职称论文百科

引力波论文发表为什么是PRL

发布时间:2024-07-03 18:43:28

引力波论文发表为什么是PRL

西澳大利亚大学的物理学家跟一个国际研究团队合作开创了一项能改进引力波探测器的新技术,该探测器是科学研究人员使用的最敏感的仪器之一。 这项新技术使世界上现有的引力波探测器能达到以前认为只有通过建造更大的探测器才能实现的灵敏度。

这篇发表在《Communications Physics》上的论文由西澳大学ARC引力波发现卓越中心(OzGrav)牵头,与ARC工程量子系统卓越中心、哥本哈根的尼尔斯-玻尔研究所和帕萨迪纳的加州理工学院合作。

来自西澳大学物理系的名誉教授David Blari指出,这项技术将被称为声子的声音振动量子粒子跟激光的光子合并在一起,从而创造出一种新型的放大技术,在这种技术中,合并的粒子来回循环数十亿次而不丢失。

Blair表示:“一百多年前,爱因斯坦证明了光是以小能量包的形式出现的,我们现在称之为光子。”

光子最复杂的应用之一是引力波探测器,它允许物理学家观察由宇宙碰撞引起的空间和时间的涟漪。

“在爱因斯坦预测光子两年后,他提出热和声音也是以能量包的形式出现,我们现在称之为声子,”Blair说道,“声子以其量子形式单独驾驭要棘手得多,因为它们通常被称为热背景的大量随机声子所淹没。”

据悉,Blair曾因其对首次探测引力波的贡献而被授予2020年著名的总理科学奖。

论文的第一作者Michael Page博士表示,诀窍是将声子和光子结合在一起,使广泛的引力波频率可以同时放大。

“这项新突破将让物理学家观察到已知宇宙中最极端和最集中的物质,因为它坍缩成一个黑洞,当两颗中子星相撞时就会发生这种情况,”Page博士说道。

Blair表示,这些波形听起来就像一个简短的尖叫声,由于其音调太高,所以目前的探测器无法听到。

“我们的技术将使这些波形清晰可闻,并且还将揭示中子星中的中子在这种极端状态下是否会被分裂成被称为夸克的成分。看到核物质变成黑洞最令人兴奋的是,这个过程就像创造宇宙的大爆炸的反面。观察这种情况的发生就像观看一部向后播放的大爆炸电影。”

Blair表示,虽然该技术并不代表改进引力波探测器的即时解决方案,但它提供了一条低成本的改进途径。

1、验证了已故科学家爱因斯坦的预言。如果引力波不被发现,爱因斯坦的理论就如同缺了一条腿的凳子,是有漏洞的。引力波的发现,拟补了爱因斯坦的广义相对论的漏洞,也确定了他的理论的正确。

2、引力波的发现类似当年的发现X光一样,是一种工具。有了这个工具,我们可以利用引力波的观察,去观察遥远的宇宙的现象。发现暗物质、时空穿梭等等才是有可能实现的事情。如果没有引力波,以我们现有的技术是做不到这些科幻世界才有的事情的。

3、引力波不同在于,引力波的周期要长得多,同时也微弱的多,能观察到引力波,至少要具备一定的技术水准,观察到引力波说明在这个领域人类的技术进步到了前所未有的水平。

您表达不是很清楚。

我有两种理解:①老师对您说的“又不学无术”发脾气——前面引力波,后面双子星相互吸引……怎么就不学无术了?是我我也发脾气。

这是科普知识,您女儿在学这些,又对这些感兴趣。

您不理解是情理之中,但是不能打击孩子的兴趣。

多与老师沟通才对。

语文和科普并不矛盾。

②您说“我女儿不学无术”,同时老师对您女儿的“不学无术”发脾气。

这种情况……你们两位都应该多与女儿沟通,多理解,多发展女儿的兴趣。

...

1936年,爱因斯坦发给《物理评论》的关于引力波的论文的匿名审稿人是爱因斯坦在普林斯顿大学的好朋友罗伯森,这位匿名审稿人对该论文的审稿意见中重新推导了爱因斯坦否定引力波存在的结论,认为这一结论是错误的,并且认为这篇论文不能被《物理评论》刊用。

...

800字要求叙议结合。

高手们来解答...

德裔美国科学家。

1879 年3月14日生于德国乌耳姆镇的一个小业主家庭,1955年4 月18日卒于美国普林斯顿。

自幼喜爱音乐,是一名熟练的小提琴手。

1900年毕业于苏黎世联邦工业大学并取得瑞士籍。

后在伯尔尼瑞士专利局找到固定工作。

他早期的一系列历史性成就都是在这里作出的。

1909年首次在学术界任职,出任苏黎世大学理论物理学副教授。

1914年,应M.普朗克和W.能斯脱的邀请,回德国任威廉皇家物理研究所所长兼柏林大学教授。

1933年希特勒上台,爱因斯坦因为是犹太人,又坚决捍卫民主,首遭迫害,被迫移居美国的普林斯顿。

1940年入美国籍。

1945年退休。

爱因斯坦在量子论、分子运动论、相对论等物理学的三个不同领域取得了历史性成就,特别是狭义相对论的建立和光量子论的提出,推动了物理学理论的革命,他对社会进步事业也有重要贡献。

量子论的进一步发展 爱因斯坦的一项开创性贡献是发展了量子论。

量子论是普朗克于1900年为解决黑体辐射谱而提出的一个假说。

他认为物体发出辐射时所放出的能量不是连续的,而是量子化的。

然而,大多数人,包括普朗克本人在内,都不敢把能量不连续概念再向前推进一步,甚至一再企图把这一概念纳入经典物理学体系。

爱因斯坦预感到量子论带来的不是小的修正,而是整个物理学的根本变革。

1905年他在《关于光的产生和转化的探讨》一文中,把普朗克的量子概念扩充到光在空间中的传播,提出光量子假说,认为:对于时间平均值(即统计的平均现象),光表现为波动;而对于瞬时值(即涨落现象),光表现为粒子(见量子光学)。

这是历史上首次揭示了微观粒子的波动性和粒子性的统一 ,即波粒二象性。

以后的物理学发展表明:波粒二象性是整个微观世界的最基本的特征。

根据光量子概念,他圆满地解释了经典物理学无法解释的光电效应的经验规律,为此获得1921年诺贝尔物理学奖。

1916年他又把量子概念扩展到物体内部的振动上去,基本上说明了低温下固体比热容同温度间的关系。

1916年他继续发展量子论,从N.玻尔的量子跃迁概念导出黑体辐射谱。

在这项研究中他把统计物理概念和量子论结合起来,提出自发发射及受激发射等概念。

从量子论的基础直到受激发射概念,对天体物理学有很大的影响。

其中受激发射概念,为60年代蓬勃发展起来的激光技术提供了理论基础。

分子运动论爱因斯坦在《根据分子运动论研究静止液体中悬浮微粒的运动》一文中,以原子论解释布朗运动。

这种运动是一些极小的微粒悬浮在液体中的不规则运动,首先被R.布朗发现。

3年后 ,法国物理学家J.B.佩兰以精密的实验证实了爱因斯坦的理论预测,从而解决了半个多世纪来科学界和哲学界争论不休的原子是否存在的问题,使原子假说成为一种基础巩固的科学理论。

相对论作为爱因斯坦终生事业的标志是他的相对论。

他在1905年发表的题为《论动体的电动力学》的论文中,完整地提出了狭义相对论,在很大程度上解决了19世纪末出现的经典物理学的危机,推动了整个物理学理论的革命。

19世纪末是物理学的变革时期,新的实验结果冲击着伽利略、I.牛顿以来建立的经典物理学体系。

以H.A.洛伦兹为代表的老一代理论物理学家力图在原有的理论框架上解决旧理论与新事物之间的矛盾。

爱因斯坦则认为出路在于对整个理论基础进行根本性的变革。

他根据惯性参考系的相对性和光速的不变性这两个具有普遍意义的概括,改造了经典物理学中的时间、空间及运动等基本概念,否定了绝对静止空间的存在 ,否定了同时概念的绝对性。

在这一体系中,运动的尺子要缩短,运动的时钟要变慢。

狭义相对论最出色的成就之一是揭示了能量和质量之间的联系,质量(m)和能量(E)的相当性:E=mc2,是作为相对论的一个推论。

由此可以解释放射性元素(如镭)所以能放出大量能量的原因。

质能相当性是原子物理学和粒子物理学的理论基础,满意地解释了长期存在的恒星能源的疑难问题。

狭义相对论已成为后来解释高能天体物理现象的一种基本的理论工具。

狭义相对论建立后,爱因斯坦力图把相对性原理的适用范围扩大到非惯性系。

他从伽利略发现的引力场中一切物体都具有同一加速度(即惯性质量同引力质量相等)的实验事实,于1907年提出了等效原理:“引力场同参照系的相当的加速度在物理上完全等价。

”并且由此推论:在引力场中 ,时钟要走快,光波波长要变化,光线要弯曲。

经过多年的努力,终于在1915年建立了本质上与牛顿引力理论完全不同的引力理论——广义相对论。

根据广义相对论,爱因斯坦推算出水星近日点反常进动,同观测结果完全一致,解决了60多年来天文学一大难题。

同时,他推断由遥远的恒星所发的光,在经过太阳附近会弯曲(见光线引力偏折)。

这一预言于1919 年由.S.爱丁通过日蚀的观测而得到证实。

1916年,他预言引力波的存在。

后人通过对1974年发现的射电脉冲双星PSR1913+16的周期性变化进行了四年的连续观测 ,1979年宣布间接证实了引力波的存在,对广义相对论又是一个有力的证明。

广义相对论建立后,爱因斯坦试图把广义相对论再加以推广,使它不仅包括引力场,也...

今日,风稍显喧嚣,在人群中徘徊着只为寻觅高达独角兽。

我快步的奔向模型店,近店,出店,在纠结中时间静无生肖的走了,剩下的只是摆在我面前的mg高高独角兽战士和pg大班独角兽战士。

犹如夜空中最闪烁的那颗赤星般,将我的视线囚禁与他发出的引力波之中。

最后我狠下心,买了ka mg万代全装独角兽 最终决战ver。

兴奋的我买了一把神之手和田宫30笔刀,回家慢慢开始拼装。

拼装的路十分的辛苦,汗水侵湿了我的衣裳,我的呼吸因兴奋而凝重,每每我拿起神之手,我总会想起以前用垃圾金牌剪的时光。

那是我过去的青春,是我无悔的光阴,但是摆在我面前的它,给予我无尽的压力。

将a1和a5结合,b9和g6结合,最后说一声氧化钙。

终于在我的不屑努力下,mg 独角兽做完了。

我甚是心悦,正因有了它,我的青春,我的人生才有了这举足轻重的一笔。

感谢他带给我的压力,感谢他带给我的快乐,感谢他带给我的永不言弃的精神。

我决心做一名优秀的少!先!对!员!

爱因斯坦的广义相对论预言:引力波的主要性质有:在真空中以光速传播;携带能量和与波源有关的信息;是横波,在远源处为平面波;最低次为四极辐射;辐射强度极弱;物质对引力波吸收效率极低,引力波穿透性极强,地球对引力波几乎是透明的;其偏振特性为两个独立的偏振态等。

引力波是波动形式和有限速度传播的引力场。

爱因斯坦虽然在1916年曾预言加速的质量可能有引力波存在,但他提出的引力波与坐标的选取有关,在某一个参考系看来,引力波可能有能量,而换一个参考系可能就没有。

因此在提出引力波存在的初期,包括爱因斯坦本人在内的大多数人对引力波都持怀疑态度。

1956年,皮拉尼提出一个与坐标系选取无关的引力波定义;1957年,邦迪进而从理论上证明与坐标系选取无关的平面引力波的存在。

1959年,邦迪、皮拉尼和罗宾森更进一步证明,静止物体在引力波脉冲作用下会产生运动,于是间接地证明引力波携带能量,并可被探测到。

由于引力辐射极其微弱,目前还不能在实验室里发射可供探测的引力波,而大质量天体的激烈运动,比如双星体系公转、中子星自转、超新星爆发,理论预言的黑洞的形成、碰撞和捕获物质等过程,都能辐射较强的引力波。

多年来,各国科学家都在致力于探测引力波,美国马里兰大学的科学家韦伯首创用一根铝棒作为天线进行探测,并声称探测到了不能排除是引力波的信号,但其他科学家都没有得到这一结果,韦伯的结论没有得到公认。

现在对引力波的研究方兴未艾,反引力或称反重力研究又提上了日程,这项研究可能获得的成果或许将彻底实现人类实现恒星际航行的梦想,科学家值得为这项研究投入毕生的精力和才华。

中国科学家在这方面已经做了有价值的实验和研究。

自从英国科幻小说作者威尔斯描述了“反重力”(能够屏蔽重力影响,使宇宙飞船飞向月球)后,反重力已经成为人类一个多世纪的梦想。

如果反重力是确实存在的,它必将改变整个世界。

汽车、火车、轮船,所有你能想到的交通系统,都能通过从引力场中获取的能量驱动。

这一会改变世界科学界和航空航天界禁忌的反重力研究,目前再次受到人们的关注,因为有消息说世界上最大的飞机制造商波音公司正在探索一些新概念,这些新概念可能在将来某一天彻底改变一个世纪来的推进技术。

