职称论文百科

高振science发表论文

发布时间:2024-07-07 05:40:05

高振science发表论文

导读

背景

1839年,德国矿物学家古斯塔夫·罗斯(Gustav Rose)站在俄罗斯中部的乌拉尔山脉上,拾起一块以前从未被发现的矿物。

那时,他并没有听说过“晶体管”或“二极管”,也没想到电子器件会成为我们日常生活的一部分。更出乎他意料的是,他手中的这块被他以俄罗斯地质学家 Lev Perovski 的名字命名为“钙钛矿(perovskite)”的这块矿石,会成为彻底变革电子器件的关键因素之一。

钙钛矿如此重要的地位,离不开它特殊的结构。钙钛矿材料结构式一般为ABX3,其中A为有机阳离子, B为金属离子, X为卤素基团。该结构中, 金属B原子位于立方晶胞体心处, 卤素X原子位于立方体面心, 有机阳离子A位于立方体顶点位置。

钙钛矿结构稳定,有利于缺陷的扩散迁移,具备许多特殊的物理化学特性,例如电催化性、吸光性等。

过去十年,钙钛矿因为制造起来更便宜、更绿色,效率可与硅太阳能电池相媲美,逐渐成为硅太阳能电池的替代品。

然而,钙钛矿仍会表现出明显的性能损耗以及不稳定性。迄今为止,大多数的研究集中在消除这些损耗的方法,然而真正的物理原因仍然是未知的。

创新

近日,在一篇发表在《自然(Nature)》期刊上的论文中,来自剑桥大学化学工程与生物技术系以及卡文迪许实验室 Sam Stranks 博士的研究小组,以及日本冲绳科学技术大学院大学 Keshav Dani 教授的飞秒光谱学单位的研究人员们,找到了问题的根源。他们的发现,将使得提升钙钛矿的效率变得更容易,从而使它们离大规模量产更近。

技术

当光线照射钙钛矿太阳能电池时,或者当电流通过钙钛矿LED时,电子被激发,跳跃到更高的能态。带负电荷的电子留下了空白,也称为“空穴”,它带正电荷。受激发的电子与空穴都可以通过钙钛矿材料,因此可成为载流子。

但是,在钙钛矿中会产生一种称为“深阱”的特定类型缺陷,带电的载流子会陷入其中。这些被困的电子与空穴重新结合,它们的能量以热量形式丧失,而不是转化为有用电力或者光线,这样就会显著降低太阳能面板和LED的效率以及稳定性。

迄今为止,我们对于这些陷阱知道得很少,部分原因是,它们似乎与传统太阳能电池材料中的陷阱表现得大相径庭。

2015年,Stranks 博士的研究小组发表了一篇研究钙钛矿发光的《科学(Science)》期刊论文,这篇论文揭示了钙钛矿在吸收光线或者发射光线方面有多擅长。Stranks 博士表示:“我们发现,这种材料非常不均匀;相当大的区域是明亮且发光的,而其他的区域则非常黑暗。这些黑暗区域与太阳能电池或者LED中的能量损耗相关。但是,引起这种能量损耗的原因一直是个谜,特别是由于钙钛矿在其他方面非常耐缺陷。”

由于标准成像技术的限制,研究小组无法说明黑暗区域是由一个大的陷阱位引起的,还是由众多小的陷阱位引起的,从而难以确定它们为什么只是在特定区域形成。

后来在2017年,Dani 教授在 OIST 的研究小组在《自然纳米技术(Nature Nanotechnology)》期刊上发表了一篇论文,在论文中他们制作了一个有关电子吸收光线后在半导体中如何表现的影片。Dani 教授表示:“在材料或者器件被照射光线之后,如果你可以观察到电荷是如何在其中移动的,那么你将从中学会很多。例如,你可以观察到电荷会落入陷阱。然而,因为电荷移动得非常快,以一千万亿分之一秒的时间尺度来衡量;并且穿越非常短的距离,以十亿分之一米的长度尺度来衡量;所以这些电荷难以进行可视化观测。”

在了解到 Dani 教授的工作之后,Stranks 博士伸出援手,看看他们是否可以一起合作应对这个问题,对钙钛矿中的黑暗区域进行可视化观测。

OIST 的团队首次对钙钛矿使用了一项称为“光激发电子显微镜(PEEM)”的技术。他们用紫外光探测材料,并用发射的电子形成一幅图像。

观察材料时,他们发现含有陷阱的黑暗区域,长度大约是10到100纳米,由较小的原子尺寸陷阱位聚集而成。这些陷阱簇在钙钛矿材料中分布不均,从而解释了 Stranks 较早的研究中观察到的非均匀发光。

有趣的是,当研究人员将陷阱位的图像覆盖到显示钙钛矿材料晶粒的图像上时,他们发现陷阱簇仅在特定的地方形成,即某些晶粒之间的边界上。

为了理解这种现象为什么只发生在特定晶粒的边界上,研究人员小组与剑桥大学材料科学与冶金系教授 Paul Midgley 的团队合作,他采用了一项称为“扫描电子衍射”的技术,创造出了钙钛矿晶体结构的详细图像。Midgley 教授的团队利用了位于金刚石光源同步加速器 ePSIC 设施中的电子显微镜装置,该设施拥有用于成像像钙钛矿这样的光束敏感材料的专用设备。

Stranks 研究小组的博士生、这项研究的共同领导作者 Tiarnan Doherty 表示:“因为这些材料是超级光束敏感的,你在这些长度尺度上用来探测局部晶体结构的一般技术,实际上会相当快地改变你正在观察的材料。取而代之的是,我们可以用非常低的照射剂量,从而防止损伤。”

“我们从 OIST 的工作中知道了陷阱簇的位置,并且我们在 ePSIC 围绕着同一块区域扫描,以观察局部结构。我们能够快速地查明晶体结构中陷阱位附近的意外变化。”

研究小组发现,陷阱簇只在材料中具有轻微扭曲结构的区域与具有原始结构的区域的结合处形成。

Stranks 博士表示:“在钙钛矿中,我们拥有这些规则的马赛克晶粒材料,这些晶粒大多数都是又好又崭新的,这是我们所希望的结构。但是,每隔一段时间,你就会得到一个稍微形变的晶粒,这个晶粒的化学成分是不均匀的。真正有意思的,也是一开始让我们困惑的,就是形变的晶粒并没有成为陷阱,而是这个晶粒遇到原始晶粒的地方;陷阱是在那个结合处形成的。”

通过对于陷阱本性的理解,OIST 的团队也采用了定制的 PEEM 仪器来可视化观测钙钛矿材料中载流子落入陷阱的动态过程。Dani 研究小组的博士生、这项研究的共同领导作者 Andrew Winchester 解释道:“这是可能的,因为 PEEM 的特征之一就是,可对超高速的过程进行成像,短至飞秒。我们发现,陷落的过程受到扩散到陷阱簇的载流子的控制。”

