职称论文百科

冯端在中国科学发表的论文

发布时间:2024-07-04 06:58:42

冯端在中国科学发表的论文

12月16日,南京大学官网发布讣告,我国著名物理学家、金属和晶体材料学家、教育家,第六、七、八届全国人大代表,中国科学院院士、第三世界科学院院士、第五届中国物理学会理事长,南京大学研究生院首任院长、物理学院教授冯端先生,于2020年12月15日19时41分在南京去世,享年98岁。

有非常多的著作。比如有《金属物理》,《漫谈凝聚态物质》,《材料科学导论——融贯的论述》等等。都是非常值得看的科学著作。冯端院士对我国的物理研究作出了非常多的贡献。

著名物理学家冯端院士于2020年12月15日19时41分在南京去世,享年98岁。

冯端院士1923年7月23日出生于江苏苏州,1942至1946就读于国立中央大学物理系,1946年毕业获学士学位,并以成绩优异留校任教。1993年当选第三世界科学院院士。

扩展资料

冯端院士的成果

冯端院士撰写了《金属物理》《材料科学导论——融贯的论述》(2002年)《凝聚态物理学新论》等在科学界产生重大影响的专著,以及《熵》《漫谈凝聚态物质》等科普书籍,惠及大众。这些著作曾荣获国家科技进步奖等多项奖项。

冯端院士筚路蓝缕,历尽艰辛,创建并领导了“固体微结构物理国家重点实验室”,正确把握学术方向,成果突出,在国内外享有盛誉。该实验室在历次国家重点实验室的评估中均名列前茅。他重视培养和引导后进,推动了一大批中青年学术人才脱颖而出,建立了强有力的学术梯队。