20世纪最伟大的物理学家阿尔伯特·爱因斯坦(Albert.Einstein)1879年3月14日出生在德国西南的乌耳姆城,一年后随全家迁居慕尼黑。

爱因斯坦的父母都是犹太人,父亲赫尔曼·爱因斯坦和叔叔雅各布·爱因斯坦合开了一个为电站和照明系统生产电机、弧光灯和电工仪表的电器工厂。

母亲玻琳是受过中等教育的家庭妇女,非常喜欢音乐,在爱因斯坦六岁时就教他拉小提琴。

爱因斯坦小时候并不活泼,三岁多还不会讲话,父母很担心他是哑巴,曾带他去给医生检查。

还好小爱因斯坦不是哑巴,可是直到九岁时讲话还不很通畅,所讲的每一句话都必须经过吃力但认真的思考。

在四、五岁时,爱因斯坦有一次卧病在床,父亲送给他一个罗盘。

当他发现指南针总是指着固定的方向时,感到非常惊奇,觉得一定有什么东西深深地隐藏在这现象后面。

他一连几天很高兴的玩这罗盘,还纠缠着父亲和雅各布叔叔问了一连串问题。

尽管他连“磁”这个词都说不好,但他却顽固地想要知道指南针为什么能指南。

这种深刻和持久的印象,爱因斯坦直到六十七岁时还能鲜明的回忆出来。

爱因斯坦在念小学和中学时,功课属平常。

由于他举止缓慢,不爱同人交往,老师和同学都不喜欢他。

教他希腊文和拉丁文的老师对他更是厌恶,曾经公开骂他:“爱因斯坦,你长大后肯定不会成器。

”而且因为怕他在课堂上会影响其他学生,竟想把他赶出校门。

爱因斯坦的叔叔雅各布在电器工厂里专门负责技术方面的事务,爱因斯坦的父亲则负责商业的往来。

雅各布是一个工程师,自己就非常喜爱数学,当小爱因斯坦来找他问问题时,他总是用很浅显通俗的语言把数学知识介绍给他。

在叔父的影响下,爱因斯坦较早的受到了科学和哲学的启蒙。

父亲的生意做得并不好,但却是一个乐观和心地善良的人,家里每星期都有一个晚上要邀请来慕尼黑念书的穷学生吃饭,这样等于是救济他们。

其中有一对来自立陶宛的犹太兄弟麦克斯和伯纳德,他们都是学医科的,喜欢阅读书籍、兴趣广泛。

他们被邀请来爱因斯坦家里吃饭,并和羞答答、长着黑头发和棕色眼睛的小爱因斯坦交成了好朋友。

麦克斯可以说是爱因斯坦的“启蒙老师”,他借了一些通俗的自然科学普及读物给他看。

麦克斯在爱因斯坦十二岁时,给了他一本施皮尔克的平面几何教科书。

爱因斯坦晚年回忆这本神圣的小书时说:“这本书里有许多断言,比如,三角形的三个高交于一点,它们本身虽然并不是显而易见的,但是可以很可靠地加以证明,以致任何怀疑似乎都不可能。

这种明晰性和可靠性给我留下了一种难以形容的印象。

” 爱因斯坦还幸运地从一部卓越的通俗读物中知道了自然科学领域里的主要成果和方法,科普读物不但增进了爱因斯坦的知识,而且拨动了年轻人好奇的心弦,引起他对问题的深思。

爱因斯坦十六岁时报考瑞士苏黎世的联邦工业大学工程系,可是入学考试却告失败。

他接受了联邦工业大学校长以及该校著名的物理学家韦伯教授的建议,在瑞士阿劳市的州立中学念完中学课程,以取得中学学历。

1896年10月,爱因斯坦跨进了苏黎世工业大学的校门,在师范系学习数学和物理学。

他对学校的注入式教育十分反感,认为它使人没有时间、也没有兴趣去思考其他问题。

幸运的是,窒息真正科学动力的强制教育,在苏黎世的联邦工业大学要比其他大学少得多。

爱因斯坦充分的利用学校中的自由空气,把精力集中在自己所热爱的学科上。

在学校中,他广泛的阅读了赫尔姆霍兹、赫兹等物理学大师的著作,他最着迷的是麦克斯韦的电磁理论。

他有自学本领、分析问题的习惯和独立思考的能力。

早期工作 1900年,爱因斯坦从苏黎世工业大学毕业。

由于他对某些功课不热心,以及对老师态度冷漠,被拒绝留校。

他找不到工作,靠做家庭教师和代课教师过活。

在失业一年半以后,关心并了解他才能的同学马塞尔·格罗斯曼向他伸出了援助的手。

格罗斯曼设法说服自己的父亲把爱因斯坦介绍到瑞士专利局去作一个技术员。

爱因斯坦终身感谢格罗斯曼对他的帮助。

在悼念格罗斯曼的信中,他谈到这件事时说,当他大学毕业时,“突然被一切人抛弃,一筹莫展的面对人生。

他帮助了我,通过他和他的父亲,我后来才到了哈勒(时任瑞士专利局局长)那里,进了专利局。

这有点象救命之恩,没有他我大概不致于饿死,但精神会颓唐起来。

” 1902年2月21日,爱因斯坦取得了瑞士国籍,并迁居伯尔尼,等待专利局的招聘。

1902年6月23日,爱因斯坦正式受聘于专利局,任三级技术员,工作职责是审核申请专利权的各种技术发明创造。

1903年,他与大学同学米列娃.玛丽克结婚。

1900~1904年,爱因斯坦每年都写出一篇论文,发表于德国《物理学杂志》。

头两篇是关于液体表面和电解的热力学,企图给化学以力学的基础,以后发现此路不通,转而研究热力学的力学基础。

1901年提出统计力学的一些基本理论,1902~1904年间的三篇论文都属于这一领域。

1904年的论文认真探讨了统计力学所预测的涨落现象,发现能量涨落取决于玻尔兹曼常数。

它不仅把这一结果用于力学体系和热现象,而且大胆地用于辐射现象,得出辐射能涨落的公式...

中国对引力波探测已有研究,但尚未建成正式的引力波探测设施. 1916年,爱因斯坦最早从理论上证明了引力是以波的形式辐射的,这就是引力波。

可是60多年来,人们始终没有在实验室中测出引力波来。

从50年代后半期起,物理学家魏伯开始构思检测来自宇宙天体的引力波的奇妙方法。

1969年,魏伯宣布他发现了引力波,并成功地检测到了。

消息一传出,轰动了全世界。

从70年代起,世界各地相继建立了引力波检测装置,然而遗憾得很,结果都否认了魏伯的结论。

引力波问题仍然是一个悬而未解的科学奇案。

为什么引力波的检测这样困难呢?因为引力效应实在是微乎其微,它只有电磁效应的1040分之一,这就造成了检测技术的极大困难。

在魏伯首次实验大约10年后,终于有人间接地证实了引力波的存在,但直接检测出引力波仍是实验物理学留下的最大课题之一。

2003年7月23日法意合作、在意大利建造的“室女座”引力波探测仪投入使用,探测仪由法国国家科研中心和意大利国家核物理研究所联合研制,1993年开始建造,座落在意大利比萨附近的卡希纳。

它将与其他几个探测引力波的设施一起构成一个全球网络以捕捉引力波。

引力波其实是一种辐射波。

按照科学家在爱因斯坦之后发展出的理论,任何有质量的物体,不管它是恒星还是一个乒乓球,周围都存在引力场。

当物体静止不动或者匀速运动时引力场是稳定的。

如果有作用力施加到物体上,就会改变物体的运动状态。

这时物体周围的引力场就会受到扰动,就像平静的池塘水中投进一块石头一样,这种扰动将以光速按波的形态传播开来。

与电磁波不同,引力波并不被物质吸收,因而来自遥远天体的引力波就能不损失任何携带信息而到达地球。

由于引力波很微弱,只有超新星爆发产生的引力波强度才勉强可能被人类观察到。

然而银河系中心的超新星爆发平均每35年一次,最有希望探测到引力波的地方是银河系外的室女座星系团。

欧洲新的引力波探测仪就是以此命名的。

室女座星系团有几千个星系,聚集在天空中一个很小的视角范围里,超新星爆发频率大约是每星期一次。

但是该星系团距地球5000万光年,这就意味着要探测到那里的一个超新星引力波爆发,引力波探测仪就必须比类似装置灵敏100万倍。

“室女座”引力波探测仪做到了这一点。

这个探测仪实际上是个占地数平方公里的大型观测体系。

主建筑外的地面上伸展着两个作为探测棒用的长3公里的管道。

它利用了目前最先进的技术——光学干涉技术。

其原理是测量两面大质量镜子之间距离的振荡。

这两面镜子放在两个长管道端点上,它们的距离用一个光学干涉仪系统来检测。

镜子之间距离越大,从系统内部的“背景波动”中检测出引力波效应的机会也就越大。

“室女座”的中心是一座高大建筑物,里面竖立着一座高10米的金属塔。

在这个金属塔的钢壳里隐藏着一个复摆结构。

它由5个摆组成,下面悬挂着各种光学元件。

这里可以说是它的心脏。

这个装置的目的,就是将各种光学的和外界的干扰完全隔离起来。

由于引力波产生的效应很小,如果不主动地将外界干扰去除,不可能从“背景波动”中分辨出引力波信号。

摆的振动将能抵消地震波、刮风、汽车、火车产生的干扰,甚至可以抵消研究人员在实验室附近活动引起的震动。

参与项目的科研机构提供资料称,“室女座”引力探测仪是欧洲最大的真空结构,其内部的寂静程度将超过在轨道上运行的宇宙飞船。

转载请注明出处 » 引力波有什么作用和用途?

引力波论文发表

中子星是除黑洞外密度最大的星体,是恒星演化到末期,经由重力崩溃发生超新星爆炸后可能成为的少数终点之一,是质量没有达到可形成黑洞的恒星,在寿命终结时塌缩形成的一种介于白矮星和黑洞之间的星体,值得一提的是其密度比地球上的任何物质密度高出相当多倍,可以说,绝大多数脉冲星都是中子星,不同的是中子星不一定是脉冲星,毕竟有脉冲才称得上脉冲星,黑洞是现代广义相对论中,存在于宇宙空间中的一种天体,不得不说黑洞的引力极其强大,还可使得视界内的逃逸速度大于光速,显然黑洞是时空曲率大到光都无法从其事件视界逃脱的天体。1916年,德国天文学家卡尔史瓦西通过计算得到了爱因斯坦场方程的一个真空解,这个解表明,如果一个静态球对称星体实际半径小于一个定值,其周围会产生奇异的现象,它会存在一个界面,即视界,并指出一旦进入该界面,即使光也无法逃脱,这个定值被人类称为史瓦西半径,这种不可思议的天体被美国物理学家约翰阿奇博尔德惠勒命名为黑洞,虽说黑洞无法直接观测,但是人类却能借由间接方式得知其存在与质量,甚至观测到它对其它事物的影响,借由物体被吸入之前的、因黑洞引力带来的加速度导致的摩擦而放出的x射线和γ射线的边缘讯息,就可获取黑洞存在的讯息,从而推测出黑洞的存在,还可借由间接观测恒星或星际云气团的绕行轨迹,取得它的位置以及质量。在物理学中,所谓的引力波是指时空弯曲中的涟漪,通过波的形式从辐射源向外传播,这种波会以引力辐射的形式传输能量,1916年,爱因斯坦基于广义相对论预言了引力波的存在,事实上,引力波的存在是广义相对论洛伦兹不变性的结果,因为它引入了相互作用的传播速度有限的概念,相比之下,引力波无法存在于牛顿的经典引力理论中,是因为牛顿的经典理论假设了物质的相互作用传播是速度无限的,你知道吗?可能的引力波探测源包括致密双星系统,也就是白矮星、中子星和黑洞。2016年2月11日,LIGO科学合作组织和Virgo合作团队宣布他们利用高级LIGO探测器,已经首次探测到了来自于双黑洞合并的引力波信号,2016年6月16日凌晨,LIGO合作组宣布:2015年12月26日03:38:53,位于美国汉福德区和路易斯安那州的利文斯顿的两台引力波探测器,同时探测到了一个引力波信号,2017年10月16日,全球多国科学家同步举行新闻发布会,宣布人类第一次直接探测到了,来自双中子星合并的引力波,并表明看到这一壮观宇宙事件发出的电磁信号,更难以置信的是美国东部时间8月17日8时41分,美国激光干涉引力波天文台(LIGO)捕捉到这个引力波信号,此后2秒,美国费米太空望远镜竟观测到同一来源发出的伽马射线暴。这是人类 历史 上第一次使用引力波天文台和电磁波望远镜同时观测到同一个天体物理事件,几十年来,人们一直孜孜以求准备探测双中子星合并的引力波,美国加州理工学院LIGO数据分析小组负责人艾伦温斯坦教授甚至表示,那天早上我们所有的梦想成真,之后LIGO项目组在美国华盛顿发布这一重大发现,中国、德国、英国和法国等国科学家也各自举行新闻发布会,相关论文也发表在了《科学》、《自然》等学术期刊上,看到这里,想必不少人会感到迷茫,引力波究竟是什么?简单来说,它是由黑洞、中子星等碰撞产生的一种时空涟漪,宛如石头丢进水里产生的波纹,虽说百年前,爱因斯坦广义相对论就已经预言了引力波的存在,令人诧异的是直到2015年,人类才首次探测到引力波,3名美国科学家也因此获得诺贝尔物理学奖,要知道在8月17日的事件中,全球约70个地面及空间望远镜从红外、X射线、紫外和射电波等波段开展观测,确认了该引力波信号是来自距地球约1.3亿光年的长蛇座内NGC4993星系。美国田纳西大学天体物理学教授迈克尔吉德里曾指出,多信使天文学结合使用了多种探测手段,是引力波天文学的一个“圣杯”,这样的探测将在天文学和天体物理的许多领域开启全新的 探索 途径,后来,中国紫金山天文台副研究员金志平参与的国际团队,通过对此次引力波光学信号的观测和光谱分析,首次提供了确凿证据证实中子星合并是宇宙中金银等元素的主要起源。令人们不禁感叹,天体剧烈活动引起的时空扰动,好比在浩渺的宇宙中央投下一颗石子,历经10多亿年漫漫星系之旅,时空的涟漪最终与地球邂逅了1秒,从1916年爱因斯坦的预言,到2016年2月首次确定探测到引力波信号,人类为了这最后1秒的相遇,苦苦探寻百年,可以说,如果没有引力波研究,中子星的许多性质都将是长期悬而未解的谜题,包括在强引力作用下如何弯曲变形,以及合并时会发生何种情况、质量多大时会形成黑洞等问题,对此,小伙们是如何看待的?欢迎在评论区下方留言,感谢观看本期视频,我们下期再见。