价值

这些发现代表了为了把钙钛矿带向太阳能市场所取得的一项重要突破。

Stranks 博士表示:“我们仍然无法准确地知道,为什么陷阱聚集在那里,但是我们现在知道它们确实在那里形成,并且只有那里。这非常令人振奋,因为这意味着我们现在可以知道如何有针对性地提升钙钛矿的性能。我们需要针对这些非均匀相,或者以某种方式去除这些结合处。”

Dani 教授表示:“载流子必须首先扩散到陷阱,这一事实也为改善这些器件提出了其他方案。也许,我们可以改变或者控制这些陷阱簇的排列,而无需改变它们的平均数,这样一来,载流子就不太可能到达这些缺陷部位。”

团队的研究集中在一种特殊的钙钛矿结构。科学家们也将研究这些陷阱簇是否在所有的钙钛矿材料中都是普遍存在的。

Stranks 博士表示:“器件性能的大部分进展都是经过反复试错的,然而目前为止,这一直是一个低效率的过程。迄今为止,这个过程还没有真正被‘理解特定原因以及系统性针对该原因’所驱动。它是这方面最重要的突破之一,将帮助我们采用基础科学来设计更高效的器件。”

关键字

参考资料

【1】Liu, M.Z., Johnston, M.B. and Snaith, H.J. (2013) Efficient Planar Heterojunction Perovskite Solar Cells by vaPour Deposition. Nature, 501, 395-398.

【2】Tiarnan A. S. Doherty, Andrew J. Winchester, Stuart Macpherson, Duncan N. Johnstone, Vivek Pareek, Elizabeth M. Tennyson, Sofiia Kosar, Felix U. Kosasih, Miguel Anaya, Mojtaba Abdi-Jalebi, Zahra Andaji-Garmaroudi, E Laine Wong, Julien Madéo, Yu-Hsien Chiang, Ji-Sang Park, Young-Kwang Jung, Christopher E. Petoukhoff, Giorgio Divitini, Michael K. L. Man, Caterina Ducati, Aron Walsh, Paul A. Midgley, Keshav M. Dani, Samuel D. Stranks. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites . Nature, 2020; 580 (7803): 360 DOI: 10.1038/s41586-020-2184-1

【3】

我海大的,导师为人应该可以吧,这个确实不清楚,不过环境学院就业率听说不高的!希望慎重考虑!

一个利用量子纠缠在远方用户之间建立密切联系的量子网络正在形成。

撰文 | Gabriel Popkin

译者 | 潘佳栋

审校 | 刘培源、晏丽

当一束优雅的蓝色激光进入一个特殊的晶体中时,在晶体里其变成红色,这表明每个光子都分裂成一对能量较低的光子,并且产生了一种神秘的联系。这些粒子“纠缠”在一起,就像同卵双胞胎一样相互联系。尽管住在遥远的城市,它们却知道彼此的想法。光子穿过一团乱麻,然后轻轻地将它们编码的信息存入等待的原子云 (clouds of atoms) 中。

“这种变换有一点像魔法”,石溪大学的物理学家伊登·菲格罗亚 (Eden Figueroa) 欣喜若狂。他和同事们在几个实验室长凳上炮制了这个装置,上面堆满了镜头和镜子。但是他们心中有一个更大的想法。

图1:伊登·菲格罗亚 (Eden Figueroa) 正试图将微妙的量子信息从实验室引入互联世界

到年底,美国最大的都会区,包括纽约市郊区的司机可能会在不知不觉中为一个新的、可能具有革命性意义的网络的薄弱环节而努力:一个通过像菲格罗亚实验室那样的纠缠光子联系在一起的“量子互联网” 。

数十亿美元已经被投入到量子计算机和传感器的研究中,但许多专家表示,这些设备只有在远距离相互连接时才会迅速发展。就像网络将个人计算机从美化的打字机和 游戏 机转变为不可或缺的电信设备一样,这一愿景和网络的这一方式相似。

纠缠是一种奇怪的量子力学性质,尽管它曾被阿尔伯特·爱因斯坦嘲笑为“幽灵般的超距作用”,但是研究人员仍希望能够在远距离建立紧密的、瞬时的联系。量子互联网可以将望远镜连接成超高分辨率的阵列、精确地同步时钟、为金融和选举建立安全的通信网络、并使得从任何地方进行量子计算成为可能。它还可能催生出没有人想象过的应用程序。

然而,将这些脆弱的联系放入温暖、嗡嗡作响的世界并非易事。如今存在的大多数传输链只能将纠缠的光子发送到相距仅几十公里的接收器。同时,量子连接是短暂的,它会随着光子的接收和测量而被破坏。研究人员希望可以无限期地维持纠缠,利用光子流在全球范围内编织持久的量子连接。

为此,他们将需要光中继器在量子通信网络中的等价物。光中继器是当今电信网络的组件,可在数千公里的光纤中保持强光信号。几个团队已经展示了量子中继器的关键组成部分,并表示他们在构建扩展网络的道路上进展顺利。“我们已经解决了所有的科学问题,”哈佛大学的物理学家米哈伊尔·卢金 (Mikhail Lukin) 说,“我非常乐观地认为,在5到10年内……我们将拥有大陆级别的量子网络原型。”

1969年10月29日晚 (即Woodstock音乐节刚结束2个月,越战正在爆发) ,加利福尼亚大学洛杉矶分校的学生查理·克莱恩 (Charley Kline) 向位于加利福尼亚州门洛帕克的斯坦福研究所中500多公里外的计算机发送了一条消息。这标志着美国高等研究计划署网络 (the Advanced Research Projects Agency Network,ARPANET) 开始建立。从那个不稳定的双节点开始——克莱恩的预期信息是“login”,但在系统崩溃之前只有“lo”通过——互联网已经扩展到今天的全球网络。大约 20 年前,物理学家开始猜测相同的基础设施是否可以穿梭于更奇特的东西:量子信息。

1994年是一个激动人心的时刻。一位名叫彼得·肖尔 (Peter Shor) 的数学家设计了一种量子代码,可以破解当时领先的加密算法,这是经典计算机无法做到的。肖尔的算法表明,量子计算机具有使非常小的或冷的物体同时以多种“叠加”状态存在的能力,这可能具有爆炸级的应用——破解密码。他们花费了长达数十年的努力来构建量子计算机。一些研究人员想知道量子互联网是否会极大地增强这些机器的能力。

但是建造一台量子计算机已经足够令人却步了。就像纠缠一样,对纠缠至关重要的叠加状态是脆弱的,在被外界测量或以其他方式干扰时会崩溃。由于该领域专注于通用量子计算机,将这些计算机连接起来的想法大多被规划到遥远的未来。菲格罗亚打趣说,量子互联网变得“就像量子计算机的时髦版本”。

