职称论文百科

植物学论文发表笔记app

发布时间:2024-07-02 20:39:37

植物学论文发表笔记app

前面五节我们介绍了植物细胞的结构和生活史,而细胞只是最低一级的生命系统,根据系统论的观点,一个系统不是内部个体的简单叠加。植物组织plant tissue是指形态结构相似、功能相同的一种或者数种类型的细胞组成的结构和功能单位,也是组成植物器官的基本单位。植物组织是植物进化层次更高的标志,体现在多细胞植物的细胞群间由于位置和环境的影响不同,从而出现了相异的形态特征和生理代谢活性与类型的分化,并通过遗传确定下来。而由于胞间连丝的存在,相邻细胞之间可以随时进行物质、信息、能量的交换而趋于相似或具有同一性。 植物进化程度愈高,体内细胞的分工愈来愈细,器官也高度分化,植物结构愈复杂,适应性愈强,组织就成为了复杂有机体的一个重要层次。被子植物就是现存植物中高度发达和适应性的植物类群。不同的组织有机配合、紧密联系,形成不同的器官organ,不同的器官相互配合,更有效地完成生命体的整个生命活动过程。细胞、组织或器官都有其相对的独立性和全息性,在一定条件下,一个生活细胞、组织或者器官的相对独立的组成部分都可以发育成完整的植株,组织和组织在一定程度上也可以相互转化。而且植物组织的形态结构和它们的生理功能是相适应的,这一点在之后我们也会很明显的看到。 根据植物的发育程度、形态结构特征以及生理功能的不同,通常将植物组织分为分生组织和成熟组织两大类。分生细胞具有产生新细胞的特性,是产生和分化其他组织的基础,成熟组织是由分生组织产生的细胞生长分化而来。 首先我们就来介绍一下分生组织meristem,分生组织排列紧密,一般无细胞间隙,细胞壁薄主要由纤维素和果胶组成,细胞核较大,细胞质浓、细胞器丰富,一般没有液泡和质体的分化。 而根据分生组织的来源、发育程度可以将其分为: 原分生组织promeristem,包括胚和成熟植株的茎尖或者根尖的分生组织的先端的原始细胞。细胞体积较小、近于正方形、细胞核相对较大、细胞质浓、细胞器丰富,有持续的分裂能力或者潜在分裂能力,是产生其他组织的最初来源。 初生分生组织primary meristem,位于根尖和茎端的原分生组织的后方,是原分生组织有限生长或者衍生而来的组织。部分细胞初步分化为原表皮、基本分生组织和原形成层。原表皮protoderm位于最外周,主要进行径向分裂。基本分生组织ground meristem位于原表皮之内,所占比例最大,可进行各个方向的分裂,以增加分生组织的体积。原形成层procambium位于基本分生组织中的特定部位,其细胞扁而长,是分化成成熟组织的基础。 次生分生组织secondary meristem,位于根茎器官的内侧与长轴相平行,与根茎叶的逐年增粗有关。由某些成熟组织经过脱分化、重新恢复分裂能力而来的组织。细胞扁长或者短轴型的扁多角形。细胞呈现出不同程度的液泡化。次生分生组织包括木栓形成层phellogen和维管形成层vascular meristem。按照分生组织在植物体中的存在位置可以分为:顶端分生组织apical meristem,位于根和茎顶端的分生区部位,细胞小、排列紧密、近乎方形,能长期保持分裂能力,一部分逐渐成熟分化。既有原分生组织又有初生分生组织。主要增加植物的长度。 侧生分生组织lateral meristem,分布于植物体内、平行于所在器官的表面,且与所在器官的增粗有关的由成熟组织细胞脱分化、恢复分裂而来的次生分生组织。在多年生植物体内可以逐年活动,产生新的细胞,位于维管形成层的外侧的细胞则分化为次生韧皮部,位于其内侧的分化为次生木质部。而木栓形成层的外部的分裂活动向外形成木栓层,向内形成栓内层,覆盖于老根和老茎的外部。增加植物的直径和宽度。居间分生组织intercalary meristem,位于植物茎、叶、子房柄、花梗、花序轴等器官节段的基部和成熟组织之间,其细胞的分裂仅限于一定时间就空间就转为了成熟组织。居间分生组织的细胞核大、细胞质浓,有一定程度的液泡化,主要进行横向分裂,使器官纵向延长。是有顶端分生组织衍生遗留出来的下来的初生分生组织。有利于增加叶子和节间等器官的长度。参考: https://en.wikipedia.org/wiki/Tissue_(biology)

