论文发表百科

单机架六辊冷轧机毕业论文

发布时间:2024-07-06 03:39:40

单机架六辊冷轧机毕业论文

中间辊横移影响轧制压力吗,影响,【摘 要】介绍了HC六辊轧机中间辊横移装置的结构在设计原理上进行的更改,为适应新的横移装置的结构、为了电气控制系统的简单方便及降低制造成本,液压控制系统所进行的相应改进,使得整体更加协调合理。【关键词】HC轧机;中间辊;横移装置;液压系统1.前言为了适应钢材市场个性化服务需要的增长, 市场要求钢材生产向高质量、多品种、小批量、短周期和低成本方向发展, 而单机架六辊可逆式冷轧机在生产灵活性上正好符合这些要求。六辊可逆式冷轧机中的HC轧机是目前中窄带冷轧机中控制精度高、板型控制能力灵活多样、投资见效快、在民营企业和中小企业中推广的一种冷轧机。HC六辊单机架可逆冷轧机从1972年日本日立公司发明到国内引进消化吸收并不断的改进,在实际的建设中日益受到重视,建设比例在逐年的增加。HC轧机中中间辊横移系统用于轧制前,根据带材宽度以设定辊形、确定中间辊的位置,轧制时确保中间辊的位置保持不变,以达到控制带材板形的目的,所以在使用中就中间辊横移装置及液压控制系统我们在不断的改进完善。轧机原有中间辊横移装置及液压控制系统的特点现介绍HC六辊单机架可逆冷轧机组中原有中间辊横移装置(如图1)及相应液压控制系统的特点。图1 改进前的中间辊横移装置图2 改进前的液压控制系统图中间辊横移是用液压缸3通过中间铰接耳轴与横移轨梁2进行连接,液压缸活塞杆头部通过球铰耳轴把合在轧机机架1的端面,在液压动力的作用下液压缸进行伸缩,同时带动横移轨梁、中间辊一起进行横移动作,为了精确测量中间辊的横移距离在液压缸尾部安装有内置式位移检测传感器4,在液压缸横移的同时精准的测量移动距离。该液压缸为带内部锁紧装置的专用液压缸,在横移结束后通过独立的液压控制回路将活塞杆进行锁紧操作防止液压缸进行蹿动。横移装置对应的液压控制系统(如图2),首先电磁铁YV-3加电换向阀动作,P口与A口连通液压缸锁紧装置打开,在此条件下液压缸可以进行横移动作。电磁铁YV-1加电换向阀动作,主液压回路中的三个液控单向阀打开,比例换向阀YV-2根据需要进行正负电压给定控制横移液压缸左右横移动作,通过位移传感器的反馈型号进行比例换向阀的得失电控制,通过比例换向阀准确的流量控制,将中间辊横移到根据带材宽度需要预先设定的准确横移位置,电磁铁YV-1断电将液压系统锁定,从而满足机组在轧制过程中对板形控制的有效

您好,是的,中间辊横移会影响轧制压力。辊横移是指轧制辊的横向移动,它是轧制过程中最重要的参数之一。辊横移的变化会影响轧制压力的大小,从而影响轧制质量。当辊横移变化时,轧制压力也会发生变化,这种变化会影响轧制质量,因此,控制辊横移是控制轧制质量的关键因素。

是的,中间辊横向移动会影响轧制压力,因为在轧制过程中,轧道的垂直梁定位是通过对中间辊的横向位置进行调节来达到的。如果横向调节不到位,就会影响轧制压力的大小,轧制的效果也将受到影响。

