职称论文百科

太阳能电池期刊投稿

发布时间:2024-07-04 23:21:43

太阳能电池期刊投稿

energy materials advances影响因子是审稿周期/时间,研究方向,SCI期刊分区等。Energy Material Advances(能源材料前沿)是北京理工大学和美国科学促进会(AAAS)/Science共同打造的高水平国际化英文科技期刊,也是AAAS旗下“Science Partner Journal”项目里首个面向能源与材料交叉领域的学术期刊,入选2020年度中国科技期刊卓越行动计划高起点新刊项目。期刊研究范围涵盖从先进材料到能源科学等多个领域,包括:清洁能源材料、高能量密度材料、超级电容器、太阳能电池、规模储能、纳米新能源材料、二次电池、燃料电池、二氧化碳捕捉、生物能源、新能源汽车应用基础材料研究等。

看你文章研究的内容更侧重那个杂志,两个杂志基本属于不同领域,不好比较的,都是不错的杂志,没有一定的创新肯定是不行的,下面是他们的一些基本情况供你参考:1、期刊名ORGANICELECTRONICS出版周期:月刊中等难度。有机半导体器件杂志,做有机电制发光或有机太阳能电池的可以发。数据要全,一般更强的杂志投不中就投这个。投稿周期1~2月中科院杂志分区材料科学:综合分类下的2区期刊近四年影响因子:2013年度2012年度2011年度2010年度3.6763.8364.0473.9982、期刊名appliedphysicsletters出版周期:周刊该杂志确实属于专业顶级期刊,一般不容易中。但只要足够新颖、合理、简洁投上去的几率还是蛮大,毕竟刊文是周刊。中科院杂志分区物理:应用分类下的2区期刊近四年影响因子:2013年度2012年度2011年度2010年度3.5153.7943.8443.82

太阳能电池投稿期刊

《电源技术》是我国唯一的化学与物理电源(即电化学电池与太阳电池)综合技术期刊,经国家科委批准,国内外公开发行。主要对象为从事化学与物理电源科研、生产的科技工作者、科技管理工作者及电池用户。主要栏目有:各类电池研究与设计、电池测试与分析、电池工装设备、电池市场、电池与环保、综述、专家述评、论坛、专题讲座、探讨与争鸣、电池用户指南、国内外信息等,报道国内外电池技术领域最新科技成果,反映电池工业生产的新技术、新工艺,促进国内外技术交流。 《电源技术》是全国中文核心期刊,国家期刊奖提名奖,被美国工程索引信息公司(Ei)、俄罗斯《文摘》(Pж)、美国《化学文摘》(CA)、英国科学文摘(SA)收录,是信息产业部、天津市、全国优秀科技期刊。 2004年《电源技术》杂志改为月刊,每月20日出版。国内邮发代号:6-28 单价:_7.00元/本 全年_87.00元 《电源技术》发布国内外广告,欢迎有关电池、电池材料、电池生产与测试设备的企事业单位在本刊刊登广告。企业地址: 天津市296信箱44分箱《电源技术》编辑部 邮政编码: 300381 联系电话: 86 传真号码: 86 主要经营地点: 天津市296信箱44分箱《电源技术》编辑部

经查证《电源技术》是由中国电子科技集团公司主办,核心期刊、 CA、 JST 、CSCD期刊,(2016版)复合影响因子:0.464;(2016版)综合影响因子:0.236是一般比较厉害的期刊,估计发表的难度也比较大,希望你到期刊超市查询杂志社联系方式进行投稿。

看你文章研究的内容更侧重那个杂志,两个杂志基本属于不同领域,不好比较的,都是不错的杂志,没有一定的创新肯定是不行的,下面是他们的一些基本情况供你参考:1、期刊名ORGANICELECTRONICS出版周期:月刊中等难度。有机半导体器件杂志,做有机电制发光或有机太阳能电池的可以发。数据要全,一般更强的杂志投不中就投这个。投稿周期1~2月中科院杂志分区材料科学:综合分类下的2区期刊近四年影响因子:2013年度2012年度2011年度2010年度3.6763.8364.0473.9982、期刊名appliedphysicsletters出版周期:周刊该杂志确实属于专业顶级期刊,一般不容易中。但只要足够新颖、合理、简洁投上去的几率还是蛮大,毕竟刊文是周刊。中科院杂志分区物理:应用分类下的2区期刊近四年影响因子:2013年度2012年度2011年度2010年度3.5153.7943.8443.82

