职称论文百科

聚合物固态电解质期刊投稿

发布时间:2024-07-06 14:40:50

聚合物固态电解质期刊投稿

凝胶是一种介于溶液和固体混合物的物质,一般情况下凝胶有溶液得大部分特征,但是又没有溶液的流动性而呈固体状态,所以凝胶一开始是作为一种特殊情况的分散体系,没有和固体完全的划分出界限,有时候也就勉强算是“固体”的范畴。但是,随着对凝胶的研究越来越深入,我们逐渐把凝胶从固体和溶液得范畴内单独分离出来作为一种状态来研究,所以严格来说,凝胶并不属于固体电解质。其实很多情况都这样,当初蛋白质就被划为高分子的范畴(现在仍有少数情况采取这种划分),但随着蛋白质研究的深入,已经单独作为生物大分子科学而从高分子化学中分离出来。。。

不是。固态电解质和电解液变成固态是完全不同的两种物质,并且电解液变成固态也并不是固态电解质,根本就不是同一种东西,所以是不一样的。固态电解质是一种固体离子导体电解质,能够运用在电能储存当中,并且能够增加安全性。

固态电解质期刊投稿

为什么是固态电池?

首先,先简单说一下什么是固态电池。

根据目前的相关资料,可以根据固态电池里电解质中液体的成分占比而进行分类。因此,固态电池可分为分为半固态锂电池(液固各占一半)、准固态锂电池(固多液少)、固态锂电池(少量液态)、全固态锂电池。

而全固态电池也就是正极、负极和电解质均为固态的锂电池。

相对于应用更广泛的锂离子电池,固态电池有相对的一些优势:

01

更稳定,更安全

固态电池没有液态物质,意味着其不会漏液。当损坏、被穿刺时不会产生爆炸或着火。此外,虽然固态陶瓷氧化物电解质相对来说比较脆弱,但并不代表它就是不稳定。

其电解质具备一定的柔性,配合相应的封装材料,电池在经受上千次也可保证性能不会衰减,保证了稳定性。

目前新能源 汽车 频发电池自燃或者爆炸的现象,车企和消费者对于电池安全都十分重视。因此,相对高安全性成为固态电池的最大优势。

02

体积更小,整体重量减轻

在固态电池中,固态电解质取代了隔膜和电解质(占电池中近40%的体积和25%的质量),意味着正负极之间仅剩固态电解质,因此两极间的距离可缩短至十几微米,从而使电池厚度大大降低。

03

更高的能量密度

这也是为什么现在越来越多车企研发固态电池的重要原因之一。

业界认为,固态电池的密度和结构可以让更多带电离子聚集在一端,传导更大的电流与提升电池容量,使能量密度能提升到 400Wh/kg 以上,优于一般的锂电池,有效解决里程焦虑的问题。

回到文章开头,为什么蔚来会选择固态电池,除了上文提及固态电池天生的优势以外,蔚来本身在电池使用方面,风格一向是偏向“大胆进攻”。

蔚来ES6是国内车企里第一波装配宁德时代NCM811电池的车型,其系统能量密度达170wh/kg。很大一部分原因,ES6要搭载NCM811就是看中了其更更高的能量密度。

宁德时代的NCM811动力电池的电芯能量密度为240Wh/Kg,Pack能量密度达到了170Wh/Kg,工况续航里程达到510km。从数据上来看,是算非常不错的。因此,除了蔚来,据悉广汽新能源Aion S与吉利几何A也是搭载宁德时代的NCM811动力电池。

无可否认,NCM811都是目前国内大多数电池企业所走的方向。但并不意味着NCM811电池能够担得起电动 汽车 的未来。

目前,中日韩在锂离子电池的技术发展路线来看,日本企业主要大力发展NCA(镍钴铝)体系锂电池,而中国与韩国更大力发展NCM(镍钴锰)体系锂电池。

从数据上来看,NCA电池的克容量相比于NCM811要稍高,安全性能相对更好。但NCA容易在高温下发生崩塌导致热失控,且pH 值过高易使单体胀气,进而可能引发危险。因此,其对制作工艺水准要求高且实际生产成本较NCM811更高。

