岁。 黎曼是世界数学史上最具独创精神的数学家之一。黎曼的著作不多,但却异常深刻,极富于对概念的创造与想象。黎曼在其短暂的一生中为数学的众多领域作了许多奠基性、创造性的工作,为世界数学建立了丰功伟绩。复变函数论的奠基人 19世纪数学最独特的创造是复变函数理论的创立,它是18世纪人们对复数及复函数理论研究的延续。1850年以前,柯西、雅可比、高斯、阿贝尔、维尔斯特拉斯已对单值解析函数的理论进行了系统的研究,而对于多值函数仅有柯西和皮瑟有些孤立的结论。 1851年,黎曼在高斯的指导下完成题为《单复变函数的一般理论的基础》的博士论文,后来又在《数学杂志》上发表了四篇重要文章,对其博士论文中思想的做了进一步的阐述,一方面总结前人关于单值解析函数的成果,并用新的工具予以处理,同时创立多值解析函数的理论基础,并由此为几个不同方向的进展铺平了道路。 柯西、黎曼和维尔斯特拉斯是公认的复变函数论的主要奠基人,而且后来证明在处理复函数理论的方法上黎曼的方法是本质的,柯西和黎曼的思想被融合起来,维尔斯特拉斯的思想可以从柯西—黎曼的观点推导出来。 在黎曼对多值函数的处理中,最关键的是他引入了被后人称“黎曼面”的概念。通过黎曼面给多值函数以几何直观,且在黎曼面上表示的多值函数是单值的。他在黎曼面上引入支点、横剖线、定义连通性,开展对函数性质的研究获得一系列成果。 经黎曼处理的复函数,单值函数是多值函数的待例,他把单值函数的一些已知结论推广到多值函数中,尤其他按连通性对函数分类的方法,极大地推动了拓扑学的初期发展。他研究了阿贝尔函数和阿贝尔积分及阿贝尔积分的反演,得到著名的黎曼—罗赫定理,首创的双有理变换构成19世纪后期发展起来的代数几何的主要内容。 黎曼为完善其博士论文,在结束时给出其函数论在保形映射的几个应用,将高斯在1825年关于平面到平面的保形映射的结论推广到任意黎曼面上,并在文字的结尾给出著名的黎曼映射定理。黎曼几何的创始人 黎曼对数学最重要的贡献还在于几何方面,他开创的高维抽象几何的研究,处理几何问题的方法和手段是几何史上一场深刻的革命,他建立了一种全新的后来以其名字命名的几何体系,对现代几何乃至数学和科学各分支的发展都产生了巨大的影响。 1854年,黎曼为了取得哥廷根大学编外讲师的资格,对全体教员作了一次演讲,该演讲在其逝世后的两年(1868年)以《关于作为几何学基础的假设》为题出版。演讲中,他对所有已知的几何,包括刚刚诞生的非欧几何之一的双曲几何作了纵贯古今的概要,并提出一种新的几何体系,后人称为黎曼几何。 为竞争巴黎科学院的奖金,黎曼在1861年写了一篇关于热传导的文章,这篇文章后来被称为他的“巴黎之作”。文中对他1854年的文章作了技术性的加工,进一步阐明其几何思想。该文在他死后收集在1876年他的《文集》中。 黎曼主要研究几何空间的局部性质,他采用的是微分几何的途径,这同在欧几里得几何中或者在高斯、波尔约和罗巴切夫斯基的非欧几何中把空间作为一个整体进行考虑是对立的。黎曼摆脱高斯等前人把几何对象局限在三维欧几里得空间的曲线和曲面的束缚,从维度出发,建立了更一般的抽象几何空间。 黎曼引入流形和微分流形的概念,把维空间称为一个流形,维流形中的一个点可以用个可变参数的一组特定值来表示,而所有这些点的全体构成流形本身,这个可变参数称为流形的坐标,而且是可微分的,当坐标连续变化时,对应的点就遍历这个流形。 黎曼仿照传统的微分几何定义流形上两点之间的距离、流形上的曲线、曲线之间的夹角。并以这些概念为基础,展开对维流形几何性质的研究。在维流形上他也定义类似于高斯在研究一般曲面时刻划曲面弯曲程度的曲率。