太阳能电池相关期刊投稿

材料科学应该是可以的,rccse的核心oa刊

不太好中。焦耳期刊没有特别好中的,相关的专刊比如《储能科学与技术》《太阳能学报》审核周期都长,难度也不小。

[1-1] 师宇腾.太阳能光伏阵列模拟器综述.电源技术.2012.2[1-2] 董振利.基于DSP与dsPIC的数字式太阳能电池阵列模拟器研究[D].合肥:合肥工业大学,2007[1-3] 刘志强.10kW光伏并网逆变器的研制[D].北京:北方工业大学,2011[1-4] 赵玉文.太阳能光伏技术的发展概况.第五届全国光伏技术学术研讨会论文集.1998 [1-5] BennerJP,KazmerskiL. Photovoltaicsgaininggreatervisibility. SPeetrum,IEEE.1999,36(9):34-42 [1-6] 余蜜.光伏发电并网与并联关键技术研究:[博士学位论文].武汉:华中科技大学,2009[1-7] 许颇.基于源型逆变器的光伏并网发电系统的研究:[博士学位论文].合肥:合肥工业大学,2006[1-8] 林安中,王斯成.国内外太阳电池和光伏发电的进展与前景.太阳能学报,增刊. 1999:68-74[1-9] 汪海宁.光伏并网功率调节系统及其控制的研究:[博士学位论文].合肥:合肥工业大学,2005[1-10] 周德佳.太阳能光伏发电技术现状及其发展,电气应用. 2007[1-11] 曹伟.基于DSP的数字光伏模拟器研究[D].合肥:合肥工业大学,2009.[1-12] 韩珏.太阳能电池阵列模拟器的研究和设计[D].杭州:浙江大学,2006.[1-13] OLILLA J. A medium power PV-arraysimulator with a robust control strategy. Tampere,Finland: Tampere Universityof Technology, 1995, IEEE: 40. [1-14] 韩朋乐.数字式光伏电池阵列模拟器的研究与设计[D].成都:电子科技大学,2009.[2-1] 董密.太阳能光伏并网发电系统的优化设计与控制策略研究:[博士学位论文]. 长沙:中南大学,2007.[2-2] 吴忠军,刘国海,廖志凌.硅太阳电池工程用数学模型参数的优化设计.电源技术. 2007.[2-3] 苏建徽,余世杰,赵为.硅太阳电池工程用数学模型.太阳能学报. 2001.[2-4] 裴云庆.开关稳压电源的设计和应用[M].北京:机械工业出版社,2010.[2-5] 孙孝金.太阳能电池阵列模拟器的研究与设计[D].济南:山东大学,2009.[2-6] 朱丽.一个光伏阵列模拟器的设计[D].合肥:合肥工业大学,2007.[2-7] 刘万明.数字式太阳能阵列模拟器的研究[D].成都:电子科技大学,2009.[2-8] 谢文涛.新型光伏阵列模拟器的研究与设计[D].杭州:浙江大学,2007.[2-9] 李欣.数字式光伏阵列模拟器的研制[D].杭州:浙江大学,2007.[2-10] 杜柯.基于DSP的光伏电池数字模拟系统研究[D].武汉:华中科技大学,2006.[2-11] 陈亚爱.开关变换器控制技术综述[J].电器应用,2008,27(4):4-10.[3-1] Cho J G,Sabate J A,Zero-voltageZero-current Switching Full-bridge PWM converter for High Power Applications,IEEETrans 0n Power Electronics,1996 [3-2] Cho J G,Jeong C Y,Lee FC,Zero-voltage and Zero-current switching Full—bridge PWM Convener UsingSecondary Active Clamp,IEEE Trans 0n Power Electronics,l998 [3-3] Kim E S,Joe K Y,Park S G,An ImprovedSoft Switching PWM FB DC/DC Converter Using the Modified Energy Recovery Snubber,IEEE AppliedPower Electronics Conference and exposition,2000 [3-4] Ruan XB,Yall Y G,An Improved Phaseshifted Zero-voltage Zero-current Switching PWM Converter,IEEE Applied PowerElectronics Conference and exposition,1998 [3-5] Cho J G, Back J W, Jeong C Y, NovelZero-voltage and zero-current-switching(ZVZCS) Full Bridge PWM Converter Usinga Simple Auxiliary Circuit,IEEE Applied Power Electronics Conference andexposition,l998