上一节我们介绍了植物是由种子萌发而来,胚芽发育成地面上的茎叶,胚根发育成地面下的根,植物需要进一步生长和发育就离不开这些营养器官,这一节我就来用较长的篇幅系统地阐述一下植物的根。 根(root) 是植物茎向下的自然延伸部分,不分节与节间,不生叶,一般生长在相对稳定的土壤环境之中,是植物从土壤中吸收水分和矿质元素的主要器官,标志着植物从水生到陆生演化发展。水生植物的种子萌发时,顶端分生组织的细胞经过分裂分化,最终突破种皮。而陆生植物胚根一般稍后于胚芽突破种皮进一步生长,形成植物的 主根(taproot) 。当主根生长到一定程度,就会从内部侧向生出许多侧根,可以不断生出再次一级的侧根。绝大多数双子叶植物的胚根发育成明显而发达的主根,而单子叶植物在胚根发育生长一段时间后,胚轴和胚芽鞘节上就会很快生出数条与主根同样粗细的新根,这样的根我们也经常会称为“种子根”。 任一植株地下部分的根总称为 根系root system 。可将其分为 直根系tap root system (由明显发达的主根以及各级侧根组成,主根发达,入土深,各级侧根次第减小,一般呈陀螺状分布,大多数双子叶植物的根系属于此种类型,属于深根系)、 须根系fibrous root system (主要由不定根和侧根组成,须根系主根不发达,粗细长短差不多,入土浅,为丛生状态,大多数单子叶植物属于这种类型,属于浅根系)。有的时候农业上经常会将这两种根系类型的植物搭配种植充分利用其在不同土壤深度上的吸收肥水的能力。 根在生长发育过程中会不断受到环境的刺激和诱导,会表现出向性生长,如向地性、向水性,向肥性、向气性(向通气性良好的土壤生长,来促进根系的呼吸作用)。因此根的发育会受到土壤水分、土壤肥力、土壤通透性、土壤致密度的影响。对植物起到了吸收和疏导、固着与支持、合成、储藏(如根的肉质化)、繁殖(如枣树的不定芽)的功能。 下面我们来介绍根的解剖结构,首先我们来介绍 根尖root tip 是指从根的顶端到着生根毛的部位,是植物进行吸收、分泌、合成等作用的主要部位。根的伸长、根系的形成以及根内组织的分化也都是在根尖进行的。从根尖顶端起,依次分为 根冠root cap :由薄壁细胞组成,作用是保护根尖的分生区细胞,外围细胞大而排列致密,内部细胞小而排列疏松,可润滑根冠表面,促进根表离子交换、减少根在土壤颗粒中穿行的摩擦阻力,这一部位与根的向地性有关(特别与这一部位高含量的无机钙和淀粉体有关),从根冠脱落的边缘细胞还会分泌化学物质抑制细菌、真菌等的生长。 分生区mristematic zone :由顶端分生组织(包括原分生组织和初生分生组织,初生分生组织发展出的原表皮之后分化为根的表皮,基本分生组织分化为根的皮层,原形成层分化为根的维管柱)组成,形状似圆锥,主要功能是分裂产生新细胞,以促进根系生长,所以也称为生长点。分生区细胞小,排列紧密,分化程度低,分裂能力强,外观为褐黄色。分生区产生的细胞生长分化一部分成为根冠,大部分成为伸长区的一部分,同时也有一部分细胞保持分生能力。这一区域也是细胞分裂素的分泌区域。 伸长区elongation zone :这一区域的细胞沿着根的纵轴方向伸长,体积增大,液泡化程度加强,细胞质呈一薄层,位于细胞的边缘位置。而且这一区域也是根在土壤中向前推进的动力。 成熟区maturation zone :这一区域的细胞已经停止生长,分化出各种成熟组织,其表面一般密被根毛,根毛是表皮细胞外壁向外突出形成的顶端封闭的管状结构,这里的表皮细胞液泡增大,细胞质集中于突出部位。根毛增加了根部的吸收表面积,改善根与土粒的接触。 根的 初生生长primary growth ,是指根尖顶端分生组织分裂后产生各层次成熟结构的过程。形成的结构称之为 初生结构primary structure ,我们先来看双子叶植物的初生结构, 横切双子叶植物的成熟区自外向内为 : 表皮epidermis :由原表皮发育而来,细胞近似于长方形,是重要的吸收组织,细胞特点是细胞壁薄,由纤维素和果胶质构成,水和溶质可以自由通过,许多表皮细胞的外部会向外突出形成根毛,以扩大吸收面积。有些细胞的表皮由长短两种细胞组成,其中长细胞为一般的表皮细胞,而短细胞含有较浓的细胞质和较大的细胞核,为生毛细胞。在热带的某些附生的兰科植物气生根没有根毛而是经过几次平周分裂形成套状的多层细胞构成的复表皮,是一种保护组织,细胞壁局部栓质化,排列紧密,细胞腔内充满空气,主要可以减少气生根水分的丧失 皮层cortex :由基本分生组织分化而来的多层薄壁组织,是水分和溶质从根毛到维管束的横向传导途径,又是储藏营养物质和通气的部位,也进行合成与分泌,一般还可以再分为 外表皮exodermis (根的皮层最外一层或数层形状较小、排列紧密整齐的细胞,在表皮死亡时会增厚栓质化代替表皮起保护作用)、 皮层薄壁细胞 (位于外皮层与内皮层之间,细胞层数多,体积大,由明显的胞间隙,常储存大量的后含物)、 内皮层endodermis (细胞排列整齐,各细胞的上下横壁和径向壁上具有木质化和栓质化增厚的带状结构——凯氏带Casparian strip,而在横切面上,凯氏带在相邻细胞的径向壁上为点状。构成凯氏带的主要物质是木质素和栓质素,连续的穿过胞间层和初生壁,这种特殊结构有利于根的吸收作用,阻止了水分和矿物质通过质外体途经进入维管柱,从而方便进行选择性吸收,其次还可以防止维管柱里的溶质倒流至皮层,减少溶质的丧失)三个部分 维管束cylinder of vascular tissues(中柱stele) :由初生分生组织的原形成层分化而来,是根中进行上下物质运输的主要部位,包括 维管鞘(中柱鞘)pericycle (位于维管束最外层的一层薄壁细胞,细胞排列整齐,分化程度低,有潜在的分裂能力,侧根、不定根、不定芽、木栓形成层和部分微管形成层均发生于此)、 维管组织vascular tissue (位于维管柱的中央部分,由 初生木质部primary xylem {由导管和木薄壁组织组成,呈辐射状分布,辐射角处直接与维管鞘相连,这样缩短了径向运输距离。原形成层发育分化出初生木质部的顺序是从外向内呈向心式进行并逐渐成熟,这种发育方式称之为外始式exarch。紧邻维管鞘、位于辐射角的外方部分的初生木质部称为原生木质部protoxylem,是原形成层最初产生和分化成熟的初生木质部,主要是由管腔较小、具有弹性的环纹和螺纹导管组成,其疏导、支持能力较弱;内方为较晚分化成熟的后生木质部,主要由管腔较大的梯纹、网纹和孔纹导管组成,其疏导、支持能力较强。在成熟根的横切面上,初生木质部的辐射棱角称为束。不同植物其束数不同,双子叶植物束数较少,一般为2-6束,分别称为二原型、三原型.......(如下图就是五原型),单子叶植物的束数较多} 、初生韧皮部primary phloem {位于初生木质部辐射角之间,束数与初生木质部相同,但是体积较小,主要由筛管和伴胞组成,其发育方式也是外始式,原生韧皮部向外,后生韧皮部向内} 、薄壁细胞 {在双子叶植物和裸子植物中是原形成层保留的细胞,将来成为次生分生组织的一部分,而在单子叶植物中是成熟的薄壁细胞},大部分植物的后生木质部一直分化到根中央,少数双子叶植物的维管柱部分由于后生木质部没有继续向中心分化,而形成由薄壁组织组成的 髓pith 。 大多数双子叶植物和裸子植物,在初生生长的基础上产生了次生分生组织——维管形成层vascular cambium和木栓形成层phellogen。次生组织的细胞分裂、生长和分化的过程,成为次生生长。次生生长产生的组织是次生成熟组织,由次生成熟组织复合而成的结构称为 次生结构secondary structure 。这一过程是根的增粗过程,一般一年生草本双子叶植物和单子叶植物的根没有次生增粗生长。 我们先来说说维管形成层的发生、活动。根的维管形成层与初生韧皮部与初生木质部之间的薄壁细胞和维管鞘一定部位的、恢复分裂能力的细胞所组成,开始时它们主要 平周(切向)分裂 ,形成几片弧状的形成层,其片段数量与根中初生木质部的束数相同。在根的横切面上来看,这部分细胞为切向扁平型,然后这些弧形片段两端的细胞开始分裂,使得形成层的细胞开始分裂,使形成层片段沿着初生木质部辐射角扩展至维管鞘处,这是初生木质部辐射角处的维管鞘细胞脱分化,恢复分裂能力,与弧形片段连为一圈,形成波浪形的筒状形成层环,完全包围了中央的初生木质部,次生韧皮部被隔在了形成层环的外部,其凸起数与根的原型数相同;此后,由于形成层环各处分裂速度不等,波浪状形成层环的凹段细胞形成较早,分裂速度快,而且向内形成的次生木质部细胞多于向外形成的次生韧皮部的细胞,使得波浪状环的凹部逐渐向外退役,使得整个形成层呈现圆环状,且个区段分裂速度相等。次生木质部和次生韧皮部合称为维管组织。形成层的细胞也会 垂周(径向)分裂 以适应根的增粗,而且有余初生韧皮部的柔弱,常被挤压于次生韧皮部之外,甚至会被挤碎,这时其输导功能由次生韧皮部代替。在被子植物中次生韧皮部和次生木质部的薄壁组织都比较发达,有时薄壁细胞会呈现放射状排列,出现维管射线,两个部位的分别称为 韧皮射线phloem ray 和 木射线xylem ray ,主要起横向传到和储藏作用。 维管形成层不断增粗的同时,微管鞘细胞在次生维管组织的挤压和外周的皮层及表皮的张力压迫下恢复分裂能力,进行垂周和平周分裂产生木栓形成层。木栓形成层进行平周分裂,其外侧的细胞分裂分化成熟后高度木质化,形成由多层木栓细胞构成的 木栓层cork ,内侧有一至少数几层薄壁细胞组成的 栓内层pelloderm ,木栓层、木栓形成层和栓内层组成周皮,其成熟时为死细胞,形状扁平,排列紧密而整齐,细胞壁栓质化,不通气、不透水,腔内充满气体,防止根部水分散失和抵御病虫害侵袭,同时使得外方的皮层和表皮部分营养断绝而死亡。 所以根的维管形成层和木栓形成层活动构成了根的次生结构由外向内依次为周皮(木栓层、木栓形成层、栓内层)、初生韧皮部(常被挤毁)、次生韧皮部、形成层、次生木质部和辐射状的初生木质部,有些草本植物中最内部还有髓(可以借鉴下方清晰大图:) 这里用了很长的篇幅讲述了双子叶植物的初生和次生生长过程,下面我们简介一下单子叶植物根的解剖结构。对于禾本科的植物也是表皮、皮层、维管柱(中柱)三个基本部分,但是不会形成维管形成层和木栓形成层,不能进行次生生长。而且皮层中的外表皮往往会形成栓质化的厚壁组织,具有支持作用,在根毛和表皮枯萎后代替执行保护功能。皮层薄壁细胞有些会有气腔,被解体的薄壁组织的细胞壁所间隔。根、茎、叶的气腔相互贯通,形成良好的通气组织。最内层的内皮层初级具有凯氏带,此后大部分细胞除外切向壁外,两侧径向壁、上下横壁及内切向壁均次生加厚,少部分未增厚的为通道细胞,正对初生木质部的辐射角位置,一般认为它们是根的初生结构部分内外物质运输的途经。维管柱中的维管鞘会木质化(厚壁化),产生侧根的能力减弱。初生木质部一般为多原型。维管束中央有发达的髓,由完全成熟的薄壁细胞组成,可以储藏营养物质。而且初生韧皮部和次生韧皮部之间的薄壁组织分化成熟,不再有分裂能力。大部分非禾本科植物的根的初生木质部与禾本科一样,但是少部分初生木质部束数较少,如韭菜等植物为四至五原型。 植物的根在伸长过程中除了形成根毛以扩大吸收面积外,还会产生大量侧根,它们是有 侧根原基primordium 发育而来。侧根原基由母根根毛区后方的维管鞘一定部位的细胞经脱分化、恢复分裂能力的细胞经几次平周和垂周分裂而形成,其发生方式为 内起源endogeous origin ,其在中柱鞘中的发生部位是固定的,与初生木质部和初生韧皮部的位置和束数有关。侧根原基继续分裂、生长,分化出生长点和根冠,逐渐深入皮层,分泌水解酶,进而穿透皮层和表皮。 我们跳出单纯植物学的视角,植物的根系分布于土壤中,与土壤中的微生物有着密切的关系。有些微生物会与植物的根建立互利共生的关系。如: 根瘤root nodule (土壤中的根瘤菌、放线菌和线虫都可以入侵根部形成根瘤。对于豆科植物,根瘤的形成始于幼苗期,其分泌物吸引附近的根瘤菌,聚集在根毛周围形成感染丝后刺激使得根毛卷曲膨胀,使得部分细胞壁溶解,根瘤菌由此入侵根毛,根内细胞相应分泌出纤维素等来包被感染丝,形成侵入线。根瘤菌利用皮层中的养分反之自己,另一方面刺激皮层细胞迅速分裂增加细胞数目,形成瘤状凸起物。之后根瘤菌逐渐转变为具有固氮能力的拟菌体bacterioid,进行固氮作用,同时该区域分化出与植物根部输导组织相连的输导组织、外围薄壁组织鞘和内皮层) 菌根mycorrhiza (这是植物的根与真菌的形成的互利共生关系产物。根据菌丝在根中生长部位的不同,可将其分为形成白色丝状物覆盖层的外生菌根、盘旋侵入到幼根皮层内的活细胞中的内生菌根、兼具两者的混合型的内外生菌根,真菌可以获得养分,而且真菌的分泌物促进无机养分的释放,还可以给植物提供水、无机盐、激素、维生素等)这一节内容有点多,我找了一张图,可以很好地概括这一节内容。 参考:

植物学论文发表笔记

博物学的内容纷繁复杂,特别是在界门纲目科属种的分类生物学领域更是让人摸不着头脑,所以,我在学习植物学的时候都绕不开一些基础的概念例如细胞、组织、器官、生理功能,才能为之后分析植物的亲缘关系、形态结构、生理功能奠定好基础。首先我们就来先研究一下植物细胞。我们从植物组成细胞的结构开始讲起,首先在原生质体生命活动过程中向外分泌的多种复合物质形成的支撑和保护植物细胞的结构就是细胞壁,与维持原生质体的膨压和植物组织的吸收、蒸腾、运输和分泌方面的生理活动有很大的关系。 植物细胞壁(cell wall)可以分为中间层(Middle lamella)(与子细胞同时形成,主要成分是果胶,可以将相邻的细胞黏在一起,在酶的作用下会被分解,果肉细胞就是这样分离的;同时其可塑性也不会阻碍细胞生长和长大),初生壁(Primary cell wall)(细胞生长、体积增大时形成,主要由纤维素、半纤维素和果胶构成,提供了细胞生长所需的强度和灵活性),次生壁(Secondary cell wall)(分化成熟体积、停止增大、原生质体走向消亡时出现,位于初生壁内侧,比初生壁厚,主要由纤维素构成以及角质素、木质素和矿质等,根据次生壁中微纤丝的排列方向也可以分为内、中、外三层,不同的取向规则使得细胞壁厚度增加、刚性增强、延展性缺乏) 根据细胞壁的“经纬”模型,初生壁由伸展蛋白网络和纤维素微纤丝网络相互交织而成,悬浮在亲水的果胶—半纤维素(其中的木葡聚糖起到限制微纤丝运动的作用)胶体之中。细胞的生长受到交联网络的控制,即“酸性成长假说”,膨胀素打开木葡聚糖与纤维素之间的氢键,然而利用酶将β-(1,4)糖苷键水解,使得细胞松弛,膨压下降从而吸水生长。在这个过程中初生壁的微纤丝由少到多、由稀疏到致密、横向排列于细胞长轴转变为纵向排列。细胞壁的生长包括初生壁的面积增大和次生壁的厚度增加。次生壁还会发生木质化、栓质化、角质化、矿质化。 下图就是植物细胞壁的主要结构:细胞壁经常会有凹陷区域容许胞间连丝通过,这个区域通常被称为初生纹孔场(primary pit field),次生壁形成时有的初生纹孔场不形成次生壁,这个只有中间层和初生壁的较薄部分称之为纹孔,相邻两细胞的纹孔通常成对存在,合成纹孔对(pit pair)。纹孔对中的中间层和两边的次生壁称之为纹孔膜(pit membrane)。纹孔的腔成为纹孔腔(pit cavity)。如图所示: 按结构特征还可以分为单纹孔(simply pit)与具缘纹孔(bordered pit)两种类型。下图的(a)、(b),松科植物的具缘纹孔甚至中央加厚成纹孔塞(torus),周围未增厚部分受压可伸张暂时堵塞纹孔口即塞周缘(margo),压力消失后恢复原状。除纹孔外,连接两植物细胞之间还存在胞间连丝(plasmodesma),是细胞间物质、信息、能量的直接通道。胞间连丝是贯穿细胞壁的管状结构,周围衬有质膜,与两侧细胞的质膜,与两侧细胞的质膜相连。中央有压缩内质网(appressed ER,也称连丝微管 desmotubule),压缩内质网中间颜色深,成为中心柱。压缩内质网与质膜之间为细胞质通道(cytoplasmic sleeve),通过胞间连丝结合在一起的结构称之为共质体,共质体以外的部分就称为质外体。细胞壁在植物中有着机械支持(初生壁中微纤丝的骨架作用、半纤维素的支撑作用、结构蛋白的网络作用、果胶的粘性作用以及各组分的相互交联,次生壁中微纤丝的排列方式不同可以使得收到各个方向压力。木质化次生壁的机械强度更大。)、细胞生长的调控、物质运输(包括质外体运输(apoplastic transport)与共质体运输(symplastic transport),质外体在细胞壁内运动,进入胞间隙或跨膜进入另一个细胞)、细胞识别(如宿主细胞的凝集素与细菌表面多糖的识别)、植物防御(如木质化、胼胝质积累、伸展蛋白合成增加、β-(1,3)-葡聚糖酶与几丁质酶活性增加) 细胞壁的主要成分是纤维素,是植物体中含量最多的成分。应用于造纸、人造纤维、火药、胶片、绝缘材料和食品工业。木质素是植物体中数量仅次于纤维素的第二种有机物,在石油、塑料、燃料和制革有着广泛用途。 参考: https://en.wikipedia.org/wiki/Pit_(botany)

在自然界中,有些植物在长期适应环境的过程中,其营养器官或者营养器官的一部分,在形态结构和生理功能上发生了显著的变异,这种现象,我们称之为变态。相关的的器官我们称之为变态器官。 首先来介绍一下根的变态,总的来说根的变态分为地上变态根和地下变态根两大类。 地下变态根 包括: 肉质直根fleshy tap root :多见于二年生或者多年生的双子叶草本植物,如萝卜、胡萝卜、甜菜、人参。突出功能为储藏养分、躲避不良环境、条件适宜时繁殖自身。肉质直根由下胚轴和主根基部共同发育而成。肉质直根上部直接来自于下胚轴,没有侧根,下部分主体来自于主根,一般具有多列侧根。肉质直根肥厚多汁,根内薄壁组织发达,细胞内储藏了大量营养物质。萝卜根的增粗主要是由于维管形成层的活动,有的时候,木薄壁组织也可以恢复分裂能力转变为副形成层(三生分生组织),随之形成三生维管组织。而甜菜的肉质直根是由中柱鞘恢复分裂形成副形成层。 块根root tuber :由不定根和侧根通过增粗生长发育而来,所以一株植物可以形成多个块根。主要功能是储藏养分和繁殖,如甘薯。其是木薄壁组织恢复分裂转变为副形成层,形成三生结构。储藏大量糖分和淀粉。三生韧皮部中还可以形成乳汁管。随着维管形成层不断产生和活动,副形成层可以多次发生、生长,使块根迅速膨大。由于次生木质部中的导管分布不均匀,各部位生长速度不同,块根形状不规则。 板状根 :热带雨林中木本植物的基部,由粗大的侧根发育而来的扁平板状根,外露地面,对树木有较强的支持作用来抵御风雨。 呼吸根respiratory root :一些生长在沼泽或热带海滩的植物如水龙,可以产生一些可以垂直向上生长、伸出地面的呼吸根,这些根时常有发达的通气组织,可以将空气输送到地下,供给地下根进行呼吸作用。 凡是露出地面,生长在空气中的根均称为 气生根aerial root 。可以分为: 支持根prop root :常从茎节处生出不定根深入土中,不仅可以吸收水和无机盐,甚至还显著增强了支持作用。如榕树、玉米。 攀援根climbing root :藤本植物从茎的一侧产生许多短的不定根,其先端扁平,且常可以分泌黏液,易固。如爬山虎。 寄生根parasitic root :又称为吸器,一些寄生植物利用寄生根钻入寄主体内,吸收营养,如菟丝子。 茎的变态类型较多,其中地下变态茎有: 根状茎rhizome :莎草科、禾草科常有。生于土层下,有明显的节间与节,但叶退化为非绿色的鳞片叶,叶腋中的腋芽或者根状茎的顶芽可形成背地性直立的地上枝,同时在节上产生不定根。茎端上的腋芽可以随时再生为新植株。 块茎与根状块茎tuber :马铃薯块茎形成于植物基部叶腋长出的入土匍匐枝顶端几个节与节间,经过特殊增粗生长而成,块茎顶端有顶芽。四周有许多螺旋状排列的芽眼,每个芽眼内有几个芽,相当于腋芽和副芽。在块茎生长初期芽眼下方有鳞片,长大后脱落留下叶痕即芽眉。所以芽眼着生处为节,块茎实际上是缩短了节间的变态枝。成熟块茎的结构由周皮、皮层、维管束环、髓环区和髓组成。最外层细胞为木栓形成层,产生周皮和皮孔,覆盖于块茎之外。皮层由储藏组织组成。双韧皮部呈筒状排列,外韧皮部与木质部均有发达的储藏组织,少量的输导组织,形成层不明显。内韧皮部与髓的外层细胞组成环髓区。中央髓射线因细胞含水较多而透亮。 鳞茎bulb :一般是百合科常见的营养繁殖器官和储藏器官。纵切后中央有一扁平、节间极短的鳞茎盘,其上有顶芽,将来可以发育为花序。四周有肉质鳞片叶重重包围着,储藏了大量的营养物质叶腋有腋芽,鳞茎盘下面可以产生不定根,可见鳞茎是一个缩短了节间的地上枝条的变态。大蒜的蒜瓣是鳞茎盘上的腋芽发育肥大形成的子鳞茎。 球茎corm :是肥短、呈球形的地下茎,如慈姑的球茎是由根状茎的顶芽发育而成的,芋的球茎由茎的基部发育而成,球茎的顶部有粗壮的顶芽,有时还有幼嫩的绿叶。 地上变态茎有: 茎卷须stem tendril :如南瓜和葡萄,一部分枝变成了细长的卷须,甚至还有分枝,来缠绕其他物体攀援生长。卷须主要由薄壁细胞组成。感受力敏锐,在接触支撑物后能在数分钟内做出卷曲、缠绕生长的反应。老是便失去了卷曲反应能力。 芽球、花球与荆刺 :有些植物其顶芽肉质化肥壮,如大白菜等的顶芽就是一个硕大的芽球。花椰菜成为了一个巨大的花球,储藏大量的养分。火棘、皂荚的部分顶芽或者腋芽变为了刺thorn,生于枝顶或叶腋,有较强的保护作用。 叶状茎cladode :如竹节蓼、昙花叶退化或者早落,茎为扁平状或者针状、绿色,行使光合作用的功能。 肉质茎fleshy stem :肥大,粗壮,不但可以储藏水分和养料,还可以进行光合作用。如仙人掌,上面还有变为刺状的变态叶。 生殖茎reproduction stem :在被子植物起源过程中,其原始祖先的部分枝条节间可以强烈缩短、叶变态为花,不同组成部分的生殖叶构成花和花序,协同完成被子植物的有性生殖。 叶的变态器官有: 鳞叶scale leaf :叶退化为鳞片状,可以分为革质、肉质、膜质三种。革质鳞叶硬、呈褐色,保护着幼芽,又叫芽鳞片。肉质鳞叶肥厚,储藏大量营养物质,如百合、洋葱上的鳞叶。膜质鳞叶薄,如蓼科植物的托叶。(注:这里的鳞叶与侧柏的鳞叶概念不同,不要混淆) 叶卷须leaf tendril :叶变为了卷须状,如豌豆羽状复叶上端部分小叶成为了卷须。 叶刺leaf thorn :如仙人掌、小檗茎上的刺,刺槐叶柄两侧的托叶刺。 捕虫叶insectivorous leaf: 叶片为囊状、盘状或者瓶装的捕虫器结构,其中有许多可以分泌消化液的腺毛或者腺体。 苞片bract :被子植物花序或者花柄下面的变态叶,苞片可以有许多形状和色泽。如胡萝卜花序下的叶状苞片、马蹄莲下的佛焰苞状。 片状叶柄phyllde :有些植物叶片退化,其叶柄为绿色叶状体。如台湾相思树。 根据达尔文的观点,各种不同的变态器官中,那些来源不同,但是功能相同的形态结构相似的变态器官称之为 同功器官analogous organ 。如果来源相同即为 同源性器官homologous organ 。来源不同的器官因长期适应某种环境、产生相似的形态结构和生理功能。 所以说植物是在不同的生境中形成和发展起来的,生境的改变,影响着植物的发育于成长,水分与光照是对植物影响最大的生态因素。因此可以将植物分为水生hydrophyte、中生mesophyte、旱生xerophyte以及阳地植物sun plant和阴地植物shade plant。而它们的根茎叶形态与它们所处的环境是高度适应的。其中水生植物分为沉水、浮水、挺水。 沉水植物的根退化甚至消失,根茎的皮层中有发达的通气组织或胞间隙。叶片薄而纤细,细胞层数少,没有叶肉组织的分化,没有气孔器,维管束和机械组织不发达。 浮水植物的根茎叶中有开放型的通气组织系统,叶浮于水,为异面叶,气孔分布于上表皮,上表皮有蜡质或者角质膜,叶肉中有栅栏组织和海绵组织的分化,维管束和机械组织不发达,但较沉水植物完善。水湿生植物如水稻与之相似,如根尖没有根冠,有发达的通气组织。 旱生植物体型矮小,茎叶表面积与体积比小,根系发达,输导水分能力强,茎常肉质化、多浆质,多绿色,叶主要朝着降低蒸腾和储藏水分两个方向发展。叶常不发育,小而厚,常密被绒毛。或退化为鳞片状、膜状,或肉质化肥厚的草本植物。 阳地植物一般叶片较厚、较小、角质膜厚,栅栏组织与机械组织发达,叶肉细胞间隙小。有点类似于旱生植物。阴生植物完全与之相反,另外其海绵组织发达,表皮细胞常常也含有叶绿体。 同一生境条件下,越靠近顶部越倾向于旱生植物叶的结构,反之相反。 另一方面,叶与光合作用相适应的形态结构有以下几个方面:叶片数量多形状扁平,增加了叶的表面积。叶镶嵌,使叶片充分接受阳光。叶绿体的膜结构增大了光合作用。叶脉分布于叶肉内,既支撑着叶片,又为叶肉组织提供水分和无机盐,输出光合产物,使得光合作用顺利进行。气孔和海绵组织是气体交换的场所。 总而言之,植物在长期进化过程中形成了对环境的适应性,甚至许多器官发生了变态,其结构和功能都无法离开起生境来说。 参考:

植物学论文发表笔记格式

前面我们通过三节介绍了从分生组织到保护组织、机械组织、输导组织、基本组织这些简单组织,这一讲我来阐述一下复合组织compound tissue。复合组织是指有发育上或功能上密切相关的几种简单组织组成的、共同执行特定生理功能的、相对独立的结构。复合组织位于植物体的特定部位。如周皮、树皮、木质部、韧皮部、维管束、分泌结构等都是由多种组织复合而成。下面我们就来一一介绍:周皮periderm :周皮由木栓层、木栓形成层和栓内层共同构成。从组织成分来看,木栓层属于次生保护组织,木栓形成层属于次生分生组织,而栓内层属于次生薄壁组织。木质部xylem和韧皮部phloem :主要起到疏导和支持的作用的组织。木质部一般包括导管(多数蕨类植物及裸子植物无导管)、管胞、木薄壁组织和木纤维等,韧皮部包括筛管、伴胞(蕨类植物及裸子植物仅为筛胞,无筛管和伴胞)、韧皮薄壁组织和韧皮纤维。其组成包括输导组织、薄壁组织和机械组织组成,时常称之为维管组织vascular tissue。从蕨类植物开始,已经出现了维管组织的分化。因此通常将蕨类植物好种子植物统称为维管植物。 维管束vascular bundle :存在于蕨类植物和种子植物之中,由原形成层分化而来、由木质部和韧皮部组成的束状结构。根据维管束中形成层的有无和能否增粗生长,可将其分为有限维管束和无限维管束两大类型: 有限维管束closed bundle:仅有木质部和韧皮部,没有束中形成层的维管束。这类维管束一经形成就不再增粗,如大多数单子叶植物中的维管束。 无限维管束open bundle:无限维管束是指组成上除了含有木质部和韧皮部外,在两者之间还保留有束中形成层,可不断通过分裂活动产生次生韧皮部和次生木质部。如裸子植物和许多双子叶植物的维管束。 分泌结构secretory structure :植物体中能够产生分泌物质的有关细胞后特化的细胞组合成为分泌结构。一般由分泌细胞和其他薄壁细胞所组成。可以分为: 外分泌结构external secretory structure:分布在植株的表面,其分泌物排于体外的分泌结构,如 腺毛glandular hair和腺鳞glandular scale (腺毛一般具有头部和柄部两部分组成,头部外分泌细胞,底部为薄壁细胞着生于表皮上。分泌物一般聚集于角质膜和细胞壁之间,逐渐增多胀破角质膜而外泄。而腺鳞柄部稍短,头部分泌细胞较多,呈现鳞片状分布。)、 蜜腺nectary (可以分泌蜜汁,由保护组织和分泌细胞组成,根据其位置可分为花蜜腺和花外蜜腺。)、 盐腺salt gland (将过多的盐分以盐溶液的状态排出植物体外的外分泌结构,一般是先通过基部的两个收集细胞收集,通过胞间连丝,进入盐腺的小液泡,最后通过角质膜的裂隙小孔,将过多的盐分分泌出去)、 排水器hydathode (将植物体内多余水分排出去,一般分布于植物的叶尖和叶缘,这个过程称之为吐水guttation,一般由水孔、通水组织和相连的维管束末端的管胞组成。水孔一般为两个分化不完全总是开着的保卫细胞组成。通水组织为排列输送的小型细胞,不含叶绿体,水从叶脉木质部的管胞通过通水组织经水孔进入叶表面)内分泌结构internal secretory structure:将分泌物储存在植物体内的分泌结构,存在于基本组织内,包括 分泌细胞团secretory cell nedule (由扁平的鞘细胞包裹着一团分泌细胞构成,其中央无腔隙)、 分泌囊secretory cavity (由外侧1~2层扁平的鞘细胞包裹着一层长方形的上皮细胞及其内的分泌腔共同构成,腔室形成的方式有细胞解体的溶生方式、扩大间隙的裂生方式) 分泌道secretory canal (为管状结构,也有溶生和裂生两种方式,多为裂生而生,如松柏类植物的树脂道和漆树的漆汁道)、 乳汁管laticifer (是能够分泌乳汁的管状结构,按形态发生特点可以分为起源于单个细胞的无节乳汁管和由长圆柱形细胞连接而成的有节乳汁管)从植物组织的发生和关系来看整个植物组织可以表示如下:胚―>原分生组织―>初生分生组织―>初生成熟组织―>次生分生组织―>次生成熟组织―>三生分生组织―>三生成熟组织 被子植物是一个含有不同层次、不同特征的且丰富多彩的组织复合而成的系统。这个复合系统包括: 皮组织系统skin tissue system (包括表皮及其外生物、外分泌结构、周皮或树皮等。其中表皮是植物体幼嫩部分或绿色部分的保护组织,草本植物的表皮终生存在,而木本植物的老根、老茎和叶子是普遍存在的。而木本植物的根、茎上的表皮一段时间后表皮会被挤毁脱落,周皮形成。树皮是指历年形成的周皮总称。总而言之,皮组织系统具有保护和控制与环境之间物质交换的能力) 基本组织系统ground tissue system (位于皮组织系统和维管组织系统之间,由机械组织和和薄壁组织组成。将植物体营养和繁殖器官连接成一个整体) 维管组织系统vascular tissue system (包括植物体内所有维管组织,是贯穿于整个植株,与体内物质的运输、支持和巩固植物体有关的组织系统,使植物摆脱了对水环境的高度依赖性。还可以分为位于幼嫩的根茎叶中的初生维管系统和位于双子叶植物和裸子植物老根老茎中的次生维管系统) 参考:

上一节我们介绍了植物是由种子萌发而来,胚芽发育成地面上的茎叶,胚根发育成地面下的根,植物需要进一步生长和发育就离不开这些营养器官,这一节我就来用较长的篇幅系统地阐述一下植物的根。 根(root) 是植物茎向下的自然延伸部分,不分节与节间,不生叶,一般生长在相对稳定的土壤环境之中,是植物从土壤中吸收水分和矿质元素的主要器官,标志着植物从水生到陆生演化发展。水生植物的种子萌发时,顶端分生组织的细胞经过分裂分化,最终突破种皮。而陆生植物胚根一般稍后于胚芽突破种皮进一步生长,形成植物的 主根(taproot) 。当主根生长到一定程度,就会从内部侧向生出许多侧根,可以不断生出再次一级的侧根。绝大多数双子叶植物的胚根发育成明显而发达的主根,而单子叶植物在胚根发育生长一段时间后,胚轴和胚芽鞘节上就会很快生出数条与主根同样粗细的新根,这样的根我们也经常会称为“种子根”。 任一植株地下部分的根总称为 根系root system 。可将其分为 直根系tap root system (由明显发达的主根以及各级侧根组成,主根发达,入土深,各级侧根次第减小,一般呈陀螺状分布,大多数双子叶植物的根系属于此种类型,属于深根系)、 须根系fibrous root system (主要由不定根和侧根组成,须根系主根不发达,粗细长短差不多,入土浅,为丛生状态,大多数单子叶植物属于这种类型,属于浅根系)。有的时候农业上经常会将这两种根系类型的植物搭配种植充分利用其在不同土壤深度上的吸收肥水的能力。 根在生长发育过程中会不断受到环境的刺激和诱导,会表现出向性生长,如向地性、向水性,向肥性、向气性(向通气性良好的土壤生长,来促进根系的呼吸作用)。因此根的发育会受到土壤水分、土壤肥力、土壤通透性、土壤致密度的影响。对植物起到了吸收和疏导、固着与支持、合成、储藏(如根的肉质化)、繁殖(如枣树的不定芽)的功能。 下面我们来介绍根的解剖结构,首先我们来介绍 根尖root tip 是指从根的顶端到着生根毛的部位,是植物进行吸收、分泌、合成等作用的主要部位。根的伸长、根系的形成以及根内组织的分化也都是在根尖进行的。从根尖顶端起,依次分为 根冠root cap :由薄壁细胞组成,作用是保护根尖的分生区细胞,外围细胞大而排列致密,内部细胞小而排列疏松,可润滑根冠表面,促进根表离子交换、减少根在土壤颗粒中穿行的摩擦阻力,这一部位与根的向地性有关(特别与这一部位高含量的无机钙和淀粉体有关),从根冠脱落的边缘细胞还会分泌化学物质抑制细菌、真菌等的生长。 分生区mristematic zone :由顶端分生组织(包括原分生组织和初生分生组织,初生分生组织发展出的原表皮之后分化为根的表皮,基本分生组织分化为根的皮层,原形成层分化为根的维管柱)组成,形状似圆锥,主要功能是分裂产生新细胞,以促进根系生长,所以也称为生长点。分生区细胞小,排列紧密,分化程度低,分裂能力强,外观为褐黄色。分生区产生的细胞生长分化一部分成为根冠,大部分成为伸长区的一部分,同时也有一部分细胞保持分生能力。这一区域也是细胞分裂素的分泌区域。 伸长区elongation zone :这一区域的细胞沿着根的纵轴方向伸长,体积增大,液泡化程度加强,细胞质呈一薄层,位于细胞的边缘位置。而且这一区域也是根在土壤中向前推进的动力。 成熟区maturation zone :这一区域的细胞已经停止生长,分化出各种成熟组织,其表面一般密被根毛,根毛是表皮细胞外壁向外突出形成的顶端封闭的管状结构,这里的表皮细胞液泡增大,细胞质集中于突出部位。根毛增加了根部的吸收表面积,改善根与土粒的接触。 根的 初生生长primary growth ,是指根尖顶端分生组织分裂后产生各层次成熟结构的过程。形成的结构称之为 初生结构primary structure ,我们先来看双子叶植物的初生结构, 横切双子叶植物的成熟区自外向内为 : 表皮epidermis :由原表皮发育而来,细胞近似于长方形,是重要的吸收组织,细胞特点是细胞壁薄,由纤维素和果胶质构成,水和溶质可以自由通过,许多表皮细胞的外部会向外突出形成根毛,以扩大吸收面积。有些细胞的表皮由长短两种细胞组成,其中长细胞为一般的表皮细胞,而短细胞含有较浓的细胞质和较大的细胞核,为生毛细胞。在热带的某些附生的兰科植物气生根没有根毛而是经过几次平周分裂形成套状的多层细胞构成的复表皮,是一种保护组织,细胞壁局部栓质化,排列紧密,细胞腔内充满空气,主要可以减少气生根水分的丧失 皮层cortex :由基本分生组织分化而来的多层薄壁组织,是水分和溶质从根毛到维管束的横向传导途径,又是储藏营养物质和通气的部位,也进行合成与分泌,一般还可以再分为 外表皮exodermis (根的皮层最外一层或数层形状较小、排列紧密整齐的细胞,在表皮死亡时会增厚栓质化代替表皮起保护作用)、 皮层薄壁细胞 (位于外皮层与内皮层之间,细胞层数多,体积大,由明显的胞间隙,常储存大量的后含物)、 内皮层endodermis (细胞排列整齐,各细胞的上下横壁和径向壁上具有木质化和栓质化增厚的带状结构——凯氏带Casparian strip,而在横切面上,凯氏带在相邻细胞的径向壁上为点状。构成凯氏带的主要物质是木质素和栓质素,连续的穿过胞间层和初生壁,这种特殊结构有利于根的吸收作用,阻止了水分和矿物质通过质外体途经进入维管柱,从而方便进行选择性吸收,其次还可以防止维管柱里的溶质倒流至皮层,减少溶质的丧失)三个部分 维管束cylinder of vascular tissues(中柱stele) :由初生分生组织的原形成层分化而来,是根中进行上下物质运输的主要部位,包括 维管鞘(中柱鞘)pericycle (位于维管束最外层的一层薄壁细胞,细胞排列整齐,分化程度低,有潜在的分裂能力,侧根、不定根、不定芽、木栓形成层和部分微管形成层均发生于此)、 维管组织vascular tissue (位于维管柱的中央部分,由 初生木质部primary xylem {由导管和木薄壁组织组成,呈辐射状分布,辐射角处直接与维管鞘相连,这样缩短了径向运输距离。原形成层发育分化出初生木质部的顺序是从外向内呈向心式进行并逐渐成熟,这种发育方式称之为外始式exarch。紧邻维管鞘、位于辐射角的外方部分的初生木质部称为原生木质部protoxylem,是原形成层最初产生和分化成熟的初生木质部,主要是由管腔较小、具有弹性的环纹和螺纹导管组成,其疏导、支持能力较弱;内方为较晚分化成熟的后生木质部,主要由管腔较大的梯纹、网纹和孔纹导管组成,其疏导、支持能力较强。在成熟根的横切面上,初生木质部的辐射棱角称为束。不同植物其束数不同,双子叶植物束数较少,一般为2-6束,分别称为二原型、三原型.......(如下图就是五原型),单子叶植物的束数较多} 、初生韧皮部primary phloem {位于初生木质部辐射角之间,束数与初生木质部相同,但是体积较小,主要由筛管和伴胞组成,其发育方式也是外始式,原生韧皮部向外,后生韧皮部向内} 、薄壁细胞 {在双子叶植物和裸子植物中是原形成层保留的细胞,将来成为次生分生组织的一部分,而在单子叶植物中是成熟的薄壁细胞},大部分植物的后生木质部一直分化到根中央,少数双子叶植物的维管柱部分由于后生木质部没有继续向中心分化,而形成由薄壁组织组成的 髓pith 。 大多数双子叶植物和裸子植物,在初生生长的基础上产生了次生分生组织——维管形成层vascular cambium和木栓形成层phellogen。次生组织的细胞分裂、生长和分化的过程,成为次生生长。次生生长产生的组织是次生成熟组织,由次生成熟组织复合而成的结构称为 次生结构secondary structure 。这一过程是根的增粗过程,一般一年生草本双子叶植物和单子叶植物的根没有次生增粗生长。 我们先来说说维管形成层的发生、活动。根的维管形成层与初生韧皮部与初生木质部之间的薄壁细胞和维管鞘一定部位的、恢复分裂能力的细胞所组成,开始时它们主要 平周(切向)分裂 ,形成几片弧状的形成层,其片段数量与根中初生木质部的束数相同。在根的横切面上来看,这部分细胞为切向扁平型,然后这些弧形片段两端的细胞开始分裂,使得形成层的细胞开始分裂,使形成层片段沿着初生木质部辐射角扩展至维管鞘处,这是初生木质部辐射角处的维管鞘细胞脱分化,恢复分裂能力,与弧形片段连为一圈,形成波浪形的筒状形成层环,完全包围了中央的初生木质部,次生韧皮部被隔在了形成层环的外部,其凸起数与根的原型数相同;此后,由于形成层环各处分裂速度不等,波浪状形成层环的凹段细胞形成较早,分裂速度快,而且向内形成的次生木质部细胞多于向外形成的次生韧皮部的细胞,使得波浪状环的凹部逐渐向外退役,使得整个形成层呈现圆环状,且个区段分裂速度相等。次生木质部和次生韧皮部合称为维管组织。形成层的细胞也会 垂周(径向)分裂 以适应根的增粗,而且有余初生韧皮部的柔弱,常被挤压于次生韧皮部之外,甚至会被挤碎,这时其输导功能由次生韧皮部代替。在被子植物中次生韧皮部和次生木质部的薄壁组织都比较发达,有时薄壁细胞会呈现放射状排列,出现维管射线,两个部位的分别称为 韧皮射线phloem ray 和 木射线xylem ray ,主要起横向传到和储藏作用。 维管形成层不断增粗的同时,微管鞘细胞在次生维管组织的挤压和外周的皮层及表皮的张力压迫下恢复分裂能力,进行垂周和平周分裂产生木栓形成层。木栓形成层进行平周分裂,其外侧的细胞分裂分化成熟后高度木质化,形成由多层木栓细胞构成的 木栓层cork ,内侧有一至少数几层薄壁细胞组成的 栓内层pelloderm ,木栓层、木栓形成层和栓内层组成周皮,其成熟时为死细胞,形状扁平,排列紧密而整齐,细胞壁栓质化,不通气、不透水,腔内充满气体,防止根部水分散失和抵御病虫害侵袭,同时使得外方的皮层和表皮部分营养断绝而死亡。 所以根的维管形成层和木栓形成层活动构成了根的次生结构由外向内依次为周皮(木栓层、木栓形成层、栓内层)、初生韧皮部(常被挤毁)、次生韧皮部、形成层、次生木质部和辐射状的初生木质部,有些草本植物中最内部还有髓(可以借鉴下方清晰大图:) 这里用了很长的篇幅讲述了双子叶植物的初生和次生生长过程,下面我们简介一下单子叶植物根的解剖结构。对于禾本科的植物也是表皮、皮层、维管柱(中柱)三个基本部分,但是不会形成维管形成层和木栓形成层,不能进行次生生长。而且皮层中的外表皮往往会形成栓质化的厚壁组织,具有支持作用,在根毛和表皮枯萎后代替执行保护功能。皮层薄壁细胞有些会有气腔,被解体的薄壁组织的细胞壁所间隔。根、茎、叶的气腔相互贯通,形成良好的通气组织。最内层的内皮层初级具有凯氏带,此后大部分细胞除外切向壁外,两侧径向壁、上下横壁及内切向壁均次生加厚,少部分未增厚的为通道细胞,正对初生木质部的辐射角位置,一般认为它们是根的初生结构部分内外物质运输的途经。维管柱中的维管鞘会木质化(厚壁化),产生侧根的能力减弱。初生木质部一般为多原型。维管束中央有发达的髓,由完全成熟的薄壁细胞组成,可以储藏营养物质。而且初生韧皮部和次生韧皮部之间的薄壁组织分化成熟,不再有分裂能力。大部分非禾本科植物的根的初生木质部与禾本科一样,但是少部分初生木质部束数较少,如韭菜等植物为四至五原型。 植物的根在伸长过程中除了形成根毛以扩大吸收面积外,还会产生大量侧根,它们是有 侧根原基primordium 发育而来。侧根原基由母根根毛区后方的维管鞘一定部位的细胞经脱分化、恢复分裂能力的细胞经几次平周和垂周分裂而形成,其发生方式为 内起源endogeous origin ,其在中柱鞘中的发生部位是固定的,与初生木质部和初生韧皮部的位置和束数有关。侧根原基继续分裂、生长,分化出生长点和根冠,逐渐深入皮层,分泌水解酶,进而穿透皮层和表皮。 我们跳出单纯植物学的视角,植物的根系分布于土壤中,与土壤中的微生物有着密切的关系。有些微生物会与植物的根建立互利共生的关系。如: 根瘤root nodule (土壤中的根瘤菌、放线菌和线虫都可以入侵根部形成根瘤。对于豆科植物,根瘤的形成始于幼苗期,其分泌物吸引附近的根瘤菌,聚集在根毛周围形成感染丝后刺激使得根毛卷曲膨胀,使得部分细胞壁溶解,根瘤菌由此入侵根毛,根内细胞相应分泌出纤维素等来包被感染丝,形成侵入线。根瘤菌利用皮层中的养分反之自己,另一方面刺激皮层细胞迅速分裂增加细胞数目,形成瘤状凸起物。之后根瘤菌逐渐转变为具有固氮能力的拟菌体bacterioid,进行固氮作用,同时该区域分化出与植物根部输导组织相连的输导组织、外围薄壁组织鞘和内皮层) 菌根mycorrhiza (这是植物的根与真菌的形成的互利共生关系产物。根据菌丝在根中生长部位的不同,可将其分为形成白色丝状物覆盖层的外生菌根、盘旋侵入到幼根皮层内的活细胞中的内生菌根、兼具两者的混合型的内外生菌根,真菌可以获得养分,而且真菌的分泌物促进无机养分的释放,还可以给植物提供水、无机盐、激素、维生素等)这一节内容有点多,我找了一张图,可以很好地概括这一节内容。 参考:

植物学论文发表笔记模板

菌类植物fungi ,植物体内不含色素,不能光合作用,大部分营异养生活。 细菌门(Schizomycophyta) 细胞是单细胞的原核生物,无色素,异养型,一般没有真正的核结构。可以分为球菌、杆菌和螺旋菌三大类。球菌一般没有鞭毛,杆菌和螺旋菌某一个阶段有鞭毛,可以游动。营寄生或者腐生生活。也存在诸如铁细菌和硝化细菌的自养细菌。生殖方式为细胞分裂生殖,环境不适宜的时候可以形成芽孢(原生质体凝缩,其外包被着一层含脂肪的、坚硬而不透水的壁)。放线菌类属(Actinomycetes)是一类不具有鞭毛的杆状细菌,在一定条件下可以分枝形成丝状体,有人认为放线菌是出于真菌和细菌之间的过渡状态。放线菌可以产生诸如链霉素、四环素、土霉素、氯霉素等抗菌素。 粘菌门(Myxomycophyta) 在生长期或营养阶段,菌体裸露、无细胞壁,呈多核的原生质团,无叶绿素、异养,类似于变形虫式的运动和吞食固体食物的方式,繁殖时节或在劣境条件下,发育为具有纤维素的孢子,而似真菌。因此粘菌是一种介乎动物和真菌之间的一种生物。 发网菌属(Stemonitis):是黏菌中最常见的、最广泛分布的一类。其营养体为裸露的原生质团,称为变形体。呈现不规则的网状,在无性繁殖的时候,变形体爬到干燥光亮的地方,形成很多的发状突起,每个突起发展为一个具有柄的孢子囊(子实体)。一般为长筒形、紫灰色,外有包被peridium。孢子囊柄深入囊中的部分称为囊轴,囊内有孢丝交织为孢网。然后原生质团中的许多核进行减数分裂,原生质团被割裂为许多单核的小原生质,每块小原生质分泌出细胞壁,形成一个孢子,藏在孢丝的网眼之中。成熟时,包被破裂,借助孢网的弹力孢子弹出。之后孢子在适宜的环境下,萌发为具两条不等长鞭毛的游动细胞,游动细胞的鞭毛可以收缩为变形体状的细胞,称为变形菌胞。有性生殖时由游动细胞或变形菌胞两两结合,形成合子,不经过休眠,合子核进行多次有丝分裂,形成多数双倍体核,构成一个多核的变形体。 真菌门(Eumycophyuta) 真菌是一类不含叶绿素、异养的真核生物。都有细胞壁,细胞壁含几丁质(chitin),也有的含有纤维素。多数植物体由细丝组成,每一细丝叫做微丝(hypha),菌丝有的分隔称有隔菌丝(septet hypha),有的不分隔呈非细胞结构状态,称无隔菌丝(nonseptet hypha),生殖阶段由分支的菌丝组合而成的菌丝团称为菌丝体(mycelium)常见的有根状菌索、菌核和子座等。高等种类的菌丝体,可以发育为不同的子体。 真菌因其不含光合色素而营异养生活绝大多数为腐生或者寄生。 真菌的生殖方式多种多样,无性生殖极为发达,可以产生多种类型的孢子。孢子有的内生生于孢子囊之中,或者外生。同时还可以通过菌丝断裂进行营养生殖。有性生殖有同配、异配和卵式生殖。低等真菌多为同配或者异配。 在真菌的生活史中,单倍体无性生殖占的时间较长,而有性生殖形成的二倍体合子很快进行减数分裂,形成单倍体的繁殖孢子。因此真菌没有世代交替,但有单倍体和二倍体的核相交替。主要分为如下几个亚门: 鞭毛菌亚门(Mastigomycotina) 除少数单细胞个体外,绝大多数为分枝的丝状体。菌丝多核,繁殖期菌丝的基部产生横隔,形成一个能产生单鞭毛或者双鞭毛游动孢子的特定细胞。有性生殖时产生卵孢子或休眠孢子;低等的种类为同配或者异配。 代表:水霉属(Saprolegnia) 菌丝体由一个细胞发育而来,无隔壁、多核,呈白色多分枝的绒毛状。由短的根状菌丝(钻入宿主组织,吸取寄主养料)和众多细长、分枝繁茂的菌丝组成。无性生殖时,菌丝的顶端稍膨大,在膨大部分的基部产生横隔壁,形成一个长筒形的流动孢子囊,其中产生球形的游动孢子,顶生两条鞭毛,为初生孢子。流动不久,鞭毛收缩,变为球形的静孢子。之后在新寄主上萌发,再发育为新菌丝。这种具有两种游动孢子的现象称为双游现象(diplanetism) 在营养不良的时候,水霉进入有性生殖,菌丝顶端分别膨胀为精囊和卵囊,在精囊和卵囊内分别产生精子和卵,精卵结合产生厚壁的合子或者卵孢子;卵孢子休眠后经减数分裂和有丝分裂,发育为新的无隔丝菌体。 接合菌亚门(Zygomycotina) 营养体由无隔、多核菌丝所组成,无性生殖产生不动孢囊孢子,有性生殖产生接合孢子。接合菌是由鞭毛菌类向无鞭毛菌类演变的类群,也是从水生到陆生过渡的类群。 代表:根霉属(Rhizopus) 本属为腐生,常见的是黑根霉,又名面包酶。菌丝体由分支、不具横隔壁的菌丝组成,含多个细胞核。菌丝时常横生,向下有假根;向上可生出孢子囊梗,其先端分隔形成孢子囊,其中生有许多孢子(内生孢子)。孢子成熟后呈黑色,当散落在适宜的机制上时,就萌发为新菌丝。 黑根霉的有性生殖为接合生殖。在异性菌丝接触处产生短枝,两短枝的顶端膨大,产生横壁,使短丝与菌丝隔开,顶端形成配子囊(gametangium),横壁下部是配子囊柄。两个配子囊成熟后,它们之间接触的壁溶解,使得原生质体融合为合子,之后其外壁加厚,合子休眠,经过减数分裂,开始萌发,长出菌丝,顶端形成一个孢子囊,孢子囊内产生孢子,由孢子再发育为新的个体。 根霉和毛霉都是属于这个亚门,在酿酒业和羊毛软化脱脂中都会使用。 子囊菌亚门(Ascomycotina) 本门真菌除酵母菌为单细胞外其余为多细胞有机体,菌丝有隔,无性繁殖时,单细胞的种类出芽繁殖,多细胞的种类产生分生孢子,有性生殖时产生子囊,子囊两性结合后的核经减数分裂,一般形成8个子囊孢子。 本亚门子实体称为子囊果(ascocarp),其周围包被着由交织的菌丝构成的子囊果的壁,子囊果内排列着子囊层(子实层hymenium)和与之相连的侧丝(paraphysis),子囊果有3类:闭囊果(子囊果为球形,无孔口,完全闭合。子囊壳:子囊果为球形,顶端有孔口,这种子囊果常埋于子座(stroma)中。子囊盘:为杯碟状,子实层常露在外。 代表属种:酵母菌属(Saccharomyces),为本亚门较为原始的种类,植物体为单细胞,卵形,有大液泡,核很小。主要繁殖方式为出芽繁殖,母细胞的一端产生一个小芽——芽生孢子。之后脱离母体称为新的酵母菌。于是芽生孢子可以相连成为假菌丝。有性生殖时合子不转变为子囊,以芽植法生二倍体的细胞,由二倍体的细胞转变为子囊,减数分裂后形成4个子囊孢子。酵母能无氧发酵,将糖类分解为二氧化碳和乙醇。 青霉属(Penicillium)本属真菌最为普遍,常滋生于水果、蔬菜以及潮湿的有机质上。主要以分生孢子繁殖,从菌丝上产生很多分生孢子梗,梗的前端先分枝数次,最后的分枝为小梗。生小梗的枝称为梗基。小梗上有一串分生孢子,青绿色。有性生殖仅在少数种中发现,形成闭囊壳。黄青霉和点青霉均可分泌青霉素。 麦角菌属(Claviceps)子囊壳为瓶状,主要寄生在麦类的子房中,形成黑色坚硬的菌核,形状像较。麦角制剂可以用来做止血剂。 担子菌亚门(Basidiomycotina) 担子菌都是多细胞有隔菌丝体,有初生菌丝和次生菌丝之分。由担孢子萌发成的单核、有隔而且多分枝的菌丝为初生,由部分初生菌丝经有性结合后的双核细胞分裂而来的双核菌丝称为次生菌丝,由次生菌丝发育为子实体(又称为担子果)担子菌的营养繁殖产生节孢子、厚壁孢子或芽孢,无性繁殖可以产生分生孢子、粉孢子,有性生殖产生担子,担子经过减数分裂形成担孢子,担孢子萌发后形成新的单核菌丝。 代表属种:锈菌目(Uredinales):主要寄生在种子植物和蕨类植物上,初生菌丝可以形成性孢子,次生菌丝产生秋孢、夏孢子、冬孢子。冬孢子萌发时减数分裂产生担孢子。各种孢子有一定的产生顺序。禾病锈菌有两个寄主,一为禾本科植物,二为小檗属或十大功劳属。 伞菌目(Agaricales):子实体肉质,少革质、木栓质或膜质。均有菌盖和菌柄。菌柄大多中间生。菌盖腹面有放射状的菌褶gill,子实层位于菌褶的两面,担子果幼嫩时有内菌幕partial veil遮盖着菌褶。成熟后内菌幕破裂,菌柄上残留的部分形成菌环annulus,有些种类有外菌幕包围子实体,菌柄延长时外菌幕破裂后在菌柄基部的残留为菌托volva。著名的有蘑菇属。 多孔菌目(Polyporales)子实体无菌褶,形状多种多样。担子单细胞,无分隔,担孢子四个。如灵芝 半知菌亚门(Deuteromycotina) 本亚门的菌类多为有隔菌丝体。生活史上还只知道其无性繁殖不知其有性繁殖。半知菌亚门大多数为子囊菌亚门的无性阶段,少数为担子菌亚门的无性阶段。棉花炭疽病 而对于另一种植物 地衣lichenes ,是真菌和藻类的共生植物。共生的真菌绝大多数为子囊菌,少数属于担子菌,个别为藻状菌。共生的藻为蓝藻和绿藻。一般情况下,菌占地衣的绝大部分,藻则在复合体的内部,呈一层或基干状。藻类为整个植物体制造养分,而菌类则吸收水分和无机盐,为藻类制造养分提供原料,并包围和保护藻类细胞。可以分为壳状地衣、叶状地衣、枝状地衣(如石蕊),根据藻体分布也可以分为同层地衣(上下均由紧密交织的菌丝构成,下皮层深入基质之中,具有吸收和固着作用,中部菌丝稀疏,藻细胞分布其中)和异层地衣(藻细胞位于皮层,可以形成绿色藻层。其繁殖方式为营养繁殖(自行断裂或者地衣植物表面形成粉芽和珊瑚芽,粉芽是几根菌丝缠绕着藻细胞而成的团块。珊瑚芽是地衣植物上皮层局部突起形成的结构,也是菌丝包围着藻细胞而成。有性生殖,是以共生的真菌独立进行的,产生子囊孢子或者担孢子。在一定条件下萌发,在适宜的基物上,并遇到一定的藻细胞,才能与藻细胞共同形成地衣。 参考:

博物学的内容纷繁复杂,特别是在界门纲目科属种的分类生物学领域更是让人摸不着头脑,所以,我在学习植物学的时候都绕不开一些基础的概念例如细胞、组织、器官、生理功能,才能为之后分析植物的亲缘关系、形态结构、生理功能奠定好基础。首先我们就来先研究一下植物细胞。我们从植物组成细胞的结构开始讲起,首先在原生质体生命活动过程中向外分泌的多种复合物质形成的支撑和保护植物细胞的结构就是细胞壁,与维持原生质体的膨压和植物组织的吸收、蒸腾、运输和分泌方面的生理活动有很大的关系。 植物细胞壁(cell wall)可以分为中间层(Middle lamella)(与子细胞同时形成,主要成分是果胶,可以将相邻的细胞黏在一起,在酶的作用下会被分解,果肉细胞就是这样分离的;同时其可塑性也不会阻碍细胞生长和长大),初生壁(Primary cell wall)(细胞生长、体积增大时形成,主要由纤维素、半纤维素和果胶构成,提供了细胞生长所需的强度和灵活性),次生壁(Secondary cell wall)(分化成熟体积、停止增大、原生质体走向消亡时出现,位于初生壁内侧,比初生壁厚,主要由纤维素构成以及角质素、木质素和矿质等,根据次生壁中微纤丝的排列方向也可以分为内、中、外三层,不同的取向规则使得细胞壁厚度增加、刚性增强、延展性缺乏) 根据细胞壁的“经纬”模型,初生壁由伸展蛋白网络和纤维素微纤丝网络相互交织而成,悬浮在亲水的果胶—半纤维素(其中的木葡聚糖起到限制微纤丝运动的作用)胶体之中。细胞的生长受到交联网络的控制,即“酸性成长假说”,膨胀素打开木葡聚糖与纤维素之间的氢键,然而利用酶将β-(1,4)糖苷键水解,使得细胞松弛,膨压下降从而吸水生长。在这个过程中初生壁的微纤丝由少到多、由稀疏到致密、横向排列于细胞长轴转变为纵向排列。细胞壁的生长包括初生壁的面积增大和次生壁的厚度增加。次生壁还会发生木质化、栓质化、角质化、矿质化。 下图就是植物细胞壁的主要结构:细胞壁经常会有凹陷区域容许胞间连丝通过,这个区域通常被称为初生纹孔场(primary pit field),次生壁形成时有的初生纹孔场不形成次生壁,这个只有中间层和初生壁的较薄部分称之为纹孔,相邻两细胞的纹孔通常成对存在,合成纹孔对(pit pair)。纹孔对中的中间层和两边的次生壁称之为纹孔膜(pit membrane)。纹孔的腔成为纹孔腔(pit cavity)。如图所示: 按结构特征还可以分为单纹孔(simply pit)与具缘纹孔(bordered pit)两种类型。下图的(a)、(b),松科植物的具缘纹孔甚至中央加厚成纹孔塞(torus),周围未增厚部分受压可伸张暂时堵塞纹孔口即塞周缘(margo),压力消失后恢复原状。除纹孔外,连接两植物细胞之间还存在胞间连丝(plasmodesma),是细胞间物质、信息、能量的直接通道。胞间连丝是贯穿细胞壁的管状结构,周围衬有质膜,与两侧细胞的质膜,与两侧细胞的质膜相连。中央有压缩内质网(appressed ER,也称连丝微管 desmotubule),压缩内质网中间颜色深,成为中心柱。压缩内质网与质膜之间为细胞质通道(cytoplasmic sleeve),通过胞间连丝结合在一起的结构称之为共质体,共质体以外的部分就称为质外体。细胞壁在植物中有着机械支持(初生壁中微纤丝的骨架作用、半纤维素的支撑作用、结构蛋白的网络作用、果胶的粘性作用以及各组分的相互交联,次生壁中微纤丝的排列方式不同可以使得收到各个方向压力。木质化次生壁的机械强度更大。)、细胞生长的调控、物质运输(包括质外体运输(apoplastic transport)与共质体运输(symplastic transport),质外体在细胞壁内运动,进入胞间隙或跨膜进入另一个细胞)、细胞识别(如宿主细胞的凝集素与细菌表面多糖的识别)、植物防御(如木质化、胼胝质积累、伸展蛋白合成增加、β-(1,3)-葡聚糖酶与几丁质酶活性增加) 细胞壁的主要成分是纤维素,是植物体中含量最多的成分。应用于造纸、人造纤维、火药、胶片、绝缘材料和食品工业。木质素是植物体中数量仅次于纤维素的第二种有机物,在石油、塑料、燃料和制革有着广泛用途。 参考: https://en.wikipedia.org/wiki/Pit_(botany)

植物学论文发表笔记要求

制作自然笔记不同于艺术创作,并不要求作者必须具备特别高超的绘画、摄影、写作技巧。只要有一颗热爱自然的心,有一双善于发现的眼睛,就可以做好自然笔记。

自然笔记的表现形式是多样的,素描、速写、彩绘、摄影,甚至漫画,都可以用来制作自然笔记。不过,制作自然笔记的同时是个记录的过程,需要有明确的规划,比如,何时去何地进行观察、观察对象是什么、观察的切入点在哪里,这些问题都得提前考虑清楚。

一幅或者一组作品无法展现的美,需要更多有心人用自己的眼睛和双手去记录。

扩展资料:

探秘向日葵花 记录自然笔记

郑州植物园里的七彩向日葵正值盛花期。为了让小朋友们认识向日葵的特点,了解观赏向日葵不同品种之间的区别,探索向日葵蕴含的数学秘密,2020年7月7日下午,郑州植物园组织开展了一场以“探秘向日葵花 记录自然笔记”为主题的科普活动。

活动分为三个环节。在探秘环节中,科普讲解员以“引导与观察”的方式,带着孩子们认真观察不同品种向日葵的花盘、株高、茎杆、叶片等方面的区别,仔细观察不同生长期向日葵花的变化,认识向日葵的舌状花与管状花,同时观察向日葵花盘的数学线条。

在分享环节中,科普讲解员以“问题与回答”的方式,提出不同问题,让孩子们将观察到的结果与他人分享并进行讨论,如:‘文森特’向日葵的花盘颜色?不同生长期花盘形态?‘白色恋人’向日葵花盘形状?果实的排列图形?排列原因?孩子们积极举手发言,争着将自己的观察结果与大家分享。

