论文发表百科

矩阵的应用论文范文

发布时间:2024-07-02 15:22:28

矩阵的应用论文范文

关于【组合数学】的论文 生活中矩阵的应用摘要:矩阵作为一种重要的工具,在生活的方方面面都存在应用。比如科学地选彩票号码,图形的变换处理,控制监控系统都存在了矩阵的痕迹。矩阵在各个领域的应用为我们展示了矩阵的广泛实用性。矩阵实现了对组合的优化,对质量的管理优化,会变得越来越重要。关键词:矩阵 应用 优化 一.矩阵的概念在开始讨论矩阵应用前,先了解一下矩阵及相关的一些概念。在数学上,矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵,这一概念由19世纪英国数学家凯利首先提出。一些矩阵在农业,经济,通信等领域都存在许多特别的应用。二.矩阵的特别的应用 1.矩阵应用在选彩票号码一些彩民由于未了解“旋转矩阵”的作用,都采取旧式的复式投注方式(即完全复式),完完整整地拿去打彩,一些对复式投注进行深入研究的彩民发现进行复式投注浪费了不少成本。据研究者发现约有三分之一号码组合,实际上是不可能中奖或极难中奖的。据说在美国彩票史上,Gail Howard运用一种叫做“旋转矩阵”投注选号法,奇迹般地中出了74个大奖。这种“旋转矩阵”法,是一种基于“旋转矩阵”数学原理构造的选号法,其核心是:以极低的成本实现复式投注的效果。那么如何以极低的成本实现复式投注的最佳效果呢?这是由“旋转矩阵”法优点决定的。实际上,旋转矩阵是教你如何科学地组合号码。与完全复式投注组合号码的方法相比,旋转矩阵有着投入低、中奖保证高的优点。举个例子讲,10个号码的中6保5型的旋转矩阵的含义就是,你选择了10个号码,如果其中包含了6个中奖号码,那么运用该矩阵提供的14注号码,你至少有一注中对5个号码的奖。本矩阵只要投入28元,而相应的复式投注需要投入420元。大家知道,用10个号码,只购买其中的14注,如果你胡乱组合的话,即使这10个号码中包含有6个中奖号码,你也很可能只中得一些小奖。而运用旋转矩阵的话,就可以得到一个对5个号码的奖的最低中奖保证。旋转矩阵是世界上著名的彩票专家、澳大利亚数学家底特罗夫研究的,它可以帮助您锁定喜爱的号码,提高中奖的机会。首先您要先选一些号码,然后,运用某一种旋转矩阵,将你挑选的数字填入相应位置。如果您选择的数字中有一些与开奖号码一样,您将一定会中一定奖级的奖。当然运用这种旋转矩阵,可以最小的成本获得最大的收益,且远远小于复式投注的成本。 (1)旋转矩阵的原理在数学上涉及到的是一种组合设计:覆盖设计。而覆盖设计,填装设计,斯坦纳系,t-设计都是离散数学中的组合优化问题。2.矩阵在透视投影应用三维计算机图形学中另外一种重要的变换是透视投影。与平行投影沿着平行线将物体投影到图像平面上不同,透视投影按照从投影中心这一点发出的直线将物体投影到图像平面。这就意味着距离投影中心越远投影越小,距离越近投影越大。 最简单的透视投影将投影中心作为坐标原点,z = 1 作为图像平面,这样投影变换为 x' = x / z; y' = y / z,用齐次坐标表示为:这个乘法的计算结果是 (xc,yc,zc,wc) = (x,y,z,z)。在进行乘法计算之后,通常齐次元素 wc 并不为 1,所以为了映射回真实平面需要进行齐次除法,即每个元素都除以 wc: 更加复杂的透视投影可以是与旋转、缩放、平移、切变等组合在一起对图像进行变换。比如给定n个点,m个操作,构造O(m+n)的算法输出m个操作后各点的位置。操作有平移、缩放、翻转和旋转 这里的操作是对所有点同时进行的。其中翻转是以坐标轴为对称轴进行翻转(两种情况),旋转则以原点为中心。如果对每个点分别进行模拟,那么m个操作总共耗时O(mn)。利用矩阵乘法可以在O(m)的时间里把所有操作合并为一个矩阵,然后每个点与该矩阵相乘即可直接得出最终该点的位置,总共耗时O(m+n)。假设初始时某个点的坐标为x和y,下面5个矩阵可以分别对其进行平移、旋转、翻转和旋转操作。预先把所有m个操作所对应的矩阵全部乘起来,再乘以(x,y,1),即可一步得出最终点的位置。3.矩阵在质量问题中的运用 矩阵是从多维问题的事件中,找出成对的因素,排列成矩阵图,然后根据矩阵图来分析问题,确定关键点的方法,它是一种通过多因素综合思考,探索问题的好方法。 在复杂的质量问题中,往往存在许多成对的质量因素.将这些成对因素找出来,分别排列成行和列,其交点就是其相互关联的程度,在此基础上再找出存在的问题及问题的形态,从而找到解决问题的思路。 矩阵图的形式:A为某一个因素群,a1、a2、a3、a4、…是属于A这个因素群的具体因素,将它们排列成行;B为另一个因素群,b1、b2、b3、b4、…为属于B这个因素群的具体因素,将它们排列成列;行和列的交点表示A和B各因素之间的关系。按照交点上行和列因素是否相关联及其关联程度的大小,可以从中得到解决问题的启示。 质量管理中所使用的矩阵图,其成对因素往往是要着重分析的质量问题的两个侧面,如生产过程中出现了不合格品时,着重需要分析不合格的现象和不合格的原因之间的关系,为此,需要把所有缺陷形式和造成这些缺陷的原因都罗列出来,逐一分析具体现象与具体原因之间的关系,这些具体现象和具体原因分别构成矩阵图中的行元素和列元素。 矩阵图法的用途十分广泛.在质量管理中,常用矩阵图法解决以下问题: ①把系列产品的硬件功能和软件功能相对应,从中找出研制新产品或改进老产品的切入点,进行多变量分析、研究从何处入手以及以什么方式收集数据 。②明确应保证产品质量特性及与管理机构或保证部门的关系,使质量保证体制更可靠; ③当生产工序中存在多种不良现象,且它们具有若干个共同的原因时,搞清这些不良现象及其产生原因的相互关系,进而把这些不良现象一举消除。 ④明确产品的质量特性与试验测定仪器、试验测定项目之间的关系,力求强化质量评价体制或使之提高效率;(2)三,对矩阵应用的感悟 上述的矩阵应用说明了矩阵不仅仅是解方程组的工具,而且它是一种有用的工具,不仅仅在数学领域,还在经济,计算机领域等领域。相信在不久的未来,矩阵会变得越来越重要。矩阵的作用会越来越多地让人们发现。在线性代数数学书中,方程组可以转换为矩阵,再通过矩阵来简单,快速地解决问题。在质量管理问题上,它采用矩阵图来找出切入点,了解原因,使质量效率提高。 相信在不久的未来,矩阵对于优化问题的应用会越来越广泛,触及面会越来越多。矩阵是生活变得更简单,方便。参考文献:[1] 《科学通报》蒋昌俊,吴哲辉..,1989. [2] 求解约束矩阵方程及其最佳逼近的迭代法的研究彭亚新.湖南大学,2005.