第一个能够传输单个纠缠光子的量子网络已经初具规模。2017年中国的一份报告是最引人注目的:一颗名为“墨子号”的量子卫星将纠缠粒子对发送到相距 1200 公里的地面站 ( Science , 16 June 2017, p. 1110) 。这一成就在华盛顿特区引发了担忧,最终导致了 2018 年《国家量子倡议》法案 ( National Quantum Initiative Act ) 的通过,该法案由当时的总统唐纳德·特朗普 (Donald Trump) 签署成为法律,旨在推动美国的量子技术的进步。美国能源部 (The Department of Energy,DOE) 在 4 月份提出了进一步推进美国量子互联网发展的设想,宣布斥资2500万美元用于量子互联网的研发,以连接国家实验室和大学。“让我们将我们的科学设施连接起来,证明量子网络是有效的,并为该国其他地区提供一个框架,让其继续并扩大规模。”最近才开始领导美国能源部科学办公室的克里斯·法尔 (Chris Fall) 说。

由中国科学技术大学物理学家潘建伟领导的中国小组继续发展其量子网络。根据1月份 Nature 的一篇论文,纠缠粒子现在可以跨越 4600 多公里,使用光纤和非量子中继。其他国家也已经证明了更短距离的量子连接。

量子通信行业和政府开始通过一种称为量子密钥分发 (Quantum Key Distribution,QKD) 的方法,将最初的链接用于安全通信。QKD使双方能够通过对纠缠光子对进行同时测量来共享密钥。量子连接可以防止密钥被篡改或窃听,因为任何干预测量都会破坏纠缠,用密钥加密的信息可以通过普通渠道传递。QKD 被用于确保瑞士选举的安全,并且银行已经对其进行了测试。但许多专家质疑其重要性,因为更简单的加密技术也不受已知攻击的影响,包括Shor算法。此外,QKD不能保证发送和接收节点的安全,这些节点仍然容易受到攻击。

成熟的量子网络的目标更高。“它不仅会传输纠缠粒子”,美国国家标准与技术研究所的物理学家尼尔·齐默曼 (Neil Zimmerman) 说,“它将纠缠作为一种资源进行分配”,使设备能够长时间纠缠,从而共享和利用量子信息。 ( Science , 19 October 2018, 10.1126/science.aam9288)

在量子网络的发展中,科学可能是首先受益的。量子网络的一种可能的用途是超长基线干涉测量。该方法将全球的射电望远镜连接起来,有效地创造了一个强大的单一、巨大的天线,足以对遥远星系中心的黑洞进行成像。将远距离的光学望远镜收集到的光组合起来更具挑战性。但是物理学家提出了一些方案,可以在量子存储器中捕获望远镜收集的光,并使用纠缠光子提取和合并其相位信息,这是超高分辨率的关键。分布式纠缠量子传感器还可以为暗物质和引力波带来更灵敏的探测器网络。

量子网络更实际的应用包括超安全选举和防黑客通信,这使得信息本身,而不仅仅是用于解码它的密钥,能够像在QKD中密钥一样在纠缠节点之间共享。纠缠也可以同步原子钟,并防止在它们之间积累信息的延迟和错误。除此之外,量子网络还可以提供一种连接量子计算机的方法,增强量子计算机的能力。在未来一定的时间里,每个量子计算机可能会被限制在几百个量子比特,但如果纠缠在一起,它们可能能够处理更复杂的计算。

进一步考虑这个想法,一些人还设想了一种云计算的模拟,即所谓的盲量子计算 (Blind quantum computing) 。人们的想法是,有朝一日,最强大的量子计算机将位于国家实验室、大学和公司,就像今天的超级计算机一样。药物和材料设计师或股票交易员可能希望在不泄露程序内容的情况下从远处运行量子算法。理论上,用户可以在与远程量子计算机纠缠在一起的本地设备上对问题进行编码——利用远程计算机的能力,但同时不泄漏该问题的信息。

“作为一名物理学家,我认为盲量子计算非常漂亮。”因斯布鲁克大学的特蕾西·诺瑟普 (Tracy Northup) 说。

研究人员对完全纠缠网络 (fully entangled networks) 进行了早期研究。2015 年,魏纳 (Wehner) 及其同事将光子与氮原子中的电子自旋纠缠在一起,它们被包裹在代尔夫特理工大学校园内相距1.3公里的两颗小钻石中。然后光子被发送到一个中间站,在那里它们相互作用以纠缠钻石节点。该实验创造了“调制”纠缠的距离记录,这意味着研究人员可以确认并使用它,并且这种联系持续了长达几微秒。

然而,更广泛的网络可能需要量子中继器来复制、校正、放大和重新广播几乎每个信号。尽管中继器是经典互联网中相对简单的技术,但量子中继器必须避开“不可克隆”定理——即从本质上讲,量子态不能被复制。

图2:量子网络将由纠缠的光子编织在一起,这意味着它们共享一个量子态。但是这需要量子中继器在遥远的用户之间中继脆弱的光子。

一种流行的量子中继器设计从两个相同的、不同来源的纠缠光子对开始,每对中的一个光子飞向遥远的端点,这些端点可能是量子计算机、传感器或其他中继器。让我们称它们为Alice和Bob,因为量子物理学家习惯这样做。

每对光子的另一半向内拉,朝向中继器的中心。该设备必须捕获先到达的光子,将其信息导入量子存储器 (可能是钻石或原子云) ,纠正在传输过程中积累的错误,并对其进行处理,直到另一个光子到达。然后中继器需要以纠缠遥远的光子双胞胎的方式将两者联系起来。这个过程被称为纠缠交换 (entanglement swapping) ,在遥远的端点Alice和Bob之间创建了一个链接。其他的中继器可以将Alice连接到Carol,将Bob连接到Dave,最终跨越很远的距离。

菲格罗亚将他建造这种设备的动力追溯到他2008年在卡尔加里大学的博士学位论文答辩。这位出生于墨西哥的年轻物理学家描述了他如何将原子与光纠缠在一起之后,一位理论学家问他要如何处理这个装置。“当时我真丢脸,我没有答案。对我来说,这是一个我可以玩的玩具。”菲格罗亚回忆道。“他告诉我:‘量子中继器就是你要做的。’”

受到启发,菲格罗亚在来到石溪之前就在马克思·普朗克量子光学研究所研究了该系统。他很早就确认商用的量子中继器应该在室温下运行——这与大多数量子实验室的实验不同,后者在非常冷的温度下进行,以最大限度地减少可能扰乱脆弱量子态的热振动。

菲格罗亚希望将铷蒸气作为中继器的一个组件,即量子存储器。铷原子是锂和钠的同族元素,对科学家很有吸引力,因为它们的内部量子态可以通过光来设置和控制。在菲格罗亚的实验室中,来自分频晶体的纠缠光子进入每个包含 1 万亿个左右铷原子的塑料细胞 (cells) 。在那里,每个光子的信息被编码为原子之间的叠加,在那里它持续几分之一毫秒——这对于量子实验来说非常好。

菲格罗亚仍在开发第二阶段的中继器:使用计算机控制的激光脉冲来纠正错误并维持云的量子态。然后,额外的激光脉冲会将携带纠缠的光子从存储器发送到测量设备,以与最终用户发生纠缠。