太阳能电池类的投稿期刊

不太好中。焦耳期刊没有特别好中的,相关的专刊比如《储能科学与技术》《太阳能学报》审核周期都长,难度也不小。

nano energy是中科院工程技术1区级别。

nano energy期刊2021年影响因子是17.881, 属于SCI期刊的工程技术类,是中科院工程技术1区级别期刊。nano energy以其发表的高质量研究论文,已成为众多能源材料类期刊中的一名佼佼者。期刊主题为纳米材料或纳米器件在能源相关领域中的应用,主要收录与主题相关的实验和理论研究工作。

nano energy期刊自2012年1月首刊以来,已出版逾35卷,2016年影响因子高达11.71(预计2017年的影响因子在12.4以上),跻身能源环境类期刊前列。nano energy期刊的发刊编辑和目前期刊总主编为美国佐治亚理工学院王中林教授。

nano energy期刊所发表文章研究领域涵盖各式电池、氢气制备与存储、发光二极管、高效节能光学器件、太阳能电池、纳米压电器件、自驱动纳米机器与纳米系统、超级电容器、热电材料和能源相关政策和展望。

经查证《电源技术》是由中国电子科技集团公司主办,核心期刊、 CA、 JST 、CSCD期刊,(2016版)复合影响因子:0.464;(2016版)综合影响因子:0.236是一般比较厉害的期刊,估计发表的难度也比较大,希望你到期刊超市查询杂志社联系方式进行投稿。

钙钛矿太阳能电池投稿期刊

导读

背景

1839年,德国矿物学家古斯塔夫·罗斯(Gustav Rose)站在俄罗斯中部的乌拉尔山脉上,拾起一块以前从未被发现的矿物。

那时,他并没有听说过“晶体管”或“二极管”,也没想到电子器件会成为我们日常生活的一部分。更出乎他意料的是,他手中的这块被他以俄罗斯地质学家 Lev Perovski 的名字命名为“钙钛矿(perovskite)”的这块矿石,会成为彻底变革电子器件的关键因素之一。

钙钛矿如此重要的地位,离不开它特殊的结构。钙钛矿材料结构式一般为ABX3,其中A为有机阳离子, B为金属离子, X为卤素基团。该结构中, 金属B原子位于立方晶胞体心处, 卤素X原子位于立方体面心, 有机阳离子A位于立方体顶点位置。

钙钛矿结构稳定,有利于缺陷的扩散迁移,具备许多特殊的物理化学特性,例如电催化性、吸光性等。

过去十年,钙钛矿因为制造起来更便宜、更绿色,效率可与硅太阳能电池相媲美,逐渐成为硅太阳能电池的替代品。

然而,钙钛矿仍会表现出明显的性能损耗以及不稳定性。迄今为止,大多数的研究集中在消除这些损耗的方法,然而真正的物理原因仍然是未知的。

创新

近日,在一篇发表在《自然(Nature)》期刊上的论文中,来自剑桥大学化学工程与生物技术系以及卡文迪许实验室 Sam Stranks 博士的研究小组,以及日本冲绳科学技术大学院大学 Keshav Dani 教授的飞秒光谱学单位的研究人员们,找到了问题的根源。他们的发现,将使得提升钙钛矿的效率变得更容易,从而使它们离大规模量产更近。