他证明他在维流形上维数等于三时,欧几里得空间的情形与高斯等人得到的结果是一致的,因而黎曼几何是传统微分几何的推广。 黎曼发展了高斯关于一张曲面本身就是一个空间的几何思想,开展对维流形内蕴性质的研究。黎曼的研究导致另一种非欧几何——椭圆几何学的诞生。 在黎曼看来,有三种不同的几何学。它们的差别在于通过给定一点做关于定直线所作平行线的条数。如果只能作一条平行线,即为熟知的欧几里得几何学;如果一条都不能作,则为椭圆几何学;如果存在一组平行线,就得到第三种几何学,即罗巴切夫斯基几何学。黎曼因此继罗巴切夫斯基以后发展了空间的理论,使得一千多年来关于欧几里得平行公理的讨论宣告结束。他断言,客观空间是一种特殊的流形,预见具有某种特定性质的流形的存在性。这些逐渐被后人一一予以证实。 由于黎曼考虑的对象是任意维数的几何空间,对复杂的客观空间有更深层的实用价值。所以在高维几何中,由于多变量微分的复杂性,黎曼采取了一些异于前人的手段使表述更简洁,并最终导致张量、外微分及联络等现代几何工具的诞生。爱因斯坦就是成功地以黎曼几何为工具,才将广义相对论几何化。现在,黎曼几何已成为现代理论物理必备的数学基础。微积分理论的创造性贡献 黎曼除对几何和复变函数方面的开拓性工作以外,还以其对l9世纪初兴起的完善微积分理论的杰出贡献载入史册。 18世纪末到l9世纪初,数学界开始关心数学最庞大的分支——微积分在概念和证明中表现出的不严密性。波尔查诺、柯西、阿贝尔、狄利克莱进而到维尔斯特拉斯,都以全力的投入到分析的严密化工作中。黎曼由于在柏林大学从师狄利克莱研究数学,且对柯西和阿贝尔的工作有深入的了解,因而对微积分理论有其独到的见解。 1854年黎曼为取得哥廷根大学编外讲师的资格,需要他递交一篇反映他学术水平的论文。他交出的是《关于利用三角级数表示一个函数的可能性的》文章。这是一篇内容丰富、思想深刻的杰作,对完善分析理论产生深远的影响。 柯西曾证明连续函数必定是可积的,黎曼指出可积函数不一定是连续的。关于连续与可微性的关系上,柯西和他那个时代的几乎所有的数学家都相信,而且在后来50年中许多教科书都“证明”连续函数一定是可微的。黎曼给出了一个连续而不可微的著名反例,最终讲清连续与可微的关系。 黎曼建立了如现在微积分教科书所讲的黎曼积分的概念,给出了这种积分存在的必要充分条件。 黎曼用自己独特的方法研究傅立叶级数,推广了保证博里叶展开式成立的狄利克莱条件,即关于三角级数收敛的黎曼条件,得出关于三角级数收敛、可积的一系列定理。他还证明:可以把任一条件收敛的级数的项适当重排,使新级数收敛于任何指定的和或者发散。解析数论跨世纪的成果 19世纪数论中的一个重要发展是由狄利克莱开创的解析方法和解析成果的导入,而黎曼开创了用复数解析函数研究数论问题的先例,取得跨世纪的成果。 1859年,黎曼发表了《在给定大小之下的素数个数》的论文。这是一篇不到十页的内容极其深到的论文,他将素数的分布的问题归结为函数的问题,现在称为黎曼函数。黎曼证明了函数的一些重要性质,并简要地断言了其它的性质而未予证明。 在黎曼死后的一百多年中,世界上许多最优秀的数学家尽了最大的努力想证明他的这些断言,并在作出这些努力的过程中为分析创立了新的内容丰富的新分支。如今,除了他的一个断言外,其余都按黎曼所期望的那样得到了解决。 那个未解决的问题现称为“黎曼猜想”,即:在带形区域中的一切零点都位于去这条线上(希尔伯特23个问题中的第8个问题),这个问题迄今没有人证明。对于某些其它的域,布尔巴基学派的成员已证明相应的黎曼猜想。数论中很多问题的解决有赖于这个猜想的解决。黎曼的这一工作既是对解析数论理论的贡献,也极大地丰富了复变函数论的内容。