卢金使用不同的介质构建量子中继器:包裹在钻石中的硅原子。传入的光子可以调整硅电子的量子自旋,从而产生潜在的稳定记忆。论文中,他的团队报告捕获和存储量子态的时间超过五分之一秒,远远长于铷存储器。2020年一篇发表在 Nature 上的文章中指出,尽管必须将钻石冷却到绝对零上几分之一度的范围内,但卢金表示制冷器正在变得紧凑和高效, “现在这是我最不担心的。”

在代尔夫特理工大学,魏纳和她的同事也在推动钻石方法,但使用氮原子而不是硅。上个月在 Science 杂志上,该团队报道了在实验室中纠缠三颗钻石,创建了一个微型量子网络。首先,研究人员使用光子纠缠了两种不同的钻石:Alice和Bob。在Bob中,纠缠从氮转移到碳核中的自旋:一种长寿命的量子存储器。然后在Bob的氮原子和第三颗钻石Charlie之间重复纠缠过程。研究人员对 Bob的氮原子和碳核进行联合测量然后将纠缠转移到第三颗钻石,即Alice到Charlie。

实验负责人、代尔夫特理工大学物理学家罗纳德·汉森 (Ronald Hanson) 说,尽管该实验距离比现实世界的量子网络需要的距离短得多、效率也低得多,但可控的纠缠交换证明了量子中继器的工作原理,这是“从未被做过的事情”。

潘建伟的团队还展示了一个部分中继器,其中原子云作为量子存储器。但在2019年发表在 Nature Photonics 上的一项研究中,他的团队展示了一个完全不同的早期原型:通过平行光纤发送大量的纠缠光子,至少有一个可能在旅途中幸存下来。潘建伟说,虽然这可能避免对中继器的需求,但该网络需要能够纠缠至少数百个光子,而他目前的记录是12个光子。使用卫星产生纠缠是潘建伟正在开发的另一项技术,也可以减少对中继器的需求,因为光子在太空中的存在时间比通过光纤长得多。

大多数专家都认为,真正的量子中继器还需要数年时间,最终可能会使用当今量子计算机中常见的技术,例如超导体或俘获离子,而不是钻石或原子云。这样的设备需要捕获几乎所有击中它的光子,并且可能需要至少几百个量子比特的量子计算机来校正和处理信号。从某种意义上说,更好的量子计算机可以推动量子互联网的发展——这反过来又可以增强量子计算。

在物理学家努力打造完美中继器的同时,他们正在将单个大都市区内的站点连接起来,因为它们不需要中继器。在2月发布到 arXiv 的一项研究中,菲格罗亚将他的实验室中两个原子云存储器中的光子通过79公里的商业光纤发送到布鲁克海文国家实验室,在那里光子被合并——代尔夫特理工大学的小组朝着这种端到端类型的纠缠迈出了一步。到明年,他计划在他的大学和他的创业公司Qunnect的纽约办公室之间部署两个量子存储器,并把它们压缩到一个微型冰箱的大小,看看它们是否能提高光子在旅途中幸存下来的几率。

波士顿、洛杉矶和华盛顿特区也正在建设量子网络,两个网络将把伊利诺伊州的阿贡国家实验室和费米国家加速器实验室与芝加哥地区的几所大学连接起来。代尔夫特理工大学的研究人员希望很快将他们创纪录的长期纠缠扩展到荷兰海牙的商业电信设施,而其他新兴网络正在欧洲和亚洲不断发展。

这些量子网络最终目标是使用中继器将这些小型网络连接到洲际互联网。但首先,研究人员面临着更简单的挑战,包括建造更好的光子源和探测器、最大限度地减少光纤连接处的损耗,以及在特定量子系统 (例如原子云或钻石) 的固有频率和电信光纤传导的红外波长之间有效地转换光子。“那些现实世界的问题,”齐默曼说,“实际上可能比光纤衰减的问题更大。”

图3:微小钻石中的杂质原子(如该芯片的核心)可以存储和传递量子信息。

有些人怀疑这项技术是否是在炒作。“纠缠是一种非常奇怪、非常特殊的性质”,陆军研究实验室的物理学家库尔特·雅各布斯说, “它不一定适用于所有类型的应用程序。” 例如,对于时钟同步,与经典方法相比量子网络的优势仅体现在纠缠设备数量的平方根上,量子网络需要连接9个设备才能获得经典网络3倍的收益。三倍增益需要连接九个时钟——可能会遇到高于它的价值的问题。“拥有功能性量子网络总是比经典网络更难。”雅各布斯说。

对于这种怀疑,芝加哥大学的物理学家大卫·奥沙洛姆 (David Awschalom) 反驳说,“我们正处于量子技术的晶体管阶段。” 晶体管于1947年被发明出来,几年之后,公司才发现它在收音机、助听器和其他设备中的用途。如今,每一台新电脑、智能手机和 汽车 的芯片中,都蚀刻了数以亿计的晶体管.

未来几代人可能会像我们怀念阿帕网 (ARPANET) 一样回望此刻——作为互联网的纯婴儿版本,阿帕网的巨大潜力当时没有得到认可和商业化。“你可以肯定,我们还没有想到这项技术将做的一些最重要的事情”,奥沙洛姆说:“如果你相信已经做了最重要的事情,那说明你太傲慢了。”

本文经授权转载自微信公众号“集智俱乐部”。

原文地址:

science发表论文高校排名

能够上榜,其实凭借的都是自己的能力和技术,凭借自己不断的努力,然后一点点的让自己的技术提升,最后才有这样的一个上榜机会。

中国计算机科学发论文最多高校揭晓,清华、浙大、上交大前三

最近,《2017中国高校国际学术影响力评价报告》发布,清华大学计算机科学的论文发表数量、创新人才数量双双排名全国第一,华中科技大学高被引数量第一。

国际成果规模(论文发文数量):浙江大学、中国科学院大学、上海交通大学排前三。十年来高被引论文数量:清华大学、北京大学、浙江大学排前三。创新人才(主导科学家数量):清华大学、浙江大学、北京大学排前三。优势学科(进入ESI前1%学科数量):北京大学、浙江大学、中山大学排前三。

具体到计算机科学:

国际成果规模(论文发文数量):清华大学、浙江大学、上海交通大学排前三。十年来高被引论文数量:华中科技大学、东南大学、清华大学排前三。创新人才(主导科学家数量):清华大学、上海交通大学、浙江大学排前三。

这份报告是由中国教育发展战略学会人才发展专业委员会、中国教育网、中国教育在线、学术桥联合发布。

数据来源与评价指标

本报告的数据主要来源于ESI(Essential Science Indicators)数据库,数据时间段为2007.01.01-2017.2.28(十年)。

为了更好地识别高被引论文的第一作者和通讯作者,报告在 Web of Science 数据库中下载了高被引论文的题录数据。

第一作者的依据是 Web of Science 数据库论文题录数据中 AF 字段中的第一位。第一作者机构是 C1 字段中第一作者姓名对应的机构。

通讯作者的依据是 Web of Science 数据库题录数据中RP字段的作者。通讯作者机构是RP字段中作 者姓名对应的机构。

第一作者或通讯作者的机构可能有多个,数据处理中,报告按照顺序只采用第一机构。第一作者和通讯作者因在一项研究中的主导作用而被视为主导科学家。对于主导科学家的重名问题的处理依赖于一项发明专利技术“一种面向英文文献中中国作者的姓名消歧方法”。