技术

当光线照射钙钛矿太阳能电池时,或者当电流通过钙钛矿LED时,电子被激发,跳跃到更高的能态。带负电荷的电子留下了空白,也称为“空穴”,它带正电荷。受激发的电子与空穴都可以通过钙钛矿材料,因此可成为载流子。

但是,在钙钛矿中会产生一种称为“深阱”的特定类型缺陷,带电的载流子会陷入其中。这些被困的电子与空穴重新结合,它们的能量以热量形式丧失,而不是转化为有用电力或者光线,这样就会显著降低太阳能面板和LED的效率以及稳定性。

迄今为止,我们对于这些陷阱知道得很少,部分原因是,它们似乎与传统太阳能电池材料中的陷阱表现得大相径庭。

2015年,Stranks 博士的研究小组发表了一篇研究钙钛矿发光的《科学(Science)》期刊论文,这篇论文揭示了钙钛矿在吸收光线或者发射光线方面有多擅长。Stranks 博士表示:“我们发现,这种材料非常不均匀;相当大的区域是明亮且发光的,而其他的区域则非常黑暗。这些黑暗区域与太阳能电池或者LED中的能量损耗相关。但是,引起这种能量损耗的原因一直是个谜,特别是由于钙钛矿在其他方面非常耐缺陷。”

由于标准成像技术的限制,研究小组无法说明黑暗区域是由一个大的陷阱位引起的,还是由众多小的陷阱位引起的,从而难以确定它们为什么只是在特定区域形成。

后来在2017年,Dani 教授在 OIST 的研究小组在《自然纳米技术(Nature Nanotechnology)》期刊上发表了一篇论文,在论文中他们制作了一个有关电子吸收光线后在半导体中如何表现的影片。Dani 教授表示:“在材料或者器件被照射光线之后,如果你可以观察到电荷是如何在其中移动的,那么你将从中学会很多。例如,你可以观察到电荷会落入陷阱。然而,因为电荷移动得非常快,以一千万亿分之一秒的时间尺度来衡量;并且穿越非常短的距离,以十亿分之一米的长度尺度来衡量;所以这些电荷难以进行可视化观测。”

在了解到 Dani 教授的工作之后,Stranks 博士伸出援手,看看他们是否可以一起合作应对这个问题,对钙钛矿中的黑暗区域进行可视化观测。

OIST 的团队首次对钙钛矿使用了一项称为“光激发电子显微镜(PEEM)”的技术。他们用紫外光探测材料,并用发射的电子形成一幅图像。

观察材料时,他们发现含有陷阱的黑暗区域,长度大约是10到100纳米,由较小的原子尺寸陷阱位聚集而成。这些陷阱簇在钙钛矿材料中分布不均,从而解释了 Stranks 较早的研究中观察到的非均匀发光。

有趣的是,当研究人员将陷阱位的图像覆盖到显示钙钛矿材料晶粒的图像上时,他们发现陷阱簇仅在特定的地方形成,即某些晶粒之间的边界上。

为了理解这种现象为什么只发生在特定晶粒的边界上,研究人员小组与剑桥大学材料科学与冶金系教授 Paul Midgley 的团队合作,他采用了一项称为“扫描电子衍射”的技术,创造出了钙钛矿晶体结构的详细图像。Midgley 教授的团队利用了位于金刚石光源同步加速器 ePSIC 设施中的电子显微镜装置,该设施拥有用于成像像钙钛矿这样的光束敏感材料的专用设备。

Stranks 研究小组的博士生、这项研究的共同领导作者 Tiarnan Doherty 表示:“因为这些材料是超级光束敏感的,你在这些长度尺度上用来探测局部晶体结构的一般技术,实际上会相当快地改变你正在观察的材料。取而代之的是,我们可以用非常低的照射剂量,从而防止损伤。”

“我们从 OIST 的工作中知道了陷阱簇的位置,并且我们在 ePSIC 围绕着同一块区域扫描,以观察局部结构。我们能够快速地查明晶体结构中陷阱位附近的意外变化。”