自从2015年人类第一次观测到引力波,引力波物理已然成为目前最为火热的研究方向之一。作为了解宇宙的新窗口,引力波正逐步为我们展现一幅千百年来人们都不曾见过的宇宙画卷,其中的物理现象为我们将来的物理学发展指明了一些方向。 引力波与新物理 传统的物理实验研究往往受到我们赖以生存的环境的很大限制,例如对撞机实验和天体物理电磁信号的观测。就目前而言,粒子对撞机是探测极小尺度新物理最有效的手段,而对撞能标是衡量对撞机探测性能的重要指标——越高的能标能够帮助我们探测越小的尺度,了解更基本的物理规律。但是在现有的生产条件下,对撞机的能标提升已经愈发艰难。虽然在未来二十年,粒子对撞机的能标有希望达到100TeV附近,但是在目前最高的14TeV对撞能标的粒子物理实验中,我们还未发现确切的新物理信号。另外,传统的天文观测几乎都基于电磁波信号,在过去近百年的技术革命下,电磁波天文学已经取得了丰硕的成果。但是时至今日,电磁波段观测深度的限制和前景的干扰( “前景”指视线方向与被观测源相近,但距观测者较近的天体)仍是我们了解更大的宇宙空间和更久远的宇宙 历史 的坚固障碍。 图1:对撞机的尺度与能标示意图 过去一百多年以来,激光干涉技术的发展大大提高了我们对于极其微小的长度变化的测量能力。这一技术的跨越式发展使得我们探测引力波成为了可能。目前,全球的主要经济体都已启动或正在布置自己的引力波观测项目,引力波天文学已经成为天文学和物理学中新的沃土,将会带给我们对于宇宙和物理学全新的理解。 相对于电磁波而言,引力波观测的优势主要有两方面:一是引力波信号一般很难被前景干扰,所以背景本底的信号可以被探测到;再者,由于引力波在传播过程中与普通物质的相互作用非常微弱,所以诞生在宇宙早期的引力波信号能够一直较为纯净地保留至现在,成为一种宇宙的“ 历史 遗迹”等待着科学家的观测。 引力波观测与传统的对撞机实验和电磁波段的天文观测的结合,将会极大的拓展我们对宇宙和基本物理规律的认知。 爱因斯坦的引力理论诞生一百多年以来,人们对于黑洞的研究取得了很多重大的突破,但是时至今日我们对于这类宇宙中最为极端的天体仍然知之甚少。大家相信,完整地描述黑洞的物理需要引力理论和量子理论相结合,但是目前这两个在各自领域取得了极大辉煌的理论在结合时遇到了各种各样的困难。黑洞视界的附近作为引力理论和量子理论的冲突现场,或许能够带我们一窥量子引力理论的真容,极大拓展我们对基础理论的认知。 另外,宇宙极早期的各种物理过程会诱发时空的随机扰动,产生随机引力波背景,若目前的引力波观测能够发现一些随机引力波背景的特征,那么也将暗示着宇宙早期有些不寻常的过程发生。最后这一点便是最近一项研究的出发点,该研究由中国科学技术大学的蔡一夫教授和波兰雅盖隆大学(Jagiellonian University)的林春山教授共同领导,博士后王博博士和博士生鄢盛丰参与,相关论文已于日前发表在国际著名期刊Physical Review Letters上。下面将对这项工作进行简要介绍[1]。 荡秋千的启发 在平时玩荡秋千时,大家应该已经有所发现:在没有人推动的情况下,想要秋千越荡越高,那么我们需要规律地前后摇摆身体,用自身重心的摆动来驱动秋千的振荡,这便是一种特殊的共振现象,叫做参数共振。 图2:荡秋千示意图 参数共振现象在物理学的各个领域有着广泛的应用。在宇宙学领域,大家相信在宇宙演化的一个时期,参数共振现象很有可能起着决定性的作用。在暴胀学说中,由于暴胀过程极具“稀释”效应,这一过程结束时导致了整个宇宙内一片死寂,仅剩下驱动暴胀后标量场遗留的能量或者是一些其它轻的标量场。这时候需要参数共振将驱动暴涨的场的能量转化为各种后期宇宙演化所需要的物质成分,将整个宇宙重新加热。这些大量产生的物质成分,不仅包括光子、电子、质子等粒子物理模型所能描述并被观测得到的粒子,还包括了原初时期就产生的暗物质和暗能量。这一过程被称为宇宙的预加热,接下来宇宙进入到标准热 历史 演化之中。 SSR机制最早用于研究原初黑洞的形成和预言其丰度。原初黑洞是一种特殊的黑洞,它们是宇宙在极早期由于局域空间曲率的不均匀性导致了原初物质密度扰动坍塌而形成的黑洞,它们的形成机制有别于通常情况下恒星坍缩形成的黑洞。早在上世纪六七十年代,苏联物理学家雅科夫·泽尔多维奇(Yakov Zel'dovich)和英国物理学家斯蒂芬·霍金(Stephen Hawking)分别指出了这种极早期宇宙中黑洞形成的理论可能性[5][6],并在后来的宇宙学研究中被广泛探讨。由于原初黑洞的形成和其自身特点,它们成为了一种重要的冷暗物质候选者,并且也可能是重要的引力透镜天体和引力波源的候选者。SSR机制所预言的原初黑洞主要分布在一些特殊的质量附近,且分布密度很高,可以与暗物质能量密度相比拟(即绝大部分暗物质为原初黑洞)。 在此基础上,蔡一夫教授团队发现,由于SSR机制极大地放大了原初标量扰动的振幅,在二阶扰动层面,通过标量与张量非线性的耦合,SSR还可以分别在暴胀期间和暴胀后的辐射为主时期诱导产生随机引力波背景,并且可能在将来被引力波探测器探测到[7]。此外,SSR的模型实现与应用也是一个值得深入研究的内容,目前有在暴涨子-曲率子图像下的应用[8],DBI暴涨下SSR的实现[9],以及在特殊的双场模型中有类似的共振放大应用[4]。 引力波的SSR 在5年多以来对引力波的观测中,最令科学家们激动的引力波事件莫过于观测到了双中子星并合的引力波(GW170817),并且同时观测到了对应的多波段的电磁信号。这样一个标准汽笛事件的发现,可以同时让我们知道引力波源的红移和距离信息,为宇宙膨胀速度的测量开辟了一个新窗口。更重要的是,通过比对接收到电磁信号和引力波信号的时间,我们还可以对引力波传播速度进行限制。目前通过这一事件,我们认为引力波传播速度和光速之间的差异在10-15量级的精度以内。 但是,这个速度限制是来自比较近邻的宇宙的观测数据(一般红移小于1),而目前的观测证据对于远处或者说更早期的宇宙中引力波的传播速度,并没有很好的限制,而在这种时期,如果引力波传播速度有较大的非平凡特性(即偏离了爱因斯坦广义相对论预测的光速),那么可能预示着早期宇宙中有超越标准理论的新物理在发生作用。 在超出爱因斯坦广义相对论的修改引力理论中,有一些理论诸如Horndeski理论、4维Einstein-Gauss-Bonnet理论,它们的标量自由度和张量自由度有一定程度上的耦合,如果在早期宇宙中这些理论的效应相对明显,那么将对早期宇宙中的引力波传播速度产生影响。其中一种可能的情况便是,在极早期的预加热阶段,由于那时标量自由度具有周期性振荡行为,标量场通过与张量场之间的耦合使得张量自由度的声速大小具有周期振荡行为(即引力波的传播速度大小有振荡行为),并且这个振荡的特征会随着宇宙膨胀而被抹平,那么引力波传播速度在相对近邻的宇宙中会回归到光速。 由于引力波传播速度在极早期具有的振荡行为,引力波便也会产生参数共振现象,这便是引力波的SSR。它使得引力波振幅得到指数级放大,在极短时间内放大4-5个量级,然后共振会很快结束并使引力波背景回归到正常的演化中。这类SSR都属于参数共振中的窄共振类型,发生共振的频段是在特征频率附近很窄的一个频段内,以及特征频率整数倍的频率处,但是一般只有特征频率处占主导。此时,背景引力波的振幅在特征频率附近会产生一个峰值,这样一个峰值特征会随着宇宙演化保留至今,从而被现有的引力波探测器和未来的引力波探测实验观测到。 这个预言的意义在于,如果我们能在未来探测到这个背景引力波谱特征,那么可以推断在极早期宇宙中引力波的传播速度会有明显偏离光速的特点,也就是说那时的引力理论很可能不再由爱因斯坦广义相对论描述。这是存在新物理的证据。 图3:引力波的声速共振机制示意图 另外,在这项研究中,研究人员还发现由于引力波在线性理论下被剧烈放大,还有可能引发相对明显的高阶非线性效应。共振放大和非线性效应若被同时观测到,那么将大大增加该机制存在的可能性。这些非线性效应还有可能解释目前被NANOGrav实验观测到的疑似背景引力波信号,而该研究还在进行当中。 于粒子物理而言,这一项工作也有重要的意义:引力波共振放大发生的能标在TeV能标之上,基本上高于现有的粒子对撞机实验能标。也就是说,该现象若被发现也可能预示着早期存在一些超越粒子物理标准模型的新物理,例如通过修改引力理论中标量场与希格斯场的耦合与一些散射,使得标量场影响引力子的行为,从而改变引力波传播速度。这些预言都等待着未来观测水平的提高来加以佐证。 参考文献: [1] Y.-F. Cai, C. Lin, B. Wang, S.-F. Yan, “Sound speed resonance of the stochastic gravitational wave background”, Phys. Rev. Lett. 126 (2021) 071303 . [2] Y.-F. Cai, X. Tong, D.-G. Wang, S.-F. Yan, “Primordial Black Holes from Sound Speed Resonance during Inflation”, Phys. Rev. Lett. 121, no.8, 081306 (2018). [3] B. Carr, F. Kuhnel, “Primordial Black Holes as Dark Matter: Recent Developments”, Ann. Rev. Nucl. Part. Sci. 70, 355-394 (2020). [4] Z. Zhou, J. Jiang, Y.-F. Cai, M. Sasaki, S. Pi, “Primordial black holes and gravitational waves from resonant amplification during inflation”, Phys. Rev. D 102, no.10, 103527 (2020). [5] Ya. B. Zel’dovich, I. D. Novikov, Sov. Astron. 10 (1967), 602. [6] S. Hawking, “Gravitationally collapsed objects of very low mass”, Mon. Not. Roy. Astron. Soc. 152, 75 (1971). [7] Y.-F. Cai, C. Chen, X. Tong, D.-G. Wang, S.-F. Yan, “When Primordial Black Holes from Sound Speed Resonance Meet a Stochastic Background of Gravitational Waves”, Phys. Rev. D 100, no.4, 043518 (2019). [8] C. Chen, Y.-F. Cai, “Primordial black holes from sound speed resonance in the inflaton-curvaton mixed scenario”, JCAP 10, 068 (2019). [9] C. Chen, X.-H. Ma, Y.-F. Cai, “Dirac-Born-Infeld realization of sound speed resonance mechanism for primordial black holes”, Phys. Rev. D 102, no.6, 063526 (2020). 墨子沙龙是以中国先贤“墨子”命名的大型公益性科普论坛,由中国科学技术大学上海研究院主办,中国科大新创校友基金会、中国科学技术大学教育基金会、浦东新区科学技术协会、中国科学技术协会及浦东新区 科技 和经济委员会等协办。 墨子是我国古代著名的思想家、科学家,其思想和成就是我国早期科学萌芽的体现,“墨子沙龙”的建立,旨在传承、发扬科学传统,建设崇尚科学的 社会 氛围,提升公民科学素养,倡导、弘扬科学精神。科普对象为热爱科学、有 探索 精神和好奇心的普通公众,我们希望能让具有中学同等学力及以上的公众了解、欣赏到当下全球最尖端的科学进展、科学思想。 关于“墨子沙龙”