截至 2017年2月28日,中国大陆共有209 所高校至少有一个学科入选 ESI 前1%高被引学科。本报告对于中国高校的国际学术影响力分析仅限于这 209 所高校。

报告内容分为“中国大学国际学术影响力评价”和“中国学科国际学术影响力评价”两部分。中国大学国际学术影响力评价”主要使用表1中的评价指标。

“中国学科国际学术影响力评价”主要使用表2中的评价指标。

中国高校国际学术影响力总体情况

需要注意的是,中国科学院大学成立于 2012 年,2012 年之前中国科学院研究生院的高被引论文数量未计入其中。另外,因大量署名中国科学院大学的高被引论文的第一作者与通讯作者的第一机构并非中国科学院大学,因此,主导论文数量较少。

2、十年来高被引论文数量:排名前三的高校是清华大学、北京大学、浙江大学。

上海交通大学、中国科学技术大学、复旦大学、南京大学、中山大学、哈尔滨工业大学、华中科技大学进入前十。

3、创新人才(主导科学家数量):排名前三的高校是清华大学、浙江大学、北京大学。

上海交通大学、复旦大学、南京大学、中国科学技术大学、华南理工大学、南开大学、中山大学进入高校前十。

4、优势学科(进入ESI前1%学科数量):排名前三的高校是北京大学、浙江大学、中山大学。

上海交通大学、复旦大学、清华大学、南京大学、武汉大学、山东大学、中国科学院大学进入高校前十。

计算机科学国际学术影响力:清华发论文最多,华中科大高被引最多

中国学科国际学术影响力中,计算机科学在国际成果规模、高被引论文、创新人才数量三个维度进行的评价。

1、国际成果规模(论文发文数量):排名前三的高校是清华大学、浙江大学、上海交通大学。

2、十年来高被引论文数量:排名前三的高校是华中科技大学、东南大学、清华大学。

3、创新人才(主导科学家数量):排名前三的高校是清华大学、上海交通大学、浙江大学。

报告的课题组负责人李江教授介绍,此次《报告》的发布除了作为国家有关部门、各高校、社会组织参考的同时,也能够激励高校从高水平成果、人才培养、学科建设三个维度考虑发展方向和策略。

你好。是不错的。在小路边的修车摊保养一次400元,高速费一年200元足够,目前还不需要换变速箱油和轮胎,所以不能算,算下来一年养车费用是8000+3125+400+200D等于11725元,平均一个月977块钱,还是可以接受的

大学排名,是根据各项科学研究和教学等标准、以英文发表研究报告和学术论文、针对相关大学在数据、报告、成就、声望等方面进行数量化评鉴,再通过加权后形成的对大学的排序。最近有同学咨询esl大学排名是什么意思?下面我们一起来了解一下。 一、esl大学排名是什么意思? ESI的全称为基本科学指标数据库(Essential Science Indicators),是目前国际认上普遍用以评价高校、学术机构、国家/地区国际学术水平及影响力的重要评价指标工具之一,该榜单的主要基于SCI和SSCI期刊论文的大数据来制定,是公认的衡量世界一流大学和世界一流学科的“世界标准”之一。 ESI的排名以学科为划分,主要分为22个学科,包括生物学与生物化学、经济与商业、工程学、地球科学、化学、计算机科学、材料科学、数学、临床医学、分子生物学与遗传学、综合交叉学科、物理学、神经系统学与行为学、免疫学、精神病学与心理学、环境科学与生态学、空间科学、农业科学、植物学与动物学、微生物学、药理学和毒理学、社会科学。 二、esl大学排名准确吗? 排名基本是准确的,是由一定的科学依据的。ESL是基本上的科学指标数据库,是衡量科学研究绩效、跟踪科学发展趋势的基本分析评价工具。 2022年中国esl排名前五的学校分别是:中国科学院大学、清华大学、北京大学、上海交通大学、浙江大学。 中国科学院大学科研实力非常强,它的发展历史并不长,但是该校的发展潜力却很大。在办校中,该校的主要是培养研究生,实现科教融合,办学质量得到了跨越性的进步,并且学校各方面的成绩也得到了社会的认可。 高校排名可以大致显示各学校的实力,但是学生们仅仅通过排名去考察学校实力未免有些片面 ,排名仅仅作为衡量学校实力的一个参考标准。 三、大学排名还有哪些? 1、高等院校排名 泰晤士高等教育世界大学排名以教学、研究、知识转化、国际视野等多项指标衡量大学综合实力,被视为最权威的世界大学排名之一。该排名通过论文引用频率、每名教师所对应的学生人数、留学生与国内学生的比例等13项指标进行评估。 QS世界大学排名的指标体系中学术声誉调查占40%权重、雇主声誉调查占10%、师生比占20%、师均引用次数占20%、国际学生比例和国际教师比例各占5%。其中学术声誉调查是根据全球8万多名知名学者的反馈,雇主声誉调查由4万多所全球企业的人力资源部门的反馈结果所得出。QS世界大学排名因其问卷调查形式的公开透明而获评为世上最受注目的大学排行榜之一,但也因具有过多主观指标和商业化指标而受到批评。 U.S. News世界大学排名主要指标如下:全球研究声誉12.5%,地区性研究声誉12.5%,发表论文10%,出版书籍2.5%,学术会议2.5%,标准化引用影响10%,总被引用次数7.5%,高频被引文献数量(在引用最多文献的前10%) 12.5%,高频被引文献百分比(在引用最多文献的前10%)10%,国际合作10%,高频被引文献数量(在各自领域被引次数最多的前1%)5%和高频被引文献百分比(在各自领域被引次数最多的前1%)5%。 软科世界大学学术排名自2003年首次发布以来,确立了大学评价的中国话语体系。不过,因其对诺贝尔奖和菲尔兹奖情有独钟,以及对《自然》和《科学》两大自然科学期刊的重视,世界大学学术排名一直被指过度偏重理工领域。此外,因其所采纳的知名期刊与论文发表平台均来自美国,也导致此排行榜中美国的大学表现明显优于其他国家。 2、学术机构排名 世界机构自然指数排名,由施普林格·自然(Springer Nature)旗下自然科研(Nature Research)编制,通过追踪高质量自然科学期刊所发表的科研论文的作者信息,为科研共同体提供有关全球科研状况和出版趋势的信息。自2018年6月起,纳入自然指数的期刊数量已由原先的68本增至82本。自然指数目前采用两种计算论文产出的方法,其中论文计数 (AC) 指不论一篇文章有一个还是多个作者,每位作者所在的国家或机构都获得1个AC分值;分数式计量(FC)则考虑了每位论文作者的相对贡献。 四、大学排名的由来。 排名最初是由于本科生和其父母的关心应运而生的,后来延伸应用于大学招收优秀学生和扩大募款来源的用途上。 根据国际研究显示,优秀学生认为大学排名前茅,有益于协助他们获得更好的工作机会、更优厚的薪资结构和社会地位。各国排名居前的名牌大学和具有特色的新兴大学常获得政府巨额的教育补助和优秀学生的青睐。定位不明确并排名居末的大学,其学生来源和优秀学生比例则可能逐年下降。如今的排名影响着一大批与利益攸关的选择;再者由于各校强项不一,有的是由于历史悠久、校友贡献良多、国家资源投入、科学研究地位而使其稳定领先;有的则迅速改善自身的缺失,并强化既有的特色,而得以在个类的排行榜上逐年提升。 一般认为,由于全球学习英语的人口最众、英语对国际的影响力最广泛,所以英语系国家的大学院校比较注重大学排名。而非英语系国家的众多欧洲大学,虽然具有悠久的历史(如法国),学术水平也较为平均(如德国),但英语并非为发表其研究报告和学术论文的语言,所以将之纳入以英语世界大学排名榜内,实未达致客观标准。此外,大学排名的标准项目内,特别是有关人文与社会科学的指标,由于需要本国的语言、文化、历史、政治、商业、社会等特定背景参考,遂发展出另外以社会科学为主的商学院、企业管理硕士等更细腻的评鉴。 世界很多教育机构都有针对国内外大学、商学院或工商管理硕士的排名,由此产生了一系列的社会和商业影响。esl大学排名是什么意思?现在大家了解了吗?