这也是为什么国内企业会更偏爱NCM811,技术要求没有更苛刻,成本也相对较低。但是,这样的反面就是NCM811承载着更多关于安全的不确定性。

在NCM811电芯中,镍的比例已经达到非常高值,NCM811电池中正极材料的镍钴锰比例为8:1:1,镍的比例越高,意味着电池能量密度越高。

但是随着电池使用期的增长,快充次数增加,在遇到过充过放、高温、外力冲击等情况时,即便是电池内部温度还处于设定安全状态,电芯正负极析氧或析锂发生电化学反应等导致热失控的风险都会很高,电池安全性会急速下降。

据了解,NCM811由于镍的比例过高,在生产中很容易出现安全性能下降、循环不稳定、充电效率下降、过热等问题。而且生产这种电池在制备工艺、设备、生产环境,以及配套高压电解液等方面的要求都远远高于普通三元电池。因此,目前国内只有别克电池和宁德时代对NCM811进行量产化。

韩国电池巨头企业中,比如SKI、LG化学、三星SDI均表示过计划推出NCM811电池,但目前来看都推迟了这个计划。虽然他们都没有透露具体原因是什么,但从计划的进度可以看出如果要大面积推出这种高能量密度的电池并不是一件简单的事情。

因此,大家都普遍认为蔚来在电池使用方面的打法是大胆进攻。

为什么目前的动力电池数据看着还行,蔚来还要转方向研究固态电池?

之前关于电池自燃、爆炸等话题一直占据热搜的事情,笔者就不多讨论。但无可厚非的是,蔚来,甚至说全球车企都在不断寻找更高能量密度同时需要更高安全性的动力电池。

而蔚来,就选择与辉能 科技 共同合作研发固态锂离子电池。

2019年初,辉能 科技 首度在美国2019CES消费电子展上公开展示颠覆性的BiPolar+固态电池包方案,新一代电池包仅由四颗电池芯构成,自带散热系统的电芯。辉能 科技 研发的BiPolar+(双极电池)方案可以简化电池包内的线材、冷却系统,从而缩小电池包的体积。

也就是说,在相同的体积下,其电池的容量越大,能量密度越高,电动 汽车 的续航里程越高。另外有行业人士指出,也许辉能 科技 的固态电池技术方案可以有效解决电池短路的问题。

目前,辉能 科技 在固态电池领域掌握两大核心技术:一、LCB固态锂陶瓷电池采用独创固态氧化物电解质,具有高安全性、高能量密度、快充能力佳、高散热能力;二、MAB多轴向双极电池包以创新封装技术,针对固态电池优势所打造的电池包,可同时于电池芯内部串/并联、降低内阻值与产热、可简化冷却/机构材/BMS、成组效率相较传统液态电池包可提升29%~56.5%。

纵观现在新能源 汽车 市场,还是液态锂离子电池的天下。只是,对于续航里程以及安全性能的要求越来越高,再加上需要不断降低成本需求,动力电池行业肯定会发生一定的变化。

国科学院物理研究所研究员李泓表示,发展固态电池不会完全颠覆现有的产业格局,但是很大可能在细分领域产生新的龙头企业。

福特 汽车 储能策略与研究高级经理泰德·米勒(Ted Miller)谈到关于电动 汽车 里程问题,他认为除了固态技术,没有更多好的技术去解决长续航里程的问题。但是,谁会把固态电池技术商业化,他也无从得知。

固态电池是目前“新一代”的电池技术,除了电池企业着重布局以外,最重要的是车企也早已把固态电池纳入其新能源 汽车 发展的重要一环。

· 宝马集团于2017年牵手Soild Power开发固态电池,同时与国内的宁德时代展开合作,布局电气化车型。

· 2018年,大众集团向QuantumScape注资一亿美元用于开发固态电池,大众表示,计划与QuantumScape组建合资公司,让生产固态电池的技术达到产业标准,以便在2025年建成一条固态电池生产线。