北京时间10月16日22时,在整个天文学界因一则重磅预警“炸锅”后,吊足胃口的美国国家航空航天局(NASA)、欧洲南方天文台、南京紫金山天文台、英国科技设备委员会、法国国家科学研究中心等全球数十家科学机构终于联合宣布了重大成果:从约1.3亿光年外,科学家们首次探测到壮丽的双中子星并合产生的引力波,及其光学对应体。该成果由美国“激光干涉引力波天文台”(LIGO)和欧洲“处女座”(Virgo)引力波探测器及全球其他70个地面及空间望远镜共同完成的。相关论文发表在《物理评论快报》(Physical Review Letters)、《自然》等期刊上。LIGO团队在2016年2月正式宣布成功探测到由双黑洞并合产生的引力波,完成了爱因斯坦广义相对论的最后一块拼图,由此众望所归地捧走了今年的诺贝尔物理学奖。然而,这次全球共同完成对同一个天文事件的引力波与电磁波的首次联合观测,才正式标志着天文物理掀开多信使时代的新一页。清华LIGO科学合作组织工作组负责人曹军威向澎湃新闻介绍,之前LIGO和Virgo探测到4次来自双黑洞的引力波信号,在LIGO探测器的敏感频段内只能持续不到一秒的时间,然而,在8月17日探测到的这个持续了100秒,并且扫过了LIGO的整个灵敏频段——这个频段与一个普通乐器能产生的声波频段几乎相同。科学家们可以识别这个天体源的质量远比迄今观测到的所有黑洞的质量都要小得多。LIGO的数据指向了两个距离地球1.3亿光年的相互旋进的天体。数据显示这个天体系统的质量没有双黑洞大,估计为1.1~1.6倍太阳质量,恰好是中子星的质量范围。对于噪音背景的分析显示,这种强度的信号是由一致性随机噪音产生的概率低于每8万年一次。引力波是爱因斯坦广义相对论中的重要推论。时间和空间会在质量面前弯曲,时空在伸展和压缩的过程中,会产生振动传播开来,这些振动就是引力波。我们在地球上随时随地都可能遭遇来自宇宙中各种源头的引力波:两个黑洞并合、碰撞;中子星旋转、并合;超新星核塌缩等。LIGO团队此前探测到的4次引力波事件,均由双黑洞形成。全世界都在期待,中子星能出现在引力波事件中。恒星演化到末期,经由引力探索发生超新星爆炸,根据质量的不同,内核可能被压缩成白矮星、中子星或黑洞。中子星几乎完全由中子构成,是目前已知的最小、致密的恒星。一小勺中子星物质就可能重达10亿吨。双中子星系统在围绕中心旋转的过程中会不断放出引力波,导致系统能量降低,轨道缩小,并最终撞在一起,释放出强烈的引力波。在最终并合前的100秒以内发出的引力波信号正好位于激光干涉仪的灵敏频段内,因此有机会被观测到。

可以说所有获诺贝尔物理学奖的都是在PRL上发表论文

引力波论文原文发表于

广义相对论是阿尔伯特·爱因斯坦于1915年发表的用几何语言描述的引力理论(发表于《普鲁士科学院会议报告》1915年,778-786),它代表了现代物理学中引力理论研究的最高水平。广义相对论将经典的牛顿万有引力定律包含在狭义相对论的框架中,并在此基础上应用等效原理而建立。在广义相对论中,引力被描述为时空的一种几何属性(曲率);而这种时空曲率与处于时空中的物质与辐射的能量-动量张量直接相联系,其联系方式即是爱因斯坦的引力场方程(一个二阶非线性偏微分方程组)。从广义相对论得到的有关预言和经典物理中的对应预言非常不相同,尤其是有关时间流逝、空间几何、自由落体的运动以及光的传播等问题,例如引力场内的时间膨胀、光的引力红移和引力时间延迟效应。广义相对论的预言至今为止已经通过了所有观测和实验的验证——虽说广义相对论并非当今描述引力的唯一理论,它却是能够与实验数据相符合的最简洁的理论。不过,仍然有一些问题至今未能解决,典型的即是如何将广义相对论和量子物理的定律统一起来,从而建立一个完备并且自洽的量子引力理论。爱因斯坦的科学定律,对所有的观察者,不管他们如何运动,都必须是相同的(广义相对性原理)。它将引力解释成四维空间的曲率。

本文刊载于《三联生活周刊》2018年第18期,原文标题《宇宙中的“标准笛声”》探测到来自宇宙深处的引力波,对于人类到底有什么用处?这是人们经常会问到的一个问题。 人类在地球表面,通过一对长达4公里的相互垂直的干涉臂,通过激光的干涉现象探测到时空自身所发生的极小尺度的变化,这本身就是一个了不起的成就,而它的意义当然远不止于此。探测到引力波信号,相当于人类又拥有了一个极其灵敏的感官,人类从此多拥有了一种方式来感知这个宇宙的存在,这也必定会对天文学研究产生深远影响。 在20世纪20年代,埃德温·哈勃(Edwin Hubble)做出了开创性的发现,所有星系都在离我们远去,这意味着整个宇宙都在膨胀,而且天体远离地球的速度与其和地球的距离成正比,这个比例的系数被称为哈勃常数(Hubble Constant)。正是这个发现让人类认识到宇宙存在着一个开端。 进入21世纪以后,人类又意识到宇宙不仅在膨胀,而且是在加速膨胀。问题在于,宇宙膨胀的速度到底有多快?这可以说是目前宇宙学研究最重要的问题之一,因为它不仅关系到人类理解宇宙发展的 历史 ,还关系到宇宙的未来,以及推动着宇宙加速膨胀的暗能量的真实身份。 人类已经习惯于通过星光来认识宇宙。通过检查接收到的星光的红移就可以计算出星系远离地球的速度(这也正是哈勃判断出宇宙正在膨胀所使用的方法),但更难的地方是如何测量这些星系距离我们的实际距离,想要知道星系与地球之间的确切距离,就需要对哈勃常数进行精确测量。测量这个常数,人类主要有两种手段,可通过这两种方式得出的数值却并不一致。 天文学家们测量宇宙中天体距离地球的距离,目前最常用的手段就是“标准烛光”(Standard Candle)方法。人们已知某几种天体因为其结构特征比较一致,亮度相当恒定,因而得名“标准烛光”。当人类通过望远镜观测到这些天体时,因为它们与地球的距离不同,看上去亮度有所差异。通过这种观测到的亮度,再与其在理论上的真实亮度相对比,天文学家就可以计算出这些标准烛光与地球的真实距离。正是利用这种方法,天文学家们测定了哈勃常数的数值:每相隔326万光年(100万秒差距)的距离,星系退行的速度就会增加大约73.5公里/秒。但是在2015年,天文学家们通过在地球轨道上的普朗克卫星对宇宙微波背景辐射进行了精细测量,而利用这种方法得出的哈勃常数的数值为每相隔326万光年的距离,星系退行的速度会增加大约70公里/秒——两者的差距不可谓不大。 问题到底出在哪里,分歧从何而来?天文学家们认为,或许两种方法都不是非常精确。例如通过“标准烛光”方法来判断天体的距离,虽然在理论上被用作标准烛光的天体亮度值得信赖,但是在地球上进行观测,它的亮度不但会受到距离的影响,而且还会受到天体周围环境的影响。在星光传播过程中受到的宇宙灰尘和气体的干扰,都会降低探测的准确性。而另一方面,通过普朗克卫星探测的宇宙微波背景辐射情况来判断哈勃常数,其理论依据是所谓的“标准宇宙模型”,这个模型囊括了暗能量、暗物质和可见物质,可以说体现了目前人类对宇宙整体状态的认知,但它是否能够准确描述宇宙的全貌?对宇宙状态了解的不充分,同样会影响对哈勃常数的测定。 用两种方法测量哈勃常数结果却得出了不同的数值,那么怎样才能获得最准确的数值?引力波探测开启了一条新路,这有可能为天文学家提供一个前所未有的精确测量天体距离的手段。可以说,通过引力波探测进行天文学研究,其中最大的用处就在于测量出宇宙膨胀的速度到底有多快,以及宇宙膨胀的 历史 。人类甚至有可能通过引力波研究得知宇宙究竟为什么膨胀。 实际上,早在30多年前,就已经有天文学家展望人类有可能利用引力波来解决天文学问题。1986年9月,英国卡迪夫大学的天文学家伯纳德·舒茨(Bernard Schutz)在《自然》杂志发表论文《通过引力波观测确定哈勃常数》(Determining the Hubble Constant from Gravitational Wave Observations),他在论文中提出,人类可以通过引力波探测来解决一个困扰了天文学家许久的重要问题——宇宙膨胀的速度到底有多快。 这样一篇论文在理论上虽然无可挑剔,但因为当时人们仍然不知道是否真的有可能探测到引力波信号,所以它也就如同屠龙之技,没有太大的实际意义。当引力波信号被发现之后,这篇30多年前的论文的真正价值便体现了出来。通过引力波进行天文学测量,是一种全新的、独立的方法,因此它可以成为判断此前两种方法有效性的一个标准,而且在理论上它的精度可以超过其他方法。 引力波通过时空本身以光速传播,在传播过程中不会受到环境的干扰,因此通过引力波来判断天体距离,精度要高于标准烛光方法。如果说通过星光进行宇宙学探测属于光学范畴,那么引力波在频率范围内更接近于声音(人们甚至可以直接把引力波信号作为音频播出),因此,仿照着“标准烛光”概念,天文学家们又提出了“标准笛声”(Standard Siren)概念,也就是通过探测到的引力波信号的强度来判断天体与地球的实际距离。 目前人类已经观测到了5次两个相互环绕的恒星级黑洞系统在合并过程中所发出的引力波信号,这也成为“黑洞”这种天体在宇宙中真实存在的最直接的证据。但更令天文学家们感到兴奋的是,在2017年8月,LIGO观测到了两颗中子星在合并过程中所发出的引力波。与黑洞在合并过程中完全不可见不同,这次被命名为“GW170817”的距离地球1.3亿光年之外发生的中子星合并事件,不仅释放出了引力波,还释放出大量的伽马射线。天文学家们得以通过多种手段观测同一个宇宙学现象,并且通过估算信号的原有强度与其被探测到的强度进行对比来判断其与地球的距离。 天文学家们急于通过引力波信号来测量天体的精确距离,并且为此前进行测距的两种天文学方法充当裁判,但是问题在于,目前人类所获得的引力波数据还太少,人们只能根据目前掌握的唯一一个中子星合并的引力波数据计算哈勃常数,结果发现得出的数值是每相隔326万光年的距离,星系退行的速度就会增加大约66.9公里/秒——这个数值恰好介于通过前述两种方法所得出的两个数值中间。人们相信这样的误差将随着逐渐积攒中子星合并的引力波信号而越来越小,因此天文学家们急切盼望着能够再次探测到中子星合并的引力波信号,以不断修正以此计算出的哈勃常数。 不仅是用来测量天体与地球之间的距离,引力波信号中还藏着更多的信息。无论是在天文学领域还是在基础物理学领域,科学家都希望能够通过研究引力波信号建立更加准确的模型。例如物理学家们非常希望了解中子星的内部结构。这种天体是除了黑洞之外宇宙中最为致密的物体,了解它们的内部结构对于物理学研究的意义重大。中子星合并过程中发出的引力波信号正蕴含着这种重要的信息。 在“GW170817”中子星合并事件的观测过程中,天文学家们记录了长达100秒的引力波信号,但是最终却因为其频率过高,超出了装置的探测范围而错过了重要的一部分。正因为如此,人们才急于积攒更多的中子星合并引力波信号。例如一颗中子星到底有多大,物质究竟能够被压缩到什么程度?一些宇宙中的伽马射线爆发从何而来?一些重元素到底是如何产生的?这些问题都可能从引力波信号中得到答案。 另一方面,两个相互围绕旋转、最终合并在一起的恒星级双黑洞系统到底是如何产生的?它们究竟是先由燃烧殆尽的恒星发生爆发而形成黑洞,之后在引力的作用下相互靠近,还是原本两个相互围绕旋转的恒星逐渐燃尽而成为黑洞,双星系统转变为双黑洞系统?天文学家们也希望在积攒了足够多的黑洞合并引力波信号之后,通过判断它们此前的自旋状况对此做出判断。 从人类第一次探测到引力波信号算起,引力波天文学时代刚刚开启了3年时间,一切都刚刚开始。也正是如此,人们才对它充满希望。天文学家希望通过引力波来了解宇宙从诞生到现在的发展 历史 ,了解星系形成、合并和发展的过程,了解宇宙膨胀的整个原因和过程,并绘制出整个宇宙的黑洞地图。 不仅如此,天文学家们还希望通过引力波预测整个宇宙的未来、探明暗能量的本质,由此了解宇宙是否会永远加速膨胀。 想要实现这些远大目标,人类现有的引力波探测手段还远远不够。除了位于美国的两个LIGO引力波探测器之外,欧洲六国合作建造的VIRGO引力波探测器也已经成为人类进行引力波探测的重要装置。科学家们目前正在加强LIGO和VIRGO探测器的灵敏度。日本也正在地下建设臂长3公里的神冈引力波探测器(KAGRA),这个探测器在位置上可以与LIGO和VIRGO形成互补。越来越多的引力波探测装置将逐渐在地球上形成一个引力波探测网络,但最被人们寄予厚望的,当属欧洲空间局(ESA)正在建造的激光干涉空间天线(LISA)。LISA计划将在21世纪30年代开始工作,在太空中以远超地球引力波探测装置的尺度探测另一个领域的引力波信号。 在地球上的引力波探测器,因为受到其尺度和周围噪声的限制,适合探测高频范围(10赫兹到1000赫兹)的引力波信号,无法探测更低频率范围的引力波信号。而将在太空中工作的LISA将探测0.00002赫兹至0.1赫兹之间的低频引力波信号。在太空中,三个彼此相距250万公里的探测器形成一个三角形,之间通过激光进行联系,相互合作进行低频引力波探测。 在这个频率范围内,人类将有可能观测到远超恒星级黑洞的巨型黑洞合并过程。例如我们知道在很多星系的中心都有一个质量相当于数十亿个恒星的超巨型黑洞,如果两个星系彼此进行碰撞合并,这样规模的两个超巨型黑洞在合并过程中就将发出低频引力波信号,而这样的信号从本世纪30年代开始就有可能被LISA探测到。观测到超巨型黑洞的合并过程,人们必将更清晰地理解整个宇宙的进化 历史 ,以及星系的发展史——考虑到宇宙中数以千亿计的星系数量,有天文学家预测,在LISA开始工作之后,或许每年都能探测到几次这样惊人的星系合并过程。 正是因为LISA探测器具有超高灵敏度,人们可以想象,当它开始工作后,会立刻发现看似安静的宇宙中实际上充满了各种各样嘈杂的噪声,热闹非凡。LISA将会“听到”宇宙中各种天体无休无止发出的各类引力波信号,其中会有很多是来自宇宙悠远的过去,甚至是发自宇宙的开端。整个宇宙的发展史将以引力波的方式向人类展示出来。 正是因为其造价昂贵而且意义重大,欧洲空间局首先在2015年发射了激光干涉空间天线“开路者号”(LISA Pathfinder),用以测试这个想法的可行性。在地球轨道上,两个质量为2公斤的方块在没有重力影响的条件下彼此相距38厘米,通过激光相互联系。经过一年多的测试,结果显示这种实验方式的可靠性超出了人们的预期。如无意外,LISA将在2034年升空,届时人类将开启引力波天文学的又一个全新时代。 宇宙到底是什么形态,取决于人类通过怎样的方式去观察。一方面它寒冷,空旷,寂静,另一方面它又是嘈杂无序的,充满了各种可能和秘密。人类所想象的宇宙,包含了时空本身,包含了一切的物理实在,也包含了一切的可能性。人类希望理解宇宙的开端,同样也希望能够预测宇宙的未来。尽管这个目标现在看起来仍然显得遥遥无期,但引力波天文学的兴起,不仅会让我们对 探索 宇宙的未来更加乐观,也会对人类文明的未来和理性的力量更加乐观。 (本文写作参考了《自然》杂志的报道)