矩阵在许多领域都应用广泛。有些时候用到矩阵是因为其表达方式紧凑,例如在博弈论和经济学中,会用收益矩阵来表示两个博弈对象在各种决策方式下的收益。文本挖掘和索引典汇编的时候,比如在TF-IDF方法中,也会用到文件项矩阵来追踪特定词汇在多个文件中的出现频率。早期的密码技术如希尔密码也用到矩阵。然而,矩阵的线性性质使这类密码相对容易破解。计算机图像处理也会用到矩阵来表示处理对象,并且用放射旋转矩阵来计算对象的变换,实现三维对象在特定二维屏幕上的投影。多项式环上的矩阵在控制论中有重要作用。化学中也有矩阵的应用,特别在使用量子理论讨论分子键和光谱的时候。具体例子有解罗特汉方程时用重叠矩阵和福柯矩阵来得到哈特里-福克方法中的分子轨道。

随着现代科学的发展,数学中的矩阵也有更广泛而深入的应用,下面列举几项矩阵在现实生活中的应用:

矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。 在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

矩阵秩的研究与应用论文

随着现代科学的发展,数学中的矩阵也有更广泛而深入的应用,下面列举几项矩阵在现实生活中的应用:

这个可以继续化简:1.用第3行把的1把所有的第四列的数都化为012-900-1500001(下面的不写了)2.用第2行的-1把第1行的2消去10100-1500001(当然你也可以把第2行乘以-1)这个矩阵的非零行就是3行,所以秩就是3因为第一行的以一个1他下面的全部是0所以这个1是消不去le第2行的-1他的那一列也全部是0同理第三行

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1] ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则[2] 。矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦()讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词[3] 。英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯()于1898年给出的[2] 。1854年时法国数学家埃尔米特()使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具[4] 。

矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。 在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