他主持的“凝聚态物理学高层次人才培养——研究与实践”荣获1997年国家级教学成果一等奖。冯端院士领导了南京大学凝聚态物理学的发展,做出了无法替代的卓越贡献。

参考资料来源:界面新闻—著名物理学家冯端院士逝世,享年98岁

冯端院士在晶体缺陷,结构相变,非线性光学晶体的准位相匹配纳米结构与纳米材料等方面的科学研究取得了重要的成果。

中国尖端科学论文发表

去网上搜搜,应该能有吧

在工业界,新能源 汽车 的热度频频攀升,而小米造车信息的发布,无疑为新能源 汽车 又添了一把火。资本的加入,政策的扶持,让新能源车企市值一路飙升,关于新能源 汽车 的讨论也甚嚣尘上。作为未来新能源 汽车 电控系统的CPU,基于第三代半导体碳化硅(SiC)材料的新型电力电子器件也逐渐走进人们的视野。 近些年,新型电力电子器件在多项创新领域均发挥重要作用。例如,在2020年国家提出来的中国新基建中,5G基站、特高压、城际高铁和轨道交通、新能源 汽车 充电桩、大数据中心、人工智能、工业互联网,每一项产业的发展都离不开新型电力电子器件技术的支撑。 虽然新型电力电子器件在新能源建设中发挥着举足轻重的作用,但从国际市场竞争格局来看,美国和欧洲仍处于国际领先地位。而业内人士一致认为,新型电力电子器件的引入将带来电力电子技术的新一轮革命,并将影响世界的能源变换,为创建节能环保型 社会 产生重大作用。所以,新型电力电子器件技术研究方向对中国乃至全球的经济 社会 发展和环境保护都有着非常重大的意义。而浙江大学副研究员任娜的攻关方向正是基于碳化硅半导体材料的新型电力电子器件。 对于专业的选择,任娜有自己独特的眼光。2006年,她进入武汉大学电气工程学院,学习电力系统及自动化,这在当时是对口国家电网“铁饭碗”的专业。2010年,本科毕业,成绩优异的她被保送至浙江大学电气工程学院,转学电力电子专业。 为什么要换专业?任娜说,这里面有一段渊源。 任娜来到浙江大学时,正好遇到2009年从美国回到浙大任教的盛况教授,盛教授在美国新泽西州立大学拿到终身教职之后,放弃国外优厚待遇,毅然投身于国内贫瘠的电力电子器件和功率半导体行业。作为长期从事硅基和碳化硅电力电子器件、封装及应用研究的科学家,盛教授深知中国当时与世界领先队伍的差距,但他依然倾注全力,因为他知道:很多核心技术,一旦被研发出来,就能迅速地颠覆一个产品甚至一个时代。 盛教授对新型电力电子器件研究现状的描述和对未来发展的畅想刺激了任娜。碳化硅电力电子器件在当时国际上已成为研究热点,而国内在这一研究领域才刚刚起步,任娜相信,在盛教授的带领下,他们可以把国内的电力电子器件与功率半导体行业发展壮大。俗话说,起点低并不可怕,可怕的是境界低。在了解行业重要但技术落后的背景后,任娜果断选择了碳化硅电力电子器件研究方向,并进入盛教授创建的浙江大学电力电子器件实验室,成为国内较早开展碳化硅电力电子器件研发团队的一员。 事实也证明,任娜的选择很有前瞻性。在大力发展新能源的今天,电力电子器件技术的重要程度已经不言而喻。只是放眼十年前,她的选择还是很有勇气和魄力。 到了美国以后,任娜的学习一刻也不敢停歇。她发现,美国当时已经有很多企业想要进入电力电子器件行业,但是因为技术门槛高,所以需要寻求高校合作联合开发碳化硅电力电子器件产品技术。这给了任娜锻炼能力的机会。博士后期间,她先后主导了两项大型校企合作项目。“这些项目让我了解了如何把实验室的科研成果应用到企业产品中,实现产业化,也让我了解了科学研究与产业化之间的鸿沟如何弥补,为我回国后继续从事碳化硅电力电子器件技术的研究奠定了基础。” 从未知到成熟,任娜一直致力于碳化硅(SiC)电力电子器件的相关研究,其中包括SiC二极管和金属氧化物半导体场效应晶体管(MOSFET)器件的物理机制、结构设计、工艺技术、芯片研制、器件测试与失效分析、性能与可靠性优化等方向,并取得了一系列研究成果。例如,在器件领域国际知名期刊与会议上共发表40篇论文,其中SCI论文23篇,获得了3项美国专利,并获得2017届电力电子领域国际学术会议(APEC)杰出报告奖等。 