轧制过程 \x0d\x0a \x0d\x0a一般单机架二十辊冷轧机的轧制过程可分为上料及穿带、可逆轧制;卸料及重卷3个阶\x0d\x0a段。二十辊轧机,特别是森吉米尔二十辊轧机,是采用大张力进行轧制的;轧制过程是从钢\x0d\x0a带在轧机前后的卷取机/开卷机施加张力之后才开始的,这之前即是上料及穿带阶段。\x0d\x0a 上料及穿带阶段:一般用上料小车将钢卷送到开卷机卷筒上;开卷多采用浮动开卷机,\x0d\x0a以保证钢带始终处在轧机中央位置;浮动开卷机由光电对中装置通用液压缸来进行控制;开\x0d\x0a 卷后钢带经矫直机(三辊直头或五辊矫直机)进行矫直;部分轧机设有液压剪可以进行切头;钢带用上摆式导板台跨过机前卷取机,直接送到二十辊轧机;然后开卷机继续往前送出钢带穿过轧机一直送到机后卷取机钳口,钳口钳住钢带带头并在卷筒上缠绕2—3圈后停止送带,穿带结束。 \x0d\x0a 可逆轧制阶段:穿带结束后,首先安放好上、下工作辊(穿带时,工作辊已取下),然后调准轧制线,关闭轧机封闭门,机前压板压下,出口侧擦拭器压紧钢带,轧机工艺润滑冷却系统启动供液,轧机带钢压下,卷取机转动给钢带前张力,机前后测厚仪、测速仪进入轧制线,机组运转开始第一道次的轧制。 \x0d\x0a 轧制过程中,如果发现钢带边部有缺陷将影响到高速轧制,则当缺陷部位经过轧辊时;\x0d\x0a操作工按一下操作台上的按钮,将其缺陷位置信号输入AGC系统。轧制将结束时轧机减速,当钢带尾部到达机前卷取机位置时,机组停车,第一道次结束。测厚仪、测速仪退出轧制\x0d\x0a线,轧机压下抬起,钢带张力解除,冷却润滑剂停止供给,压板抬起。\x0d\x0a 第二道轧制时,钢带反向运动,机前机后位置互换。第二道次工作开始时机后卷取机反\x0d\x0a向运行将机前钢带头部送人机前卷取机卷筒钳口,钳口钳住带头后,机前卷取机转动将钢带\x0d\x0a在卷筒上缠绕2—3圈;然后,轧机供给冷却润滑液,轧机压下,机前后卷取机传动给出后\x0d\x0a张力,机前后测厚仪、测速仪进入轧制线,机组运转开始第二道次的轧制。 \x0d\x0a 从第二道次开始,轧制就在机前后卷取机和二十辊轧机之间往返进行。当轧机的自动厚度控制(ACC)系统投入工作时可以实现全自动控制。当轧制过程中钢带有缺陷的部位过轧辊时,轧机会自动减速。轧制终了,轧机会自动停车。\x0d\x0a 一般可逆式轧机轧制奇数道次,但是在机前后卷取机为胀缩式卷筒时,可以轧制偶数道\x0d\x0a次,即在轧机开卷机一侧也可以卸卷。 \x0d\x0a 一般在成品道次轧制前,需要更换工作辊,以获得高质量的及有特殊要求的钢带表面质\x0d\x0a量。在成品道次轧制后,轧机停车,压下拾起,测厚仪、测速仪退出轧制线,轧机停止冷却润滑液供给,卷取机的压辊压下,或者将卸卷小车升起用小车座辊顶住钢卷,避免钢卷松卷卷取机转动将钢带尾部全部卷到卷筒上。至此可逆轧制过程结束。\x0d\x0a 卸卷及重卷阶段:对于胀缩式卷筒卷取机,卸卷比较简单。首先用捆扎带在钢卷径向捆\x0d\x0a扎一道,卸卷小车升起顶住钢卷,卷取机卷筒收缩,钳口打开,钢卷便被卸卷小车托住,卸卷小车和卷取机的辅助推板同步移动,便将钢卷从卷取机上卸下,卸卷小车继续移动将钢卷送到钢卷存放台上。\x0d\x0a 对于轧机前后为实心卷筒的卷取机,钢卷不能够从卷筒上直接卸下,只有将钢卷重新卷\x0d\x0a到一台胀缩式卷筒卷取机上,才能将钢卷卸下来。森吉米尔二十辊轧机、森德威二十辊轧机,采用实心卷筒卷取机时,机组一般设有重卷机构,将成品钢卷及实心卷筒一起从卷取位置转移到重卷开卷位置i然后将钢卷从开卷机往重卷机上重新卷取一次,由于重卷过程是在轧机轧制区域之外的位置进行的,所以重卷和轧制可以同时进行,互不影响。\x0d\x0a 轧制工艺\x0d\x0a\x0d\x0a 1 压下制度 \x0d\x0a 轧机的压下制度,应根据轧机的技术参数、轧制材料的力学性能、产品的质量要求来制\x0d\x0a定,同时还要考虑轧机生产能力要高,消耗要低。 \x0d\x0a 用二十辊轧机轧制优质碳素钢,相对来说是非常容易的,使用二十辊轧机的目的是追求\x0d\x0a产品的高质量,有高的尺寸精度、板形和表面质量,获得更薄的产品。 \x0d\x0a 碳素钢,特别是低碳软钢,在二十辊轧机上,一个轧程的总压下率能达到95%以上,道次压下率可以达到66%。 \x0d\x0a 对于可逆式冷轧机,由于各道次是在同一-架轧机上轧制,所以道次压下率分配是用等压力轧制原则来确定压下规程。