研究小组发现,陷阱簇只在材料中具有轻微扭曲结构的区域与具有原始结构的区域的结合处形成。

Stranks 博士表示:“在钙钛矿中,我们拥有这些规则的马赛克晶粒材料,这些晶粒大多数都是又好又崭新的,这是我们所希望的结构。但是,每隔一段时间,你就会得到一个稍微形变的晶粒,这个晶粒的化学成分是不均匀的。真正有意思的,也是一开始让我们困惑的,就是形变的晶粒并没有成为陷阱,而是这个晶粒遇到原始晶粒的地方;陷阱是在那个结合处形成的。”

通过对于陷阱本性的理解,OIST 的团队也采用了定制的 PEEM 仪器来可视化观测钙钛矿材料中载流子落入陷阱的动态过程。Dani 研究小组的博士生、这项研究的共同领导作者 Andrew Winchester 解释道:“这是可能的,因为 PEEM 的特征之一就是,可对超高速的过程进行成像,短至飞秒。我们发现,陷落的过程受到扩散到陷阱簇的载流子的控制。”

价值

这些发现代表了为了把钙钛矿带向太阳能市场所取得的一项重要突破。

Stranks 博士表示:“我们仍然无法准确地知道,为什么陷阱聚集在那里,但是我们现在知道它们确实在那里形成,并且只有那里。这非常令人振奋,因为这意味着我们现在可以知道如何有针对性地提升钙钛矿的性能。我们需要针对这些非均匀相,或者以某种方式去除这些结合处。”

Dani 教授表示:“载流子必须首先扩散到陷阱,这一事实也为改善这些器件提出了其他方案。也许,我们可以改变或者控制这些陷阱簇的排列,而无需改变它们的平均数,这样一来,载流子就不太可能到达这些缺陷部位。”

团队的研究集中在一种特殊的钙钛矿结构。科学家们也将研究这些陷阱簇是否在所有的钙钛矿材料中都是普遍存在的。

Stranks 博士表示:“器件性能的大部分进展都是经过反复试错的,然而目前为止,这一直是一个低效率的过程。迄今为止,这个过程还没有真正被‘理解特定原因以及系统性针对该原因’所驱动。它是这方面最重要的突破之一,将帮助我们采用基础科学来设计更高效的器件。”

关键字

参考资料

【1】Liu, M.Z., Johnston, M.B. and Snaith, H.J. (2013) Efficient Planar Heterojunction Perovskite Solar Cells by vaPour Deposition. Nature, 501, 395-398.

【2】Tiarnan A. S. Doherty, Andrew J. Winchester, Stuart Macpherson, Duncan N. Johnstone, Vivek Pareek, Elizabeth M. Tennyson, Sofiia Kosar, Felix U. Kosasih, Miguel Anaya, Mojtaba Abdi-Jalebi, Zahra Andaji-Garmaroudi, E Laine Wong, Julien Madéo, Yu-Hsien Chiang, Ji-Sang Park, Young-Kwang Jung, Christopher E. Petoukhoff, Giorgio Divitini, Michael K. L. Man, Caterina Ducati, Aron Walsh, Paul A. Midgley, Keshav M. Dani, Samuel D. Stranks. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites . Nature, 2020; 580 (7803): 360 DOI: 10.1038/s41586-020-2184-1

【3】

个人简介: Edward H. Sargent,加拿大多伦多大学副校长、加拿大皇家科学院院士、加拿大工程院院士,是多伦多大学电子与计算机工程系教授。他是加拿大纳米技术领域的首席科学家,是胶体量子点光探测领域的开拓者,也是量子点PN结太阳能电池的发明者和光电转换效率的世界纪录的保持者,并通过所领导团队的努力,每年都在刷新纪录。迄今为止,已在Nature和Science等国际顶级期刊发表论文多篇团队已经发表超过300篇论文,论文被引用超过20000次,H因子72。

团队合照

接下来,我列举了Edward H. Sargent教授近期发表在Nature/Science系列期刊的工作!希望借此机会向大佬学习一下!