在自然笔记环节,科普讲解员以“绘画与记录”的方式,引导孩子们画出自己喜欢的向日葵花,并把观察结果及感想记录下来,完成自然笔记。

参考资料来源:郑州市园林局-探秘向日葵花 记录自然笔记

参考资料来源:杭州日报-制作自然笔记,简单,却不容易

广西植物》是cscd期刊,也就是中国科学引文数据库收录的期刊 ISSN:1000-31421对植物系统学稿件的要求:对植物新种原则上要求有细胞学、分子系统学等相关实验证据;原则上不接受省级的植物新分布或新记录、新变种或新等级等稿件;单种属的核型研究论文,内容充实者或确有新意者可接受投稿。2对植物化学稿件的要求:(1)文中要用新化合物;(2)或已知化合物新的生物活性;(3)若无新化合物,但前人对其化学成分缺乏研究,可以接受投稿。3对植物区系稿件的要求:(1)须提供所研究地区的植物名录,以审稿时参考;(2)植物区系的研究应是一个大的行政区域如国家、省(自治区)或者是自然区域如横断山或者某个山头等。不接受物种单一的植物区系稿件。4本刊原则上不接受2个以上第一作者或通讯作者的稿件。5文章篇幅文章要求精练。每篇研究报告和综述以12000~14000字(6~7版)为宜,述评以4000~6000字(2~3版)为宜,研究简报以10000字以内(4~5版)为宜。按本刊近期的格式排版(暂不分栏,由编辑部排版时分栏);使用规范简化字。回答于 2022-11-16抢首赞淘宝-环卫洒水车厂家,优质产品,超低价格,太好逛了吧!电动三轮洒水车新能源环保降尘雾炮洒水车多功能尘高射程雾炮机¥3600 元都格电动三轮洒水车工地用工程园林绿化环保除尘新能源雾炮洒水车¥10500 元新能源电动三轮雾炮洒水车工地用环保汽油喷水除尘雾泡消毒工程¥7000 元淘宝热卖广告「阿里巴巴」环卫洒水车厂家,限量好货每日更新!最近1小时前有人下载「阿里巴巴」环卫洒水车厂家,大厂直供,直击成本价!想淘货源就用1688,必采清单轻松GET!「阿里巴巴」精选优质厂商,进货更省心!杭州阿里妈妈软件服务有限公司广告2022环卫设施洒水车_洒水车图片_环卫设施洒水车_进站查看专业环卫设施洒水车,技术优良,总部直销,环卫设施洒水车更优惠,关键是环卫设施洒水车质量优,专业厂家提供一站式环卫设施洒水车购车服务,欢迎来电咨询!广告广西植物期刊本科生能投吗可以。只要你对植物有一定的研究和见解,就可以投稿,一定要满足格式要求,不得抄袭。广西植物期刊于1981年创刊,是广西壮族自治区中国科学院广西植物研究所和广西植物学会共同主办的植物学领域专业学术期刊,为国家中文核心期刊,中国科技核心期刊,中国科学引文做出了贡献。梦不落热带雨林78浏览更多专家广西植物查重要求专家1对1在线解答问题5分钟内响应 | 万名专业答主马上提问最美的花火 咨询一个社会民生问题,并发表了好评lanqiuwangzi 咨询一个社会民生问题,并发表了好评garlic 咨询一个社会民生问题,并发表了好评188****8493 咨询一个社会民生问题,并发表了好评篮球大图 咨询一个社会民生问题,并发表了好评动物乐园 咨询一个社会民生问题,并发表了好评AKA 咨询一个社会民生问题,并发表了好评广西壮族自治区农林植物检疫实施办法(97修正)第一条为了全面贯彻落实国务院发布的《植物检疫条例》和农牧渔业部、林业部制定的《植物检疫条例实施细则》,防止为害农业、林业植物的危险性病、虫、杂草传播蔓延,保护农、林业生产安全,结合我区情况,特制定本实施办法。第二条植物检疫工作,由自治区、地(市)、县三级农业行政部门所属的植物检疫站、农林行政部门所属的森林植物检疫站,或经审定、授予森林植物检疫员证书的专职检疫员执行。各级农业植物检疫站和森林植物检疫站是代表国家执行《植物检疫条例》的职能机构,有权派遣检疫人员进入车站、机场、港口、仓库及有关场所执行检疫任务,有关单位应提供方便和给予协助,任何人不能阻挠。检疫人员在执行任务时,应穿着检疫制服,佩戴检疫标志,携带统一颁发的《植物检疫员证》。第三条植物检疫工作的重点是产地检疫。各级农业、林业部门应每隔三至五年,集中技术力量,安排一定资金,对本地区的疫情进行一次普查,并编写农业植物检疫对象及森林植物检疫对象分布资料,作为检疫的依据。其中农业部分,自治区、地区编制分布至乡的资料,县编制分布至村的资料;林业部分,自治区编制分布至县的资料,地、县编制分布至乡的资料。植物检疫机构,要积极协助国营或集体的种苗繁育单位和专业户,选择种苗基地和制定繁育无检疫对象种苗的技术规程,并具体提供技术指导。种苗基地一定要选择在非疫区建立,并由植物检疫机构发给《种苗基地合格证》后才能繁育种苗,否则育出的种苗不得销售或由检疫机构限制销售范围。种苗基地内的种子、苗木繁育过程,每年要由检疫人员实地调查二至四次,证明不带检疫对象和危险性病虫害,发给产地检疫合格证。调运或出售前,凭产地检疫合格证到植物检疫机关换取正式植物检疫证书,才能调运或拿到市场销售。第四条属下列情况之一的植物和植物产品,调运前必须经过检疫。(一)农作物种子、苗木和繁育材料;草木花卉的种苗;(二)列入“农业植物检疫对象和应施检疫的植物、植物产品名单”和“国内热带作物检疫对象名单和应施检疫植物及植物产品名单”中的种苗、繁殖材料及产品;(三)凡有可能传带检疫对象的包装材料、运输工具、铺垫物品等亦应同时检疫;(四)乔木、灌木、竹类、野生珍贵花卉、干果的种子、苗木和繁殖材料;(五)列入“应施检疫的森林植物、林产品名单”中的种子、苗木、繁殖材料、木材、竹林。可能附着检疫对象的包装材料、运输工具等应同时检疫。以上第(一)、(二)、(三)项由农业部门所属的植物检疫站负责检疫,第(四)、(五)两项,由林业部门所属的检疫机构负责检疫。第五条加强疫区种苗的控制和保护区的防范。局部发生的检疫对象,应将其发生范围划作疫区,采取封锁、扑灭措施。并禁止任何单位和个人,把染疫的植物和植物产品带出疫区。凡检疫对象发生普遍的区域内,局部地方尚未发生的,应划作保护区。任何单位和个人,都不能将染疫的植物和植物产品带进保护区。农林植物检疫对象的疫区和保护区的划定,分别由区农牧渔业厅和林业厅提出,报自治区人民政府批准公布。划定后的疫区和保护区,如疫情发生变化,需要改变或撤消的,其程序与划定时相同。第六条农业和林业部门所属的检疫机构认为有必要时,经县以上人民政府同意,可在交通要道设卡检查。除种苗和繁殖材料特别集中,检疫部门认为非单独设卡不可者外,检疫哨卡应尽量与区人民政府公布的公路检查站及水路、铁路货物集运点相符。铁路、公路、航运、公安、工商行政、林业部门所属的检查机构和有关单位,要密切配合。第七条农林植物种子、苗木、繁殖材料和应施检疫的植物和植物产品,调运前必须按下列规定办理检疫手续。(一)区内调运,由调出的地(市)、县按全国农林植物检疫对象名单和我区农业植物检疫对象补充名单进行检疫和签证。(二)调往区外的,按全国植物检疫对象名单及调入省检疫机构提出的检疫要求执行。其中,农业植物检疫由自治区农业植物检疫站及其授权地(市)、县的农业植物检疫机构检疫和签证;森林植物检疫由自治区森林植物检疫站或区林业厅授权的地(市)、县森林植物检疫站或专职检疫员检疫和签证。(三)区外调入的,调入单位或个人,须到自治区及其授权地(市)农业植物检疫机构或森林植物检疫机构提出申请,经植物检疫机构同意并向调出单位或个人提出检疫要求,调出单位或个人必须根据所提检疫要求向本省植物检疫机构报检,取得省检疫证书,方可调入,必须时区内植物检疫机构可进行复检。(四)邮寄二公斤以下的种子、及五公斤以下的繁殖材料,不论寄往何地,均由县以上(包括县)植物检疫机构或专职检疫员查验、签

接上面没有记录的标本是没有科学价值的。2. 4培养学生的标本制作能力2. 4. 1保证压制标本的质量要指导学生做好药用植物标本,最初压制时,必须使标本舒展,叶片应有正面和反面两种叶子,为今后制作药用植物的腊叶标本做好准备。2. 4. 2开展标本展评在实习阶段,应组织学生随时进行采集制作标本的讲评话动,指导学生科学采集标本。野外实习结束后,可以进行以学生、小组或班级为单位的标本展评话动,调动学习的积极性。2. 4. 3留存优秀标本把学生野外实习作为教学科研的一部分。教师应有针对性地采集、制作一批高质量药用植物标本,也可以选择学生制作精良的标本,充实学校的标本室和教学科研素材。3建立自由开放型实验室,促进学生个性特长的发展药用植物学的主要培教学目标是讲授药用植物学基础知识和基本技能等。它是一门实践性很强的学科,不通过反复实践是很难掌握的。实验教学和野外实习是在规定的时间内,在有限的课堂教授和实践时间内达不到掌握知识的目的。为此,根据培养实用型人才的目标,我们进行实验改革,提出了自由开放型实验室的教学理念,在药学专业药用植物学的实验教学中进行了初步尝试。自由开放型实验室的含义:其一是指一个单元的实验内容在一段时间内向学生自由开放,学生可以利用课余时间进入实验室学习、实践,给学生提供学习时间和空间的自由;其二是给学生提供学习的自由,使学生学习的积极性、主动性和创造性得到充分发挥,学生可以自由选择实验项目、实验方法、实验材料,实施开放式探究,促使学生个性特长的发展。自由开放型实验主要安排在课余时间进行,一般一个教学单元的内容向学生开放两个星期,指定一位教师或实验员在实验室值班。这段时间主要是让学生进行自由探究学习,教师一般不给予辅导,让学生自己去摸索、设计、操作、得出结果。但实验准备所需用的仪器、药材标本、试剂要有充分的余地,比教学目标要求所规定的内容尽可能多,让学生自由选择,为学生特长发展提供自由的空间[7, 8]。总之,从当今教学改革的发展趋势来看,学生实践能力的培养越来越受到重视。药用植物学试验教学、野外实习和自由开放型实验室的实施,有利于本门学科教学质量的提高和促进学生各种能力的发展,特别是学生实际操作动手能力和创新能力的培养,对学生学习后续课程乃至他们今后的发展均有促进作用。只有教会求学者会学,求学者能学,才能开拓,才能创新。参考文献:[ 1 ]孙敏,邓洪平,王明书,等.植物学实验教学改革及其对学生创新能力的培养[ J].西南师范大学学报(自然科学版), 2003, 28(5): 812.[ 2 ]孙敏,王彦涵,王明书,等.高师植物学实验教学中的科学索质教育探讨实验教学与创新能力[J].南京:南京大学出版社, 2000: 30.[ 3 ]郁达,卢祥云,吴金男,等.加强综合性和设计性实验,培养学生创新能力[J].实验室研究与探索, 2002, 21(1): 15.[ 4 ]黄宝康,张朝晖.药用植物学野外教学的几点体会[J].药学教育,2001, 17(1): 37.[ 5 ]王丽红,刘娟,郑淑琴.药用植物学野外实习综述[J].黑龙江医药科学, 2004, 27(5): 69.[ 6 ]叶创兴,廖家遗,廖文波,等.从严要求,提高生物学野外实习的质量,打好生物学专业学生宽广的基础[ J].中山大学学报论丛,2001, 21(5): 24.[ 7 ]周效思,孙毅东,李明娟,等.自由开放型实验室的构思与实践[J].高教研究, 2006, 24(15): 15.[ 8 ]张济生.对培养大学生实践能力的认识[J].高等教育工程研究,2001(2): 37.我这是从CAJ上复制下来的,又把附件发你QQ邮箱里了,你下载CAJ软件就可以看了.

《广西植物》是cscd期刊,也就是中国科学引文数据库收录的期刊 ISSN:1000-31421对植物系统学稿件的要求:对植物新种原则上要求有细胞学、分子系统学等相关实验证据;原则上不接受省级的植物新分布或新记录、新变种或新等级等稿件;单种属的核型研究论文,内容充实者或确有新意者可接受投稿。2对植物化学稿件的要求:(1)文中要用新化合物;(2)或已知化合物新的生物活性;(3)若无新化合物,但前人对其化学成分缺乏研究,可以接受投稿。3对植物区系稿件的要求:(1)须提供所研究地区的植物名录,以审稿时参考;(2)植物区系的研究应是一个大的行政区域如国家、省(自治区)或者是自然区域如横断山或者某个山头等。不接受物种单一的植物区系稿件。4本刊原则上不接受2个以上第一作者或通讯作者的稿件。5文章篇幅文章要求精练。每篇研究报告和综述以12000~14000字(6~7版)为宜,述评以4000~6000字(2~3版)为宜,研究简报以10000字以内(4~5版)为宜。按本刊近期的格式排版(暂不分栏,由编辑部排版时分栏);使用规范简化字。

相关百科
热门百科
首页
发表服务