一路走来,任娜一直踏踏实实地走好每一步。在其博士期间,导师盛教授作为我国电力电子器件领域唯一的“长江学者”和国家自然科学基金委杰出青年科学基金获得者,对任娜严格要求,悉心栽培。也因此,任娜继承了导师严谨的学术作风和清晰的逻辑思维。博士后期间,在电力电子器件学习的殿堂,任娜又继续精进了自己在技术方面的学习,深入国际间的交流与合作,并积累同行业的人脉资源。无论是国内还是国外,在日积月累中,任娜已在不知不觉间高高地站在了学术前沿。 2019年9月,任娜回国,任教于浙江大学电气工程学院,并于2020年3月双聘至浙江大学杭州国际科创中心先进半导体研究院,研究工作主要包括SiC二极管和MOSFET器件的可靠性研究与器件优化设计、新型沟槽型SiC MOSFET器件技术、超高压SiC门极可关断晶闸管器件技术等。 在最近入选的浙大科创中心青年人才卓越计划中,任娜计划挑战两大领域难点:一是突破现有器件性能的碳化硅沟槽栅极MOSFET技术,二是研制超高压碳化硅门极可关断晶闸管器件。 在SiC电力电子器件行业,MOSFET器件是中低压应用领域最具市场潜力的开关管类型,但现有的平面栅极MOSFET技术路线面临比导通电阻较大、单位面积导通电流能力受限的问题。如何打破该性能极限,进一步大幅度提高功率器件的性能,是摆在碳化硅MOSFET器件领域面前的一个巨大挑战。 项目中,任娜将针对近年来国际上兴起的新型沟槽栅极MOSFET器件技术, 探索 沟槽栅极结构沟道迁移率的影响机制和先进的沟槽栅氧工艺技术,研究芯片内部电场分布调控机制和方法,开发碳化硅沟槽刻蚀、栅氧生长、沟槽填充和注入形成电场屏蔽结构等关键工艺,实现高性能和高可靠的碳化硅沟槽型MOSFET器件,大幅度提高碳化硅芯片的导通电流密度,突破现有器件性能的水平。 虽然挑战的难度很大,但多年的行业浸润和知识积累,让任娜充满斗志。她说:“科研多年,经常遇到仿真不收敛、工艺技术开发失败、器件性能不符合预期等困难,但是遇到问题是解决问题的起点,遇到问题不可怕,可怕的是没有坚持用正确的方法去不断努力攻克它,我相信,每努力一次就离成功更近一步。” 除了突破现有器件技术,任娜还将挑战超高压碳化硅门极可关断晶闸管的研制。她解释说,如今,电力电子器件已经发展到了第三代,即以新型宽禁带半导体材料SiC和GaN为代表的器件技术,但目前电力系统等高压大功率应用仍然使用传统硅基大功率器件或模块,这限制了系统效率的提升和小型化、轻量化目标的实现。而碳化硅门极可关断晶闸管在高压大功率系统中的应用,可以减少器件数量、降低功率损耗、提高系统效率、减少冷却设备、缩小系统体积,所以,研制超高压碳化硅门极可关断晶闸管器件对国家在能源领域的发展意义重大。 然而,超高压碳化硅门极可关断晶闸管的研制也面临很多技术挑战:碳化硅材料缺陷对器件内部载流子寿命的影响机制和遏制技术还未探明,碳化硅材料缺陷将导致双极型器件性能发生退化,影响器件的可靠性,碳化硅门极可关断晶闸管的物理理论和器件模型尚不成熟,碳化硅器件的制造工艺十分复杂,与传统硅器件的工艺相差较大,需要自主开发相关的工艺技术和工艺平台,碳化硅门极可关断晶闸管器件与系统应用的结合,需要设计特殊的门极驱动和电路拓扑结构。 但任娜心里清楚,未来,电力电子器件的发展必定会朝着更小、更轻、更快、更高效、更可靠的方向发展。因此,她将全力以赴,争取获得碳化硅电力电子器件领域的突破性研究成果。 除了青年人才卓越计划,近期内,任娜的国家自然科学基金青年基金、台达电力电子科教发展基金项目也将同步进行。虽然事务繁忙,但她说,“人要是对自己没要求,那就什么事都做不成”。 未来,任娜希望自己可以开发出具有国际一流水平的碳化硅电力电子器件技术,以自身之力,为国家在能源领域的重大战略发展做出应有贡献。“我希望,未来人类 社会 可以更多地从我们今天的大量科学研究成果中获益,这也是我们科研活动的最终目标。”对于科研的前行之路,任娜如是说。