通过将二氧化碳电化学还原为化学原料,如乙烯,可同时达到二氧化碳减排和生产可再生能源的目的,目前,Cu是CO2RR的主要电催化剂。然而,迄今为止所达到的能源效率和生产率(目前的密度)仍然低于以工业生产乙烯所需的值。

鉴于此,卡内基梅隆大学的Zachary Ulissi、多伦多大学的Edward H. Sargent等人通过密度泛函理论计算结合主动机器学习来识别,描述了Cu-Al电催化剂能有效地将二氧化碳还原为乙烯,具有迄今为止所报道的最高的法拉第效率。与纯铜相比,在电流密度为400mA/cm2下Cu-Al电催化剂的法拉第效率超过了80%,以及在150mA/cm2下,在其阴极乙烯的能量转换效率则达到了~55%。理论计算表明,铜铝合金具有多个活性位点、表面定向和最佳CO结合能,有利于高效的、高选择性地还原CO2。

此外,原位X射线吸收光谱表明,铜和铝能够形成良好的铜配位环境,从而增强C-C二聚作用。这些发现说明了计算和机器学习在指导多金属系统的实验 探索 方面的价值,这些系统超越了传统的单金属电催化剂的局限性。

Accelerated discovery of CO2 electrocatalysts using active machine learning,

电解二氧化碳电还原反应(CO2RR)可用于绿色生产乙醇,然而,该反应的法拉第效率目前仍然不高,特别是在总电流密度超过10mA cm−2下。

鉴于此,多伦多大学的Edward H. Sargent团队报道了一类催化剂,其产乙醇的法拉第效率高达52.1%,阴极能量转化效率为31%。作者发现通过抑制中间体HOCCH*的脱氧作用,可以降低乙烯的选择性,促进乙醇生产。密度泛函理论(DFT)计算表明,由于封闭的N-C层具有很强的供电子能力,在Cu表面涂覆一层氮掺杂碳(N-C)可以促进C-C耦合,抑制HOCCH*中碳氧键的断裂,从而提高CO2RR中乙醇的选择性。

Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation,

堆叠具有较小带隙的太阳能电池形成双结膜,为克服单结光伏电池的Shockley-Queisser极限提供了可能。随着溶液处理钙钛矿的快速发展,有望将钙钛矿的单结效率提高>20%。然而,这一工艺仍未实现与行业相关的纹理晶体硅太阳能电池进行整体集成。

来自多伦多大学的Edward H. Sargent 和阿卜杜拉国王 科技 大学的Stefaan De Wolf团队,报道了将溶液处理的微米级钙钛矿顶部电池与完全纹理化的硅异质结底部电池相结合,进行集成双叠层电池的方法。为解决微米级钙钛矿中电荷收集的难点,作者将硅锥体底部的耗尽宽度提高了三倍。此外,通过在钙钛矿表面固定一种自限型钝化剂(1-丁硫醇),增加了扩散长度且进一步抑制了相偏析。这些多方位的结构改善,使钙钛矿—硅串联太阳能电池的整体效率达到了25.7%。在85°C下进行400小时的热稳定性测试,以及在40°C、在最大功率点下工作400小时后,发现其性能衰减可忽略不计。

Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon,

在这里,作者首先讨论了四类分子强化策略:①分子加成修饰的多相催化剂、②有机金属络合物催化剂、③网状催化剂和④无金属聚合物催化剂。作者介绍了目前在分子策略方面的挑战,并描述了电催化CO2RR产多碳产品的前景。这些策略为电催化CO2RR提供了潜在的途径,以解决催化剂活性、选择性和稳定性的挑战,进一步发展CO2RR。

Molecular enhancement of heterogeneous CO2 reduction,

目前通过优化钙钛矿的组成经过组合优化,在最先进的钙钛矿太阳能电池中通常含有六种成分(AxByC1−x−yPbXzY3−z)。关于每个组成部分的精确作用仍然存在许多不清晰,如何正确理解和掌握钙钛矿材料中不同组分对晶体结构、性能的影响关系,对于制备新型的高性能钙钛矿材料而言具有重要的指导意义。