北京时间2017年10月16日22点,全世界关注的大新闻是宣布激光干涉引力波天文台(LIGO)和室女座引力波天文台(Virgo)于2017年8月17日首次发现双中子星并合引力波事件,国际引力波电磁对应体观测联盟发现该引力波事件的电磁对应体。

记者从中国科学院高能物理所获悉,我国第一颗空间X射线天文卫星——慧眼HXMT望远镜(以下简称“慧眼”望远镜)对此次引力波事件发生进行了成功监测,为全面理解该引力波事件和引力波闪的物理机制做出了重要贡献,不仅以合作组形式加入了报告本次历史性发现的论文(即发现论文),而且在论文的正文部分报告了观测结果。该论文于10月16日正式发表。我国第一颗空间X射线天文卫星——慧眼HXMT望远镜,于2017年6月15日在酒泉卫星发射中心采用长征四号乙运载火箭发射。引力波是1916年爱因斯坦建立广义相对论后的预言。极端天体物理过程中引力场急剧变化,产生时空扰动并向外传播,人们形象地称之为“时空涟漪”。自从2015年9月14日LIGO首先发现双黑洞并合产生的引力波事件以来,已经探测到4例引力波事件,包括这次宣布的LIGO和Virgo联合探测的双中子星并合引力波事件。引力波的直接探测刚刚获得了2017年度诺贝尔物理学奖。探测引力波电磁对应体对研究引力波事件、宇宙学以及基础物理具有不可替代的决定性作用,因此,人们普遍认为引力波研究的下一个里程碑是发现引力波事件产生的电磁辐射。

引力波郭英森发表论文

这两天,网上频繁出现大新闻。既引力波、sunshine组合这些事件出现后,近日一个叫郭英森的民间科学家出现在了人们的视线当中。他在五年前参加了一个节目,提出了和引力波有关的理论,但是却遭到节目嘉宾方舟子和主持人的讽刺,以至于最后没能阐述完他的理论。五年之后,当引力波火爆于网络,此事突然又被网友翻了出来,大量网友纷纷力挺郭英森,认为方舟子“应该道歉”。事实上,笔者早期,作为科学爱好者,也参与过郭英森所处在的民科圈子当中辩论过,甚至接触过郭英森(依稀记得当时好像讨论什么奇点大学的事),不过13年的时候觉得贵圈真乱便退出了。笔者今天就来讲讲,这个郭英森所处的民科,到底是什么意思?为什么争议那么大?

民科究竟是什么?

民科,即民间科学家的简称,是国内一个十分奇特的群体。民间科学家主要集中在对理科的科学研究,但是在科学圈内,几乎没有多少学术研究机构、科学研究所,或者中科院的权威人士、专家或专职科学家会承认民间科学家的科学地位,几乎都将其看做一根刺,恨不得拔之而后快。这也是民科称其为“官科”,暗示其官方腐败做派打压他们的一个原因。

网友们似乎就觉得不服气了,丫咱不就是民间点吗?为什么官方的科学家就高高捧着,民间的就如此奚落?看不起人么?其实不是这样的!答案很简单,民间科学家,从严格意义讲,绝对不能算科学家,而应该算空想家。为什么这么说呢?首先,我给大家指出一下,民科大部分研究的方向主要集中在哪些理论上面:

你也许会说,这都是很正常啊,大部分科学家研究的都是如此。但是请注意最关键的一点,80%的民科不是在“研究”它们,而是在“推翻”它们!而且推翻一个理论,一般科学家都是从理论的瑕疵去进行,例如爱因斯坦的狭义相对论推翻了牛顿力学,牛顿力学仅仅是我们处在低速情况下的一个效果,当速度达到高速的时候,牛顿力学就失效了。但是由于我们处在低速情况下,所以牛顿力学对我们依然是有用的,因而没有被完全抛弃。这是爱因斯坦用数万字的论文方程等推导和实验结果的参考,以及等待了长达十数年的实验结果最终证实的理论。但是民科是怎么推翻的呢?用臆想去推翻!

网友们可能又发火了:你怎么知道民科们就啥也不懂,都是臆想?别着急,笔者先给大家看一个数据,自大约上个世纪80年代起,全国各地涌现出来的民科很多。但是至今为止,只有非常少数,仅近10年中国最大的民科组织北京相对论研究联谊会的数据来看,其会当中接近千名民科的数千种理论,只有约计数十个理论真正获得了科学界的承认,内容翔实没有漏洞。而这部分民科研究的理论,也只是一些很偏门的东西。也就是说,几乎大部分民科集中在的热点研究,推翻相对论等,都是具有大量漏洞的。而民科几乎没有能够承认自己漏洞的,他们都会以各种理由和说法来掩盖自己理论的错误之处。我们必须承认,民科肯定有发光的金子存在,但是现在这种金子用漏斗淘金都淘不出几个。作为一个科学理论,首先如果要推翻前人的理论,不仅需要大量事实的验证,还需要让别人尝试先能不能推翻你的理论。自身功夫稳,才能打败敌手。

例如网络上有一个民科ID名叫雷绍武。他真的可以算一个很奇葩的民间科学家,笔者甚至认为他是一个高级黑。他的理论是运动力,声称要推翻整个牛顿力学,然后用他的运动力再延伸,再推翻牛顿其他理论、相对论、推翻量子力学、推翻弦理论、推翻这个那个……详细可以贴吧搜索。那运动力是什么呢?很简单,用一句话来阐述:运动就有力,有力就运动,所以叫运动力。而牛顿的看法是,首先证明了力的三要素是方向、大小和作用点,其次,当没有作用点的时候肯定就没有力的存在,那么没有作用点的时候肯定也存在运动,所以无力也可以运动。牛顿用他三大定律打开了物理学的大门,很多现代物理理论都是建立在这三大定律上的。然而,当你以这个理由反驳他的时候,雷绍武会回复你:

“谁跟你讲力需要作用点?”“作用点在质心!”“什么,作用点是两个物体的接触点?”“牛顿证明的?牛顿算什么?”“这些可悲的愚蠢人,只懂得跟人人云亦云……”,特别是,当有人用非常严格的推理数据和计算方程来说明其理论的漏洞的时候,雷绍武就理屈词穷了,“谁跟你讲这个力是这样这样?”“你们就只懂得跟人家人云亦云,愚蠢无知,可悲……”然后继续宣布推翻各种物理学……

如果仅仅只有他一人是这样,那科学爱好者和工作者就轻松了,但是几乎网络上的民科均是如此。当推翻某一个理论的时候,民科就会自命定理、定律,然后宣布要冲击诺奖、为国人争光。我们绝对承认他们的精神,但是他们的理论确实大部分无法苟同。因为当无数科学爱好者和科研工作者用逻辑推理和事实一遍又一遍的和他们辩论他们理论当中的漏洞,发现他们死不认账之后又继续和他们辩论,如此持续了数个月、数年、甚至三四十年不同批次的人员一遍又一遍的与其辩论着,但最后始终说服不了这群民科的时候,恐怕换做你,也会彻底放弃的。不是固执于原来的定理,而是当你一遍又一遍的发现他们的理论不要说事实,连逻辑都不通的时候,你肯定无法接受。

民科并不是仅仅因为学历不高的缘故受到歧视,也有很多民科有正常甚至较高的科研人员所要具备的学历,但是关键点在于,他们对所研究的东西,了解真的是太少了。比如相对论,通过数十年的辩论,很多与其辩驳的人们发现,他们很多很多扬言推翻相对论的人,实际上根本就没有理解透相对论的核心内容是什么。有个要推翻希格斯玻色子的民科,绕了半天绕到能量那边去之后,竟然认为物理上的“正能量”就是正功,善良的人拥有多的“正能量”,还有推翻相对论的人,拿着八卦和太极去推翻相对论,这俩和物理根本不是一个学科的好不?

不过,民科也不是完全无用。现在有这几种民科通常会受到比较尊敬的对待:

科学需要自身理论能够符合逻辑,能够让其他人尝试去推翻你而推不翻你,并且还有有严格的事实、数据验证这才可以算作科学。其实,郭英森的小部分理论,也属于这几种之一,所以我认为方舟子的做法不仅仅在道德上缺欠,而且在科学上也实在是很武断。但是在这里给郭英森先生一个建议,如果你真要完善自己的理论发表论文并冲击诺奖,建议你考虑一下自己的理论漏洞之处,只有逻辑圆满,才能成为一个真正的科学理论。

为什么会出现民科?

很多业内人士均有评价民科,认为民科实际上只是一个自己创造出来的信仰。民科从心理上来解释的话,很大一部分是因为科学被挂的太高了。从小,我们就受到教育:长大要做科学家,为国争光!并用各种科学家高高在上的故事来激励我们,让我们对其羡慕嫉妒那个恨啊。但是后来发现,科学家这条路在应试教育实在是走不通,于是无奈,自己着手研究科学,尝试让自己也成为科学家那种人物。但是应试教育不好归不好,也能带给人知识,而缺乏了知识的这些研究家,研究出来的成果自然就是七拼八凑的,逻辑不通。

当同行批驳自己理论的时候,在民科的心里,实际上就会出现一种“我的成果被人破坏了”这个想法。实际上,这是一种艺术品心理,人皆有之,当你自己做出了一种很漂亮的东西、艺术品的时候,你肯定会很有成就感,但是当别人说你这个艺术品垃圾、没有美感的时候,你的成就感被人捏碎,自然你不会承认自己这个东西“很丑”。民科的理论更上一层楼,是他们辛苦不知多少年出来的“艺术品”,当自己所有成果被人捏碎的时候,如果承认自己的理论是错的,就会发现自己几十年的付出都白费了,这种痛苦肯定不能承受。因此,为了避免这种痛苦,民科们拼劲全力也要维护自己的理论。久而久之,在圈子里就成为一个笑柄一样的话题。

所以,如果你真的想当民科,建议你要么充实自己的学识,要么,把你这个思维劲头用在其他行业上,说不定会有更亮的闪光。

本文作者/赖仲达 作者系尾猿会网CEO,本文转自尾猿会网,允许转载不允许改编。

记者:这两天你上电视那期节目被网友传的事,您知道吗?