一般第一道第二道的压下率最大,随着被轧钢带的加工硬\x0d\x0a化,道次压下率逐渐减小,以使各道次的轧制压力大致相等。 \x0d\x0a 为了提高轧机的生产能力,在充分利用轧机及机前后卷取机主传动功率的前提下,要尽\x0d\x0a可能地加大道次压下率以减少轧制道次。但是,有时为了获得良好的板形及表面质量,减少\x0d\x0a钢带纵向的厚度偏差,也可以适当地增加轧制道次,在总压下率相同的情况下,采用较多的轧制道次能使钢带的强度略有提高。成品道次的压下率对板形的影响较大,一般采用10%\x0d\x0a左右。 \x0d\x0a 2 张力制度 \x0d\x0a 冷轧钢带的一个特点是张力轧制;没有张力就无法进行钢带的冷轧。张力可以降低轧\x0d\x0a制压力,改善板形,稳定轧制过程。张力制度对于钢带冷轧非常重要。\x0d\x0a 采用小直径工作辊轧制的二十辊轧机(及多辊轧机),轧制过程的工艺特点则是采用大\x0d\x0a张力轧制。\x0d\x0a必须采用大的单位张力,是由于被轧制材料具有物理—力学性能各向异性现象,或在小\x0d\x0a变形弧长度内工作辊具有不大的歪斜,这样沿带材宽度出现压下和延伸的不均衡性。在压\x0d\x0a下量小的区域内重新分布张力时,张力达到屈服极限,井可能使带材宽度方向的延伸均衡。\x0d\x0a实际上,在多辊轧机上轧制时,金属的变形是依靠轧辊压下和卷取机建立的带材张力共同完\x0d\x0a成的。 \x0d\x0a 多辊轧机中采用的单位张力的大小取决于材料的物理—力学性能及冷加工硬化程度、带\x0d\x0a材厚度及其边部质量。一般单位张力为20%一70% 。\x0d\x0a 为了实现稳定轧制过程所必须的大的单位张力及总张力,要求在多辊轧机中设置具有\x0d\x0a大功率传动的卷取机。一般二十辊轧机卷取机电机功率达到轧机主传动功率的70%一\x0d\x0a80%,有的甚至达到100%。\x0d\x0a 各道次张力按如下方法确定。一般来说,第一道次轧制时,由于酸洗机组的卷取张力较\x0d\x0a小,为了避免造成钢带层间错动而擦伤表面,第一道的后张力根小,小于酸洗机组卷取张力。\x0d\x0a为了增加第一道轧制的后张力,二十辊轧机入口侧设有压板来增加轧制后张力;前张力可以\x0d\x0a根据工艺要求自由决定。在以后的轧制道次中,根掘轧制钢带品种、规格,或者采用前张力\x0d\x0a大于后张力,或者后张力大于前张力。一般采用将前一道次的轧制前张力作为本道次的后\x0d\x0a张力,单位前张力大于单位后张力。成品道次的前张力(卷取张力)有两种情况。对于胀缩式卷筒卷取机,由于在卷取机上可以直接卸卷并且钢卷直接进罩式炉进行紧卷退火,为防止在退火中产生粘结,卷取张力应减小,卷取张力小于50Mpa时,退火粘结的几率就很低了,但卷取张力低会影响轧机生产能力;对于实心卷筒卷取机,由于需要进行重卷,重卷时可以\x0d\x0a采用较小的张力(10—40Mpa),因此轧制时能够采用大张力,可以提高轧机生产能力。\x0d\x0a 道次的张力还应根据板形随时进行调整,特别是轧制带材较薄时。当材料中部有波浪时,应减小张力防止拉裂带边或断带;当带材产生边浪时,可以适当增加张力。\x0d\x0a 3 速度制度 \x0d\x0a 轧制速度的确定,应根据设备的能力,在轧机允许使用的速度范围内尽可能采用高的轧\x0d\x0a制速度,以提高轧机的生产能力;同时,当轧制速度增加时,轧制压力相应有所减小。\x0d\x0a 一般第一道次轧制时采用较低的轧制速度,因为第一道的压下量大,如果再用高速度轧\x0d\x0a制,将使轧辊急剧发热,由于多辊轧机轧辊冷却条件较差,将影响轧辊寿命;另外,由于坯料纵向厚度偏差大,板形与轧辊不完全符合,第一道轧制时要对坯料进行调整,要求速度较低;同时采用高速度大压下,主电机能力也不能满足。 \x0d\x0a 以后的道次,则根据压下制度和张力制度及主电机的功率决定轧制速度,使主电机的能\x0d\x0a力得到发挥。 \x0d\x0a 每道次轧制的启动和制动时,分别有一个升速和降速的过程。在轧制过程中,应尽可能\x0d\x0a少调速,以保证轧制的稳定性,从而达到厚度偏差的均一性。 \x0d\x0a 4 辊形 \x0d\x0a 由于二十辊轧机机架的刚性和零凸度设计,以及轧辊辊形的多种有效的调整手段,所以,\x0d\x0a二十辊轧机能够全部使用没有辊形凸度的平辊进行轧制。根据需要,工作辊和第二中间辊也\x0d\x0a可以适当地配置凸度辊;第一中间辊永远是平辊,但—头带有锥度,供轧辊轴向调整使用;支撑辊的背衬轴承不能有凸度。