组合拓扑的开拓者 在黎曼博士论文发表以前,已有一些组合拓扑的零散结果,其中著名的如欧拉关于闭凸多面体的顶点、棱、面数关系的欧拉定理。还有一些看起来简单又长期得不到解决的问题:如哥尼斯堡七桥问题、四色问题,这些促使了人们对组合拓扑学(当时被人们称为位置几何学或位置分析学)的研究。但拓扑研究的最大推动力来自黎曼的复变函数论的工作。 黎曼在1851年他的博士论文中,以及在他的阿贝尔函数的研究里都强调说,要研究函数,就不可避免地需要位置分析学的一些定理。按现代拓扑学术语来说,黎曼事实上已经对闭曲面按亏格分类。值得提到的是,在其学位论文中,他说到某些函数的全体组成(空间点的)连通闭区域的思想是最早的泛函思想。 比萨大学的数学教授贝蒂曾在意大利与黎曼相会,黎曼由于当时病魔缠身,自身已无能力继续发展其思想,把方法传授给了贝蒂。贝蒂把黎曼面的拓扑分类推广到高维图形的连通性,并在拓扑学的其他领域作出杰出的贡献。黎曼是当之无愧的组合拓扑的先期开拓者。代数几何的开源贡献 19世纪后半叶,人们对黎曼研究阿贝尔积分和阿贝尔函数所创造的双有理变换的方法产生极大的兴趣。当时他们把代数不变量和双有理变换的研究称为代数几何。 黎曼在1857年的论文中认为,所有能彼此双有理变换的方程(或曲面)属于同一类,它们有相同的亏格。黎曼把常量的个数叫做“类模数”,常量在双有理变换下是不变量。“类模数”的概念是现在“参模”的特殊情况,研究参模上的结构是现代最热门的领域之一。 著名的代数几何学家克莱布什后来到哥廷根大学担任数学教授,他进一步熟悉了黎曼的工作,并对黎曼的工作给予新的发展。虽然黎曼英年早逝,但世人公认,研究曲线的双有理变换的第一个大的步骤是由黎曼的工作引起的。在数学物理、微分方程等其他领域的丰硕成果 黎曼不但对纯数学作出了划时代的贡献,他也十分关心物理及数学与物理世界的关系,他写了一些关于热、光、磁、气体理论、流体力学及声学方面的有关论文。他是对冲击波作数学处理的第一个人,他试图将引力与光统一起来,并研究人耳的数学结构。他将物理问题抽象出的常微分方程、偏微分方程进行定论研究得到一系列丰硕成果。 黎曼在1857年的论文《对可用高斯级数表示的函数的理论的补充》,及同年写的一个没有发表而后收集在其全集中的一个片断中,他处理了超几何微分方程和讨论带代数系数的阶线性微分方程。这是关于微分方程奇点理论的重要文献。 19世纪后半期,许多数学家花了很多精力研究黎曼问题,然而都失败了,直到1905年希尔伯特和Kellogg借助当时已经发展了的积分方程理论,才第一次给出完全解。 黎曼在常微分方程理论中自守函数的研究上也有建树,在他的1858~1859年关于超几何级数的讲义和1867年发表的关于极小正曲面的一篇遗著中,他建立了为研究二阶线性微分方程而引进的自守函数理论,即现在通称的黎曼——许瓦兹定理。 在偏微分方程的理论和应用上,黎曼在1858年~1859年论文中,创造性的提出解波动方程初值问题的新方法,简化了许多物理问题的难度;他还推广了格林定理;对关于微分方程解的存在性的狄里克莱原理作了杰出的工作,…… 黎曼在物理学中使用的偏微分方程的讲义,后来由韦伯以《数学物理的微分方程》编辑出版,这是一本历史名著。 不过,黎曼的创造性工作当时未能得到数学界的一致公认,一方面由于他的思想过于深邃,当时人们难以理解,如无自由移动概念非常曲率的黎曼空间就很难为人接受,直到广义相对论出现才平息了指责;另一方面也由于他的部分工作不够严谨,如在论证黎曼映射定理和黎曼—罗赫定理时,滥用了狄利克雷原理,曾经引起了很大的争议。 黎曼的工作直接影响了19世纪后半期的数学发展,许多杰出的数学家重新论证黎曼断言过的定理,在黎曼思想的影响下数学许多分支取得了辉煌成就。