郭英森:知道。一开始我也“蒙圈”了,后来人家给我看了我也知道怎么回事。今天电话太多,有点应付不过来了。有媒体采访的,有投资者,有基金会的,也有企业老总。

记者:参加电视节目的初衷是什么?

郭英森:我报名参加电视节目就想找工作,它(《非你莫属》)本来就是一个找工作的节目,想找个好点的工作,挣点钱继续研究我的发现。

记者:当时参加完节目什么心情?

郭英森:当然不太好。这事不怨张绍刚。

记者:有没有专家认可你的观点?

郭英森:以前就有老师给我打过电话,想合作研究,那时我还想着找人合作,后面我就想自己干了。我给国防大学和科技委写过信,他们也承认我的新发现。

记者:最近美国科学家发现了“引力波”和你5年前上电视时提到的“引力波”有关系吗?

郭英森:太有了。他们是用实验证明到了引力波的存在,而我是想利用引力波,把它变成一种实用的技术,造福人类。

记者:美国科学家公布发现引力波对你有没有什么启发或触动?

郭英森:这个没有。

记者:今后有什么打算? 一直不会放弃您的研究?

郭英森:现在更不会放弃研究,接下来就是想找学术机构把我的论文发出去

“郭英森,55岁,辽宁人,初中学历。”郭英森一出场,主持人张绍刚这样介绍。

1915年,爱因斯坦提出的广义相对论,认识到引力是一种非常特殊的相互作用。广义相对论论证的一个重点就是,引力的本质是时空几何在物质影响下的弯曲。1916年,爱因斯坦又在广义相对论框架下发表论文,论证了引力的作用以波动的形式传播。这就是引力波的由来,因此引力波的本质就是时空曲率的波动。

引力波的存在,让爱因斯坦提出的广义相对论的正确性再一次得到了证实。100年前,爱因斯坦就在广义相对论的基础上提出了引力波的存在,并预言强引力场事件可产生引力波,比如黑洞合并、脉冲星自转以及超新星爆发等。

2015年9月14日,激光干涉引力波天文台(LIGO)分别位于美国路易斯安那州利文斯顿和华盛顿州汉福德的两个探测器,探测到来自于两个黑洞合并的引力波信号。 这是在爱因斯坦提出引力波的预言百年之后,美国科学家宣布,人类首次直接探测到了引力波。依照科学家的说法,这是人类第一次能够“听”到宇宙的“声音”。

