职称论文百科

下面是Monod在其发表论文时

发布时间:2024-07-05 12:40:05

下面是Monod在其发表论文时

Very sorry!!!Because of our "survival rate" statistical analysis of the results of errors leads to this error.Very grateful to you for correction.To this end, we carefully analyze all of the "survival rate", partial results similarly found similar errors, and finally all the correct analysis of statistical results, and modify the articles and pictures within the description of the corresponding survival rates, but without making any changes to the original data.To demonstrate we are not modifying the original data, we keep the original data results details listed below.At the same time, if necessary, we will send the original data in the Editorial Department, for your information, to make sure we do not modify the original data.Once again, thank you for your criticism, we express profound apologies this grave error again.

当研究生发表论文时,通常需要列出作者名单,这些作者应该是做出了实质性贡献的人。如果研究生仅仅是执行了一些辅助工作,那么列出研究助理的名字作为作者可能会被认为是不合适的。因此,研究生发表论文时应该谨慎考虑是否将研究助理列为作者。如果研究助理在研究工作中做出了实质性贡献,那么可以考虑将其列为共同作者。例如,研究助理可能参与了实验设计、数据收集、数据分析等工作。如果研究助理只是提供了一些技术支持或者进行了一些较为简单的工作,那么将其列为作者可能不太合适。总之,在决定是否将研究助理列为作者时,需要考虑其在研究工作中所做出的实质性贡献。