·丰田也是较早着手研发固态电池的车企之一。丰田 汽车 董事、副社长寺师茂树目前表示,计划在明年东京奥运会期间向公众展示旗下固态电池电动 汽车 ,比原计划提前2年。丰田方面也表示,希望利用东京奥运会的契机让固态电池大规模商用推广。

· 比亚迪在2017年申请了一项固态锂电池正极复合材料专利,目前正推动固态电池迈向商业化。

· 现代集团已投资Ionic Materials用于固态电池研发。

· 本田在固态电池领域与松下联手,同时该品牌与宁德时代展开了合作。另外,本田与通用“官宣”共研“下一代”电池技术,除了燃料电池外,尚未透露更多细节。

*摘取相关新闻信息

可以看出,固态电池的技术发展还存在着很大的空间,这一块人人都想要拿下的大饼,现在还没有人可以拿下。

但是要拿下,又谈何容易?

据中国科学院物理研究所副研究员吴凡介绍,目前全球布局固态电池的公司和机构不完全统计有46家,国内外企业和资金主要围绕三个路径进行布局,分别是:聚合物电解质和无机电解质的氧化物、硫化物。

纵览全球固态电池企业,无论是初创公司还是行业巨头,暂未出现技术流动或融合的态势。欧美企业偏好氧化物与聚合物体系,而日韩企业则更多致力于解决硫化物体系的产业化难题,其中以丰田、三星等巨头为代表。

作为高性能体系的新型锂电池,固态电池在产业化方面仍然面临诸多挑战:

技术是其一。

固体电解质本身导电率较低,并且电化学不稳定性以及和电极的不兼容性导致电解质与电极界面阻抗较大。如何解决复合电极内、电极/固态电解质间的界面问题,是目前固态电池行业都需要去解决的问题。

上海 科技 大学助理教授刘巍与斯坦福大学教授崔屹等人于Cell Press旗下期刊《化学》发表了关于固态锂电池的相关文章。刘巍表示,目前较高的界面电阻问题是制约全固态锂电池商业化的主要原因。

此外,还有复合电极的固化工艺技术以及电极/固态电解质间的集成工艺技术,以及生产装备等都处于摸索升级的初级阶段,这些对于电池研发者和生产者来说都是极具挑战性的。

产业链环节是其二。

虽然固态电池上游相关材料发展很快,但它在其他电池部件上的选择与传统锂电也有一定差异,目前来看,国内产业链上的企业仍存在性能和技术的短板,尤其是固态电解质材料的制作工艺,距离高性能电池系统要求还有很长一段距离。

金属锂是固态电池负极的重要原材料,目前金属锂均价维持在60-70万元/吨之间,且不从技术角度去谈论,材料价格长期处于波动的状况会阻碍固态电池产业化的速度。

多国竞争,动力电池多路线发展带来不同的挑战是其三。

除了国内企业,上文提及的欧美队、日韩队目前在固态电池上的研究付出不比中国少。加上深厚的电池技术经验,会给中国的企业是带来一定的威胁感。

另外,还有燃料电池的来袭。

目前,除了早已涉燃料电池领域研究的宝马、丰田、本田、通用等车企外,现代集团开始发力布局氢燃料电池,奥迪也宣布重启燃料电池技术研发。

可见,车企并不是只把所有押注在固态电池一条路线上。

中国科学院院士、中国电动 汽车 百人会执行副理事长欧阳明高表示,从全球发展态势来看,固态电池的产业链仍然薄弱,从半固态电池走向全固态电池还有很长一段路,全固态电池大规模商业化估计在2025-2030年(以后)才会真正实现。