其实还是有一定关系的。但是年龄并不是决定性的意思。所以说年龄越大的话,他可能对于一些事情的见解还有研究思路会更多。

最好的是美国的《自然》和英国的《科学》,非常有含金量,都是全球的最新科学技术,但只有英文的,投稿也要用英文写。

中国人在SCI上发表论文弊端

朋友表示学习的知识会被他人侵犯,会出现教育方面的问题,网友觉得SCI论文是非常难的。

不要走极端。不要理解成走极端。只是好多人为了评职称水sci,需要杜绝的是这种现象。

一般会直接影响到作者的声誉问题。

不同杂志社的要求都是不同的,如果SCI文章发表后有问题作者及时申请勘误可能会从轻处理,如果没有及时勘误,发表出去的文章极大可能会被撤稿。

这不仅影响作者个人也会影响到杂志社,一旦群众或者其它作者发现错误,那后果是很严重的,所以在发表论文的时候要多加注意。

争议的焦点就是现在我们自己的知识也得不到保障,知识也会被别人侵犯。

中国尖端科技报告论文发表

研究课题光功能材料(夜光粉)的组成 性质 发展现状 一、"夜光粉"发光的启示(组成) 为了弄清夜光粉的化学成分及组成,我们首先想到了荧火虫的发光,荧火虫的发光原理主要有以下一系列过程。 成光蛋白质+成光酵素含氧成光蛋白质(发出绿光) 含氧成光蛋白质+H2O成光蛋白质 这就是荧火虫为何能持续发光,并且光亮一闪一闪的原因,值得注意的是,荧火虫所发出的绿光是一种"冷光",其结果转化率竟达97%。 其次,我们又注意了发光塑料的发光,发光塑料主要是在普通塑料中掺进一些放射性物质,如14C、35Sr、90Sr及Na、Th和发光材料ZnS、CaS这些硫化物在放射光线的照射下,被激发而射出可见光(冷光)。 荧光粉的化学成份由模糊的硅酸盐、钨酸盐,单一的元素Ba、Sr最后深化到标准的化学式,其化学组成为: 类别: Y2O3 CeMgL11O19 BaMgAl10O17 BaMgA10O17化学式:Eu Tb Eu (Eu、Mn)颜色: 白 白 白 白密 度: 5.1±0.2 4.2±0.2 3.7±0.2 3.8±0.2粉 色: 红粉 绿 粉 蓝 粉 双峰蓝粉 上转化荧光粉,即红外线激发荧光粉的成分为: 化学组成:YErYbF3 外 观:白色无机粉末 晶粒尺寸:30nm 激发波长:980nm 发光颜色:绿光 特 性:透光率较高,有较高的耐溶剂、耐酸碱性能 二,夜光粉的分类(性质) 夜光粉,通常分为光致储能夜光粉和带有放射性的夜光粉两类。光致储能夜光粉是荧光粉在受到自然光、日光灯光、紫外光等照射后,把光能储存起来,在停止光照射后,在缓慢地以荧光的方式释放出来,所以在夜间或者黑暗处,仍能看到发光,持续时间长达几小时至十几小时。带有放射性的夜光粉,是在荧光粉中掺入放射性物质,利用放射性物质不断发出的射线激发荧光粉发光,这类夜光粉发光时间很长,但有毒有害和环境污染等应用范围小。◇相关连接:目前国内外夜光材料主要是以ZnS,SrS和CaS制成的,发出绿光和黄光。SrS,CaS材料易潮解,给广泛应用带来困难。所以市场上主要是以ZnS为基质的夜光材料。但它的余辉时间只有1~3小时,同时在强光(如太阳光)、紫外光和潮湿空气中容易变质发黑,所以在许多领域中应用受到限制。添加钻、铜共激活的ZnS夜光粉虽然有很长的余辉时间,但它有红外淬灭现象,在电灯光(包含较多的红光)照射下,余辉很快熄灭。 三,夜光粉的用途 人们在实际生活中利用夜光粉长时间发光的特性,制成弱照明光源,在军事部门有特殊的用处,把这种材料涂在航空仪表、钟表、窗户、机器上各种开关标志,门的把手等处,也可用各种透光塑料一起压制成各种符号、部件、用品(如电源开关、插座、钓鱼钩等)。这些发光部件经光照射后,夜间或意外停电、闪电后起床等它仍在持续发光,使人们可辨别周围方向,为工作和生活带来方便。把夜光材料超细粒子掺入纺织品中,使颜色更鲜艳,小孩子穿上有夜光的纺织品,可减少交通事故。 ◇塑料、橡胶、皮革行业:发光开关、按键、把手、玩具、工艺品、礼品、鞋帽饰件、服装饰品、雨衣、安全头盔、文具、劳保用品等,及具有装饰功用的各种饰条,压条,止滑条,防撞条等劳保用品。 ◇陶瓷、搪瓷、玻璃行业:制成品广泛应用于工业、水文、交通、物业、景区等地的防火、安全警示、城镇、乡村公益事业、装饰、建材、交通信号、路标、过道指示、工艺品等。 ◇油漆、涂料行业:制成品可应用于交通路面标试、建筑物内、外墙装饰、应急标志、装修、装饰、工艺品等。 ◇工艺品行业:发光工艺画、发光水晶球、发光玻璃制品、发光水晶砂、发光彩陶、发光陶瓷、发光琥珀、 发光仿玉制品、发光内书工艺品等。 ◇特种印刷行业:各类发光油墨、印花浆、发泡浆、陶瓷贴花纸、玻璃贴花纸等。 四,应对荧光粉危害的几种方法 有部分夜光粉是具有毒的,可并非无可阻挡,以下便是应对荧光粉危害的几种方法: 由于荧光粉在充入日光灯管过程中,含有较多量的Hg,因此其危害的主要来源就是其散发的Hg蒸气,权威资料显示: 汞蒸气达0.04至3毫克时,会使人在2至3月内慢性中毒;达1.2至8.5毫克量,会诱发急性汞中毒,如若其量达到20毫克,会直接导致动物死亡。 汞一旦进入人体内,可很快弥散,并积累到肾、胸等组织和器官中,慢性汞中毒会导致精神失常,植物神经紊乱,急性症状常头痛、乏力、发热、口腔及消化道齿龈红肿酸痛,靡烂出血,牙齿松动等,部分皮肤红色斑、丘疹,少数肾损害,个别肾疼、胸痛,呼吸困难,紫绀等急性间质性肺炎。 汞如若保管和处置不当,还会对生态环境造成巨大危害,它以各种形态进入环境中,直接污染土壤、空气和水源,再通过食物链进入人体,危害着人们的健康生活,因此绝对不能将日光灯管碎片随处丢弃。 如果室内日光灯管碎裂了,可用碘1克/立方米加酒精后薰蒸或直接用1克/立方米碘分散于地面置8-12小时,这样挥发或升华的碘与空气中的汞生成难挥发的碘化汞(Hg+I2=HgI2)。用以降低汞蒸气的浓度,还可用5%-10%的三氯化铁或10%的漂白粉冲洗被污染的地面。