(转载)生命的本质 生命是什么?历史上,哲学家们非常关心这个问题。亚里士多德、康德、恩格斯等都曾提出过自己的看法。然而,在分子生物学革命之后的很长一段时间,哲学家和生物学家们似乎完全忽视了这个问题。本来生物学的革命大大推进了我们对生命的理解,我们好像应当能够更准确地说出生命是什么,然而,遗憾的是,从50年代到80年代,生物学家和哲学家几乎大都避而不谈这个问题。生物学家往往感到这个问题太“哲学”,因而把它当作是一个哲学问题,而不是一个科学问题。而另一方面,哲学家们可能感到这个问题“太科学”,因此把它主要当作一个科学问题,而不是一个哲学问题(Bedau 1996)。所以,当今一些主要生物学哲学家的生物学哲学著作,比如像罗森伯格的《生命科学的结构》,索伯的《生物学哲学》,都没有把生命的本质问题作为一个主要的问题来研究。在我国科学哲学界,生命的本质问题更是很少有人触及,多年来,主要的哲学刊物几乎没有发表过一篇关于生命本质问题的研究论文。针对这种情况,本文讨论了生命难以定义的各种原因,详细论述了定义生命的两种主要方法:实体定义方法和功能定义方法,分析一些主要生命定义的优点和问题,最后提出并论证了生命的信息定义。一、定义生命的困难 人们之所以很少谈论生命的本质或定义问题,一个重要的原因是这个问题太难回答。之所以难以定义生命,主要有以下几个原因: 首先,我们每个人都有着关于生命的常识经验,而定义生命往往要包含所有的生命现象,其中包括大量常人不熟悉的生命和处于极限状态下的生命。这样定义出的生命概念可能和常识观念相差甚远,甚至完全相反。我们常识的生命观念一般都与动物和植物的一般特征有关,这些特征包括生长、繁殖、自我维持、对外界刺激做出反应等等。但当我们定义生命时,我们需要考虑所有类型的生命的特征,包括细菌等微小的生物,甚至还要考虑病毒、类病毒、蛋白感染素等。这些生物的特征和我们的常识观念具有非常大的差别。 其次,不同学科的人在定义生命时,往往从本学科出发,把生命的某一方面加以强调,把某一方面作为生命的本质。比如,生理学往往把能够完成诸如消化、新陈代谢、排泄、呼吸、运动、生长、发育和对外界刺激做出反应的功能的系统定义为生命系统。生物化学和分子生物学又往往把生命有机体看作是可传递编码在DNA和RNA中的遗传信息的系统,这些信息可以控制蛋白质的合成,而蛋白质决定着生物的主要性状。进化论往往把一个能够通过自然选择进化的系统看作是生命系统。热力学则又把生命看作是一个与它的环境交换物质和能量的开放系统。开放系统能够“吃进”负熵,使系统从无序创造出秩序,利用这些负熵保持和重建它自己的组织。不同学科的视角的不同也使人们感到生命难有统一的概念。 第三,生命现象与非生命现象存在着连续性,它们之间并没有一条截然分明的界限;而我们定义生命的目的又是要把它们明确地区分开来,这必然使我们关于生命的定义要么太宽,把一些非生命的现象也包括在内;要么又太窄,一些生命现象也被排除在生命之外。比如,上面不同学科关于生命的定义尽管是有意义的,但实际上,它们在逻辑上都是不能令人满意的。它们或者把生物学家认为是有生命的系统当作是没有生命的,或者把非生命的系统也当作是有生命的。比如,生理学定义就会把休眠的种子、病毒、类病毒等排除在生命系统之外,因为它们并不进行新陈代谢,又把汽车等非生命的系统当作是有生命的,因为汽车也能进行新陈代谢。生物化学和分子生物学的定义会把蛋白感染素(导致瘙痒病的似蛋白感染粒子)排除在生命之外。 由于这些困难,有些生物学家往往把生命的定义问题当作一个回答与不回答对生物学的发展并没有多大影响的问题(Lange 1996)。1960年的诺贝尔桂冠得主,免疫学家梅达沃(P. B. Medawar)曾经不耐烦地说,生命是什么的讨论使人感到生物学对话的低水平。生物学家往往认为我们关于生命的直觉的概念对我们研究生物学现象已经足够;没有清晰明白的生命概念,并不会对生物的结构、功能、进化过程等方面的研究产生任何不良影响。一些哲学家也因此认为对生命概念作精确的定义对生物学研究并无必要。哲学家塞尔(John Searle)就说过,“生物学家当然不需要持续不断地思考生命是什么,并且确实,大多数生物学的著作甚至不需要使用生命这个概念。然而,没有人在他健全的思想里会否认他研究的生物学现象是生命的形式(Searle 1992: 227-8)”。斯蒂尔尼(Kim Sterelny)和格里菲斯(Paul Griffiths)在他们新近出版的一本生物学哲学的著作中也曾说道,生物学家并不需要一个生命定义来帮助他们识别他们所思考的东西是什么(Sterelny and Griffiths 1999)。 然而,并不是所有的生物学家和哲学家都赞同这样的观点。1958年的诺贝尔桂冠得主,遗传学家约书亚?莱德伯格(Joshua Lederberg)曾写道,“理论生物学的一个重要目标是给出一个生命的抽象定义(转引自Lange 1996: 226)。”除理论生物学家对生命概念感兴趣以外,研究生命起源的生物学家,研究地外生命的生物学家等,也都认为生命的定义问题非常重要。因为对生命的不同定义直接关系到他们工作的内容、范围和研究方向。80年代末兴起的人工生命学科更是把生命的概念问题作为首先要回答的问题。二、地球上“如吾所识的生命” 20世纪80年代末兴起的计算机与生物学交叉的前沿科学人工生命曾把地球上的生命说成是“如吾所识的生命”(life-as-we-know-it),而把其它可能的生命形式,包括在计算机中创造的数字生命称为“如其所能的生命”(life-as-it-could-be)。生命的定义不仅要涵盖已知的生命,而且要涵盖未知的或可能的生命。这里,我们将先从我们所知道的地球上的生命特征说起。地球上的生命,如果从物质组成、结构和性质来看,主要有以下几个特点: 首先,从物质组成上看,所有生物都具有基本相似的物质组成。所有生命基本上都由碳、氢、氧、氮、磷、硫、钙等元素构成。这些元素相互结合,构成氨基酸、核苷酸、葡萄糖等生命小分子;这些小分子再通过特殊的方式相互结合,形成蛋白质、核酸、多聚糖和脂类等生物大分子。这些分子成为构建生命的基本的“建设砖块”。由于重要的生物大分子都包含有碳,所以人工生命研究者又把这种“如吾所识的生命”叫做“碳基生命”。 从结构看,地球上直接表现出生命活性的生命都是由细胞构成的。细胞是生命的基本结构单位,一切生命都离不开细胞这一生命的基本形态。尽管细胞的形式多种多样,但基本上都有着相同的结构,都是由半透性的膜包围起来的与外界具有选择性物质交换的体系。其内部构成也基本相似,都有负责生命信息存储和表达的核或核区,有执行各种生命功能的细胞器(像线粒体、内质网、质体、核糖体、高尔基体等)。细胞还是生命的活动赖以进行的基础。生命的各种活动,比如代谢、生长、分裂、死亡等都是建立在细胞活动的基础上的。所以,细胞是维持生命系统运转的最基本的存在形式。离开了细胞,生命活动就会停止。病毒、类病毒和蛋白感染素是生命的边缘情况。它们只有在进入宿主细胞以后才能表现出生命活动。如果没有宿主细胞,无论外界环境多么“优越”,它们也只能静静地保存在那里不表现出任何生命活动的迹象。 细胞是生命的基本单位,但细胞并不是生命的全部。生命的存在是多层次的。除一些简单的生物之外,大部分生物都是由多细胞构成的。多细胞生物以组织、器官、系统等方式有序地将不同类型的细胞组织在一起,形成一个有复杂的等级结构和丰富功能的生物个体。组织是由细胞分化形成的具有相同功能的细胞的集合。器官是由不同的组织通过相互级联形成的具有特定功能的结构。