无论是蔚来这样的车企,还是松下、宁德时代的电池公司,亦或整个动力电池产业,想要把固态电池商业化,可谓任重而道远。

无机 固态电解质(SSE) 通过抑制锂/电解质界面的消耗性副反应和抑制锂枝晶的生长,被认为是实现锂金属负极稳定工作的有效途径。然而,使用无机SSE和锂金属负极的全固态电池(ASSBs)在电池运行期间仍存在枝晶穿透和相关早期短路的问题。人们普遍认为,Li/SSE界面的动态形态演变会显著影响ASSBs的电化学性能。具体来说,在剥离过程中,Li/SSE界面上的锂原子溶解到SSE中,同时锂原子在锂金属中的扩散补充了界面上的锂损失。由于锂剥离速率通常超过锂原子的扩散极限,Kirkendall空洞将在界面处萌生和生长,从而导致界面接触损失和电池阻抗增加。在随后的沉积过程中,形态退化变得更加严重。锂倾向于沉积在仍然与SSE接触的区域,而不是分离区域,从而在界面处形成不均匀沉积,进一步促进锂枝晶的形核和生长以及ASSBs的短路。为保持界面完整性,大多数ASSBs在低电流密度下运行,并具有相当大的堆栈压力,这极大地限制了它们的广泛使用。

鉴于此, 斯坦福大学崔屹教授 报道了 一种新颖的3D微图案化SSE(3D-SSE),它可以在相对较高的电流密度和有限的堆栈压下与锂金属形成形态稳定的界面。 实验显示,在1.0 MPa的有限压力下,采用激光加工制备的石榴石型3D-SSE锂对称电池显示出0.7 mA cm-2的高临界电流密度(CCD),并可在0.5 mA cm-2下稳定循环500小时。这种优异的性能归因于Li/3D-SSE界面处局部电流密度的降低和机械应力的放大。这两种效应有利于界面处锂剥离和蠕变之间的通量平衡,从而防止界面退化(如空隙形成和枝晶生长)。相关成果题目为“A Morphologically Stable Li/Electrolyte Interface for All-Solid-State Batteries Enabled by 3D-Micropatterned Garnet”发表在国际著名期刊《 AM 》上。

与传统的平面SSE相比,这种3D-SSE提供了两个关键效果。 从电化学的角度来看,3D-SSE与锂有效接触面积的增加可以降低局部电流密度,从而延缓界面处锂的剥离。从力学的角度来看,它引入了应力放大效应,以促进界面附近的锂蠕变。 由于这两种效应,由快速蠕变驱动的向界面的锂通量可以通过缓慢剥离来补充锂损失,从而防止电池循环过程中的界面退化。

石榴石型SSE(Ta掺杂的Li7La3Zr2O12,LLZO)由于其高离子电导率、高弹性模量以及对锂金属出色的稳定性,在此被用作模型系统。Li/3D-SSE/Li电池的制备过程包括:首先,通过热压烧结制备致密的LLZO球团;然后采用高精度激光切割机进一步微图案化以形成3D-SSE;最后通过将3D-SSE夹在两个锂片之间来组装Li/3D-SSE/Li对称电池。基于3D SSE的表面积, Li/3D-SSE/Li电池中 Li和3D-SSE之间的有效接触面积约为对照Li/SSE/Li电池的2.5倍。 值得注意的是,这项工作的设计侧重于在锂金属和石榴石SSE之间构建3D界面。因此,可以避免与3D主体设计相关的许多问题,例如由3D通道的不连续性或高弯曲度引起的残留死锂以及锂渗透到主体中的复杂性。

首先对采用不同电解质的对称电池进行了CCD测试,其中对电池施加1.0 MPa的恒定压力。结果,Li/SSE/Li电池的CCD为0.3 mA cm-2。这表明由1.0 MPa压力驱动的Li蠕变仅能以0.3 mA cm-2的速率补充从平面Li/SSE界面剥离的Li,而进一步提高剥离速率会破坏界面形态并导致短路。相比之下,Li/3D-SSE/Li电池可以维持0.7 mA cm-2的更高电流密度。 这是因为3D-SSE可以降低局部电流密度并放大Li/3D-SSE界面处的局部机械应力,这两者都有利于Li剥离和蠕变之间的通量平衡,从而防止空隙形成和随后在界面处的枝晶成核。