冷轧辊论文参考文献

前言第1篇中外钢铁牌号和化学成分对照1第1章钢的分类按化学成分分类按主要质量等级和主要特性分类非合金钢的主要分类低合金钢的主要分类合金钢的主要分类10第2章中外钢铁牌号表示方法简介中国(GB)钢铁牌号表示方法简介钢铁牌号表示方法概述钢牌号表示方法铸钢牌号表示方法铸铁牌号表示方法钢铁及合金牌号统一数字代号体系俄罗斯(ГОСТ)钢铁牌号表示方法简介钢铁牌号表示方法概述钢牌号表示方法铸钢牌号表示方法铸铁牌号表示方法日本(JIS)钢铁牌号表示方法简介钢铁牌号表示方法概述钢牌号表示方法锻钢牌号表示方法铸钢牌号表示方法铸铁牌号表示方法美国(ASTM)钢铁牌号表示方法简介美国钢铁标准化机构简介钢铁牌号表示方法系统简介国际标准化组织(ISO)钢铁牌号表示方法简介国际标准化组织简介钢牌号表示方法铸钢牌号表示方法铸铁牌号表示方法欧洲标准化委员会(EN)钢铁牌号表示方法简介钢铁牌号表示方法概述钢牌号表示方法铸钢牌号表示方法铸铁牌号表示方法钢铁材料的数字牌号56第3章中外通用结构钢牌号和化学成分碳素结构钢牌号和化学成分优质碳素结构钢牌号和化学成分低合金高强度结构钢牌号和化学成分合金结构钢牌号和化学成分116第4章中外一般特性结构钢牌号和化学成分保证淬透性结构钢牌号和化学成分易切削结构钢牌号和化学成分冷镦及冷挤压用钢牌号和化学成分耐候结构钢牌号和化学成分非调质机械结构钢牌号和化学成分212第5章中外弹簧钢牌号和化学成分214第6章中外轴承钢牌号和化学成分高碳铬轴承钢牌号和化学成分渗碳轴承钢牌号和化学成分高碳铬不锈轴承钢牌号和化学成分高温轴承钢牌号和化学成分231第7章中外不锈钢及耐热钢牌号和化学成分奥氏体型不锈钢及耐热钢牌号和化学成分奥氏体?铁素体型不锈钢及耐热钢牌号和化学成分铁素体型不锈钢及耐热钢牌号和化学成分马氏体型不锈钢及耐热钢牌号和化学成分沉淀硬化型不锈钢及耐热钢牌号和化学成分320第8章中外工具钢牌号和化学成分碳素工具钢牌号和化学成分合金工具钢牌号和化学成分高速工具钢牌号和化学成分349第9章中外专用产品结构钢牌号和化学成分汽车用结构钢牌号和化学成分汽车大梁用热轧钢板和钢带汽车用高强度冷连轧钢板及钢带——烘烤硬化钢汽车用高强度冷连轧钢板及钢带——双相钢造船用结构钢牌号和化学成分船体用结构钢(普通强度)牌号和化学成分船体用结构钢(高强度)牌号和化学成分锅炉及压力容器用结构钢牌号和化学成分锅炉及压力容器用钢板牌号和化学成分低温压力容器用低合金钢钢板牌号和化学成分高压锅炉用无缝钢管牌号和化学成分桥梁用结构钢牌号和化学成分矿用高强度圆环链用钢牌号和化学成分石油天然气输送管用热轧宽钢带牌号及化学成分冷轧辊用钢牌号和化学成分锻钢冷轧辊辊坯钢牌号和化学成分锻钢冷轧工作辊钢牌号和化学成分405第10章中外建筑用钢牌号和化学成分建筑结构用钢牌号和化学成分冷轧带肋钢筋牌号和化学成分热轧带肋钢筋牌号和化学成分热轧光圆钢筋牌号和化学成分411第11章中外铸钢牌号和化学成分一般工程用铸造碳钢牌号和化学成分焊接结构用碳素铸钢牌号和化学成分低合金铸钢牌号中、高强度不锈铸钢牌号和化学成分一般用途耐蚀铸钢牌号和化学成分一般用途耐热铸钢及耐热合金牌号和化学成分奥氏体锰钢铸件牌号和化学成分铸钢轧辊材质代码及化学成分463第12章中外铸铁牌号和化学成分灰铸铁牌号球墨铸铁牌号可锻铸铁牌号黑心可锻铸铁牌号白心可锻铸铁牌号珠光体可锻铸铁牌号耐热铸铁牌号和化学成分高硅耐蚀铸铁牌号和化学成分抗磨白口铸铁牌号和化学成分蠕墨铸铁牌号铸铁轧辊材质代码和化学成分481第2篇中外有色金属材料牌号和化学成分对照485第13章有色金属材料分类有色金属及其分类有色金属合金及其分类488第14章中外有色金属材料牌号表示方法简介中国(GB)有色金属材料牌号表示方法简介俄罗斯(ΓOCT)有色金属材料牌号表示方法简介日本(JIS)有色金属材料牌号表示方法简介美国(ASTM)有色金属材料牌号表示方法简介国际标准化组织(ISO)有色金属材料牌号表示方法简介欧洲(EN)有色金属材料牌号表示方法简介527第15章中外有色金属材料状态代号表示方法简介变形铝及铝合金状态代号简介铜及铜合金状态代号简介538第16章中外轻有色金属材料牌号和化学成分铝及铝合金牌号和化学成分重熔用铝锭牌号和化学成分高纯铝