鉴于此,多伦多大学的Edward H. Sargent与麻省理工学院的William A. Tisdale等人利用瞬态光致发光显微镜(TPLM),并结合理论计算,探究了钙钛矿材料中组分—结构—性能之间的关系。研究表明,单晶钙钛矿材料内部载流子的扩散率与结构组成无关;而对于多晶钙钛矿,不同的成分对载体扩散起着至关重要的作用。与CsMAFA型钙钛矿相比,不含MA的CsFA型钙钛矿载流子扩散率要低一个数量级。

元素组成研究表明,CsFA颗粒呈级配组成。在垂直载流子输运和表面电位研究中可以看到,CsFA型钙钛矿由于其非均匀结晶,从而引起晶粒的元素分布不一致,形成了不利于载流子扩散的“壳核结构”。而掺入MA可以有效改善颗粒成分的均匀性,在CsMAFA薄膜中产生了高的扩散系数。

Multi-cation perovskites prevent carrier reflection from grain surfaces, /10.1038/s41563-019-0602-2

电解二氧化碳还原(CO2RR)转化为有价值的燃料和原料,为这类温室气体的利用提供了一条有吸引力的途径。然而,在这类电解装置内,往往是由有限的气体通过液体电解质扩散到催化剂的表面,电解效率仍然不高。

鉴于此,多伦多大学的David Sinton和Edward H. Sargent等人提出了一种催化剂:离聚物本体异质结结构(CIBH),可用于分离气体、以及离子和电子的传输。CIBH由金属和具有疏水和亲水功能的超细离子层组成,可将气体和离子的输运范围从数十纳米扩展到微米级。采用这种设计策略,作者实现了在7 M KOH电解液中,以铜为催化剂进行电还原CO2,在阴极法拉第效率为45%下,产乙烯的偏电流密度高达1.3A cm-2。

CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2,

手性材料在推动生物标记、手性分析和检测、对映异构体选择性分离、偏振相关光子学和光电子学应用等领域的发展具有重要意义。一维半导体的区域选择性磁化可以实现室温下的各向异性磁性,以及自旋极化——这是自旋电子学和量子计算技术所必需的特性。

鉴于此,中国科学技术大学俞书宏院士团队与国家纳米科学中心唐智勇研究员课题组、多伦多大学Edward Sargent教授团队等人利用局域磁场调控电偶极矩与磁偶极矩之间的相互作用,成功合成了一类新型手性无机纳米材料。

利用这一策略,作者将具有不同晶格、化学成分和磁性能的材料,即一个磁性成分(Fe3O4)和一系列半导体纳米棒结合在一起,在特定的位置吸收紫外线和可见光谱。由此产生的异质纳米棒表现出由特定位置磁场诱导的光学活性。本文提出的区域选择性磁化策略为设计手性和自旋电子学的光学活性纳米材料提供了一条途径。

Regioselective magnetization in semiconducting nanorods,

电催化CO2还原反应(CO2RR)为温室气体的利用、化学燃料的生产提供了一种可持续的、碳中性的方法。然而,从CO2RR高选择性地生产C2产品(例如乙烯)仍然是一个挑战。

鉴于此,多伦多大学Edward H. Sargent教授、加州理工学院Theodor Agapie教授、Jonas C. Peters教授等人提出了一种分子调控策略,用有机分子使电催化剂表面功能化,用于稳定反应中间产物,使CO2RR高选择性地产乙烯。

通过电化学、操作/原位光谱和计算研究,研究了通过芳基吡啶的电二聚作用衍生的分子库对Cu的影响。结果发现,粘附分子提高了CO中间体的稳定性,有利于进一步还原成乙烯。在中性介质的液流电池中,在偏电流密度为230 mA cm-2下,电催化CO2RR产乙烯的法拉第效率高达72%。

Molecular tuning of CO2-to-ethylene conversion,

相关百科
热门百科
首页
发表服务