系统是由不同的器官通过级联形成的完成特定功能的结构。最后多种系统相互结合形成统一的有序的生物个体。由于多细胞生物是由细胞分化形成的级联结构,所以,各个部分之间紧密联系,不可分割。另一方面,由于不同种类的多细胞生物的级联结构不同,使生命个体之间表现出差异性或多样性(陈阅增等1997:17)。历史上,由于自然选择,生物物种不断进化和发展,表现出高度歧化的发展态势和趋向。在漫长的进化过程中产生了植物、动物,最后进化出了智能生物——人类。 地球上的生物与其环境之间还通过相互作用,形成了一个复杂的、动态的、稳定的生态系统。在这个系统中,所有生物相互制约、相互依赖。生态系统还和其它生态系统之间相互作用,形成一个包括所有生命以及地球底层大气空间、陆地表面、岩石圈、水圈在内的生物圈。在生物圈内,生物通过改变自己,不断地进化以适应变化的自然环境和生命环境;同时生命也通过它们的活动改变着它们的生存环境。 生命的多层次性的级联结构使我们认识到,生命是自然界中的一种高度有序的现象(陈阅增等,1997:17)。这种有序性,从微观到宏观、从过去到现在全方位地表达出来。这种有序性既是结构上的,又是功能上的;既是空间上的,又是时间上的。这种结构还使我们看到,在生命的每一层次,都有新的属性突现出来。这样,我们在研究生命现象时,既要看到各层次之间的关联性,又要看到各层规律的独立性。 从规律上看,所有生命几乎都遵循相同的基本规则:所有生命使用相同的遗传密码、遵循着相同的复制、转录和蛋白质合成机制以及相同的DNA修复机制。生命的代谢活动,包括各种主要的生命物质的生成、转化,能量的获取、利用方式等,也都有着高度的一致性。 从性质或特征上看,地球生命具有如下一些特征: 首先,所有生命都处在与外界不断地进行物质和能量的代谢过程中。物质代谢和能量代谢实际上是一个过程的两个方面。生命在合成自身物质的过程中储存能量,在分解物质的过程中释放能量。新陈代谢的关键的化学过程是三羧酸循环和氧化磷酸化。新陈代谢是生命存在和活动的基础。 其次,生物在代谢过程中伴随着生长、发育和衰老过程。单细胞在代谢过程中会不断地长大,而多细胞生物更是具有一个生长、发育的过程。 第三,生物具有自我复制、繁殖和变异的现象(或经由繁殖而来)。生物在复制和繁殖过程中表现出高度的遗传特性,即亲代的遗传信息和它们所决定的结构性状被高度精确地传给下一代;同时在复制和繁殖过程中,遗传信息也会发生少量的错误,也就是变异,使后代生物和前代生物又有一些差别。 第四,生物对外界刺激都能做出一定的反应,即所谓的应激反应能力。例如植物茎尖的趋光生长,生物的免疫反应,生物的自我调节的稳态性,等等,都是生物不同的应激能力的表现。 第五,生命具有进化的能力。地球上的生命大约诞生于35亿年前。从原始的单细胞生物开始,经过漫长的进化历程,各生物物种辐射发生,形成了适应各种环境条件的多种多样的生物,直至高等智能生物人类出现。三、定义生命的两种方法 对地球上的生命的定义,目前主要有两种方法。一种是从构成生命的物质着眼,把生命看作是一类特殊的物质结构或有特殊结构的物质。另外一种是从生命的基本特征着眼,把生命看作是一种特殊的现象。前者可以叫做实体定义,后者可以叫做功能定义或操作定义。不过,需要说明的是,由于结构和功能是紧密联系的一对范畴,因此,实体定义和功能定义常常是结合在一起的。差别主要在于定义中主要强调的是物质结构还是功能。强调物质结构重要的就是实体定义,强调功能重要的就是功能定义。 1.实体定义方法 实体定义目前也有两种。一种把生命定义为某种特定的大分子,包括“生命-蛋白质同一说”和“生命-核酸同一说”;一种把生命定义为特殊的物质结构,特别是细胞结构,又可称为“生命-细胞同一说”。 19世纪,恩格斯主要从大分子的角度定义生命。他说:“生命是蛋白体的存在方式,这种存在方式本质上就在于这些蛋白体的化学组成部分的不断的自我更新(恩格斯,1970:78)。”恩格斯的这个定义是在批判杜林的生命定义的基础上提出来的。杜林曾把生命定义为细胞的新陈代谢活动。恩格斯认为,高级的生物确是由简单的类型“细胞”组成的,但有低于细胞的生物,它们和高级的生物相联系,只是因为它们的基本组成部分是蛋白质,从而它们执行着蛋白质的职能——生和死。恩格斯的这个生命定义实际上是和他关于物质的运动形式的思想是统一的。恩格斯认为自然界存在五种运动形式:即机械运动、物理运动、化学运动、生命运动和社会运动。这五种运动形式从历史的角度看,反映了自然界演化发展的顺序,每一种后面的运动形式都是由前面的运动形式演化来的。不同的运动形式有不同的物质承担者,有不同的运动规律,高级的运动形式包含低级的运动形式。生命运动是一种高级的运动,它是由化学运动发展而来的,它的物质承担者及其运动规律都不同于化学运动,但生命运动包含化学运动。恩格斯当时非常强调自然界的连续性。如果把生命定义为细胞结构之上的活动,就难以解释生命的起源问题。恩格斯特别重视从无机界到有机界的辩证发展过程,所以恩格斯选择了蛋白体作为生命活动的物质承担者。 恩格斯所理解的蛋白体和现在所说的蛋白质是不同的。他说:“在这里,蛋白体是按照现代化学的意义来理解的,现代化学把构造上类似普通蛋白或者也称为蛋白质的一切东西都包含在蛋白体这一概念之内,这个名称是不恰当的,因为普通蛋白在一切和它相近的物质中,是最没有生命的,起着最被动的作用,它和蛋类一起仅仅是胚胎发育的养料,但是在蛋白体的化学构造还一点也不清楚的时候,这个名称总比一切其它名称好些,因为它比较一般(恩格斯,1970:79)。”可见,恩格斯所指的蛋白体是广义的,它甚至不是现化意义上的一种高分子,而是一个物质系统。恩格斯在不同场合用这个词,他有时甚至把细胞也叫“蛋白质小块”。比如他说:“一切有机体,除了最低级的以外,都是由细胞构成的,都由很小的,只有经过高度放大才能看到的,内部具有细胞核的蛋白质小块构成的(恩格斯,1970:74)。” 总之,恩格斯把生命和蛋白体等价。生命是“蛋白质所固有的,生来具备的,没有这种过程,蛋白质就不能存在(恩格斯,1970:80)。” 20世纪前半叶,随着生物化学的研究进展,人们对蛋白质的结构和功能有了越来越清楚地了解,蛋白质形态复杂,功能各异,在生命活动过程中的作用异常重要。所有这些使得很多人更加坚信生命的分子基础就是蛋白质。 到了20世纪50年代以后,DNA双螺旋结构的发现及其遗传功能的研究进展改变了人们关于生命的本质是蛋白质的看法,从此很多人把注意力转向核酸,开始把生命的分子基础看作是具有自我复制和携带有遗传信息的核酸。于是生命的定义由强调蛋白质及其代谢功能,改变为强调核酸及其遗传载体的功能。生命起源问题被还原为能进行自我复制的低聚和多聚核苷酸的起源问题。这种观点可以称为“生命-核酸同一说”。 把生命定义为某种大分子的性质和功能,必然产生这样的问题:存在非细胞形式的生命吗?生命的基本特征能否在分子状态体现出来? 现在知道,确实存在着非细胞的生命形式。主要有三类:一是病毒,由蛋白质外壳和DNA或RNA核心组成;一类是类病毒,是没有蛋白质外壳的、全裸的RNA分子;第三类是蛋白感染素,或叫原体(Prions),仅由蛋白质分子组成,但这种蛋白质含有自身复制的密码子。换句话说,这种蛋白质本身也是遗传信息载体。但目前对这种极为特殊的蛋白质生命了解甚少。 然而,这三种类型的非细胞生命只有在感染一个活细胞时才能表现出生命的各种特征。它们不能独立地实现其自身复制。因此,上述三种非细胞的生命不是完整的生命,不能作为原始生命的模型。 问题是,病毒、类病毒和蛋白感染素等都不能算是完整的生命形式,我们能因此认为在地球早期化学进化阶段也没有出现过非细胞的“大分子状态”的生命形式吗?