牌号和化学成分变形铝及铝合金牌号和化学成分铸造铝合金锭牌号和化学成分铸造铝合金牌号和化学成分镁及镁合金牌号和化学成分原生镁锭牌号和化学成分变形镁及镁合金牌号和化学成分铸造镁合金锭牌号和化学成分铸造镁合金牌号和化学成分704第17章中外重有色金属材料牌号和化学成分铜及铜合金牌号和化学成分铜冶炼产品牌号和化学成分加工铜牌号和化学成分加工黄铜牌号和化学成分加工青铜牌号和化学成分加工白铜牌号和化学成分铸造黄铜锭牌号和化学成分铸造青铜锭牌号和化学成分铸造铜合金牌号和化学成分锌及锌合金牌号和化学成分锌锭牌号和化学成分加工锌及锌合金牌号和化学成分铸造用锌合金锭牌号和化学成分铸造锌合金牌号和化学成分压铸锌合金牌号和化学成分热镀用锌合金牌号和化学成分锡及锡合金牌号和化学成分锡锭牌号和化学成分高纯锡牌号和化学成分锡及锡合金箔牌号和化学成分铅及铅合金牌号和化学成分铅锭牌号和化学成分铅及铅锑合金牌号和化学成分铅锡合金箔牌号和化学成分保险铅丝牌号和化学成分铅银合金牌号和化学成分镍及镍合金牌号和化学成分电解镍(精炼镍)牌号和化学成分加工镍及镍合金牌号和化学成分839第18章中外稀有金属及其合金牌号和化学成分稀有轻金属钛及钛合金牌号和化学成分海绵钛牌号和化学成分加工钛及钛合金牌号和化学成分铸造钛及钛合金牌号和化学成分稀有高熔点金属钨、钼及其合金牌号和化学成分氧化钨牌号和化学成分仲钨酸铵牌号和化学成分钨粉牌号和化学成分钨条牌号和化学成分钨及钨合金加工产品牌号和化学成分钼酸铵牌号和化学成分钼粉牌号和化学成分钼条和钼板坯牌号和化学成分钼及钼合金加工产品牌号和化学成分其他钼及钼合金牌号和化学成分882第19章中外贵金属及其合金牌号和化学成分金及金合金牌号和化学成分金锭牌号和化学成分金牌号和化学成分金合金牌号和化学成分银及银合金牌号和化学成分银锭牌号和化学成分银牌号和化学成分银合金牌号和化学成分铂及铂合金牌号和化学成分海绵铂牌号和化学成分铂牌号和化学成分铂合金牌号和化学成分铱粉牌号和化学成分919第20章中外铸造轴承合金牌号和化学成分铸造轴承合金锭牌号和化学成分锡基合金锭牌号和化学成分铅基合金锭牌号和化学成分铸造轴承合金牌号和化学成分铅基铸造轴承合金牌号和化学成分锡基铸造轴承合金牌号和化学成分铜基铸造轴承合金牌号和化学成分铝基铸造轴承合金牌号和化学成分934第3篇中国常用金属材料新旧标准牌号对照935第21章中国常用钢铁材料新旧标准牌号对照通用钢新旧标准牌号对照碳素结构钢新旧标准牌号对照低合金高强度结构钢新旧标准牌号对照保证淬透性结构钢新旧标准牌号对照冷镦和冷挤压用钢新旧标准牌号对照非调质机械结构钢新旧标准牌号对照易切削结构钢新旧标准牌号对照耐候结构钢新旧标准牌号对照弹簧钢新旧标准牌号对照高碳铬轴承钢新旧标准牌号对照高碳铬不锈轴承钢新旧标准牌号对照高速工具钢新旧标准牌号对照不锈钢和耐热钢棒新旧标准牌号对照不锈钢棒新旧标准牌号对照耐热钢棒新旧标准牌号对照铸造钢铁材料新旧标准牌号对照一般用途耐蚀钢铸件新旧标准牌号一般用途耐热钢和合金铸件新旧标准牌号奥氏体锰钢铸件新旧标准牌号对照焊接结构用铸钢件新旧标准牌号对照工程结构用中、高强度不锈钢铸件新旧标准牌号对照灰铸铁件新旧标准牌号对照球墨铸铁件新旧标准牌号对照可锻铸铁新旧标准牌号对照耐热铸铁件新旧标准牌号对照高硅耐蚀铸铁件新旧标准牌号对照抗磨白口铸铁件新旧标准牌号对照铸钢轧辊新旧标准牌号对照铸铁轧辊新旧标准牌号对照专用产品结构钢新旧标准牌号对照汽车大梁用热轧钢板和钢带新旧标准牌号对照矿山巷道支护用热轧U型钢新旧标准牌号对照高压锅炉用无缝钢管新旧标准牌号对照锅炉和压力容器用钢板新旧标准牌号对照桥梁用结构钢新旧标准牌号对照矿用高强度圆环链用钢新旧标准牌号对照石油天然气输送管用热轧宽钢带新旧标准牌号对照建筑用钢新旧标准牌号对照钢筋混凝土用热轧带肋钢筋新旧标准牌号对照钢筋混凝土用热轧光圆钢筋新旧标准牌号对照冷轧带肋钢筋新旧标准牌号对照961第22章中国常用有色金属材料新旧标准牌号对照铝及铝合金新旧标准牌号对照镁及镁合金新旧标准牌号对照铜及铜合金新旧标准牌号对照铸造锌合金新旧标准牌号对照钛及钛合金新旧标准牌号对照铸造轴承合金新旧标准牌号对照贵金属及其合金新旧标准牌号对照980附录钢的成品化学成分允许偏差986参考文献992