黎曼一生发表过几篇论文

黎曼是德国人。波恩哈德·黎曼(公元1826—1866年),是德国著名的数学家,他在数学分析和微分几何方面作出过重要贡献,他开创了黎曼几何,并且给后来爱因斯坦的广义相对论提供了数学基础。黎曼留给后人的难题之一就是当今著名的黎曼猜想,是希尔伯特(Hilbert)在1900年提出的二十三个问题的第八问题,现在又被列为千禧年七大难题之一。它要求解决的是黎曼zeta函数ζ(s)的非平凡零点都位于复平面Re(s)=1/2直线上。数学家们把这条直线称为临界线。运用这一术语,黎曼猜想可以表述为:黎曼ζ(s)函数的所有非平凡零点都位于临界线上。

波恩哈德·黎曼(公元1826—1866年),是德国著名的数学家,他在数学分析和微分几何方面作出过重要贡献,他开创了黎曼几何,并且给后来爱因斯坦的广义相对论提供了数学基础。

1826年,他出生于汉诺威王国(今德国)的小镇布列斯伦茨(Breselenz)。他的父亲弗雷德里希·波恩哈德·黎曼是当地的路德会牧师。他在六个孩子中排行第二。他是个安静多病而且害羞的人,终生喜欢独处。他的同事戴德金(Dedekind)是少数了解他的人之一。据戴德金说,除了黎曼真正糟糕的身体状况之外,他还是

黎曼图册(3张)

一名疑病症患者。

1840年,黎曼搬到汉诺威和祖母生活并进入中学学习。

1842年,祖母去世后,他搬到吕内堡(Lüneburg)的约翰纽姆(Johanneum)。

1846年,黎曼进入哥廷根大学学习哲学和神学。在此期间他去听了一些数学讲座,包括高斯关于最小二乘法的讲座。在得到父亲的允许后,他改学数学。在大学期间有两年去柏林大学就读 ,受到 C.G.J.雅可比和P.G.L.狄利克雷的影响。

1847年春,黎曼转到柏林大学,投入雅戈比、狄利克雷和Steiner门下。两年后他回到哥廷根。

1851年,在柏林大学获博士学位 。

1851年,论证了复变函数可导的必要充分条件( 即柯西-黎曼方程) 。借助狄利克雷原理阐述了黎曼映射定理 ,成为函数的几何理论的基础。

1853年,定义了黎曼积分并研究了三角级数收敛的准则。

1854年,发扬了高斯关于曲面的微分几何研究,提出用流形的概念理解空间的实质,用微分弧长度的平方所确定的正定二次型理解度量,建立了黎曼空间的概念,把欧氏几何、非欧几何包进了他的体系之中。

1854年,成为格丁根大学的讲师,

1857年,初次登台作了题为“论作为几何基础的假设”的演讲,开创了黎曼几何,并为爱因斯

黎曼之墓

坦的广义相对论提供了数学基础。

1857年,发表的关于阿贝尔函数的研究论文,引出黎曼曲面的概念 ,将阿贝尔积分与阿贝尔函数的理论带到新的转折点并做系统的研究。其中对黎曼曲面从拓扑、分析、代数几何各角度作了深入研究。创造了一系列对代数拓扑发展影响深远的概念,阐明了后来为G.罗赫所补足的黎曼-罗赫定理。1857年,升为哥廷根大学的编外教授。1859年,接替狄利克雷成为教授。并发表论文《论小于某给定值的素数的个数》,提出黎曼假设。

1862年,他与爱丽丝·科赫(Elise Koch)结婚。

1866年7月20日,他在第三次去意大利修养的的途中因肺结核在塞拉斯卡(Selasca)去世。

主要贡献

1859年,发表的关于素数分布的论文《论小于某给定值的素数的个数》中,研究了黎曼ζ函数,给出了ζ函数的积分表示与它满足的函数方程,他指出素数的分布与黎曼ζ函数之间存在深刻联系。这一关联的核心就是J(x)的积分表达式。

1854年,黎曼在格丁根大学发表的题为《论作为几何学基础的假设》的演说,创立了黎曼几何学。黎曼将曲面本身看成一个独立的几何实体,而不是把它仅仅看作欧几里得空间中的一个几何实体。1915年,A.爱因斯坦运用黎曼几何和张量分析工具创立了新的引力理论——广义相对论。

另外,他对偏微分方程及其在物理学中的应用有重大贡献。甚至对物理学本身,如对热学、电磁非超距作用和激波理论等也作出重要贡献。

黎曼的工作直接影响了19世纪后半期的数学发展,许多杰出的数学家重新论证黎曼断言过的定理,在黎曼思想的影响下数学许多分支取得了辉煌成就。

黎曼首先提出用复变函数论特别是用ζ函数研究数论的新思想和新方法,开创了解析数论的新时期,并对单复变函数论的发展有深刻的影响 。他是世界数学史上最具独创精神的数学家之一,黎曼的著作不多,但却异常深刻,极富于对概念的创造与想象。

他的名字出现在黎曼ζ函数,黎曼积分,黎曼引理,黎曼流形,黎曼空间,黎曼映照定理,黎曼-希尔伯特问题,柯西-黎曼方程,黎曼思路回环矩阵中。

人物评价

埃丁顿(Eddington)爵士曾说:“一个像黎曼这样的几何学者几乎可以预见到现实世界的更重要的特征。”

高斯说:“黎曼……具有创造性的、活跃的、真正数学家的头脑,具有灿烂丰富的创造力。”