在细胞生命出现之前的化学进化阶段,是否可能产生过单由蛋白质分子或单由核酸分子组成的生命形式?因为早期地球上可能存在大量的非生物合成的有机分子,作为大分子自身复制的外在条件,所以,大分子的生命形式很可能在地球早期是存在的(张昀,1998),就像非细胞的生命形式现在可以存在于试管中一样。 如果我们同意在细胞生命出现之前的化学进化阶段确实有过由蛋白质分子或核酸分子组成的生命形式,那么接着的一个问题就是:在生命起源的过程中,是先有蛋白质,还是先有核酸?这个问题曾有过激烈争论。“RNA世界”说认为是先有核酸。80年代初有人发现在一定条件下RNA具有酶的功能:在RNA分子剪切过程中起催化作用的是RNA自己。这为先有核酸说提供了证据。然而,原体的发现使人们又认为先有蛋白质。原体分子本身就携带有遗传信息,并控制自身的复制。因此,到底谁先谁后,现在还是没有完全弄清楚的问题。 由于在现今生命中,核酸与蛋白质之间是密不可分的。蛋白质是在核酸的信息指导下合成的,而核酸又是在蛋白质的催化下复制和转录的。因此,也很有可能早期前细胞的原始生命形式既不是RNA分子,也不是蛋白质分子,而是由核酸和蛋白质(或许还有类脂)组成的大分子系统。在这个大分子系统内,氨基酸与核苷酸之间的关系通过相互作用逐步确立,即遗传密码在这种作用中产生。实体定义还有一种观点,即生命-细胞同一说。这种观点认为,不存在分子状态的生命形式,所有生命都是细胞才具有的。蛋白质与核酸一旦产生,必须包含在类脂形成的膜结构之内才能形成独立的生命形式。病毒、类病毒和原体都缺少膜分隔,因此都不能在宿主细胞之外进行各种生化反应。所以它们都不是独立的生命。 2.功能定义方法 与实体定义强调生命的结构特征相对,功能定义主要从生命的性质和功能来定义生命。功能定义也有两种,一种强调生命是多种性质的集合,所以又称“集合定义”(cluster definition);另一种强调少数几种或一种性质为生命的本质性质,可以叫做“根本性质定义”。 “集合定义”往往是通过列举生命的一系列特征来定义生命。比如莫诺(Monod)在他著名的《必然性和偶然性》(1971)一书中列出三个特性作为生命的定义特性:目的性,自主的形态发生和繁殖的不变性。克里克(Crick)(1981)根据下列几个特征定义生命:自我繁殖,遗传,进化和新陈代谢。一般的生物学教科书列举的性质更多一些,比如:新陈代谢,生长,发育,遗传,进化,应激性,自稳态,自组织,等等。著名生物学家恩斯特?迈尔曾经列出一个更长的生命性质列表(Mayr 1982: 53): (1) 所有层次的生命系统都有非常复杂和适应的组织。 (2) 生命有机体由化学上独特的一组高分子构成。 (3) 生命系统中的重要现象主要是质的,而不是量的。 (4) 所有层次的生命系统由高度可变的独特个体的群体组成。 (5) 所有的有机体拥有历史上进化来的遗传程序,它使有机体能够参与目的性的过程和活动。 (6) 生命有机体的类别是由共同家系的历史连接定义的。 (7) 有机体是自然选择的产物。 (8) 生命过程特别难以预料。 多伊恩·法默(J. Doyne Farmer)和白林(Aletta d’A Belin)曾经列举了下列一组性质作为生命共有的典型特征(Farmer & Belin 1991: 818): (1) 生命是时空中的一种模式(pattern),而不是特殊的物质客体。对生命来说,重要的是模式和各种关系的集合,而不是特殊的原子实体。 (2) 生命具有自我繁殖的能力,或者至少是通过繁殖产生的。比如骡子虽然不育,但也是通过繁殖过程产生的。 (3) 生命存储有自我表征的信息。比如自然界的有机体在DNA分子中都存储有关于它们自己的描述,这种描述可以被生物自己翻译成蛋白质。 (4) 生命具有新陈代谢的能力,即是说,生命可以不停地与环境进行物质和能量的转换。 (5) 生命可以与环境在功能上发生的相互作用。即是说,有机体可以有选择地对外界刺激做出反应,能够适应环境,同时它们也能够创造和控制它们相应的环境。 (6) 生命的组成部分之间相互依赖。这种相互依赖维持了生物体的统一性。 (7) 生命能够在扰动面前保持稳定,或者说它能够在噪声环境中保持自己的形态和组织,发挥自己的正常功能。 (8) 生命具有进化的能力。这种进化能力并不是有机体个体的性质,而是有机体系谱的性质。 法默认为,这个列表远远不是完善的。有些有机体,比如病毒在很多方面处在生命和非生命之间的状态。一些生命起源模型中的“原始有机体”也是这种“半活性的”实体。而根据这个列表,我们也可能把生态系统和社会系统看作是生命。所以,法默说,生命和非生命之间并没有一种截然分明的界限。恰当的做法是把生命看作是“一种连续的组织模式的性质,其中有些模式比其它模式更多或更少活性(Farmer & Belin 1991: 819)。” 集合定义通过各种性质的相互补充来帮助我们区分生命和非生命,这可以使我们避免过分简单地断定某种性质是否是生命的本质属性。然而,这既是它的优点,又是它的缺点。因为哪些性质可以作为生命的定义特征,哪些性质不能,仿佛并没有一个一致的标准。这就使我们感到集合定义有时显得相当任意。这种定义的性质列表总是变动不已,有的人的列表长一些,有的人的列表又短一些。不同的人总是根据自己的理解列举出不同的性质。 “根本性质定义”虽然也从功能性质出发定义生命,但主要是从少数更根本的性质来定义生命。生命有多种性质,然而,是什么原因使这些性质集合在一起形成生命这个独特的实体的呢?集合定义并不特别关心性质之间的联系,它解释不了为什么特殊的一组性质要集合在一起产生生命这样的实体。根本性质定义则力图克服集合定义的这些缺陷。 根本性质定义目前主要有四种:一种是“新陈代谢说”,一种是“自创生说”,还有一种是“灵活适应说”,最后一种是我所赞成的信息说。由于这部分的内容较多,所以我们在新的一节讨论这些定义。生命的本质是趋利避害。亚里士多德说,生命的本质在于追求快乐,使得生命快乐的途径有两条:第一,发现使你快乐的时光,增加它;第二,发现使你不快乐的时光,减少它。但问题是快乐在哪儿?谁不知道要躲避不快乐的时光,问题是不快乐的事情就像一条疯狗一样,总是追着我们,我们躲不过去。因此,生命的本质就是趋利避害。想一想,是生命重要,自由重要,还是权力重要、钱财重要?答案当然是生命和自由重要。两害相权取其轻,趋利避害是当然的选择。李大伦等人趋利没有避害,所以失去了自由。一个人一生希望有两个时刻隆重,一个是婚礼,一个是葬礼。婚礼的时候没有多大本事,参加的人不多,指望葬礼隆重一点。有多隆重呢?我要告诉你的是,你是谁并不重要,能够参加你葬礼的人的数量主要取决于天气。天气好了,大家来看热闹为你送行;天气不好,人家就不来了。这样想就想开了,实在想不开就参加一次别人的葬礼,这样你就想开了。你会发现,再多的财富,再大的权力,再多的学问,都是一股烟上去,其他全放下,连灰尘都得放下。人有三个欲望:名、利、情。好名者愤恨终生,好利者六亲不认,好情者苦苦相斗。人要学会放下,真正的放下是指放下名、利、情,不要为这三个字所累。一点没有名、利、情的人不可能存在,但是过度求之又难于满足。放下名、利、情不是不要,不是出家遁入空门,而是淡泊而后求之。如果能够享受追逐目标的过程,不把得失萦绕于心,是普通人能够放下的境界。因此,对一般人来讲,放下就是不萦绕于心,随缘、随喜、自在。心中若无烦恼事,便是人生好时节。这样一路思考下来的结果是:淡泊名利而后求之。可以追名,也可逐利,但必须避害。