进一步两种电池的恒流循环测试(0.2 mA cm-2,1.0 MPa)显示,Li/SSE/Li电池在循环第30小时会发生早期短路。相比之下,Li/3D-SSE/Li电池可以在 45 mV的恒定电压平台下连续运行120小时以上。电压极化主要归因于界面退化引起的界面电阻Rint的增加。通过表征分析得知,原始Li/SSE/Li电池的Rint仅为39.5 Ω cm2,但在首次放电后增加到69.1 Ω cm2。此外,Rint在接下来的循环中不断增长,直到发生短路,这表明Li/SSE界面的持续退化。而对于Li/3D-SSE/Li 电池,Rint 在整个循环过程中几乎保持不变,这高度强调了Li/3D-SSE界面抑制界面退化的能力。此外,还研究了两种电池在更高电流密度 0.5 mA cm-2下的长循环性能。结果, Li/SSE/Li电池几乎无法承受如此高的电流密度,因为快速的Li剥离/沉积很容易通过触发空隙形成和枝晶生长来损坏Li/SSE界面。相比之下,Li/3D-SSE/Li电池在500小时内表现出稳定的循环性能。

恒流循环期间Li/SSE和Li/3D-SSE界面的形态演变显示,尽管原始锂在循环前与SSE形成紧密接触,但在运行30小时后它会部分分离。这种形态退化导致界面处不均匀的剥离/沉积,同时增加了电池电压,这两者都可以驱动锂枝晶的成核和生长。尽管如此,在相同的循环条件下,Li/3D-SSE/Li电池的界面形态在120小时的循环中几乎保持不变。 锂金属在整个界面中仍然与3D-SSE牢固接触,没有任何空隙。因此,凭借出色的形态稳定性,可以有效抑制界面中锂枝晶的成核和渗透。

进一步进行了有限元分析,以了解界面处并发的电化学和力学如何决定电池循环时界面形态的稳定性。从电化学的角度来看,在平面SSE中观察到均匀的Li传输,但在3D-SSE中观察到不均匀的传输,特别是在Li/3D-SSE界面附近。这意味着尽管施加在电池上的外部电流密度相同,但Li/SSE和Li/3D-SSE界面处的局部电流密度分布不同。由于两个电极之间的锂传输长度较短,区域3(200 µm 的3D图案谷)经历了更高的局部电流密度,从而更快地剥离锂。这表明网格中心的锂金属受这种设计的影响要小得多。因此,当没有堆栈压力时,空隙往往会在该区域开始并积累。尽管区域3存在这种电流奇异性,但 由于Li和3D-SSE之间的有效接触面积增加,通过Li/3D-SSE界面的局部电流密度仍然低于通过Li/SSE界面的局部电流密度。 因此,Li/3D-SSE界面上的Li剥离和相关电化学变形较慢,这有利于界面形态的稳定性。从力学角度来看,在Li/3D-SSE界面附近形成了较高等效应力场。 3D图案的存在可在界面附近的Li金属中引起高度偏差应力状态,这会增加局部变形能量和等效应力。有趣的是,3D图案谷(区域3)将产生最高应力,以促进锂蠕变。 因此,尽管图案谷处锂剥离/沉积的电流密度略大于其他区域,但在有限的堆栈压下,主要由于应力效应,界面形态仍能保持良好。

这项工作报道了一种新型3D-SSE,基于电化学和机械改性的协同效应,对锂金属具有优异的界面稳定性。这种3D-SSE可以降低界面处的局部电流密度,从而延缓锂的剥离,并放大界面附近的机械应力以促进锂的蠕变。因此,快速蠕变所带来的朝向界面的锂通量足以补充缓慢剥离造成的锂损失,从而在电池循环时形成形态稳定的界面。