高振发发表的论文

没有。根据爱企查查询的信息可知,湖北讯驰信息咨询有限公司是一所正规的科技公司,发表论文可以提高公司的知名度和获取流量,是公司和社会都认可的。

《英国工人阶级状况》等。由明日杂志官方发出的公告得知:2021年15期发表的论文有:《英国工人阶级状况》,《营造法式》,《人生十六七》等。论文常用来指进行各个学术领域的研究和描述学术研究成果的文章,简称之为论文,它既是探讨问题进行学术研究的一种手段,又是描述学术研究成果进行学术交流的一种工具。

你好!写核心技术论文,需要注意以下几个方面:

1. 确定论文的主题和研究方向:选择一个熟悉的领域,确定研究问题,从而确立论文的主题和研究方向。

2. 收集研究资料:查阅文献、报刊、网络等各类资料,收集与研究课题相关的信息和数据素材。

3. 进行系统性分析:在收集资料的基础上,逐项分析并总结,筛选出与研究问题和主题密切相关的信息素材,并加以整理、编写,形成论文的各个章节。

4. 组织论文结构:根据通则、原则和规范,遵循科学性、连贯性、简洁性、准确性等特征,合理安排、精细设计论文结构,设立题目、摘要、目录、正文、参考文献等各项组成要素,保证整篇论文有机地联系起来,展现充分的思想力量和学术水平。

5. 提升写作水平:结合学习语言表达规范,注重语言表达、逻辑推理和修辞技巧等方面的训练,加强写作能力与写作技术,提高写作水平和质量。

希望这些建议能够帮到你,祝你写作顺利,获得满意的成果!

声明:该答案来源于“知否AI问答”,一款全方位“智能问答”、“知识获取”和“内容生成”系统。

TA可以帮您构思论文思路,论文大纲撰写,论文润色,论文降重,辅助你快速高效的完成论文。

science发表论文高校排名榜

中国计算机科学发论文最多高校揭晓,清华、浙大、上交大前三

最近,《2017中国高校国际学术影响力评价报告》发布,清华大学计算机科学的论文发表数量、创新人才数量双双排名全国第一,华中科技大学高被引数量第一。

国际成果规模(论文发文数量):浙江大学、中国科学院大学、上海交通大学排前三。十年来高被引论文数量:清华大学、北京大学、浙江大学排前三。创新人才(主导科学家数量):清华大学、浙江大学、北京大学排前三。优势学科(进入ESI前1%学科数量):北京大学、浙江大学、中山大学排前三。

具体到计算机科学:

国际成果规模(论文发文数量):清华大学、浙江大学、上海交通大学排前三。十年来高被引论文数量:华中科技大学、东南大学、清华大学排前三。创新人才(主导科学家数量):清华大学、上海交通大学、浙江大学排前三。

这份报告是由中国教育发展战略学会人才发展专业委员会、中国教育网、中国教育在线、学术桥联合发布。

数据来源与评价指标

本报告的数据主要来源于ESI(Essential Science Indicators)数据库,数据时间段为2007.01.01-2017.2.28(十年)。

为了更好地识别高被引论文的第一作者和通讯作者,报告在 Web of Science 数据库中下载了高被引论文的题录数据。

第一作者的依据是 Web of Science 数据库论文题录数据中 AF 字段中的第一位。第一作者机构是 C1 字段中第一作者姓名对应的机构。

通讯作者的依据是 Web of Science 数据库题录数据中RP字段的作者。通讯作者机构是RP字段中作 者姓名对应的机构。

第一作者或通讯作者的机构可能有多个,数据处理中,报告按照顺序只采用第一机构。第一作者和通讯作者因在一项研究中的主导作用而被视为主导科学家。对于主导科学家的重名问题的处理依赖于一项发明专利技术“一种面向英文文献中中国作者的姓名消歧方法”。

截至 2017年2月28日,中国大陆共有209 所高校至少有一个学科入选 ESI 前1%高被引学科。本报告对于中国高校的国际学术影响力分析仅限于这 209 所高校。

报告内容分为“中国大学国际学术影响力评价”和“中国学科国际学术影响力评价”两部分。中国大学国际学术影响力评价”主要使用表1中的评价指标。

“中国学科国际学术影响力评价”主要使用表2中的评价指标。

中国高校国际学术影响力总体情况

需要注意的是,中国科学院大学成立于 2012 年,2012 年之前中国科学院研究生院的高被引论文数量未计入其中。另外,因大量署名中国科学院大学的高被引论文的第一作者与通讯作者的第一机构并非中国科学院大学,因此,主导论文数量较少。

2、十年来高被引论文数量:排名前三的高校是清华大学、北京大学、浙江大学。

上海交通大学、中国科学技术大学、复旦大学、南京大学、中山大学、哈尔滨工业大学、华中科技大学进入前十。

3、创新人才(主导科学家数量):排名前三的高校是清华大学、浙江大学、北京大学。

上海交通大学、复旦大学、南京大学、中国科学技术大学、华南理工大学、南开大学、中山大学进入高校前十。

4、优势学科(进入ESI前1%学科数量):排名前三的高校是北京大学、浙江大学、中山大学。

上海交通大学、复旦大学、清华大学、南京大学、武汉大学、山东大学、中国科学院大学进入高校前十。

计算机科学国际学术影响力:清华发论文最多,华中科大高被引最多

中国学科国际学术影响力中,计算机科学在国际成果规模、高被引论文、创新人才数量三个维度进行的评价。

1、国际成果规模(论文发文数量):排名前三的高校是清华大学、浙江大学、上海交通大学。

2、十年来高被引论文数量:排名前三的高校是华中科技大学、东南大学、清华大学。

3、创新人才(主导科学家数量):排名前三的高校是清华大学、上海交通大学、浙江大学。

报告的课题组负责人李江教授介绍,此次《报告》的发布除了作为国家有关部门、各高校、社会组织参考的同时,也能够激励高校从高水平成果、人才培养、学科建设三个维度考虑发展方向和策略。