在写论文时,如果您的工作是作为研究助理的话,可以写上自己的实际职位。但是对于论文的贡献和创新点,需要真实表述,不能够进行虚假的标注。因此,在写论文时,建议您在“致谢”部分感谢您的研究助理,同时也可以简要介绍一下研究助理在工作上的帮助和协助。如果研究助理在论文的研究过程中有贡献,也应该在论文中进行相应的表述。

monod在其发表的论文

1925年摩尔根“基因论”的发表,确立了基因是遗传的基本单位,它存在于细胞的染色体上,决定着生物体的性状。但关于基因的化学本质是什么,它通过什么方式影响生物体的遗传性状,仍然不清楚。揭示基因的本质及其作用方式就成了当时生物学研究的核心问题。对这个问题的研究,开创了分子生物学这门新学科。分子生物学的建立和发展是生物学中信息学派、结构学派和生化遗传学派研究成果结合的产物,是科学史上一次成功的由学科交叉融合而引起的科学革命。发现DNA双螺旋的故事已为人们广为传颂,并作为生物学史上最具传奇色彩的伟大发现而载入生命科学史册1.信息学派:信息学派主要是由一群对遗传信息世代传递感兴趣的物理学家组成,其代表人物是德尔布吕克(Max Delbrück)。德尔布吕克德国物理学家,1930年在美国洛克菲勒基金资助下,到丹麦哥本哈根理论物理研究所,跟随著名物理学家玻尔(Niels Bohr)作博士后研究。1932年,玻尔在哥本哈根举行的国际光治疗大会上作了“光与生命”的演讲。演讲中玻尔提出了认识生命的新思路,认为对生命现象的研究有可能发现一些新的物理学定律。德尔布吕克深受玻尔思想的影响,决定转入生物学研究。他认为,研究遗传信息的世代传递的机制,基因是最好的切入口。德尔布吕克离开哥本哈根回到柏林后,与遗传学家列索夫斯基(Nikolaï. Vladimirovich. Timofeeff-Ressovsky)、生物物理学家齐默尔(Karl. G. Zimmer)合作,从量子理论的角度研究辐射与基因突变的关系,并于1935年出版了《关于基因突变和基因结构的本质》的小册子。书中,他们用量子理论分析讨论了辐射诱导的基因突变的规律,并给出了“基因的量子力学模型”。此模型认为,基因如同分子一样,具有几个不同的,稳定的能级状态。突变被解释为基因分子从一个能级稳态向另一个能级稳态的转变。文章还根据计算,推断了基因的大小。这就是著名的“三人论文”。“三人论文”是一篇完全用物理学的理论和方法对基因进行研究的文章。这篇文章的意义不在于其结论的正确与否,而在于它使许多年轻物理学家们相信,基因是可以通过物理学方法来进行研究的,从而推动了一大批杰出物理学家投入生物学研究。“三人论文”后来成为薛定锷(Erwin. Schrödinger)“生命是什么”一书讨论的基础。1937年,在洛氏基金的资助下,德尔布吕克来到加州理工大学摩尔根实验室进行遗传学研究。在那儿他发现噬菌体是一种比果蝇更适合进行基因研究的材料,并与埃利斯(Emory. Ellis)合作,研究噬菌体的增殖、复制规律,建立了噬菌体的定量测定方法。1940年底,在费城召开的一个物理学年会上,德尔布吕克与刚来美国不久的意大利生物学家卢里亚(Salvador. Edward. Luria)认识了。卢里亚读过“三人论文”,对德尔布吕克极为景仰。当时他刚获得洛氏基金资助,在哥伦比亚大学准备开展X-射线诱导噬菌体突变的研究。共同的兴趣使他们很快建立了合作关系。当时在美国还有一个进行噬菌体研究的科学家是华盛顿大学的赫尔希(Alfred. Hershey)。1943年,德尔布吕克约他在自己实验室见面,并讨论了合作研究计划。这样,一个以德尔布吕克—卢里亚—赫尔希为核心的“噬菌体小组”就形成了。噬菌体小组的研究成果主要有:德尔布吕克与卢里亚合作进行的细菌突变规律的研究开辟了细菌遗传学的新领域;1945年卢里亚和赫尔希分别独立发现噬菌体的突变特性;1946年德尔布吕克与赫尔希又分别独立发现,同时感染一个细菌的二种噬菌体可以发生基因重组,证明了,从最简单的生命到人类的遗传物质都遵循着相同的机制。噬菌体小组最值得夸耀的成果是50年代初证明了基因的化学本质是DNA。1944年艾弗里(Oswald. T. Avery)已经通过肺炎球菌转化试验发现,DNA是遗传物质,但一直未获承认。赫尔希和蔡斯(Martha. Chase)分别用35S(与蛋白结合)和32P(结合在DNA上)标记噬菌体,然后用它感染细菌,结果发现噬菌体只有其核酸部分进入细菌,而其蛋白外壳是不进入细菌的。表现为在感染噬菌体的细菌体内复制产生的后代噬菌体主要含有32P标记,而35S的含量低于1%。这清楚地证明,在噬菌体感染的细菌体内,与复制有关的是噬菌体的DNA,而不是蛋白质。1952年,这个结果发表后立刻被广泛接受,对促进沃森(James Watson)和克里克(Francis Crick)确定DNA双螺旋结构的突破,具有重要的意义。噬菌体小组除了在研究遗传信息的传递机制外,还从1941年起,每年都在纽约长岛的冷泉港举行研讨会,并从1945年起每年暑期都举办“噬菌体研究学习班”。学习班课程主要为那些有志于投身生物学研究的物理学家们开设的。通过冷泉港学习班,扩大了噬菌体研究网络,形成并巩固了以德尔布吕克—卢里亚—赫尔希为核心的噬菌体小组在遗传学研究领域的地位,到50年代初,噬菌体小组已成了一个影响很大的遗传学派。噬菌体小组早期的研究工作引起著名物理学家薛定锷的注意,并引起了他对生命的思考。1943年,他在爱尔兰的都柏林三一学院作了一系列演讲,阐述了他对生命的思考。1944年,他将这些演讲整理汇编成书出版,这就是被认为是分子生物学的“汤姆叔叔的小屋”的划时代著作《生命是什么》。在此书中,薛定锷讨论了以噬菌体小组为主的信息学派的研究成果,尤其对德尔布吕克的“基因的量子力学模型”最为推崇。在讨论这些研究成果的同时,薛定锷认为“在有机体的生命周期里展开的事件,显示了一种美妙的规律和秩序。我们以前碰到过的任何一种无生命物质都无法与之相比。”“我们必须准备去发现在生命活体中占支配地位的,新的物理学定律”。《生命是什么》一书对生物学研究产生的影响是震撼性的。著名分子生物学家斯坦特(Gunther. Stent)指出:“在这本书里,薛定锷向他的同行物理学家们预告了一个生物学研究的新纪元即将开始”,“不少物理学家受到这样一个可以通过遗传学研究来发现‘其它物理学定律’的浪漫思想的启发,就离开了他们原来训练有素的职业岗位,转而去致力于基因本质的研究”。分子生物学的历史表明,1950年代那些发动分子生物学革命的科学家,包括DNA双螺旋结构的发现者沃森和克里克都是受薛定锷此书的影响,而转而进行基因的结构与功能研究的。2.结构学派:20世纪30年代起,在生物学领域还有一群物理学家开始从事生物大分子的结构研究,这就是被称为“结构学派”的物理学家。结构学派是由英国卡文迪许实验室的布拉格父子,亨利·布拉格(William. Henry. Bragg)和劳伦斯·布拉格(William. Lawrence. Bragg)创立的。20世纪初,他们发现用X-射线照射结晶体可以在背景上获得不同的衍射图像。通过对衍射图像的分析,就可以推出晶体的结构。他们用这个方法成功地确定了一些盐类(如氯化钾)等的分子结构。1915年,布拉格父子同时获得诺贝尔物理学奖。1938年,劳伦斯·布拉格出任卡文迪许教授,开始将X-射线衍射技术推广应用到对生物大分子(蛋白质、核酸)的三维结构研究。50年代初,当时在卡文迪许实验室的佩鲁兹(Max Peruts)领导下,正在进行二种蛋白质的结构分析。一是他自己领导的研究小组,进行血红蛋白的结构研究;另一个是肯德鲁(John Kendrew)领导的研究小组,进行肌红蛋白的结构分析。此外,在伦敦的国王学院(King’s College)的威尔金斯(Maurice Wilkins)和富兰克林(Rosalind Franklin)的研究小组正在进行用X-射线衍射的方法研究核酸的结构,并取得了很多有意义的成果。结构学派的生物学家们主要对生物大分子的结构感兴趣,对功能研究则较少涉及。3.生化遗传学派:自从1900年孟德尔定律被重新发现之后,“基因是怎样控制特定的性状”的问题就成了遗传学研究的主要问题之一。1902年,英国医生伽罗德(Archibald Garrod)发现一些病孩患尿黑酸症,病人的尿一接触空气就变成黑色。很快这种尿变黑的化学物质就被鉴定出来,即是由酪氨酸转变而成的一种物质。伽罗德对患黑尿病患者的家谱分析发现,此病按孟德尔规则的方式遗传。