自从中国天眼验收以来取得的成果还是非常不错的,都已经累计发现了二百四十多颗脉冲星,很多科学家通过天眼观察发表了自己的论文,进一步提高了我国的科技实力。

在工业界,新能源 汽车 的热度频频攀升,而小米造车信息的发布,无疑为新能源 汽车 又添了一把火。资本的加入,政策的扶持,让新能源车企市值一路飙升,关于新能源 汽车 的讨论也甚嚣尘上。作为未来新能源 汽车 电控系统的CPU,基于第三代半导体碳化硅(SiC)材料的新型电力电子器件也逐渐走进人们的视野。 近些年,新型电力电子器件在多项创新领域均发挥重要作用。例如,在2020年国家提出来的中国新基建中,5G基站、特高压、城际高铁和轨道交通、新能源 汽车 充电桩、大数据中心、人工智能、工业互联网,每一项产业的发展都离不开新型电力电子器件技术的支撑。 虽然新型电力电子器件在新能源建设中发挥着举足轻重的作用,但从国际市场竞争格局来看,美国和欧洲仍处于国际领先地位。而业内人士一致认为,新型电力电子器件的引入将带来电力电子技术的新一轮革命,并将影响世界的能源变换,为创建节能环保型 社会 产生重大作用。所以,新型电力电子器件技术研究方向对中国乃至全球的经济 社会 发展和环境保护都有着非常重大的意义。而浙江大学副研究员任娜的攻关方向正是基于碳化硅半导体材料的新型电力电子器件。 对于专业的选择,任娜有自己独特的眼光。2006年,她进入武汉大学电气工程学院,学习电力系统及自动化,这在当时是对口国家电网“铁饭碗”的专业。2010年,本科毕业,成绩优异的她被保送至浙江大学电气工程学院,转学电力电子专业。 为什么要换专业?任娜说,这里面有一段渊源。 任娜来到浙江大学时,正好遇到2009年从美国回到浙大任教的盛况教授,盛教授在美国新泽西州立大学拿到终身教职之后,放弃国外优厚待遇,毅然投身于国内贫瘠的电力电子器件和功率半导体行业。作为长期从事硅基和碳化硅电力电子器件、封装及应用研究的科学家,盛教授深知中国当时与世界领先队伍的差距,但他依然倾注全力,因为他知道:很多核心技术,一旦被研发出来,就能迅速地颠覆一个产品甚至一个时代。 盛教授对新型电力电子器件研究现状的描述和对未来发展的畅想刺激了任娜。碳化硅电力电子器件在当时国际上已成为研究热点,而国内在这一研究领域才刚刚起步,任娜相信,在盛教授的带领下,他们可以把国内的电力电子器件与功率半导体行业发展壮大。俗话说,起点低并不可怕,可怕的是境界低。在了解行业重要但技术落后的背景后,任娜果断选择了碳化硅电力电子器件研究方向,并进入盛教授创建的浙江大学电力电子器件实验室,成为国内较早开展碳化硅电力电子器件研发团队的一员。 事实也证明,任娜的选择很有前瞻性。在大力发展新能源的今天,电力电子器件技术的重要程度已经不言而喻。只是放眼十年前,她的选择还是很有勇气和魄力。 到了美国以后,任娜的学习一刻也不敢停歇。她发现,美国当时已经有很多企业想要进入电力电子器件行业,但是因为技术门槛高,所以需要寻求高校合作联合开发碳化硅电力电子器件产品技术。这给了任娜锻炼能力的机会。博士后期间,她先后主导了两项大型校企合作项目。“这些项目让我了解了如何把实验室的科研成果应用到企业产品中,实现产业化,也让我了解了科学研究与产业化之间的鸿沟如何弥补,为我回国后继续从事碳化硅电力电子器件技术的研究奠定了基础。” 从未知到成熟,任娜一直致力于碳化硅(SiC)电力电子器件的相关研究,其中包括SiC二极管和金属氧化物半导体场效应晶体管(MOSFET)器件的物理机制、结构设计、工艺技术、芯片研制、器件测试与失效分析、性能与可靠性优化等方向,并取得了一系列研究成果。例如,在器件领域国际知名期刊与会议上共发表40篇论文,其中SCI论文23篇,获得了3项美国专利,并获得2017届电力电子领域国际学术会议(APEC)杰出报告奖等。 一路走来,任娜一直踏踏实实地走好每一步。