爱因斯坦引力波发表论文

20世纪最伟大的物理学家阿尔伯特·爱因斯坦(Albert.Einstein)1879年3月14日出生在德国西南的乌耳姆城,一年后随全家迁居慕尼黑。爱因斯坦的父母都是犹太人,父亲赫尔曼·爱因斯坦和叔叔雅各布·爱因斯坦合开了一个为电站和照明系统生产电机、弧光灯和电工仪表的电器工厂。母亲玻琳是受过中等教育的家庭妇女,非常喜欢音乐,在爱因斯坦六岁时就教他拉小提琴。 爱因斯坦小时候并不活泼,三岁多还不会讲话,父母很担心他是哑巴,曾带他去给医生检查。还好小爱因斯坦不是哑巴,可是直到九岁时讲话还不很通畅,所讲的每一句话都必须经过吃力但认真的思考。 在四、五岁时,爱因斯坦有一次卧病在床,父亲送给他一个罗盘。当他发现指南针总是指着固定的方向时,感到非常惊奇,觉得一定有什么东西深深地隐藏在这现象后面。他一连几天很高兴的玩这罗盘,还纠缠着父亲和雅各布叔叔问了一连串问题。尽管他连“磁”这个词都说不好,但他却顽固地想要知道指南针为什么能指南。这种深刻和持久的印象,爱因斯坦直到六十七岁时还能鲜明的回忆出来。 爱因斯坦在念小学和中学时,功课属平常。由于他举止缓慢,不爱同人交往,老师和同学都不喜欢他。教他希腊文和拉丁文的老师对他更是厌恶,曾经公开骂他:“爱因斯坦,你长大后肯定不会成器。”而且因为怕他在课堂上会影响其他学生,竟想把他赶出校门。 爱因斯坦的叔叔雅各布在电器工厂里专门负责技术方面的事务,爱因斯坦的父亲则负责商业的往来。雅各布是一个工程师,自己就非常喜爱数学,当小爱因斯坦来找他问问题时,他总是用很浅显通俗的语言把数学知识介绍给他。在叔父的影响下,爱因斯坦较早的受到了科学和哲学的启蒙。 父亲的生意做得并不好,但却是一个乐观和心地善良的人,家里每星期都有一个晚上要邀请来慕尼黑念书的穷学生吃饭,这样等于是救济他们。其中有一对来自立陶宛的犹太兄弟麦克斯和伯纳德,他们都是学医科的,喜欢阅读书籍、兴趣广泛。他们被邀请来爱因斯坦家里吃饭,并和羞答答、长着黑头发和棕色眼睛的小爱因斯坦交成了好朋友。 麦克斯可以说是爱因斯坦的“启蒙老师”,他借了一些通俗的自然科学普及读物给他看。麦克斯在爱因斯坦十二岁时,给了他一本施皮尔克的平面几何教科书。爱因斯坦晚年回忆这本神圣的小书时说:“这本书里有许多断言,比如,三角形的三个高交于一点,它们本身虽然并不是显而易见的,但是可以很可靠地加以证明,以致任何怀疑似乎都不可能。这种明晰性和可靠性给我留下了一种难以形容的印象。” 爱因斯坦还幸运地从一部卓越的通俗读物中知道了自然科学领域里的主要成果和方法,科普读物不但增进了爱因斯坦的知识,而且拨动了年轻人好奇的心弦,引起他对问题的深思。 爱因斯坦十六岁时报考瑞士苏黎世的联邦工业大学工程系,可是入学考试却告失败。他接受了联邦工业大学校长以及该校著名的物理学家韦伯教授的建议,在瑞士阿劳市的州立中学念完中学课程,以取得中学学历。 1896年10月,爱因斯坦跨进了苏黎世工业大学的校门,在师范系学习数学和物理学。他对学校的注入式教育十分反感,认为它使人没有时间、也没有兴趣去思考其他问题。幸运的是,窒息真正科学动力的强制教育,在苏黎世的联邦工业大学要比其他大学少得多。爱因斯坦充分的利用学校中的自由空气,把精力集中在自己所热爱的学科上。在学校中,他广泛的阅读了赫尔姆霍兹、赫兹等物理学大师的著作,他最着迷的是麦克斯韦的电磁理论。他有自学本领、分析问题的习惯和独立思考的能力。早期工作 1900年,爱因斯坦从苏黎世工业大学毕业。由于他对某些功课不热心,以及对老师态度冷漠,被拒绝留校。他找不到工作,靠做家庭教师和代课教师过活。在失业一年半以后,关心并了解他才能的同学马塞尔·格罗斯曼向他伸出了援助的手。格罗斯曼设法说服自己的父亲把爱因斯坦介绍到瑞士专利局去作一个技术员。 爱因斯坦终身感谢格罗斯曼对他的帮助。在悼念格罗斯曼的信中,他谈到这件事时说,当他大学毕业时,“突然被一切人抛弃,一筹莫展的面对人生。他帮助了我,通过他和他的父亲,我后来才到了哈勒(时任瑞士专利局局长)那里,进了专利局。这有点象救命之恩,没有他我大概不致于饿死,但精神会颓唐起来。” 1902年2月21日,爱因斯坦取得了瑞士国籍,并迁居伯尔尼,等待专利局的招聘。1902年6月23日,爱因斯坦正式受聘于专利局,任三级技术员,工作职责是审核申请专利权的各种技术发明创造。1903年,他与大学同学米列娃.玛丽克结婚。 1900~1904年,爱因斯坦每年都写出一篇论文,发表于德国《物理学杂志》。头两篇是关于液体表面和电解的热力学,企图给化学以力学的基础,以后发现此路不通,转而研究热力学的力学基础。1901年提出统计力学的一些基本理论,1902~1904年间的三篇论文都属于这一领域。 1904年的论文认真探讨了统计力学所预测的涨落现象,发现能量涨落取决于玻尔兹曼常数。它不仅把这一结果用于力学体系和热现象,而且大胆地用于辐射现象,得出辐射能涨落的公式,从而导出维恩位移定律。涨落现象的研究,使他于1905年在辐射理论和分子运动论两方面同时做出重大突破。1905年的奇迹 1905年,爱因斯坦在科学史上创造了一个史无前例奇迹。这一年他写了六篇论文,在三月到九月这半年中,利用在专利局每天八小时工作以外的业余时间,在三个领域做出了四个有划时代意义的贡献,他发表了关于光量子说、分子大小测定法、布朗运动理论和狭义相对论这四篇重要论文。 1905年3月,爱因斯坦将自己认为正确无误的论文送给了德国《物理年报》编辑部。他腼腆的对编辑说:“如果您能在你们的年报中找到篇幅为我刊出这篇论文,我将感到很愉快。”这篇“被不好意思”送出的论文名叫《关于光的产生和转化的一个推测性观点》。 这篇论文把普朗克1900年提出的量子概念推广到光在空间中的传播情况,提出光量子假说。认为:对于时间平均值,光表现为波动;而对于瞬时值,光则表现为粒子性。这是历史上第一次揭示了微观客体的波动性和粒子性的统一,即波粒二象性。 在这文章的结尾,他用光量子概念轻而易举的解释了经典物理学无法解释的光电效应,推导出光电子的最大能量同入射光的频率之间的关系。这一关系10年后才由密立根给予实验证实。1921年,爱因斯坦因为“光电效应定律的发现”这一成就而获得了诺贝尔物理学奖。 这才仅仅是开始,阿尔伯特·爱因斯坦在光、热、电物理学的三个领域中齐头并进,一发不可收拾。1905年4月,爱因斯坦完成了《分子大小的新测定法》,5月完成了《热的分子运动论所要求的静液体中悬浮粒子的运动》。这是两篇关于布朗运动的研究的论文。爱因斯坦当时的目的是要通过观测由分子运动的涨落现象所产生的悬浮粒子的无规则运动,来测定分子的实际大小,以解决半个多世纪来科学界和哲学界争论不休的原子是否存在的问题。 三年后,法国物理学家佩兰以精密的实验证实了爱因斯坦的理论预测。从而无可非议的证明了原子和分子的客观存在,这使最坚决反对原子论的德国化学家、唯能论的创始人奥斯特瓦尔德于1908年主动宣布:“原子假说已经成为一种基础巩固的科学理论”。 1905年6月,爱因斯坦完成了开创物理学新纪元的长论文《论运体的电动力学》,完整的提出了狭义相对论。这是爱因斯坦10年酝酿和探索的结果,它在很大程度上解决了19世纪末出现的古典物理学的危机,改变了牛顿力学的时空观念,揭露了物质和能量的相当性,创立了一个全新的物理学世界,是近代物理学领域最伟大的革命。 狭义相对论不但可以解释经典物理学所能解释的全部现象,还可以解释一些经典物理学所不能解释的物理现象,并且预言了不少新的效应。狭义相对论最重要的结论是质量守恒原理失去了独立性,他和能量守恒定律融合在一起,质量和能量是可以相互转化的。其他还有比较常讲到的钟慢尺缩、光速不变、光子的静止质量是零等等。而古典力学就成为了相对论力学在低速运动时的一种极限情况。这样,力学和电磁学也就在运动学的基础上统一起来。 1905年9月,爱因斯坦写了一篇短文《物体的惯性同它所含的能量有关吗?》,作为相对论的一个推论。质能相当性是原子核物理学和粒子物理学的理论基础,也为20世纪40年代实现的核能的释放和利用开辟了道路。 在这短短的半年时间,爱因斯坦在科学上的突破性成就,可以说是“石破天惊,前无古人”。即使他就此放弃物理学研究,即使他只完成了上述三方面成就的任何一方面,爱因斯坦都会在物理学发展史上留下极其重要的一笔。爱因斯坦拨散了笼罩在“物理学晴空上的乌云”,迎来了物理学更加光辉灿烂的新纪元。广义相对论的探索 狭义相对论建立后,爱因斯坦并不感到满足,力图把相对性原理的适用范围推广到非惯性系。他从伽利略发现的引力场中一切物体都具有同一加速度这一古老实验事实找到了突破口,于1907年提出了等效原理。在这一年,他的大学老师、著名几何学家闵可夫斯基提出了狭义相对论的四维空间表示形式,为相对论进一步发展提供了有用的数学工具,可惜爱因斯坦当时并没有认识到它的价值。 等效原理的发现,爱因斯坦认为是他一生最愉快的思索,但以后的工作却十分艰苦,并且走了很大的弯路。1911年,他分析了刚性转动圆盘,意识到引力场中欧氏几何并不严格有效。同时还发现洛伦茨变化不是普适的,等效原理只对无限小区域有效……。这时的爱因斯坦已经有了广义相对论的思想,但他还缺乏建立它所必需的数学基础。 1912年,爱因斯坦回到苏黎世母校工作。在他的同班同学、母校任数学教授的格罗斯曼帮助下,他在黎曼几何和张量分析中找到了建立广义相对论的数学工具。经过一年的奋力合作,他们于1913年发表了重要论文《广义相对论纲要和引力理论》,提出了引力的度规场理论。这是首次把引力和度规结合起来,使黎曼几何获得实在的物理意义。 不过他们当时得到的引力场方程只对线性变换是协变的,还不具有广义相对论原理所要求的任意坐标变换下的协变性。这是由于爱因斯坦当时不熟悉张量运算,错误的认为,只要坚持守恒定律,就必须限制坐标系的选择,为了维护因果性,不得不放弃普遍协变的要求。科学成就的第二个高峰 在1915年到1917年的3年中,是爱因斯坦科学成就的第二个高峰,类似于1905年,他也在三个不同领域中分别取得了历史性的成就。除了1915年最后建成了被公认为人类思想史中最伟大的成就之一的广义相对论以外,1916年在辐射量子方面提出引力波理论,1917年又开创了现代宇宙学。 1915年7月以后,爱因斯坦在走了两年多弯路后,又回到普遍协变的要求。1915年10月到11月,他集中精力探索新的引力场方程,于11月4日、11日、18日和25日一连向普鲁士科学院提交了四篇论文。 在第一篇论文中他得到了满足守恒定律的普遍协变的引力场方程,但加了一个不必要的限制。第三篇论文中,根据新的引力场方程,推算出光线经过太阳表面所发生的偏转是1.7弧秒,同时还推算出水星近日点每100年的进动是43秒,完满解决了60多年来天文学的一大难题。 1915年11月25日的论文《引力的场方程》中,他放弃了对变换群的不必要限制,建立了真正普遍协变的引力场方程,宣告广义相对论作为一种逻辑结构终于完成了。1916春天,爱因斯坦写了一篇总结性的论文《广义相对论的基础》;同年底,又写了一本普及性的小册子《狭义与广义相对论浅说》。 1916年6月,爱因斯坦在研究引力场方程的近似积分时,发现一个力学体系变化时必然发射出以光速传播的引力波,从而提出引力波理论。1979年,在爱因斯坦逝世24年后,间接证明了引力波存在。 1917年,爱因斯坦用广义相对论的结果来研究宇宙的时空结构,发表了开创性的论文《根据广义相对论对宇宙所做的考察》。论文分析了“宇宙在空间上是无限的”这一传统观念,指出它同牛顿引力理论和广义相对论都是不协调的。他认为,可能的出路是把宇宙看作是一个具有有限空间体积的自身闭合的连续区,以科学论据推论宇宙在空间上是有限无边的,这在人类历史上是一个大胆的创举,使宇宙学摆脱了纯粹猜想的思辨,进入现代科学领域。漫长艰难的探索 广义相对论建成后,爱因斯坦依然感到不满足,要把广义相对论再加以推广,使它不仅包括引力场,也包括电磁场。他认为这是相对论发展的第三个阶段,即统一场论。 1925年以后,爱因斯坦全力以赴去探索统一场论。开头几年他非常乐观,以为胜利在望;后来发现困难重重,他认为现有的数学工具不够用;1928年以后转入纯数学的探索。他尝试着用各种方法,但都没有取得具有真正物理意义的结果。 1925年~1955年这30年中,除了关于量子力学的完备性问题、引力波以及广义相对论的运动问题以外,爱因斯坦几乎把他全部的科学创造精力都用于统一场论的探索。 1937年,在两个助手合作下,他从广义相对论的引力场方程推导出运动方程,进一步揭示了空间——时间、物质、运动之间的统一性,这是广义相对论的重大发展,也是爱因斯坦在科学创造活动中所取得的最后一个重大成果。 在同一场理论方面,他始终没有成功,他从不气馁,每次都满怀信心底从头开始。由于他远离了当时物理学研究的主流,独自去进攻当时没有条件解决的难题,因此,同20年代的处境相反,他晚年在物理学界非常孤立。可是他依然无所畏惧,毫不动摇地走他自己所认定的道路,直到临终前一天,他还在病床上准备继续他的统一场理论的数学计算。最伟大的科学家的风格 爱因斯坦因为在科学上的成就,获得了许多奖状以及名誉博士的授予证书。如果一般人就会把这些东西高高挂起。可是爱因斯坦把以上的东西,包括诺贝尔奖奖状一起乱七八糟地放在一个箱子里,看也不看一眼。英费尔德说他有时觉得爱因斯坦可能连诺贝尔奖是什么意义都不知道。据说他在得奖的那一天,脸上和平日一样平静,没有显出特别高兴或兴奋。 少年时代的爱因斯坦在瑞士生活时,过的是穷学生的生活,他对物质生活要求不高,有一碟意大利面条加上一点酱他就感到很满意。成名后,成为教授以及后来为了躲避纳粹的迫害移民美国,他是有条件过很好的物质享受的,但是他仍保留像穷学生那样简朴无华的生活。 当爱因斯坦来到普林斯顿的高等科学研究所工作时,当局给了他相当的高薪——年薪一万六千美元,他却说:“这么多钱,是否可以给我少一点?给我三千美元就够了。” 爱因斯坦对自己的衣着也是不注意的,长年披着一件黑色皮上衣,不穿袜子,不结领带,裤子有时既没有绑皮带也没有吊带,他和人在黑板前讨论问题时,一面写黑板,一面要把那像要滑下的裤子用手拉住,这种情形是有些滑稽,而他的头发却留得长长的,不加修饰。这对当年“贵族学府”普林斯顿大学的学生来说是惊异的事,难怪他们要希望上帝叫他把头发剪掉。 爱因斯坦是很节俭的人,他在计算的纸上是两面都写,而且他把许多寄给他的信的信封裁开,当作计算的草稿纸,不让它们在进了纸篓之前失掉可以再利用的价值。爱因斯坦在外出时经常坐二、三等车,平时只吃一些简单的食物。 1909年7月,爱因斯坦应邀到日内瓦,参加隆重的日内瓦大学三百五十周年校庆和纪念建校人加尔文的庆祝活动,并接受日内瓦大学颁发给他的荣誉博士学位。在庆祝活动的游行中,学校里的显要人物和政府中的大人物,都身穿燕尾服、头戴高礼帽,或者身穿中世纪式的锈金长袍,头戴平顶丝帽,而爱因斯坦却穿着一套平时上街穿的衣服,戴着一顶草帽。对这次庆祝活动所举办的盛大宴会,爱因斯坦很不以为然,他对坐在旁边的人说,“如果加尔文还活着,他会堆起一大堆柴禾,因为搞这样的铺张浪费的盛宴而把我们全都烧死。” 爱因斯坦自己曾说过:“安逸和幸福,对我来说从来不是目的。我称这些伦理基础为猪倌的理想……”。他甚至拒绝自己被安排在上流社会中,而居于与众不同的地位,对社会上对他的特殊照顾感到愤怒。 爱因斯坦是很珍惜时间的人,他不喜欢参加社交活动与宴会,他曾讽刺地说:“这是把时间喂给动物园。”他集中精神专心的钻研,他不希望宝贵的时间消耗在无意义的社交谈话上。他也不想听那些奉承和赞扬的话。他认为:“一个以伟大的创造性观念造福于全世界的人,不需要后人来赞扬。他的成就本身就已经给了他一个更高的报答。”1929年3月,为了躲避五十寿辰的庆祝活动,他在生日前几天,就秘密跑到柏林近郊的一个花匠的农舍里隐居起来。 作为物理学革命中的伟大科学巨匠,爱因斯坦从来没有自认为是一个超人。他认识到,自己所走的道路是前人走过的道路的延伸,科学的新时代是在前人工作基础上的合理发展,因此他总是抱着感激和敬仰的心情赞赏前人的贡献。 在谈到相对论的创立时,他说:“相对论实在可以说是对麦克思韦和洛伦兹的伟大构思画了最后一笔,因为它力图把场物理学扩充到包括引力在内的一切现象。”爱因斯坦曾几次在信中对赞扬他的成就的朋友写道:“我完全知道我没有什么特殊的才能:兴趣、专一、顽强工作,以及自我批评使我达到我想要达到的理想境界。”全人类命运的关注者 爱因斯坦热爱科学,也热爱人类。他没有因为埋头于科学研究而把自己置于社会之外,一直关心着人类的文明和进步,并为之顽强、勇敢地战斗。他说过:“人只有献身于社会,才能找出那实际上是短暂而又有风险的生命的意义”,他自己正是这样去做的。1914年4月,爱因斯坦接受德国科学界的邀请,迁居到柏林,8月即爆发了第一次世界大战。他虽身居战争的发源地,生活在战争鼓吹者的包围之中,却坚决地表明了自己的反战态度。9月,爱因斯坦参与发起反战团体“新祖国同盟”,在这个组织被宣布为非法、成员大批遭受逮捕和迫害而转入地下的情况下,爱因斯坦仍坚决参加这个组织的秘密活动。 10月,德国的科学界和文化界在军国主义分子的操纵和煽动下,发表了所谓“文明世界的宣言”,为德国发动的侵略战争辩护,鼓吹德国高于一切,全世界都应该接受“真正德国精神”。在“宣言”上签名的有九十三人,都是当时德国有声望的科学家、艺术家和牧师等。就连能斯脱、伦琴、奥斯特瓦尔德、普朗克等都在上面签了字。当征求爱因斯坦签名时,他断然拒绝了,而同时他却毅然在反战的《告欧洲人书》上签上自己的名字。这一举动震惊了全世界。 1917年,列宁领导的苏联社会主义革命胜利后,爱因斯坦热情地支持这个伟大的革命,赞扬这是一次对全世界将有决定性意义的、伟大的社会实验,表示:“我尊敬列宁,因为他是一位有完全自我牺牲精神、全心全意为实现社会正义而献身的人。我并不认为他的方法是切合实际的,但有一点可以肯定:象他这种类型的人,是人类良心的维护者和再造者。” 1918年11月,德国工人和士兵在俄国十月革命胜利的影响和鼓舞下,发动起义,推翻了德皇威廉二世下台第三天,爱因斯坦即给他的母亲连续写了两张明信片,欢呼“伟大的事变发生了……亲身经历了这个事变是多么荣幸!” 在二十年代到三十年代初期,爱因斯坦基本上是一个绝对的和平主义者。但是,侵略和掠夺战争不断发生的现实,打破了他那美好的梦想。特别是1933年希特勒上台后,德国日益法西斯化,使爱因斯坦意识到新的野蛮战争不可避免,促使他改变了自己的观点。他明确表示:“当法律和人类尊严必需保卫时,我们一定要战斗。自从法西斯的危险到来后,现在我不再相信绝对的被动的和平主义是有效的了。只要法西斯主义统治欧洲,那就不会有和平。” 由于爱因斯坦的进步活动,又因为他是犹太人,因而被德国纳粹分子列为重要的迫害对象,幸而他1932年底离开德国到美国讲学,才未遭毒手。他在柏林的住屋被查抄和捣毁,他的财产被没收,他的著作被焚毁,纳粹还悬赏二万马克要杀害他。面对纳粹分子暗杀的危险,爱因斯坦没有丝毫的畏惧,而是更坚定地战斗。当他的挚友劳厄写信劝他对政治问题采取明哲保身的态度时,他不顾个人安危,大声疾呼,指出法西斯就意味着战争,和平必须用武装来保卫,呼吁美国人民起来同法西斯作斗争。 在为人类的进步事业而战斗的历程中,爱因斯坦一直关心着被压迫、被奴役的国家和民族。他反对法西斯灭绝犹太人的暴行,为争取犹太人的生存权利而大声疾呼。但他也反对狭隘的犹太民族主义,希望看到犹太人“同阿拉伯人在和平共处的基础上达成公平合理的协议,而不希望创立一个犹太国”。他反对美国的种族歧视政策,支持黑人的解放运动,并呼吁“美国黑人在这个方向上所作的坚定的努力,应当得到大家的赞扬和支援”。 在五十年代美国麦卡锡份子兴风作浪的时期,麦卡锡参议员说他是“美国的第一敌人”,而一些狂热人士还造谣说他是共产份子,并且说他的前助手英费尔德从他那里知道原子弹的材料,准备供给苏联这些情报。事实上他除了担心纳粹能制造新式武器,在1939年8月2日向罗斯福总统建议这方面该进行研究写的一封信外,他以后完全不知道美国政府秘密从事原子弹的制造,一些从事这一工作的爱因斯坦的朋友也对他保密,不让他知道有这回事。但当他知道德国没有制成原子弹,而美国已造出原子弹后,他的心情感到沉重和不安。他说,如果他知道德国不会制造原子弹,他就不会为“打开这个潘多拉魔匣做任何事情。” 当爱因斯坦后来从无线电广播知道美国对广岛、长崎投下原子弹,杀伤许多平民时他感到非常痛心。他后来写了一封告美国公民书,说:“我们将此种巨大力量解放的科学家们,对于一切事物都要优先负起责任,必须限制原子能绝对不能使用来杀害全人类,而是用来增进人类的幸福方面。”1955年,爱因斯坦与罗素联名发表了反对核战争和呼吁世界和平的《罗素—爱因斯坦宣言》。 在1949年爱因斯坦写了一篇《为什么要社会主义?》的论文。在这里,他提出了现在看来还是正确的看法!“计划经济还不就是社会主义。计划经济本身可能伴随着对个人的完全奴役。社会主义的建成,需要解决这样一些极端困难的社会——政治问题,鉴于政治权力和经济权力的高度集中,怎样才有可能防止行政人员变成权力无限和傲慢自负呢?怎样能够使个人的权利得到保障,同时对于行政权力能够确保有一种民主的平衡力量呢?”巨星陨落 1955年4月18日,人类历史上最伟大的科学家,阿尔伯特.爱因斯坦因主动脉瘤破裂逝世于美国普林斯顿。巨星陨落,举世同悲。 在爱因斯坦去世的前几天还录音对以色列广播,他说:“我们这时代最大的问题是人类分成两个互相对敌的阵营:共产世界和所谓的自由世界。由于“自由”及“共产”这两个词的意义对我很难理解,我宁愿用“东方”和“西方”的权力冲突来说,然而,这地球是圆的,这样“东方”和“西方”的真正精确意义也不能清楚。” 爱因斯坦生前不要虚荣,死后更不要哀荣。他留下遗嘱,要求不发讣告,不举行葬礼。他把自己的脑供给医学研究,身体火葬焚化,骨灰秘密的撒在不让人知道的河里,不要有坟墓也不想立碑。在把他的遗体送到火葬场火化的时候,随行的只有他最亲近的12个人,而其他人对于火化的时间和地点都不知道。 爱因斯坦在去世之前, 把他在普林斯顿默谢雨街112号的房子留给跟他工作了几十年的秘书杜卡斯小姐,并且强调:“不许把这房子变成博物馆。”他不希望把默谢雨街变成一个朝圣地。他一生不崇拜偶像,也不希望以后的人把他当作偶像来崇拜。 爱因斯坦曾经说过:“我自己不过是自然的一个极微小的部分”,他把一切献给了人类从自然界获得自由的征程,最后连自己的骨灰也回到了大自然的怀抱。但是正如英费尔德第一次与他接触时所感受到的那样:“真正的伟大和真正的高尚总是并肩而行的”,爱因斯坦的伟大业绩和精神永远留给了人类。逸事爱因斯坦逃学记 1895年春天,爱因斯坦已16岁了。根据德国当时的法律,男孩只有在17岁以前离开德国才可以不必回来服兵役。由于对军国主义深恶痛绝,加之独自一人呆在军营般的路易波尔德中学已忍无可忍,爱因斯坦没有同父母商量就私自决定?br>参考资料:

爱因斯坦对科学的精神,和钻牛角尖扯上关系?这个我必须说几句了。 如果出现这样的公式:1+1=2,你坚持它是对的,这叫做捍卫科学理想; 如果公式变成了这样:1+1=3,你坚持它是对的,那可以叫做钻牛角尖; 但是如果这条不是公式,而是X+Y=Z,大家来证明这三个数是个啥?你坚持自己的理论和推测,我想这应该是科学探讨。 而爱因斯坦对科学的精神属于上面的哪种情况呢?我们可以分析分析。 爱因斯坦不仅是相对论的创始人,而且他在光电效应的出色贡献,爱因斯坦同样被公认为是“量子之父”之一。但是出于他对经典科学认知论的坚持,以及他对因果律的确信,他认为量子力学虽然正确,但海森堡等人的核心解释里“不确定原理”却是荒诞的,换一种说法,至少是“不完备”的。他一直不接受根本哈根的量子论核心解释,几乎以一己之力来对抗这股学术潮流,他个人建议引入“隐变量”概念来解释量子不确定性。 如果从这个角度来看,爱因斯坦是不是在钻牛角尖?当然不是。爱因斯坦与量子论哥本哈根解释的争论,在当时的背景下,是一场学术争论。谁也不能拿出足够的证据来否定谁。科学必须依靠坚实的预测和实验,才能确定结果,终爱因斯坦一生,也没有一个称得上严密的实验,来宣告他的失败,所以,出于对未知的争议,这样当然不是钻牛角尖。 当然,现在我们非常清楚,贝尔不等式,已经将爱因斯坦坚持的经典的定域性和连续性宇宙,彻底击溃。量子不确定性原理,这个世界是建立在随机的或者非定域性之上的,已经在科学界取得了相当一致的共识。 爱因斯坦在科学争议之中,具备非常高的辨析能力,也经常知错就改。1936年,爱因斯坦和助手罗森给美国物理学会出版的期刊《物理评论》投了一篇论文《引力波存在吗?》,结论是引力波是不存在的。但《物理评论》却没有发表,而且要求爱因斯坦实施了修改。爱因斯坦将论文转投《富兰克林研究所杂志》,准备坚持自己的看法。 事情很快起了变化,爱因斯坦助手的好友——罗伯森教授,去信指出了爱因斯坦计算中犯下的错误,在引力波的测算中,应该用柱面波而不是平面波,就可以顺利推导出引力波的存在!爱因斯坦得知后,暂缓发表原论文,随后通过仔细比对,同意修改论文,最后论文以《论引力波》题目发表,承认了引力波的存在,并在论文注释中感谢了罗伯森教授的指正。 2017年,我们也终于验证了这项上个世纪最伟大的预言之一——实际观测到了引力波的存在。 爱因斯坦不是神,他是个人,是个人当然会犯错犯浑,但他绝对不是一个在科学上钻牛角尖的人。相反,我看这题目的回答中,好几个大佬,反而一直在钻牛角尖,出不来呢。 我是猫先生,感谢阅读。 在他成名前算不上钻牛角尖,因为那时的爱因斯坦确实是想解决物理学存在的问题。但是他使用的方法不对,他建立理论不像牛顿那样从对基本概念的定义入手,运用数学以及逻辑推导建立理论体系,而是首先就建立起无端的假设,然后强行的把假设看待为正确的,而去歪曲基本概念的含义,所以才会得出什么钟慢尺缩的双生子佯谬等奇谈怪论,创造了时空的概念。 爱因斯坦成名后就算是钻牛角尖了,比如原子弹好不容易被研发出来爆炸成功了,那可完全是研究化学元素及实验方面科学家的功劳,本来跟相对论一点关系没有,他却硬是出来发话推广自己的质能公式,说原子弹爆炸的能量就是用那个公式来计算的! 这样的结果使得相对论更加火爆了,爱因斯坦的名气也更大了。 作为理论物理学家本应当是很严谨的,可他却不出来解释下他的质能公式E=MC^2为什么没有普适性! 也就是为什么偏偏要用几百种物质元素中的铀来造原子弹,而不是铜铁等。其实他根本就没法回答,他的结论也是生搬硬套来的,只是为了搪塞观众,属于钻牛角尖的行为。他知道观众没有几个人有那么专业的素质,能够去验证光线不会被引力给弯曲,也没有几个能有机会跟他在聚光灯下辩论,所以一切局势几乎都由他摆布,利用新媒体到处鼓吹自己理论的伟大。成名后的爱因斯坦目的只有一个,就是维护自己在学界的地位,手段何止钻牛角尖能够概括! 钻牛角尖,多数情况下是贬义词,但也不是骂人的意思,指的是一个人过于执着某件事情某个问题,执着地研究无法研究或者不值得研究的问题,有点死脑筋,遇事不灵活! 但是不得不说,科学研究确实需要钻牛角尖这种精神,没有这种精神很难在枯燥乏味的科学领域取得突破! 最简单的例子,牛顿通过苹果落地受到启发,执着地去研究苹果为什么落地而不是往天上飞,这种问题在别人看来肯定是钻牛角尖,甚至精神有问题才会这样问,苹果落地很正常,不落地难道要往天上飞?这是人们的共识! 但为什么会这样?正是在这种“钻牛角尖”的精神推动下,牛顿一步步靠近经典力学的真谛! 而爱因斯坦在相对论的 探索 研究也具有这种精神,所以他用异于常人的思维方式发现了完全具有颠覆性的相对论,包括狭义和广义相对论! 当然,日常生活中,钻牛角尖的方式是不可取的,我们需要变通,但对于科学研究,我们需要有这种精神,打破砂锅问到底的精神,不畏惧权威,大胆地质疑求证! 爱因斯坦说过一句名言:“人们把我的成功归于我的天才,其实我的天才只是刻苦罢了”。爱因斯坦是全世界伟大的科学家,他在1905年与1915年分别提出的狭义和广义相对论,为人类做出了巨大的贡献。比如医院大多有一台相对论效应的粒子加速器;根据光速原理研制的卫星定位系统;由广义相对论推导而来的引力透镜,用以观测黑洞和暗物质。这些不就是爱因斯坦钻牛角尖钻研出来的么?除了爱因斯坦,哪个科学家不是刻苦钻研才会有所成就呢? 常言道:不经历风雨怎么见彩虹,没有人能随随便便成功。 就是因发现了治疟的青蒿素而获得2015年诺贝尔医学奖的屠呦呦。她收集了2000多种方药,编写了640多种药物的《抗疟单验方集》,经历了380多次失败…如果不是钻牛角尖的精神,只怕屠呦呦在一次失败就会一蹶不振了,哪里会有后来的获诺贝尔奖、拯救无数生命的屠呦呦呢?不说别的,就说说诺贝尔,他经过反复实验和刻苦钻研,好几次差点丢了性命,才研制出了固体韧性燃料,1866年再次研制出了硝化甘油与矽藻土炸药。诺贝尔在研制炸药时多次以身试险,将生死置之度外才会有后来的巨大成就和千古流芳的诺贝尔奖。这不就是某些人口中所说的“钻牛角尖”么?伟大的物理学家牛顿也曾说过: “思索,继续不断的思索,以待天曙,渐近乃见光明!” 科学家要的就钻牛角尖精神!人类发展要的就是钻牛角尖精神!寻找真理要的就是钻牛角尖精神! 爱因斯坦是一个具有多方面 探索 创造精神的科学家,可以说他的精神就是科学,他创造了一种科学,爱因斯坦的数理逻辑和哲学思维都是非常优秀的,而且你知道吗?我认为真正的科学巨人,是能够具有提出一个让所有人都无法解释但是也不能够反驳的问题的能力,这种人的创新能力极强,他能推动人类文明的发展,他们专一不分心,有独立的思考能力,真的可以做到一人顶万人,当然这些人只是少数。钻牛角尖儿是指研究无法解决或一些不值得研究的东西,所以人们都普遍认为凡事都要留一些余地,别死钻牛角尖。我认为这句话的意思就是有些事情在研究不明白的时候就要懂得放弃,本意没错,钻牛角尖在 社会 上可能是一个非常不理智的行为,但是放在科学领域当中我感觉恰恰相反,人是思维动物,一切能够被人类想象到的事物,都具有一定的理论,大众话解释就是指所有你能想要的东西都有可能变成现实。爱因斯坦钻牛角尖吗?他如果没有这份专注的心凡事都是干两天就不干了,那即使他再聪明也无法拥有这么高的成就。正是因为他钻牛角尖,所以他的想法才更加的独特,在他不懈的努力下,他的理论才被世界上大多数的人所接受。楼上各位说的都有自己的道理。 1.研究自然类的科学家要想做出巨大成就,就必须坚持对科学课题研究具有钻牛角尖儿的精神和长期实践; 2.研究 社会 类的科学家需要具备实践是检验真理唯一标准的精神和理论联系实际的行动能力; 3.爱因斯坦是全世界物理学界公认的最具有发明创造力的天才,没有之一! 爱因斯坦发现的广义和狭义相对论是二十世纪全球物理学界公认的三大里程碑之一; 4.国际心理学界公认的心理学定律之一是: 对天才而言,普罗大众的高兴和快乐没有他的份,而天才的高兴和快乐也不属于普罗大众; 5.在全世界范围内,普罗大众占全球人口的绝大多数,而全部的天才人数(大人小孩都可以计算在内的)可能仅仅占百分之五以下(这还只是最大的估计数量)而已。 不是,他只是凭感觉认识这个世界! 不能说钻牛角尖,最大程度上是小沈阳的裤子,跑偏了。 搞科学 探索 未知领域,需要的是那些。拥有超前思维方式的学者,只要有超前的意识。才能够创新发明,任何 科技 产品的出现。都需要科学工作者,经过常期不歇的努力。把学术理论变成了现实,搞科学我们就得 探索 未知领域,只有超前意识才能够。为我们人类找到新的文明,。 因为发现了客观存在的规律,不能自拔的钻研下去!!

100年前 爱因斯坦的“理论构想”1915年,爱因斯坦提出的广义相对论,认识到引力是一种非常特殊的相互作用。广义相对论论证的一个重点就是,引力的本质是时空几何在物质影响下的弯曲。1916年,爱因斯坦又在广义相对论框架下发表论文,论证了引力的作用以波动的形式传播。这就是引力波的由来。引力波最初只是爱因斯坦的一个理论构想,来源于方程式的推导,而非真实的实验观察。爱因斯坦认为,由于引力波太过微弱,它无法被探测到。

相关百科
热门百科
首页
发表服务