在进行一系列研究后,1909年伽罗德出版了《新陈代谢的先天缺陷》一书,指出黑尿病患者代谢紊乱是因为酪氨酸分解代谢的第一阶段,即苯环断裂这一步无法进行。因而伽罗德认为,苯环断裂是在某种酶的作用下发生的,病人缺乏这种酶,所以出现黑尿症状。这样就把一种遗传性状(黑尿)与酶(蛋白质)联系起来了。但对遗传因子与酶的这种预测性的设想,却无法得到实验证实。1940年,比德尔和塔特姆(E.L.Tatum)开始用红色链孢菌研究基因与酶的关系。他们用X-射线照射诱导产生链孢菌的突变体,发现了几种不同的失去合成能力的链孢菌。他们通过对这些突变体杂交后代的遗传学分析表明,每一种突变体都是单个基因突变的产物,并认为每一个基因的功能相当于一个酶的作用。由此,于1941年他们提出了“一个基因一个酶”的假说。按照这个假说,基因决定酶的形成,而酶又控制生化反应,从而控制代谢过程。1948年,米歇尔(F. Mitchell)和雷恩(J. Lein)发现,红色链孢菌的一些突变体缺乏色氨酸合成酶,从而为“一个基因一个酶”的理论提供了第一个直接的证据。蛋白质是有机体基因型产生的最直接的表现型,决定了生物性状的表现形式。因此“一个基因一个酶”(后改为一个基因一个蛋白质)的理论为以后DNA→RNA→蛋白质的“中心法则”提供了理论基础,对认识基因控制遗传性状的机制具有重要意义。1958年,伽罗德和塔特姆获得诺贝尔奖。DNA双螺旋结构的确立1951年,沃森在意大利参加了一个生物大分子结构的学术会议,会上听了英国国王大学威尔金斯关于DNA的X-射线晶体学的研究结果的报告十分兴奋。沃森是噬菌体小组领袖人物卢里亚的研究生。博士毕业后,被卢里亚送到丹麦哥本哈根的克卡尔(Herman Kacker)实验室做有关核酸的生物化学方面的研究。这使他迅速熟悉了核酸方面的知识,并确认基因的本质是DNA。他认识到,要解开基因的功能之谜,必需首先弄清DNA的结构。威尔金斯的工作给了他极大的启示,在卢里亚的支持下,他来到了当时世界生物大分子结构研究的中心——剑桥的卡文迪许实验室。在这里,他与弗朗西斯·克里克(Francis Crick)相遇。克里克毕业于伦敦科里基大学物理系,二战期间在军队从事过磁铁矿方面的研究。战后在薛定锷《生命是什么》一书的影响下,转向生物学研究。当时作为一名博士研究生正在佩鲁兹研究小组参加血红蛋白结构的研究。沃森的到来,使他了解了DNA研究的新进展。他们一致认为,搞清楚DNA的结构是揭示基因奥秘的关键所在。伦敦国王学院的威尔金斯是克里克的朋友,这使他们很容易地获得威尔金斯小组对核酸研究的新成果。沃森和克里克的合作,可以看成是生物学研究中,信息学派和结构学派结合。这个结合最终导致DNA双螺旋结构的发现。在沃森—克里克开始着手研究DNA结构之时,对DNA结构的资料还是比较零散的。当时已知:1。DNA是由腺嘌呤(A),鸟嘌呤(G),胸腺嘧啶(T),胞嘧啶(C)4种核苷酸组成;2。每个核苷酸的糖基因以共价键的方式与另一个核苷酸的磷酸基因结合,形成糖—磷酸骨架;3。这些核苷酸长链具有规则的螺旋状结构,每3.4埃重复一次。但DNA分子究竟是由几条核苷酸链组成,以及链与链之间通过什么方式组成螺旋状分子,则仍然不清楚。1951年沃森—克里克曾提出一个三螺旋模型,1952年,鲍林也提出了一个三链模型,但随即被否定,因与已知的DNA X-射线衍射结果不相符。DNA双螺旋结构的确立主要由于以下的研究成果:1。1952年,沃森在威尔金斯那儿看到了富兰克林在1951年拍摄的一张水合DNA的X-线衍射图,图片上的强烈的反射交叉清楚地显示了DNA是双链结构。这张图给沃森印象极为深刻,决定建立DNA的双链模型;2。1952年数学家格里菲斯(J. Griffith)通过对碱基间的结合力计算,表明A和T与G和C之间相互吸引的证据。同时从查伽夫(F. Chargaff)早先已确定的,DNA分子中,嘌呤碱与嘧啶碱之比为1:1的当量定律,也排除了碱基同型配对的可能性。此外,多诺休(J. Donohue)指出了碱基的互变异构现象。这些结果都肯定了DNA的二条核苷链中,A-T,G-C的碱基配对原则;3。1952年,富兰克林DNA的X-线衍射结果已经准确地推测出,双链分子糖—磷酸骨架在外侧,碱基在内侧的结论。富兰克林还推测出配对碱基的距离为20埃,旋距为3.4埃。根据上述资料,1953年沃森—克里克提出了一个DNA双螺旋模型。这个结构符合已知的有关DNA的实验资料,弃提示了DNA分子复制的可能方式,因而立即受到科学界的重视并很快被接受。DNA双螺旋结构的发现,标志着分子生物学的诞生。此后的15年间,分子生物学取得迅速发展,其中具有重要意义的进展有:1, 1968年克里克在他的《论蛋白质的作用》一文中,提出了遗传信息的流向是DNA-RNA-蛋白质的著名的“中心法则”。1970年蒂明(Howard Temin)和巴尔的摩(David Baltimore)分别在RNA肿瘤病毒颗粒中发现“依赖RNA的DNA转录酶”(逆转录酶),证明了遗传信息也可以从RNA流向DNA,从而完善了中心法则的内容。1975年,蒂明和巴尔的摩获诺贝尔生理学或医学奖。2,1954年伽莫夫第一次把决定一个氨基酸的核苷酸组合称之为遗传密码,并提出了“重叠式三联密码”假说。他通过计算给出了64种可能的三联密码。伽莫夫的假说的问题是:1,重叠密码是错误的;2,认为DNA直接指导蛋白质合成是错误的。1961年克里克和布伦纳(S.Brenner)通过实验和统计分析否定了遗传密码的重叠问题,提出了“非重叠式三联密码”的假说,并通过实验获得证实。同年,尼伦伯格(M.W.Nirenberg)用生物化学的方法及体外无细胞合成体系,首次成功地确定了三联尿嘧啶UUU.是苯丙氨酸的密码子,揭开了破译三联密码的序幕。到1966年就完成了所有20种氨基酸的密码表1968年,尼伦伯格获诺贝尔生理学或医学奖。3,.基因表达调控的“操纵子学说”的提出。1960年法国科学家莫诺(J. Monod)和雅各布(F.Jacob)发表了“蛋白质合成的遗传调控机制”一文。在文章中他们正式提出了基因表达的操纵子学说。他们用大肠杆菌乳糖代谢调控系统为模型,揭示了半乳糖苷酶产生的基因调控机制,提出了结构基因、调节基因和操纵基因的概念,并证明了半乳糖苷酶(蛋白质)的产生正是这些基因相互作用的结果。操纵子学说的提出使对基因的研究从结构研究向功能研究的转变,为深入揭示基因控制生物性状(表型)的机制奠定了基础。1965年莫诺和雅各布获诺贝尔生理学或医学奖。操纵子理论有力地证实了美国科学家麦克林托克(B.Mclintock)1951年在研究玉米遗传特性时提出的“跳跃基因”(转座子)的概念,为真核细胞基因调控的研究开辟了道路。1983年麦克林托克获诺贝尔生理学或医学奖。4,基因工程枝术的诞生。1962年阿尔伯(W.Arber)提出细菌体内存在一种可以破坏外来DNA的酶。1970年史密斯(H.O.Smith)获得了第一个DNA限制性内切酶。纳桑斯则用内切酶将SV40病毒的DNA切割成一些特定的片段,并获得了此病毒基因组的物理图谱。1978年阿尔伯、史密斯和纳桑斯获诺贝尔生理学或医学奖。此后又陆续发现了DNA联接酶、DNA聚合酶,这些工具酶的发现为基因工程技术的出现奠定了基础。1971年美国科学家伯格(P. Berg)用限制性内切酶和联接酶将SV40的DNA与入噬菌体的DNA片段连接在一起,形成的杂种分子在大肠杆菌中成功表达,使跨越物种的DNA重组成为现实。基因工程作为一项新技术诞生了,它不但为农业、畜牧业和医药产业的发展提供了广阔的发展空间,而且为进一步深入探索生命起源和开展人造生命(合成生物学)的研究提供了技术手段。伯格的工作为基因工程的诞生奠定了基础,1980年伯格获诺贝尔生理学或医学奖。从1953年DNA双螺旋结构发现以来的半个多世记中,分子生物学按还原论的路径迅猛发展,取得了许多重要进展。进入21世记以来,人类基因组计划的完成,以及蛋白质组学等各种“组学”的出现,为从整体上认识遗传、变异、及个体发育等基本生物学现象开辟了新方向。早已认识到基因组完全相同的卵孪生子之间在遗传表型上可以表现明显差异,显示了基因型(Genotype)与表现型之间的复杂关系。近年来兴起的表观遗传学(Epigenetics)研究表明,基因组可以通过DNA甲基化(DNA methylation),基因印记,母体效应,基因沉默,RNA编辑等方式改变基因表达的方式。这样就为深入理解环境与遗传的关系提供了可能,从而对医学科学的发展产生深远的影响。