淬火是把钢加热到临界温度以上,保温一定时间,然后以大于临界冷却速度进行冷却,从而获得以马氏体为主的不平衡组织(也有根据需要获得贝氏体或保持单相奥氏体)的一种热处理工艺方法。淬火是钢热处理工艺中应用最为广泛的工种工艺方法。

使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的刚性、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。也可以通过淬火满足某些特种钢材的铁磁性、耐蚀性等特殊的物理、化学性能。

注意事项:

淬火时,最常用的冷却介质是盐水,水和油。盐水淬火的工件,容易得到高的硬度和光洁的表面,不容易产生淬不硬的软点,但却易使工件变形严重,甚至发生开裂。而用油作淬火介质只适用于过冷奥氏体的稳定性比较大的一些合金钢或小尺寸的碳钢工件的淬火。

工件经局部加热至奥氏体化温度后,按通常方法冷却,或用水流喷射加热部位进行冷却,以使工件局部变硬的淬火方法叫做局部淬火。生产中常用火焰加热、感应加热或盐浴加热实现工件的局部淬火。近年来,发展的激光加热淬火时一种理想的局部淬火方法,并在生产中得到了应用。

以上内容参考:百度百科-淬火

书名:高等学校教材--金属材料学出版社:化学工业出版社定价:33条形码:9787502572419ISBN:ISBN 7-5025-7241-4作者:戴起勋印刷日期:2005-8-1出版日期:2005-8-1精装平装_开本_页数:平装16开,295页中图法:中图法一级分类:中图法二级分类:书号:简介:前 言金属材料是所有材料中使用量最大的材料,其理论和体系相对比较完整。从20世纪80年代以来,比较成熟并广泛应用的新型金属材料已有了很大的发展,如金属基复合材料、新型功能金属材料、微合金非调质钢等。就是传统材料也有了较大的发展。另外由于资源和环境的严峻问题,也提出了适应环境设计的简单合金与通用合金等新概念。国家在1998年调整了专业目录,对材料类专业的内涵有了新的叙述。近几年来,尽管专业要求有了很大的变化,但还缺少相应的配套教材。金属材料学是金属材料工程等材料类专业的核心课程。该课程在专业知识结构中占有很重要的位置,是学生走上工作岗位使用知识最多最直接的课程。该课程具有综合性、应用性和经验性的特点。综合性是内容涉及知识面比较广,涉及所有以前学过的专业知识;应用性是指课程的内容是生产或科研中正在广泛使用的材料和技术;经验性是指某些内容是长期的经验总结,在实际应用中可变性还比较大。本书编写者在金属材料学课程教学中已有近20年的经验。在教学过程中不断地整改内容和凝练思路,形成了一定的体系和特点,更加注重于培养学生分析问题和解决问题的能力,侧重于培养学生的创新思维。编写该书的基础是:在借鉴原教材的基础上,补充新的内容;结合多年的教学经验,调整书的体系和框架。编写思路是:抓住材料服役条件-成分-工艺-组织-性能-环境的主线,围绕合金化基本理论,尽可能地凸现材料科学发展中的思想,使教材内容具有综合性、应用性和新颖性的特点。该教材更适合于工程机械应用型金属材料工程等材料类专业使用。本书内容包括钢铁材料、有色金属合金和新型金属材料三大部分。以合金化原理为核心,着重阐明了材料成分与处理工艺的特点,强调了材料组织与性能及应用之间的关系,力图使学生掌握各类材料成分设计和制定工艺的依据。对各类新材料的发展也作了一定介绍。为使学生更好地理解和掌握课程内容及重点,领会材料发展的主线、核心和思想,培养学生分析问题和解决问题的能力,各章最后都精写了小结,并安排了一定量的习题与思考题。本书是江苏省金属材料工程品牌专业建设的重要内容之一,也是江苏大学重点精品课程建设所组织编写的教材。本书第1、3、4、5、6章和绪论由戴起勋教授编写,第2、7章由李忠华副教授编写,第8、9、10、11章由邵红红教授编写,第12、13、14章由王树奇教授编写,全书由戴起勋教授统稿主编,程晓农教授主审。本书在编写过程中参考了许多文献资料,主要文献列于书后,在此谨向所有参考文献的作者诚致谢意。吴晶等老师提供了有关的金相组织图片,化学工业出版社对本书的出版付出了辛勤的劳动,在此一并表示衷心的感谢。