聚合物投稿期刊

是SCI。上楼可能没理解你的问题。这个期刊影响影子2.0+。是聚合物性能和测试方面的权威杂志之一。

Polymer Testing 是SCI 索引期刊, 也是聚合物测试领域的权威期刊之一,特别是在测试表征领域,该期刊影响力还是很不错的。

不是polymer testing 网络 聚合物检测;[例句]The Research of Horizontal Analysis on Exterior Insulation and Finish with Polymer Mortar Adhesive Strength Testing Method外墙外保温用聚合物砂浆粘接强度检验方法的分析研究

1、期刊名称:Progressin polymer science;聚合物科学进展

2、出版机构:ELSEVIER-sciencedirect

3、刊发周期:月刊

4、2017年发文量:47

5、期刊检索:SCI,影响因子24.558

6、推荐理由:本刊专门接受综述文章,一般是主编约稿,论文的作者均是某领域的绝对牛人,有复旦大学的江明院士发表过关于自组装的文章。论述的内容基本上包括高分子相关的所有领域,可以作为了解某一领域研究进展的经典文献。

例如:

1、期刊名称:ADVANCES IN POLYMER SCIENCE,聚合物技术进展

2、出版机构:Springer Berlin / Heidelberg

3、刊发周期:月刊

4、2017年发文量:40

5、期刊检索:SCI,影像因子2.677

6、推荐理由:该套丛书收录了有关聚合物和生物高聚物科学的发展趋势的重要论述,涉及学科包括化学、物理化学、物理和材料科学等。这是为希望了解上述学科进展的从事学术研究和工业生产的研究人员而编写的。

聚合物期刊投稿

您好,很高兴为您解答这个问题,关于您的问题,acsappliedbiomaterials的杂志全称?全称是:Journal of Applied Biomaterials & Functional Materials 中文名称:应用生物材料与功能材料杂志,希望我的回答可以帮助到您!

polymers在我看来一直都是一个不错的期刊,按照影响因子高度划分,polymers期刊属于三区,比一区和而且发表容易一些。在高分子领域,polymer算是很不错的期刊了。

polymers期刊简介

《聚合物》( ISSN 2073-4360)是一本国际性的开放式聚合物科学期刊。它发表研究论文、简短通讯和评论论文。我们的目的是鼓励科学家尽可能详细地发表他们的实验和理论结果。因此,论文的长度没有限制。必须提供完整的实验细节,这样结果才能重现。聚合物为发表论文提供了一个跨学科的论坛,这些论文推进了(I)聚合方法,(ii)理论、模拟和建模,(iii)对新物理现象的理解,(iv)表征技术的进步,以及(v)利用自组装和生物策略生产复杂的多功能结构。

平均审稿速度:网友分享经验:平均17天;

平均录用比例:网友分享经验:较易

国外的一般都比较慢,国内的推荐《高分子材料科学与工程》、《高分子学报》等

碳水化合物聚合物期刊投稿

这个质量不错。碳水化合物聚合物是一本由ELSEVIERSCILTD出版的化学-高分子科学学术刊物,该刊是国际一流期刊。碳水化合物是由碳、氢和氧三种元素组成,是自然界存在最多、具有广谱化学结构和生物功能的有机化合物。

碳水化合物聚合物期刊应该是JCR分区。拓展资料:碳水化合物是由碳、氢和氧三种元素组成,自然界存在最多、具有广谱化学结构和生物功能的有机化合物。由于它所含的氢氧的比例为二比一,和水一样,故称为碳水化合物。它可以为人体提供热能。食物中的碳水化合物分成两类:人可以吸收利用的有效碳水化合物和人不能消化的无效碳水化合物。糖类化合物是一切生物体维持生命活动所需能量的主要来源。它不仅是营养物质,而且有些还具有特殊的生理活性。

相关百科
热门百科
首页
发表服务