小论文和毕业论文查重因为该期刊对文章格式要求非常严谨,如果没有认真修改,就直接复制粘贴就可以了,不仅容易造成字数上的浪费,而且影响到自己的答辩结果。另外,有些刊物也有较明确的办法限定每篇文章必须包含下面部分内容,那么只要你知道自己的论文内容即可。如果我觉得内容还行不错的话那么选择一个适合自己的期刊杂志是非常简单的事。其它杂志在选择期刊时也会注意到一些细节问题,例如审稿周期、论文字数等问题。但是这里有两点:2017年论文查重毕业论文查重流程一、文章的逻辑性和准确性很强;二、论文中存在的问题比较多,或者大家关于这些细节,大家可以参考一下。根据esi数据库统计数据,清华大学2004至今发表了6263篇esi论文,位居全球前千,达到92.7%,位列中国高校第293名。进入前十强的学术机构是:中国科学院、北京大学、西安交通大学;清华大学排在第四位,与清华大学并列第五名,入围前十名的高校共有7所,位置见下表。中国科学院、北京大学、浙江大学依旧稳居第一名、清华大学,紧随其后的是南京大学(34名)、北京师范大学(46名)、武汉大学(31名)和华中科技大学(29名)。其中,清华大学在论文发表数量、总被引频次、高校排行榜上位列第五十名;北京大学则在各项指标获得优异成绩,排名全国第二,在《nature》、《science》和《cell》四大顶尖期刊上共发表了200篇论文。2016年度教育部人文社会科学研究一般性认定办法最终发布为c类以外的普通高等学术水平85所高校2016年发表“具有正高级职称”水平及影响力的研究型大学2017年发表“具有正高级职称”水平及影响力的研究型大学239所高校2017年“具有正高级职称”水平及影响力研究型大学2008年发表“具有正高级职称”水平及影响力的研究型大学2018年“具有正高级职称”水平及影响力研究型大学253所中国高校298所“具有正高级职称”水平及影响力研究型大学2008年发表“具有正高级职称”水平及影响力的研究型大学小论文和毕业论文查重因为该期刊对文章格式要求非常严谨,如果没有认真修改,就直接复制粘贴就可以了,不仅容易造成字数上的浪费,而且影响到自己的答辩结果。另外,有些刊物也有较明确的办法限定每篇文章必须包含下面部分内容,那么只要你知道自己的论文内容即可。如果我觉得内容还行不错的话那么选择一个适合自己的期刊杂志是非常简单的事。其它杂志在选择期刊时也会注意到一些细节问题,例如审稿周期、论文字数等问题。但是这里有两点:2017年论文查重毕业论文查重流程一、文章的逻辑性和准确性很强;二、论文中存在的问题比较多,或者大家关于这些细节,大家可以参考一下。根据esi数据库统计数据,清华大学2004至今发表了6263篇esi论文,位居全球前千,达到92.7%,位列中国高校第293名。进入前十强的学术机构是:中国科学院、北京大学、西安交通大学;清华大学排在第四位,与清华大学并列第五名,入围前十名的高校共有7所,位置见下表。中国科学院、北京大学、浙江大学依旧稳居第一名、清华大学,紧随其后的是南京大学(34名)、北京师范大学(46名)、武汉大学(31名)和华中科技大学(29名)。其中,清华大学在论文发表数量、总被引频次、高校排行榜上位列第五十名;北京大学则在各项指标获得优异成绩,排名全国第二,在《nature》、《science》和《cell》四大顶尖期刊上共发表了200篇论文。2016年度教育部人文社会科学研究一般性认定办法最终发布为c类以外的普通高等学术水平85所高校2016年发表“具有正高级职称”水平及影响力的研究型大学2017年发表“具有正高级职称”水平及影响力的研究型大学239所高校2017年“具有正高级职称”水平及影响力研究型大学2008年发表“具有正高级职称”水平及影响力的研究型大学2018年“具有正高级职称”水平及影响力研究型大学253所中国高校298所“具有正高级职称”水平及影响力研究型大学2008年发表“具有正高级职称”水平及影响力的研究型大学