近代数学史家贝尔认为:“作为一个数学家,黎曼的伟大在于他给纯数学和应用数学揭示的方法和新观点的有力的普遍性和无限的范围。”

德国数学家克莱因说:“黎曼具有非凡的直观能力,他的理解天才胜过所有同代数学家。”

黎曼,G.F.B(Riemann,Georg Friedrich Bernhard)1826年9月17日生于德国汉若威的布雷斯塞论茨;1866年7月20日卒于意大利塞拉斯卡。黎曼是对现代数学影响最大的数学家之一,我们从他当时的数学水平来看,他作为伟大的分析学家,其成就可以分为八个领域来论述。前4个领域是关于复分析方面的,他第一个有意识的将实域过渡到复域,开创了复变函数域,代数函数论,常微分方程解析理论及解析数论诸方向;后4个领域主要涉及实分析,在积分理论,三角级理论,微分几何学,数学物理方程等方面取得重大突破。重要的是一个多世纪之前的成就却直接同现代数学中的拓扑方法,一般流形概念,联系拓扑与分析的黎曼-洛赫定理,代数几何学特别是阿贝尔簇以及参模等紧密相连,他的空间观念及黎曼几何更预示着广义相对论,正是他促发了现代数学的革命性变革。他的具体成就有:一、复变函数论黎曼和柯西及魏尔斯特拉斯被公认为复变函数论三大奠基人。而黎曼:1.通过复变函数的导数定义,建立复变函数论的基础。2.对多值函数定义黎曼曲面。3.黎曼曲面的拓扑(黎曼是第一个研究曲面拓扑的人,他引进横剖线的方法来研究曲面的连通性质)。4.黎曼曲面上的函数论(黎曼研究的基本问题是黎曼曲面上函数的存在性及唯一性问题。他比以前数学家的先进之处在于,函数的存在不必通过构造出解析表达式来证明,黎曼可以通过其奇点来定义,这对后世数学有重要影响。)。5.狄利克雷原理(黎曼给出其证明并有效地表述及运用狄利克雷原理,这个原理是他从狄利克雷的课程中学来的)。二、阿贝尔函数论关于阿贝尔函数,黎曼发表过两篇文章:一是《阿贝尔函数论》,一是《论函数的零点》。1.阿贝尔积分的表示及分类(黎曼对由定义的黎曼曲面上所有阿贝尔积分进行了分类。第一类阿贝尔积分,在黎曼曲面上处处有界。线性独立的第一类阿贝尔积分的数目等于曲面的亏格p,如果曲面的连通数,这p个阿贝尔积分称为基本积分。第二类阿贝尔积分,在黎曼曲面上以有限多点为极点。第三类阿贝尔积分,在黎曼曲面上具有对数奇点。每一个阿贝尔积分均为以上三类积分的和。2.黎曼-洛赫定理(这是代数函数论及代数几何学最重要的定理。黎曼得到的黎曼不等式,是黎曼-洛赫定理的原始形态)。3.黎曼矩阵,黎曼点集和阿贝尔函数。4.函数及雅可比反演问题(为了研究雅可比簇,黎曼推广雅可比函数,引进了黎曼函数)。5.双有理变换的概念和参模。三、超几何级数和常微分方程超几何微分方程有3个奇点0,1,α,它作为二阶微分方程有两个独立特解y1和y2,其他解均为这两解的线形组合。黎曼的思想是当y1,y2沿绕奇点的路径变化时必经历线形变换。对于所有绕奇点的路径,这些变换组成群。他把结果推广到m个奇点n个独立函数的情形,他证明给定线形变换后,这n个独立函数满足一个n阶线形微分方程,但他没有证明这些奇点(支点)和这些变换可以任意选取,从而留下了著名的黎曼问题。希尔伯特把他列入23个问题中的第21个问题。四、解析理论黎曼是现代意义下解析数论的奠基者,生前他只在1859年发表过一篇论文《论给定数以内的素数数目》。五、实分析——函数观念,黎曼积分,傅立叶级数,连续不可微函数黎曼积分是数学特别是物理应用的主要分析工具;黎曼还是最早认识到连续性及可微性的区别的数学家之一。六、几何学黎曼的空间观念使数学及物理发生空前的变革。黎曼的几何论文有两篇,一篇是他的授课资格的演讲,另一篇是所谓《巴黎之作》,即《论热传导问题》。

黎曼(1826~1866),1826年9月17日,黎曼生于德国北部汉诺威的布雷塞伦茨村,父亲是一个乡村的穷苦牧师。他六岁开始上学,14岁进入大学预科学习,19岁按其父亲的意愿进入哥廷根大学攻读哲学和神学,以便将来继承父志也当一名牧师。