科学领域中任何一门学科的形成和发展,一般很难准确地说明它是何时、何人创始的。分子生物学的产生和发展,同其它学科一样,经历了漫长而艰辛的过程,逐步走向成熟而迅速发展的道路。 1871年,Lankester就提出,生物不同种属间的化学和分子差异的发现和分析,对确定系统发生的关系,要比总体形态学的比较研究更为重要。后来,随着德国、美国生理化学实验室的建立和生物化学杂志的创办,促进了生物化学的发展。当生物化学深入到研究生物大分子时, 1938年Weaver在写给洛克菲勒基金会的报告中,首次使用了分子生物学(molecular biology)一词。他写道:“在基金会给予支持的研究中,有一系列属于比较新的领域,可称之为分子生物学……”。一年以后,研究蛋白质结构的Astbury使用了这个名词,以后它变得越来越普遍。特别是在1953年,Watson和Crick发表了著名论文“脱氧核糖核酸的结构”以后,DNA双螺旋结构的发现,促进了遗传学、生物化学和生物物理学的结合,推动了分子生物学的形成和迅速发展,使生命科学全面地进入分子水平研究的时代,这是生物科学发展史上的重大里程碑。1956年剑桥医学研究委员会率先建立了分子生物学实验室,1959年创刊了《分子生物学》杂志,1963年成立了欧洲分子生物学国际组织,分子生物学从而成为崭新的独立学科,带动着生命科学迅猛发展,成为现代自然科学研究中的重要领域。 在分子生物学的形成和发展过程中,有许多重大的发现和事件,具体情况如下: 1864年:Hoope-Seyler结晶并命名了血红蛋白。 1869年:Mieseher第一次分离了DNA。 1871年:Lankester首先提出生物不同种属间的化学和分子差异的发现与分析,对确定系统发生的关系,要比总体形态学的比较研究更为重要。 1926年:Sumaer从刀豆的提取物中得到脲酶结晶,并证明此蛋白质结晶有催化活性。同年,Svedberg创建了第一台分析用超高速离心机,并用其测定了血红蛋白的相对分子质量约为6.8X104。 1931年:Pauling发表了他的第一篇关于“化学键特性”的论文,详细说明了共价键联结的规律。后来,又建立了处理生物分子的量子力学理论。 1934年:Bernal和Crowfoot发表了第一张胃蛋白酶晶体的详尽的X-射线衍射图谱。 1941年:Astbury获得了第一张DNA的X-射线衍射图谱。 1944年:Avery提供了在细菌的转化中,携带遗传信息的是DNA,而不是蛋白质的证据。实验证明,使无毒的R型肺炎双球菌转变成致病的S型,DNA是转化的基本要素。8年后,1952年,Hershey和Chase又用同位素示踪技术证明T2噬菌体感染大肠杆菌,主要是核酸进入细菌内,而病毒外壳蛋白留在细胞外。烟草花叶病毒的重建实验证明,病毒蛋白质的特性由RNA决定,即遗传物质是核酸而不是蛋白质。至此,DNA作为遗传物质才被普遍地接受。 1950年:Chargaff以不同来源DNA碱基组成的精确数据推翻了四核苷酸论,提出了Chargaff规则,即DNA的碱基组成有一个共同的规律,胸腺嘧啶的摩尔含量总是等于腺嘌呤的摩尔含量,胞嘧啶的摩尔含量总是等于鸟嘌呤的摩尔含量,即[A]=[T]和[G]=[C]。 1951年:Pauling和Corey应用X-射线衍射晶体学理论研究了氨基酸和多肽的精细空间结构,提出了两种有周期规律性的多肽结构学说,即alpha螺旋和B-折叠理论。 1953年:这是开创生命科学新时代的第一年,具有里程碑意义的是Watson和Crick发表了“脱氧核糖核酸的结构”的著名论文,他们在Franklin和Wilkins X-射线衍射研究结果的基础上,推导出DNA双螺旋结构模式,开创了生物科学的新纪元。同年,Sanger历经8年的研究,完成了第一个蛋白质一胰岛素的氨基酸全序列分析。 随后,1954年Gamnow从理论上研究了遗传密码的编码规律;1956年Volkin和Astrachan发现了mRNA(当时尚未用此名);1958年,Hoagland等发现了tRNA在蛋白质合成中的作用;Meselson和Stahl应用同位素和超离心法证明DNA的半保留复制;Crick提出遗传信息传递的中心法则。 1960年:Marmur和Dory发现了DNA的复性作用,确定了核酸杂交反应的专一性和可靠性;Rich证明DNA-RNA杂交分子与核酸间的信息传递有关,开创了核酸实际应用的先河。与此同时,在蛋白质结构研究方面,Kendrew等得到了肌红蛋白0.2nm分辨率的结构,Perutz等得到了血红蛋白0.55nm分辨率的结构。 1961年:这是分子生物学发展不平凡的一年。Jacob和Monod提出操纵子学说,发表了蛋白质合成中遗传调节机理的论文,此论文被誉为是分子生物学中文笔优美的经典论文之一。同年,Brenner等获得mRNA的证据;Hall和Spiegelman证明T2 DNA和T2专一性RNA的序列互补;Crick等证明了遗传密码的通用性。 1962年:Arber提出第一个证据,证明限制性核酸内切酶的存在,导致以后对该类酶的纯化,并由Nathans和Smith应用于DNA图谱和序列分析。 1965年:Holley等采用重叠法首先测定了酵母丙氨酰-tRNA的一级结构,为广泛、深入地研究tRNA的高级结构奠定了基础。 1967年:Gellert发现了DNA连接酶,该酶将具有相同粘末端或者平末端的DNA片段连接在一起。同年,Philips及其同事确定了溶菌酶0.2nm分辨率的三维结构。 1970年:Temin和Baltimore几乎同时发现了反转录酶,证实了Temin 1964年提出的“前病毒假说”。在劳氏肉瘤病毒(RSV)感染以后,首先产生的是含有RNA病毒基因组全部遗传信息的DNA前病毒,子代病毒的RNA是以前病毒的DNA为模板进行合成的。反转录酶已成为目前分子生物学研究中的一个重要工具。 1972年~1973年:重组DNA时代到来。Berg、Boyer和Cohen等创建了DNA克隆化技术,在体外构建成具有生物学功能的细菌质粒,开创了基因工程新纪元。与此同时,Singer和Nicolson提出生物膜结构的液态镶嵌模型。 1975年:Southern发明了凝胶电泳分离DNA片段的印迹法;Gruustein和Hogness建立了克隆特定基因的新方法;O'Farrell发明了双向电泳分析蛋白质的方法,为分子生物学的深入发展创造了重要的技术条件;Blobel等报导了信号肽。 1976年:Bishop和Varmus发现动物肿瘤病毒的癌基因来源于细胞基因(即原癌基因)。 1977年:Berget等发现了“断裂”基因;Sanger、Maxam和Gilbert创立了“酶法”“化学法”测定DNA序列的方法,标志着分子生物学研究新时代的到来。 1979年:Solomon和Bodmer最先提出至少200个限制性片段长度多态性(RFLP)可作为连接人整个基因组图谱之基础。 1980年:Wigler等通过与某个选择性标志物共感染,从而把非选择性基因导入哺乳动物细胞;Cohen和Boyer获得一项克隆技术的美国专利。 1981年:Cech等发现四膜虫26S rRNA前体的自我剪接作用,随后又证明前体中的居间序列(intervening sequence,IVS)有五种酶的活力。几乎在同时,Altman从纯化的RNase P中,证明催化tRNA前体成熟的催化剂是RNase P中的RNA。具有催化作用RNA(ribozyme)的发现,促进了RNA研究的飞速发展。 1982年:Prusiner等在感染搔痒病的仓鼠脑中发现了朊病毒(prion)。 1983年:Herrera-Estrella等用Ti质粒作为转基因载体转化植物细胞获得成功。 1984年:McGinnis等发现果蝇、非洲爪蟾等同源异形基因中的同源异形盒(homeobox)的核苷酸序列;Schwartz和Cantor发明了脉冲梯度凝胶电泳法;Simons和Kleckner等发现了反义RNA。 1985年:Saiki等发明了聚合酶链式反应(PCR);Sinsheimer首先提出人类基因组图谱制作计划的设想;Smith等报导了DNA测序中应用荧光标记取代同位素标记的方法;Miller等发现DNA结合蛋白的锌指结构。 1986年:Dryja等发现成视网膜细胞瘤(Rb)基因是一种抑癌基因;Robin等采用X-光晶相学,证实了DNA结合蛋白的螺旋-转角-螺旋结构。 1987年:Mirkin等在酸性溶液的质粒中发现三链DNA;Burke等用酵母人工染色体(YAC)作载体克隆了大片段DNA;Hoffman等确定了Dnchenne肌肉萎缩病灶的蛋白产物是萎缩素(dystrophin);Hooper等和Kuehn等分别用胚基细胞进行哺乳动物胚的转基因操作,取得重大进展。 1988年:Landsehalz等在对CyC3(细胞色素C基因调节蛋白)、癌基因产物(MyC、V-jun、V-fos)和CBP(CCAAT盒结合蛋白)的研究过程中,发现了结合区亮氨酸序列的周期性,提出DNA结合蛋白的亮氨酸拉链结构模型;同年,Whyfe等证明癌的发生是癌基因的激活和抑癌基因失活的结果。 1989年:Greider等首先在纤毛原生动物中发现了端粒酶(telomerase)是以内源性RNA为模板的反转录酶;Hiatt等首次报导了在植物中亦可产生单克隆抗体。 1990年:人类基因组计划(HGP)全面正式启动;Simpson等发现了对mRNA前体编辑起指导作用的小分子RNA(guide RNA);Sinclair等在人类Y染色体上发现了新的性别决定基因-SRY基因。 1991年:由欧洲共同体(EC)组织17个国家35个实验室的147位科学家,以手工测序为主要手段,首先完成了第一条完整染色体(酵母3号染色体)的315kb的测序工作;Hake等首次报导在植物中发现含有同源异形盒基因;Blackburn等提出调节聚合序列[通式为(T/A)mGn,m=124,n=1~8]的单链DNA可形成分子内或分子间的四螺旋结构,起着稳定染色体的作用。 1993年:Jurnak等在研究果胶酸裂解酶时,发现一种新的蛋白质结构-平行B螺旋(parallel B helix);Yuan等在哺乳类细胞内发现一种参与调节细胞凋亡并具有剪切作用的蛋白质-IL-1B转换酶(interlukin-1B-convertingenzyme,ICE)。 1994年:日本科学家在((Nature Genetics》上发表了水稻基因组遗传图;Wilson等用3年时间完成了线虫(Celegans)3号染色体连续的2.2Mb的测定,预示着百万碱基规模的DNA序列测定时代的到来。 1995年:Cuenoud等发现了具有酶活性的DNA;Tu等在E.coli中发现了具有转运与信使双功能的RNA-10 Sa RNA。 1996年:Lee等首次报导了酵母转录因子GCN4中的氨基酸片段能自动催化合成自我复制的肽;洪国藩等采用“指纹-锚标”战略构建了高分辨率的水稻基因组物理图谱,DNA片段的长度为120kb;Goffeau等完成了酵母基因组DNA全序列(1.25X10 7bp)的测定。 1997年:Wilmut等首次不经过受精,用成年母羊体细胞的遗传物质,成功地获得克隆羊-多莉(Dolly);Willard等首次构建了人染色体(HACs);Salishury等发现DNA一种新的结构形式-四显性组合,这可能是基因交换期间DNA联结的一种方式。 1998年:Renard等用体细胞操作获得克隆牛-Marguerife,再次证明从体细胞可克隆出遗传上完全相同的哺乳动物;GeneBank公布了最新人的“基因图谱98'’,代表了30181条基因定位的信息;Venter对人类基因组计划提出新的战略-全基因组随机测序,毛细管电泳测序仪启动。 从以上所述分子生物学的发展中,可以看出20世纪是以核酸的研究为核心,带动着分子生物学向纵深发展。50年代的双螺旋结构,60年代的操纵子学说,70年代的DNA重组,80年代的PCR技术,90年代的DNA测序都具有里程碑的意义,将生命科学带向一个由宏观到微观再到宏观,由分析到综合的时代。