矩阵标准形的应用毕业论文

相似变换是矩阵的一种重要的变换,本章研究矩阵在相似变换下的简化问题,这是矩阵理论的基本问题之一。这种分解简介形式在许多领域中都有重要的作用。

在开始之前说一下矩阵的一些基本概念,设矩阵 ,将矩阵 的元素 所在的第 行第 列划去后,剩余的各元素按原来的排列顺序组成的 阶矩阵所确定的行列式称为元素 的 余子式 ,记为 ,称 为元素 的 代数余子式 。

方阵 的各元素的代数余子式 所构成的如下矩阵 :

该矩阵 称为 的伴随矩阵。具有以下性质: 。

本节讨论特征多项式的 性质 ,并讨论另一种重要的多项式- 最小多项式 。

试计算:

解 因为多项式为:

再取多项式:

以 去除 可得余式:

由哈密顿-凯莱定理, ,所以:

一般地说,若 是一个方阵, 是一个多项式, ,这种多项式叫作矩阵 的 零化多项式 ,可见每一个矩阵都有零化多项式,并且 零化多项式一定有无穷多个 ,因为特征多项式乘以任何一个多项式还是零化多项式。

那有没有一个次数最低的零化多项式呢?

设矩阵 的所有特征值为 ,又 的特征多项式为:

则 的最小多项式一定具有如下形式:

这里 。

把矩阵化为对角形对于解决很多问题都有帮助,如解微分方程组:

容易解出:

如果能化为上一个计算的形式,就很方便求解。

是否可以对角化?

解 因为:

矩阵 的特征值为-1,-2,-3。

由于 的三个特征值互不相同,固 有三个线性无关的特征向量, 可以对角化,进一步可以得到特征向量:

并不是每个方阵都能够相似于对角矩阵,如果矩阵不能对角化,矩阵总可以通过相似变换化为约当标准形。

的矩阵称为 阶约当块,由若干个约当块构成的分块对角矩阵:

称为 约当标准形 。

下面我们介绍用 行列式因子 法确定约当标准形的方法:

设矩阵 的元素都是 的多项式,则 称为 矩阵,记作 ,特殊地, , 是 的特征矩阵,这也是 矩阵。

公因式 :一个多项式中每一项都含有的相同的因式,叫做这个多项式各项的公因式。

由定义 ,又因为 能够整除每一个 级子式,而每一个 级子式可以展开为 级子式的线性组合,所以 能够整除 ,即 。

称为 的 不变因子 。把每个次数大于零的不变因子分解为互不相同的一次因子的方幂的乘积,所有这些一次因子的方幂(相同的必须按出现次数计算)称为 的 初级因子 。

行列式因子 :

不变因子 :

初级因子 :

有了上述概念,就可以求得矩阵 的约当标准形。设 的全部初级因子是:

这里 , , , 可能有相同的,指数 , , , 也可能有相同的,对每个初级因子 构成一个 阶约当块:

由所有这些约当块构成的分块对角矩阵:

称为矩阵 的约当标准形。

除去约当块的排列次序外,约当形矩阵由矩阵 唯一确定。

从上一节可以看到,求出矩阵的行列式因子、不变因子以及初级因子,就可以求出矩阵的约当标准形。 而当矩阵阶数比较高时,求它的行列式因子比较麻烦 。如果矩阵比较特殊,比方说是对角矩阵,就可以比较方便地求出行列式因子。所以考虑 先把矩阵对角化 ,就可以比较方便地求出行列式因子。所以考虑先把矩阵化为对角形,问题是在把矩阵化为对角形时,矩阵的行列式因子是否改变。

可以看出, 这三种变换不会改变行列式因子 。

称为矩阵 的史密斯标准形,其中:

我们有下面的结论。

下面讨论怎么把一个矩阵 化为史密斯标准形。假设一个矩阵经过初等变换化为如下形式的标准形:

其中 。

由上面所述,在这个过程中,行列式因子不变,所以变换后的矩阵与原来的矩阵有相同的行列式因子。而这个矩阵的行列式因子很容易得出:

由此可以得出, 对角线上的元素正好是矩阵的不变因子 。

特殊地,左上角的元素为一阶行列式因子,即矩阵的所有元素的公因子。这个公因子可以很容易求出。我们之后就可以利用这个结论求出史密斯标准形。

现在设矩阵 是一个 矩阵

首先通过观察确定左上角第一个元素,如果矩阵中有这一项,就把它挪到左上角上去,如果没有这一项,可以通过初等变换得出这一项。因为它是所有元素的公因子,能够整除所有元素,也一定能够整除它们的组合,所以可以通过初等变换得到。

左上角的元素得到以后,可以利用初等变换把它所在的行和列的其他元素都消成零,矩阵变成如下形式:

这时对于矩阵 来说,相当于一个新的矩阵,如果把它化成史密斯标准形,则左上角第一个元素仍然是 的一阶行列式因子,可以用同样的方法求出,在这个过程中,使用的是初等变换,而 能够整除所有元素,当然能够整除它们的组合,所以 ,这时矩阵可以通过初等变换化为下面的形式:

重复这个过程,即可得到史密斯标准形:

有很多用途其实没什么好解释的,你多学一点自然就知道了当然,先把特征值多理解理解再说

Jordan标准型的数学应用: 求解一阶微分方程组。一阶微分方程组的系数构成矩阵A,通常情况下A的特征值代数方程既含异根亦含重根,对A做相似变换一般为若当块对角阵J (特殊情形为纯对角阵),继而求J的指数若当矩阵e^(Jt),再求标准基解矩阵 e^(At)=S·e^(Jt)·(S逆),有了 e^(At) 即可求出微分方程组的函数解。物理应用: 一阶微分方程组广泛用于时域动态电路中。

逆矩阵的求法及应用论文答辩

逆矩阵可以使用inv()函数求。

工具/原料:

联想小新

Windows10

matlab

1、打开matlab之后,在命令行窗口中输入a=,新建一个a方矩阵,如下图所示:

2、在命令行窗口中输入inv(a),按回车键,可以看到得到了矩阵的逆,如下图所示:

3、使用inv(a)函数求矩阵的逆需要注意的是,a必须是方矩阵,也就是需要行列数相等的矩阵才可以,如下图所示:

4、也可以在命令行窗口输入help inv,按回车键查看一下inv()函数的用法,如下图所示:

逆矩阵的求法主要有以下两种:

1、利用定义求逆矩阵。

定义:设A、B都是n阶方阵,如果存在n阶层方阵B使得AB=BA=E。则称A为可逆矩阵,而称B为A的逆矩阵。

2、是初等变换法

求元素为具体数字的矩阵的逆矩阵,常用初等变换法。如果A可逆,则A通过初等变换,化为单位矩阵I,即存在矩阵P1、P2、......Ps使得:

(1)P1P2.......PsA=I,用A的负一次方右乘上式两端。

(2)P1P2.....PsI=A的负一次方。

比较(1)(2)两式,可以看到当A通过初等变换华为单位矩阵的同时,对单位矩阵I作同样的初等变换,就化为A的逆矩阵A的负一次方。这就是初等变换法在求逆矩阵中的应用。它是实际应用中比较简单的一种方法,需要注意的是,在作初等变换时只允许作行初等变换。同样,只作列初等变换也可以求逆矩阵。

求逆矩阵例题

逆矩阵求法:

方法有很多如(伴随矩阵法,行(列)初等变换等)。以伴随矩阵法来求其逆矩阵。

1、判断题主给出的矩阵是否可逆。

2、求矩阵的代数余子式,A11、A12、A13、A21、A22、A32、A31、A32、A33。

3、求伴随矩阵。

4、得到逆矩阵。

相关性质

(1)A与B的地位是平等的,故A、B两矩阵互为逆矩阵,也称A是B的逆矩阵。

(2)单位矩阵E是可逆的。

(3)零矩阵是不可逆的,即取不到B,使OB=BO=E。

(4)如果A可逆,那么A的逆矩阵是唯一的。事实上,设B、C都是A的逆矩阵,则有B=BE =B(AC)=(BA)C=EC=C。

矩阵的逆及应用论文开题报告

比如在Hill(希尔)密码中就应用的比较多,在经济军事等方面对传输信息进行加密处理工作的作用尤为突出。

矩阵乘法的实际应用:1)制造玩具A,分别需要大零件3个,小零件2个,制造玩具B,分别需要大零件1个,小零件5个,则制造玩具A,玩具B,分别x个、y个,则分别需要大、小零件,各多少个?使用矩阵乘法:(x,y) *3 21 5=(3x+y, 2x+5y)则分别需要大、小零件,各3x+y个, 2x+5y个2)计算学生综合得分:期中考试成绩权重为30%期末考试成绩权重为70%学生A,期中成绩89,期末成绩92学生B,期中成绩95,期末成绩86那么两人的综合得分是89 9295 86*30%70%

9. 浅析权益的形成及其分类。8. 试论降低产品成本的意义与途径3. 谨慎性原则在企业中的合理应用。5. 论会计科目设置的必要性、严肃性9. 浅析权益的形成及其分类。4. 会计基础工作规范化的思考。(数字是我的q,我来帮你 )1. 实质重于形式原则在我国会计管理中的运用。1. 实质重于形式原则在我国会计管理中的运用。4. 会计基础工作规范化的思考。

我会可以q我谈

相关百科
热门百科
首页
发表服务