由于从小酷爱数学,黎曼在学习哲学和神学的同时也听些数学课。当时的哥廷根大学是世界数学的中心之一,—些著名的数学家如高斯、韦伯、斯特尔都在校执教。黎曼被这里的数学教学和数学研究的气氛所感染,决定放弃神学,专攻数学。

1847年,黎曼转到柏林大学学习,成为雅可比、狄利克莱、施泰纳、艾森斯坦的学生。1849年重回哥丁很大学攻读博士学位,成为高斯晚年的学生。

1851年,黎曼获得数学博士学位;1854年被聘为哥廷根大学的编外讲师;1857年晋升为副教授;1859年接替去世的狄利克雷被聘为教授。

因长年的贫困和劳累,黎曼在1862年婚后不到一个月就开始患胸膜炎和肺结核,其后四年的大部分时间在意大利治病疗养。1866年7月20日病逝于意大利,终年39岁。

黎曼是世界数学史上最具独创精神的数学家之一。黎曼的著作不多,但却异常深刻,极富于对概念的创造与想象。黎曼在其短暂的一生中为数学的众多领域作了许多奠基性、创造性的工作,为世界数学建立了丰功伟绩。

黎曼是复变函数论的奠基人

19世纪数学最独特的创造是复变函数理论的创立,它是18世纪人们对复数及复函数理论研究的延续。1850年以前,柯西、雅可比、高斯、阿贝尔、维尔斯特拉斯已对单值解析函数的理论进行了系统的研究,而对于多值函数仅有柯西和皮瑟有些孤立的结论。

1851年,黎曼在高斯的指导下完成题为《单复变函数的一般理论的基础》的博士论文,后来又在《数学杂志》上发表了四篇重要文章,对其博士论文中思想的做了进一步的阐述,一方面总结前人关于单值解析函数的成果,并用新的工具予以处理,同时创立多值解析函数的理论基础,并由此为几个不同方向的进展铺平了道路。

柯西、黎曼和维尔斯特拉斯是公认的复变函数论的主要奠基人,而且后来证明在处理复函数理论的方法上黎曼的方法是本质的,柯西和黎曼的思想被融合起来,维尔斯特拉斯的思想可以从柯西—黎曼的观点推导出来。

在黎曼对多值函数的处理中,最关键的是他引入了被后人称“黎曼面”的概念。通过黎曼面给多值函数以几何直观,且在黎曼面上表示的多值函数是单值的。他在黎曼面上引入支点、横剖线、定义连通性,开展对函数性质的研究获得一系列成果。

经黎曼处理的复函数,单值函数是多值函数的待例,他把单值函数的一些已知结论推广到多值函数中,尤其他按连通性对函数分类的方法,极大地推动了拓扑学的初期发展。他研究了阿贝尔函数和阿贝尔积分及阿贝尔积分的反演,得到著名的黎曼—罗赫定理,首创的双有理变换构成19世纪后期发展起来的代数几何的主要内容。

黎曼为完善其博士论文,在结束时给出其函数论在保形映射的几个应用,将高斯在1825年关于平面到平面的保形映射的结论推广到任意黎曼面上,并在文字的结尾给出著名的黎曼映射定理。

黎曼几何的创始人

黎曼对数学最重要的贡献还在于几何方面,他开创的高维抽象几何的研究,处理几何问题的方法和手段是几何史上一场深刻的革命,他建立了一种全新的后来以其名字命名的几何体系,对现代几何乃至数学和科学各分支的发展都产生了巨大的影响。

1854年,黎曼为了取得哥廷根大学编外讲师的资格,对全体教员作了一次演讲,该演讲在其逝世后的两年(1868年)以《关于作为几何学基础的假设》为题出版。演讲中,他对所有已知的几何,包括刚刚诞生的非欧几何之一的双曲几何作了纵贯古今的概要,并提出一种新的几何体系,后人称为黎曼几何。

为竞争巴黎科学院的奖金,黎曼在1861年写了一篇关于热传导的文章,这篇文章后来被称为他的“巴黎之作”。文中对他1854年的文章作了技术性的加工,进一步阐明其几何思想。该文在他死后收集在1876年他的《文集》中。

黎曼主要研究几何空间的局部性质,他采用的是微分几何的途径,这同在欧几里得几何中或者在高斯、波尔约和罗巴切夫斯基的非欧几何中把空间作为一个整体进行考虑是对立的。黎曼摆脱高斯等前人把几何对象局限在三维欧几里得空间的曲线和曲面的束缚,从维度出发,建立了更一般的抽象几何空间。