有很多的毕业生联合举办,让人觉得河南大学有名,自然就是榜上有名。

大学排名,是根据各项科学研究和教学等标准、以英文发表研究报告和学术论文、针对相关大学在数据、报告、成就、声望等方面进行数量化评鉴,再通过加权后形成的对大学的排序。最近有同学咨询esl大学排名是什么意思?下面我们一起来了解一下。 一、esl大学排名是什么意思? ESI的全称为基本科学指标数据库(Essential Science Indicators),是目前国际认上普遍用以评价高校、学术机构、国家/地区国际学术水平及影响力的重要评价指标工具之一,该榜单的主要基于SCI和SSCI期刊论文的大数据来制定,是公认的衡量世界一流大学和世界一流学科的“世界标准”之一。 ESI的排名以学科为划分,主要分为22个学科,包括生物学与生物化学、经济与商业、工程学、地球科学、化学、计算机科学、材料科学、数学、临床医学、分子生物学与遗传学、综合交叉学科、物理学、神经系统学与行为学、免疫学、精神病学与心理学、环境科学与生态学、空间科学、农业科学、植物学与动物学、微生物学、药理学和毒理学、社会科学。 二、esl大学排名准确吗? 排名基本是准确的,是由一定的科学依据的。ESL是基本上的科学指标数据库,是衡量科学研究绩效、跟踪科学发展趋势的基本分析评价工具。 2022年中国esl排名前五的学校分别是:中国科学院大学、清华大学、北京大学、上海交通大学、浙江大学。 中国科学院大学科研实力非常强,它的发展历史并不长,但是该校的发展潜力却很大。在办校中,该校的主要是培养研究生,实现科教融合,办学质量得到了跨越性的进步,并且学校各方面的成绩也得到了社会的认可。 高校排名可以大致显示各学校的实力,但是学生们仅仅通过排名去考察学校实力未免有些片面 ,排名仅仅作为衡量学校实力的一个参考标准。 三、大学排名还有哪些? 1、高等院校排名 泰晤士高等教育世界大学排名以教学、研究、知识转化、国际视野等多项指标衡量大学综合实力,被视为最权威的世界大学排名之一。该排名通过论文引用频率、每名教师所对应的学生人数、留学生与国内学生的比例等13项指标进行评估。 QS世界大学排名的指标体系中学术声誉调查占40%权重、雇主声誉调查占10%、师生比占20%、师均引用次数占20%、国际学生比例和国际教师比例各占5%。其中学术声誉调查是根据全球8万多名知名学者的反馈,雇主声誉调查由4万多所全球企业的人力资源部门的反馈结果所得出。QS世界大学排名因其问卷调查形式的公开透明而获评为世上最受注目的大学排行榜之一,但也因具有过多主观指标和商业化指标而受到批评。 U.S. News世界大学排名主要指标如下:全球研究声誉12.5%,地区性研究声誉12.5%,发表论文10%,出版书籍2.5%,学术会议2.5%,标准化引用影响10%,总被引用次数7.5%,高频被引文献数量(在引用最多文献的前10%) 12.5%,高频被引文献百分比(在引用最多文献的前10%)10%,国际合作10%,高频被引文献数量(在各自领域被引次数最多的前1%)5%和高频被引文献百分比(在各自领域被引次数最多的前1%)5%。 软科世界大学学术排名自2003年首次发布以来,确立了大学评价的中国话语体系。不过,因其对诺贝尔奖和菲尔兹奖情有独钟,以及对《自然》和《科学》两大自然科学期刊的重视,世界大学学术排名一直被指过度偏重理工领域。此外,因其所采纳的知名期刊与论文发表平台均来自美国,也导致此排行榜中美国的大学表现明显优于其他国家。 2、学术机构排名 世界机构自然指数排名,由施普林格·自然(Springer Nature)旗下自然科研(Nature Research)编制,通过追踪高质量自然科学期刊所发表的科研论文的作者信息,为科研共同体提供有关全球科研状况和出版趋势的信息。自2018年6月起,纳入自然指数的期刊数量已由原先的68本增至82本。自然指数目前采用两种计算论文产出的方法,其中论文计数 (AC) 指不论一篇文章有一个还是多个作者,每位作者所在的国家或机构都获得1个AC分值;分数式计量(FC)则考虑了每位论文作者的相对贡献。 四、大学排名的由来。 排名最初是由于本科生和其父母的关心应运而生的,后来延伸应用于大学招收优秀学生和扩大募款来源的用途上。 根据国际研究显示,优秀学生认为大学排名前茅,有益于协助他们获得更好的工作机会、更优厚的薪资结构和社会地位。各国排名居前的名牌大学和具有特色的新兴大学常获得政府巨额的教育补助和优秀学生的青睐。定位不明确并排名居末的大学,其学生来源和优秀学生比例则可能逐年下降。如今的排名影响着一大批与利益攸关的选择;再者由于各校强项不一,有的是由于历史悠久、校友贡献良多、国家资源投入、科学研究地位而使其稳定领先;有的则迅速改善自身的缺失,并强化既有的特色,而得以在个类的排行榜上逐年提升。 一般认为,由于全球学习英语的人口最众、英语对国际的影响力最广泛,所以英语系国家的大学院校比较注重大学排名。而非英语系国家的众多欧洲大学,虽然具有悠久的历史(如法国),学术水平也较为平均(如德国),但英语并非为发表其研究报告和学术论文的语言,所以将之纳入以英语世界大学排名榜内,实未达致客观标准。此外,大学排名的标准项目内,特别是有关人文与社会科学的指标,由于需要本国的语言、文化、历史、政治、商业、社会等特定背景参考,遂发展出另外以社会科学为主的商学院、企业管理硕士等更细腻的评鉴。 世界很多教育机构都有针对国内外大学、商学院或工商管理硕士的排名,由此产生了一系列的社会和商业影响。esl大学排名是什么意思?现在大家了解了吗?

science发论文

操作对许多学者、特别是中国学者而言,发一篇Science论文,意味着学术地位和影响的极大提升,是梦寐以求的目标。虽然Science论文很多时候引领着相关研究领域的深度和前沿,但偶尔也会有一两篇论文,让人觉得有些费解。而一些非常认真的学者,则会对其不依不饶,抓住问题,讨论评论。

下面谈一下投稿的基本过程,特别是与Cell、Nature、Science、PNAS等影响因子比较高的杂志有关的一些技术性问题,也许可以打破其神秘感。其实这些杂志的主编,编辑们都经常在介绍其政策,评审标准,过程,等等。他们也经常来中国访问。今天我来代替他们介绍一下。一个系列杂志叫Cell、Neuron、Immunity…..等等,原来都是从Cell分出来的。这个杂志的基本特点是它有一个非常强的编委Editorial Board。怎样的人可以当编委呢?他们往往是有名的科学家,而且也愿意并能够非常快地对投稿做出评估。这些科学家也经常被选来做评审reviewer。大家都知道每篇文章送到杂志社后,都要请该领域的2-3专家看,并匿名写出评审意见给作者。 你不知道是谁写的,但这些专家会给你提出批评,哪些地方不好,哪些地方需要进一步做实验,怎么样做,这就叫杂志评审。 Cell、Neuron、Immunity等这些杂志的评审不少就是编委做的。因为现在杂志竞争的重要因素是发表要快,而做编委的专家能很快写出评审意见来。还有一个特点,Cell等杂志主编,编辑有非常大的权利,他们甚至可以象追星族那样去追科学家,去参加各种各样的科学会议,当看到你有非常重要的最新成果,他们会去竞争,会问你,你的文章写出来了没有,我保证给你多少时间发表,等等。另一个系列是Nature衍生出来的,这些杂志的特点是没有一个编委,但有一个评审专家库, 也就是说谁来评审,不是乱选的。这些杂志主编,编辑也有相当大的权利。这些是什么人呢?他们一般是读完博士,然后到非常好的实验室做博士后,这些人也许自己没有做出什么特别重大的贡献,没有什么好的文章,但他们欣赏能力特别好,文笔非常好,写得又快。你可不要小看他们,虽然自己没有做出什么伟大的工作来,但他们的思想水平学术水平都相当不错,看得多,写得快,Nature、Science的编辑大同小异,都是这样一批年纪不大的人,很活跃,经常参加各种各样的会议和活动。 Science杂志的编辑权利相对小些,因为他们还有一个编委会editorial board,有相当大的权利。一般过程是,当你的文章送到Science杂志社后,编辑先做一个初审,看一下是不是基本够格,然后他还要把文章的摘要Abstract送到编委会的某一个人那里,认可以后,才可以拿出去评审。两道关卡,大部分文章一下子就这样被砍掉了。 PNAS杂志是美国科学院院刊,文章有好有坏,院士自己投稿就不需要经过评审,叫做contribute。 院士原来一年可以五篇,后来减到四篇、三篇,就是院士自己写的文章,只要你投就给你发表,不需要经过评审,相信你是院士,投科学论文应该有责任心的。第二种叫做Communicate,不是院士自己的文章,是你的文章,院士觉得你的文章不错,他来给你通讯,投到PNAS杂志,这文章要评审,但是评审专家由院士自己来选。所以这个也不怎么样。还有一种叫Track C,就象一般杂志,你只要投过去,然后编辑部来给你选一个院士, 由他来找评审专家,相对来说,这比较客观些,所以Track C的文章质量就相对好一些。 我不是说院士的文章都很差,但院士有特权,可以把在其他杂志发不出去的文章,投到PNAS上去,所以在PNAS上有很多不怎么样的文章。

相关百科
热门百科
首页
发表服务