地球本来是圆了,还证明个球啊,这是公理,也是常识,还要证明?谁出这个问题我BS谁

假设地球不是球.从海上来的船应该是能一下看到整个船身.可事实上是先看到船的前面.然后才是后面..你想像一下.然后再补充..意思是这样啦

在其带领下发表论文

发表一篇学术论文(特别是SCI、SSCI)不是一件很简单的事情,往往需要经历一个相对漫长的过程。对于科研新手而言,可能比较好奇发表一篇学术论文需要经过哪些步骤,今天就以理工科生发表SCI为例来谈一谈。第一步,数据收集要想发论文,首先得有拿得出手的东西,对理工科生来说,就必须有值得发表的数据,因此收集数据是发表一篇学术论文的第一步(此处忽略选题、文献调研等前期工作)。一般来说,理论性的论文可以将一些理论计算、仿真分析等结果作为数据,构成一篇论文;工程性的论文,往往需要实验数据,如果再结合一些理论分析(增加实验结果的可信度),会给文章加分不少。看过这么多文献,我发现比较牛逼的文章往往有深厚的理论分析。收集数据是第一步,也是最难、最耗时间的一步,因为你的数据是否漂亮一定程度决定了论文的创新性和价值。为了获得好的数据,好课题的重要性不言而喻,但更需要的是潜心钻研、经得住磨炼的精神。实验往往是残酷的,可能10次实验里前9次都是失败的,只有最后一次成功了,可能干脆全崩了,这时我们的心态也有可能跟着崩了。因此,不能害怕失败,就算失败了也要稳住心态,分析失败的原因,从而找出解决办法,一步一步完善实验。理论计算和仿真分析,有时比做实验更有挑战,因为往往只有具备深厚的数学和专业基础才能做好这一块,这不是一日之功就能完成的,往往需要长期的知识积累和很强的学习能力。当接触了一个新的方向时,我们对其理论背景往往不是非常熟悉,这时大量阅读文献,特别是英文书籍就很有必要,这个过程是痛苦且漫长的。第二步,数据处理/科研绘图数据很重要,数据分析也不能轻视。运用适当的数据分析方法有助于我们掌握数据的特点和内在规律,引发我们新的思考。因为论文的讨论(discussion)部分都是围绕数据展开的,数据的特点更丰富,值得说的点就更多,写起文章来也更容易。论文中的图(Figure)除了数据图还有示意图,炫酷的示意图能给论文增加不少印象分,相信审稿人看到一篇作图水平非常高的论文心情都会好很多吧。像CNS这种级别的论文的作图那叫一个赏心悦目,据说有个学者为了将一颗白菜的三维图做的更漂亮,买了一车的白菜来研究!因此掌握一定的数据处理/科研绘图能力非常重要,平时可以学一下相关的软件,知乎上有个相关的帖子打击可以点击“阅读原文”看一下。第三步,论文撰写数据处理好了,下一步自然就是撰写论文了。有了好东西,得把它说得漂亮才行,就像你开发了个好产品,但是卖得不好也没用。学术论文的结构总是差不多,相信文献看多了之后就发现,总是少不了摘要(abstract)、前言(introduction)、结果(results)、讨论(discussion)、总结(conclusion)等几个部分。在写论文初稿时,不要想着论文的排版,只管把该写的内容写下来就好(word单栏即可,或者LaTeX)。初稿完成后,再根据想要投稿的期刊的格式要求对论文进行排版,一般来说期刊会在官网提供投稿模板(template),按照要求修改格式即可。其实,投稿论文(manuscript)的格式要求和最后发表的格式往往并不一样,涉及到的都是一些比较简单的排版(字体大小、论文结构、图表等 ),因此完全不用为排版担心。因为发表前,期刊编辑会按照发表格式的要求对论文进行重新排版的。总之记住一点,写论文时把重点放在内容上,而不是格式上。论文撰写过程中,英文的表达非常重要,因此平时在文献阅读过程中,要养成积累优秀句型的习惯,做好笔记,拿来即用。前面有几期介绍过一些有助于论文写作的网站,如《论文写作时,堪称神器的网站!》。如果对自己的英文写作不够自信,最好请外国人或者相关的机构润色一下。论文写作过程中,还有一个非常重要的环节就是参考文献格式的书写。我发现身边很多人都会受这个困扰,花很多时间去琢磨如何排版参考文献。其实,有很多优秀的工具可以帮助我们做到这些,比如前面介绍的软件Zotero,后期我会专门讲解如何排版参考文献。

有意义,这个分成两种,核心期刊的,有很大作用,非核心期刊的,也可以在简历上和网申表格写明,也有一定的意义.http://mepzx.com/zd/lx

华中科技大学博士导师胡玥五年来发表SCI论文60余篇,我觉得这件事证明了胡老师的学术水平还有指导学生的能力。因为五年来发表论文60余篇,平均每年发表12篇,这是很困难的事情,有时候撰写、投稿的流程就要将近一年,这些代表了前几年胡老师的工作也是做得很扎实,所以才会有这样的成果。

首先,胡玥老师发表了这么多论文,学术水平是备受认可的。SCI的期刊论文发表并不容易,特别是影响因子高的期刊。胡玥老师是武汉光电国家研究中心的副教授,博士生导师,从事工科类的研究。这些研究需要一定的周期,而且需要不断的实验。可以发表那么大数量的论文,证明胡老师自己也在学术界造诣颇深,而且笔耕不辍,在学术科研的路上起早贪黑地进行研究,有了很多丰硕的学术成果,才可以撰写出那么多的学术论文,并且通过同行评议被收录发表。这些论文都是胡老师这些年来学术、实验的成果,代表了这些年她的努力和艰辛。

其次,这些论文有一部分也是胡老师作为合作作者发表,带领学生完成的。在研究生阶段,有一位愿意指导自己科研出成果的老师很幸运。在老师的带领下,学生可以自由探索科学的奥妙,研究深入的课题,同时也找到科研的兴趣点,也是研究生的必经阶段。

令人惊喜的是,胡老师还是一名90后。作为年轻导师,有着学术的冲劲,希望出成果,所以才会那么努力。在国外留学完成博士学业之后,毅然回国从事教职,将自己从国外学习的知识和学术技能应用于国内的先进研究中,为我国的科技发展助力!

挂在其他导师名下发表论文

挂名就要负责任,第一导师负主要责任,第二导师负帮助第一导师的责任。只是有的培养单位的情况是,第一导师是有权力但没有学术能力的人,这时实际的工作就是第二导师在管,但要是学生论文出了问题,第一导师从理论上还是要承担主要责任。很多情况下,这种情况最后就是不了了之,学生倒霉。

把导师挂第一作者,学生第二,指导论文写作的那老师挂通讯,皆大欢喜

写论文的时候根据情况可以分成两种排列作者名字的方法:一是是第一作者,带你的导师是第二作者,给你挂名的是第三作者,后面还可以挂一大串名字,二是给你挂名的导师是第一作者,你是第二作者,带你的导师是第三作者。这是因为毕业时要提供一篇你是第一作者或你的导师是第一作者你是第二作者的论文。

论文发表表都放在下面吗

你好,这个具体要看你们学校对于论文的要求了,一般放在下方会比较好呢,希望我的回答对你有帮助,都是学生过来的。

您好,论文中的图名和表名都是在表格的下方,并且要按照严格的顺序标号

表格居中放置,标题在表格上方居中

图表的的说明应在图表下方。

图表格式说明:图表表居中,图表名居中并位于图表下,图表编号可以全文统一编号, 也可以分章编号,全文的编号原则要一致。

图表与上文应空一-行, 图表名格式为宋体小四加粗(图表名中的数字、字母和符号为Times New Roman小四加粗)、段前0.5行、 段后0.5行、行距20磅,图表号与图表名称之间空一一个汉字符。

必要时,应将图表上的符号、标记、代码,以及实验条件等,用最简练的文字,横排于图表下方,作为图表例说明。

图表例说明列在图表名下方,格式为宋体五号居中(数字、字母和符号为Times New Roman五号)。曲线图表的纵横坐标必须标注“量、标准规定符号、单位”,坐标上标注的量的符号和缩略词必须与正文中一致。

当没有图表例说明时,图表名所在段落之后可以直接后接其他段落;当有图表例说明时,图表例说明所在段落与下文段落应空一行。

论文格式:

一、纸张和页面要求;

A4纸打印;页边距要求如下:页边距上下各为2.5厘米,左右边距各为2.5厘米;行间距取固定值(设置值为20磅);字符间距为默认值(缩放100%,间距:标准)。

二、论文装订页码顺序。

封面,中文论文摘要、 关键词,英文论文摘要、关键词,目录 (要求至少有二个层次,注明页码),论文正文, 谢辞, 参考文献附 录。外文翻译单独装订成一本。

三章节目序号。

按照正式出版物的惯例,章节目序号的级序规定如下:1、1.1、1.1.1、 (1)、①。

四、毕业设计(论文)封面。

采用统一规格, 封面题目用三号字、加黑、黑体字;其余用三号字、宋体字。

五、毕业设计撰写格式。

毕业设计(论文)说明书撰写格式按“范例要求”。

六、公式的说明。

格式说明:公式居左、缩进2个汉字符,公式编号可以全文统一编号, 也可以分章编号,全文的公式编号原则要一致。如公式必须转行时,只能在十,一,X,一,<,>处转行。

公式编号在最右边列示(当有续行时,应标注于最后一行) ,字体为宋体小四(公式编号的数字为Times New Roman小四),并加()。公式上下分别要与正文空一行。

公式的格式为Times New Roman小四、行距20磅。对于公式的必要说明应列于公式下方,格式为宋体五号(数字、字母和符号为Times NewRoman五号)缩进2个汉字符。

相关百科
热门百科
首页
发表服务