黎曼引入流形和微分流形的概念,把维空间称为一个流形,维流形中的一个点可以用个可变参数的一组特定值来表示,而所有这些点的全体构成流形本身,这个可变参数称为流形的坐标,而且是可微分的,当坐标连续变化时,对应的点就遍历这个流形。

黎曼仿照传统的微分几何定义流形上两点之间的距离、流形上的曲线、曲线之间的夹角。并以这些概念为基础,展开对维流形几何性质的研究。在维流形上他也定义类似于高斯在研究一般曲面时刻划曲面弯曲程度的曲率。他证明他在维流形上维数等于三时,欧几里得空间的情形与高斯等人得到的结果是一致的,因而黎曼几何是传统微分几何的推广。

黎曼发展了高斯关于一张曲面本身就是一个空间的几何思想,开展对维流形内蕴性质的研究。黎曼的研究导致另一种非欧几何——椭圆几何学的诞生。

在黎曼看来,有三种不同的几何学。它们的差别在于通过给定一点做关于定直线所作平行线的条数。如果只能作一条平行线,即为熟知的欧几里得几何学;如果一条都不能作,则为椭圆几何学;如果存在一组平行线,就得到第三种几何学,即罗巴切夫斯基几何学。黎曼因此继罗巴切夫斯基以后发展了空间的理论,使得一千多年来关于欧几里得平行公理的讨论宣告结束。他断言,客观空间是一种特殊的流形,预见具有某种特定性质的流形的存在性。这些逐渐被后人一一予以证实。

由于黎曼考虑的对象是任意维数的几何空间,对复杂的客观空间有更深层的实用价值。所以在高维几何中,由于多变量微分的复杂性,黎曼采取了一些异于前人的手段使表述更简洁,并最终导致张量、外微分及联络等现代几何工具的诞生。爱因斯坦就是成功地以黎曼几何为工具,才将广义相对论几何化。现在,黎曼几何已成为现代理论物理必备的数学基础。

对微积分理论的创造性贡献

黎曼除对几何和复变函数方面的开拓性工作以外,还以其对19世纪初兴起的完善微积分理论的杰出贡献载入史册。

18世纪末到19世纪初,数学界开始关心数学最庞大的分支——微积分在概念和证明中表现出的不严密性。波尔查诺、柯西、阿贝尔、狄利克莱进而到维尔斯特拉斯,都以全力的投入到分析的严密化工作中。黎曼由于在柏林大学从师狄利克莱研究数学,且对柯西和阿贝尔的工作有深入的了解,因而对微积分理论有其独到的见解。

1854年黎曼为取得哥廷根大学编外讲师的资格,需要他递交一篇反映他学术水平的论文。他交出的是《关于利用三角级数表示一个函数的可能性的》文章。这是一篇内容丰富、思想深刻的杰作,对完善分析理论产生深远的影响。

柯西曾证明连续函数必定是可积的,黎曼指出可积函数不一定是连续的。关于连续与可微性的关系上,柯西和他那个时代的几乎所有的数学家都相信,而且在后来50年中许多教科书都“证明”连续函数一定是可微的。黎曼给出了一个连续而不可微的著名反例,最终讲清连续与可微的关系。

黎曼建立了如现在微积分教科书所讲的黎曼积分的概念,给出了这种积分存在的必要充分条件。

黎曼用自己独特的方法研究傅立叶级数,推广了保证博里叶展开式成立的狄利克莱条件,即关于三角级数收敛的黎曼条件,得出关于三角级数收敛、可积的一系列定理。他还证明:可以把任一条件收敛的级数的项适当重排,使新级数收敛于任何指定的和或者发散。

解析数论的跨世纪成果

19世纪数论中的一个重要发展是由狄利克莱开创的解析方法和解析成果的导入,而黎曼开创了用复数解析函数研究数论问题的先例,取得跨世纪的成果。

1859年,黎曼发表了《在给定大小之下的素数个数》的论文。这是一篇不到十页的内容极其深到的论文,他将素数的分布的问题归结为函数的问题,现在称为黎曼函数。黎曼证明了函数的一些重要性质,并简要地断言了其它的性质而未予证明。

在黎曼死后的一百多年中,世界上许多最优秀的数学家尽了最大的努力想证明他的这些断言,并在作出这些努力的过程中为分析创立了新的内容丰富的新分支。如今,除了他的一个断言外,其余都按黎曼所期望的那样得到了解决。

那个未解决的问题现称为“黎曼猜想”,即:在带形区域中的一切零点都位于去这条线上(希尔伯特23个问题中的第8个问题),这个问题迄今没有人证明。对于某些其它的域,布尔巴基学派的成员已证明相应的黎曼猜想。数论中很多问题的解决有赖于这个猜想的解决。黎曼的这一工作既是对解析数论理论的贡献,也极大地丰富了复变函数论的内容。