本书不但是材料类本科专业学生的教材,而且也可以作为研究生和从事材料工作技术人员的参考书。限于作者水平,书中难免有谬误,恳请同行和读者批评指正,以利于今后的补充、修改和完善。编 者2005年4月目录:绪论--金属材料的过去、现在和将来 10.1 金属材料发展简史 10.1.1 第一阶段--原始钢铁生产 10.1.2 第二阶段--金属材料学科的基础 10.1.3 第三阶段--微观组织理论大发展 20.1.4 第四阶段--微观理论的深入研究 20.2 现代金属材料 20.3 金属材料的可持续发展与趋势 4习题与思考题 6第1篇 钢铁材料第1章 钢的合金化概论 71.1 合金元素和铁的作用 71.1.1 钢中的元素 71.1.2 铁基二元相图 81.1.3 合金元素对Fe-C相图的影响 91.2 合金钢中的相组成 101.2.1 置换固溶体 101.2.2 间隙固溶体 111.2.3 碳化物与氮化物 111.2.4 金属间化合物 151.3 合金元素在钢中的分布及偏聚 151.3.1 合金元素在钢中的分布 151.3.2 合金元素的偏聚 161.4 合金钢中的相变 171.4.1 合金钢的加热奥氏体化 171.4.2 过冷合金奥氏体的分解 191.4.3 合金钢的回火转变 211.5 合金元素对钢强韧化的影响 241.5.1 钢强化的形式及其机理 241.5.2 合金钢强化的有效性 261.5.3 合金元素对钢韧度的影响 271.6 合金元素对钢工艺性的影响 281.6.1 材料的热处理工艺性 281.6.2 材料的成形加工性 351.7 微量元素在钢中的作用 351.7.1 微量元素的作用 351.7.2 微合金钢中的合金元素 361.8 金属材料的环境协调性设计 381.8.1 通用合金与简单合金 381.8.2 环境协调性合金的成分设计 401.9 合金钢的分类与编号 421.9.1 钢的分类 421.9.2 合金钢的编号方法 42本章小结 45习题与思考题 48第2章 工程结构钢 492.1 工程结构钢的基本要求 492.1.1 足够的强度与韧性 492.1.2 良好的焊接性和成形工艺性 492.1.3 良好的耐腐蚀性 502.2 低合金高强度结构钢的合金化 502.2.1 合金元素对低合金高强度钢力学性能的影响 502.2.2 合金元素对焊接性和耐大气腐蚀性的影响 522.3 铁素体-珠光体钢 532.4 微珠光体低合金高强度钢 552.4.1 强化机理 552.4.2 控制轧制和控制冷却技术 552.4.3 微合金元素的作用 562.5 针状铁素体钢 572.6 低碳贝氏体和马氏体钢 582.7 双相钢 592.8 低合金高强度钢发展趋势 60本章小结 61习题与思考题 61第3章 机器零件用钢 623.1 概述 623.1.1 机器零件用结构钢的特点与合金化 623.1.2 机器零件用结构钢的强度与脆性 633.2 整体强化态钢 643.2.1 调质钢 643.2.2 微合金非调质钢 673.2.3 弹簧钢 713.2.4 滚动轴承钢 733.2.5 低碳马氏体钢 773.2.6 超高强度钢 783.3 表面强化态钢 823.3.1 合金渗碳钢 833.3.2 氮化钢 873.3.3 低淬透性钢 883.4 耐磨钢 893.4.1 钢的耐磨性及其影响因素 893.4.2 高锰铸钢 903.4.3 低合金耐磨钢及石墨钢 913.5 零件材料选择基本原则与思路 913.5.1 选择材料的基本原则 923.5.2 选择材料的基本思路及方法 93本章小结 95习题与思考题 97第4章 工模具钢 994.1 概述 994.1.1 工具钢成分与性能特点 994.1.2 工具钢基本性能及检测方法 1004.2 碳素钢及低合金工具钢 1014.2.1 碳素工具钢 1014.2.2 低合金工具钢 1014.3 高速钢 1034.3.1 高速钢的分类 1034.3.2 高速钢中合金元素的作用 1054.3.3 高速钢中的碳化物 1064.3.4 高速钢的热处理 1084.4 