在其博士期间,导师盛教授作为我国电力电子器件领域唯一的“长江学者”和国家自然科学基金委杰出青年科学基金获得者,对任娜严格要求,悉心栽培。也因此,任娜继承了导师严谨的学术作风和清晰的逻辑思维。博士后期间,在电力电子器件学习的殿堂,任娜又继续精进了自己在技术方面的学习,深入国际间的交流与合作,并积累同行业的人脉资源。无论是国内还是国外,在日积月累中,任娜已在不知不觉间高高地站在了学术前沿。 2019年9月,任娜回国,任教于浙江大学电气工程学院,并于2020年3月双聘至浙江大学杭州国际科创中心先进半导体研究院,研究工作主要包括SiC二极管和MOSFET器件的可靠性研究与器件优化设计、新型沟槽型SiC MOSFET器件技术、超高压SiC门极可关断晶闸管器件技术等。 在最近入选的浙大科创中心青年人才卓越计划中,任娜计划挑战两大领域难点:一是突破现有器件性能的碳化硅沟槽栅极MOSFET技术,二是研制超高压碳化硅门极可关断晶闸管器件。 在SiC电力电子器件行业,MOSFET器件是中低压应用领域最具市场潜力的开关管类型,但现有的平面栅极MOSFET技术路线面临比导通电阻较大、单位面积导通电流能力受限的问题。如何打破该性能极限,进一步大幅度提高功率器件的性能,是摆在碳化硅MOSFET器件领域面前的一个巨大挑战。 项目中,任娜将针对近年来国际上兴起的新型沟槽栅极MOSFET器件技术, 探索 沟槽栅极结构沟道迁移率的影响机制和先进的沟槽栅氧工艺技术,研究芯片内部电场分布调控机制和方法,开发碳化硅沟槽刻蚀、栅氧生长、沟槽填充和注入形成电场屏蔽结构等关键工艺,实现高性能和高可靠的碳化硅沟槽型MOSFET器件,大幅度提高碳化硅芯片的导通电流密度,突破现有器件性能的水平。 虽然挑战的难度很大,但多年的行业浸润和知识积累,让任娜充满斗志。她说:“科研多年,经常遇到仿真不收敛、工艺技术开发失败、器件性能不符合预期等困难,但是遇到问题是解决问题的起点,遇到问题不可怕,可怕的是没有坚持用正确的方法去不断努力攻克它,我相信,每努力一次就离成功更近一步。” 除了突破现有器件技术,任娜还将挑战超高压碳化硅门极可关断晶闸管的研制。她解释说,如今,电力电子器件已经发展到了第三代,即以新型宽禁带半导体材料SiC和GaN为代表的器件技术,但目前电力系统等高压大功率应用仍然使用传统硅基大功率器件或模块,这限制了系统效率的提升和小型化、轻量化目标的实现。而碳化硅门极可关断晶闸管在高压大功率系统中的应用,可以减少器件数量、降低功率损耗、提高系统效率、减少冷却设备、缩小系统体积,所以,研制超高压碳化硅门极可关断晶闸管器件对国家在能源领域的发展意义重大。 然而,超高压碳化硅门极可关断晶闸管的研制也面临很多技术挑战:碳化硅材料缺陷对器件内部载流子寿命的影响机制和遏制技术还未探明,碳化硅材料缺陷将导致双极型器件性能发生退化,影响器件的可靠性,碳化硅门极可关断晶闸管的物理理论和器件模型尚不成熟,碳化硅器件的制造工艺十分复杂,与传统硅器件的工艺相差较大,需要自主开发相关的工艺技术和工艺平台,碳化硅门极可关断晶闸管器件与系统应用的结合,需要设计特殊的门极驱动和电路拓扑结构。 但任娜心里清楚,未来,电力电子器件的发展必定会朝着更小、更轻、更快、更高效、更可靠的方向发展。因此,她将全力以赴,争取获得碳化硅电力电子器件领域的突破性研究成果。 除了青年人才卓越计划,近期内,任娜的国家自然科学基金青年基金、台达电力电子科教发展基金项目也将同步进行。虽然事务繁忙,但她说,“人要是对自己没要求,那就什么事都做不成”。 未来,任娜希望自己可以开发出具有国际一流水平的碳化硅电力电子器件技术,以自身之力,为国家在能源领域的重大战略发展做出应有贡献。“我希望,未来人类 社会 可以更多地从我们今天的大量科学研究成果中获益,这也是我们科研活动的最终目标。”对于科研的前行之路,任娜如是说。