组合拓扑的开拓者

在黎曼博士论文发表以前,已有一些组合拓扑的零散结果,其中著名的如欧拉关于闭凸多面体的顶点、棱、面数关系的欧拉定理。还有一些看起来简单又长期得不到解决的问题:如哥尼斯堡七桥问题、四色问题,这些促使了人们对组合拓扑学(当时被人们称为位置几何学或位置分析学)的研究。但拓扑研究的最大推动力来自黎曼的复变函数论的工作。

黎曼在1851年他的博士论文中,以及在他的阿贝尔函数的研究里都强调说,要研究函数,就不可避免地需要位置分析学的一些定理。按现代拓扑学术语来说,黎曼事实上已经对闭曲面按亏格分类。值得提到的是,在其学位论文中,他说到某些函数的全体组成(空间点的)连通闭区域的思想是最早的泛函思想。

比萨大学的数学教授贝蒂曾在意大利与黎曼相会,黎曼由于当时病魔缠身,自身已无能力继续发展其思想,把方法传授给了贝蒂。贝蒂把黎曼面的拓扑分类推广到高维图形的连通性,并在拓扑学的其他领域作出杰出的贡献。黎曼是当之无愧的组合拓扑的先期开拓者。

代数几何的开源贡献

19世纪后半叶,人们对黎曼研究阿贝尔积分和阿贝尔函数所创造的双有理变换的方法产生极大的兴趣。当时他们把代数不变量和双有理变换的研究称为代数几何。

黎曼在1857年的论文中认为,所有能彼此双有理变换的方程(或曲面)属于同一类,它们有相同的亏格。黎曼把常量的个数叫做“类模数”,常量在双有理变换下是不变量。“类模数”的概念是现在“参模”的特殊情况,研究参模上的结构是现代最热门的领域之一。

著名的代数几何学家克莱布什后来到哥廷根大学担任数学教授,他进一步熟悉了黎曼的工作,并对黎曼的工作给予新的发展。虽然黎曼英年早逝,但世人公认,研究曲线的双有理变换的第一个大的步骤是由黎曼的工作引起的。

黎曼在数学物理、微分方程等其他领域也取得了丰硕的成果。

黎曼不但对纯数学作出了划时代的贡献,他也十分关心物理及数学与物理世界的关系,他写了一些关于热、光、磁、气体理论、流体力学及声学方面的有关论文。他是对冲击波作数学处理的第一个人,他试图将引力与光统一起来,并研究人耳的数学结构。他将物理问题抽象出的常微分方程、偏微分方程进行定论研究得到一系列丰硕成果。

黎曼在1857年的论文《对可用高斯级数表示的函数的理论的补充》,及同年写的一个没有发表而后收集在其全集中的一个片断中,他处理了超几何微分方程和讨论带代数系数的阶线性微分方程。这是关于微分方程奇点理论的重要文献。

19世纪后半期,许多数学家花了很多精力研究黎曼问题,然而都失败了,直到1905年希尔伯特和Kellogg借助当时已经发展了的积分方程理论,才第一次给出完全解。

黎曼在常微分方程理论中自守函数的研究上也有建树,在他的1858~1859年关于超几何级数的讲义和1867年发表的关于极小正曲面的一篇遗著中,他建立了为研究二阶线性微分方程而引进的自守函数理论,即现在通称的黎曼——许瓦兹定理。

在偏微分方程的理论和应用上,黎曼在1858年~1859年论文中,创造性的提出解波动方程初值问题的新方法,简化了许多物理问题的难度;他还推广了格林定理;对关于微分方程解的存在性的狄里克莱原理作了杰出的工作……

黎曼在物理学中使用的偏微分方程的讲义,后来由韦伯以《数学物理的微分方程》编辑出版,这是一本历史名著。

不过,黎曼的创造性工作当时未能得到数学界的一致公认,一方面由于他的思想过于深邃,当时人们难以理解,如无自由移动概念非常曲率的黎曼空间就很难为人接受,直到广义相对论出现才平息了指责;另一方面也由于他的部分工作不够严谨,如在论证黎曼映射定理和黎曼—罗赫定理时,滥用了狄利克雷原理,曾经引起了很大的争议。

黎曼的工作直接影响了19世纪后半期的数学发展,许多杰出的数学家重新论证黎曼断言过的定理,在黎曼思想的影响下数学许多分支取得了辉煌成就。

相关百科
热门百科
首页
发表服务