1.1专题评述 能够反映某个学科或研究领域的最新成果的研究进展、存在的问题以及今后的方向,论文篇幅不限。作者本人或所在实验室在本领域有相当的研究经历和科研成果。1.2研究论文 反映我国植物分子生物学和分子育种领域在基础理论、应用研究和高新技术开发方面的、在国内外公开出版的刊物上尚未发表过的原始研究工作报告。1.3研究报告 为争取时间以简要的形式发表的原始研究工作报告。论文篇幅要求在5-8个印刷页面左右。1.4专题介绍 主要介绍植物分子生物学与分子育种领域的文献综述性论文。论文篇幅要求在6个印刷页面以上。1.5学位论文简报 主要刊登博士学位论文及优秀硕士论文之大摘要。篇幅要求在2个印刷页面。中英文同时刊登。1.6新基因、新种质、新品种 主要刊登具有自主知识产权的新基因,经过鉴定或品种审定的新材料及品种。篇幅要求在6个印刷页面左右。1.7新思路、新技术、新方法 主要刊登我国学者自主发明的新思路、新技术和新方法。篇幅要求在6个印刷页面左右。

中国科学论文在哪发表的

省级刊物:《民营科技》主管单位:云南省科学技术厅 主办单位:云南省民办科技机构管委会国际刊号:ISSN 1673-4033,国内刊号:CN 53-1125/N,国家新闻出版总署收录、知网、维普、万方收录。 省级刊物:《科技信息》主管单位:山东省科技厅 主办单位:山东省技术开发服务中心国际标准刊号:ISSN 1001-9960 国内统一刊号:CN 37-1021/N国家新闻出版总署收录、知网、万方、龙源、维普收录。 省级刊物:《黑龙江科技信息》主管单位:黑龙江科协 主办单位:黑龙江省科学技术学会国际标准刊号ISSN 1673-1328 国内统一刊号CN 23-1400/G3国家新闻出版总署收录、知网、万方、龙源、维普收录。 国家级刊物:《文体用品与科技》主管单位:国家轻工联合会主办单位:全国文教体育用品信息中心和中国文教体育用品协会国际标准刊号:`ISSNI006-8902 国内统一刊号:CN11-3762/TS国家新闻出版总署收录、知网、万方、龙源、维普收录 国家级刊物:《数字技术与应用》主管单位:天津市中环电子信息集团有限公司 主办单位:天津市电子仪表信息研究所 国际标准刊号:ISSN 1007-9416 国内统一刊号:CN12-1369/TN国家新闻出版总署收录、知网、万方、龙源、维普收录。由于篇幅有限,中国期刊库就只介绍这么多科技期刊给大家,如果您还需要了解更多,或者您需要找我们快速发表论文的话,可以联系中国期刊库在线编辑。中国期刊库---------论文发表,专业期刊论文发表网站

去找壹品优刊网,出刊只花了21天。

科技论文可以发《中国科技人才》还有本杂志教什么《科技创新博览》吧,你自己百度下这些杂志的官网

相关百科
热门百科
首页
发表服务