冷作模具钢 1134.4.1 碳素工具钢和低合金工具钢 1144.4.2 高铬和中铬模具钢 1144.4.3 基体钢 1174.5 热作模具钢 1174.5.1 热锤锻模钢 1184.5.2 热挤压模钢 1204.5.3 压铸模钢 1224.6 其他类型工具用钢 1224.6.1 耐冲击用钢 1224.6.2 冷轧辊用钢 1234.6.3 量具用钢 1244.6.4 塑料模具用钢 1254.6.5 硬质合金 128本章小结 129习题与思考题 130第5章 不锈钢 1315.1 概述 1315.1.1 金属腐蚀类型与提高耐腐蚀性的途径 1315.1.2 不锈钢的组织与分类 1325.2 影响不锈钢组织和性能的因素 1345.2.1 合金元素对钢组织和性能的影响 1345.2.2 腐蚀介质对钢耐蚀性的影响 1385.3 铁素体不锈钢 1385.3.1 常用铁素体不锈钢及特点 1395.3.2 铁素体不锈钢的脆性 1395.3.3 铁素体不锈钢的热处理 1395.4 马氏体不锈钢 1405.4.1 马氏体不锈钢的成分和组织特点 1415.4.2 马氏体不锈钢的热处理特点 1425.5 奥氏体不锈钢 1425.5.1 奥氏体不锈钢的成分特点 1435.5.2 奥氏体不锈钢的晶间腐蚀 1445.5.3 奥氏体不锈钢的热处理 1455.5.4 铬锰氮奥氏体不锈钢 1465.6 双相不锈钢 1475.6.1 奥氏体-铁素体双相不锈钢 1475.6.2 奥氏体-马氏体双相不锈钢 148本章小结 148习题与思考题 149第6章 耐热钢 1506.1 基本概念 1506.1.1 金属的抗氧化性 1506.1.2 钢的热强性 1526.1.3 耐热钢的合金化 1556.2 热强钢 1556.2.1 珠光体热强钢 1556.2.2 马氏体热强钢 1586.2.3 奥氏体型高温合金 1606.3 抗氧化钢 161本章小结 163习题与思考题 163第7章 铸铁 1647.1 铸铁的石墨化及影响因素 1647.1.1 铸铁的石墨化过程 1647.1.2 影响铸态组织的因素 1667.2 石墨的形成及生长机理 1687.2.1 灰口铸铁中片状石墨的生长方式 1687.2.2 球状石墨的形成过程 1697.2.3 蠕状石墨的形成过程 1707.3 灰铸铁 1717.3.1 灰铸铁组织特点 1717.3.2 灰铸铁性能及热处理 1737.4 球墨铸铁 1747.4.1 球墨铸铁组织与性能 1747.4.2 球墨铸铁的热处理 1767.5 蠕墨铸铁 1787.5.1 蠕墨铸铁的金相组织 1787.5.2 蠕墨铸铁性能特点及应用 1797.6 可锻铸铁 1817.7 特种性能铸铁 1827.7.1 耐热铸铁 1827.7.2 耐磨铸铁 1837.7.3 耐蚀铸铁 184本章小结 185习题与思考题 185第2篇 有色金属合金第8章 铝合金 1868.1 铝合金的热处理及时效强化 1868.1.1 铝合金的分类 1868.1.2 铝合金热处理强化特点 1878.1.3 影响时效强化的主要因素 1888.2 变形铝合金 1898.2.1 变形铝及铝合金牌号和表示方法 1898.2.2 防锈铝合金 1918.2.3 硬铝合金 1928.2.4 超硬铝合金 1938.2.5 锻铝合金 1948.2.6 变形铝合金的热处理及金相检验 1948.3 铸造铝合金 1958.3.1 铝硅及铝硅镁铸造合金 1958.3.2 其他铸造铝合金 1978.3.3 铸造铝合金的热处理 199本章小结 199习题与思考题 200第9章 铜合金 2019.1 黄铜 2019.1.1 黄铜的牌号及表示方法 2019.1.2 普通黄铜 2029.1.3 特殊黄铜 2049.1.4 黄铜的热处理 2069.2 青铜 2079.2.1 青铜的牌号及表示方法 2079.2.2 锡青铜 2089.2.3 铝青铜 2119.2.4 铍青铜 213本章小结 214习题与思考题 214第10章 钛合金 21510.1 钛合金的合金化原理 21510.1.1 钛的基本性质与合金化 21510.1.2 钛合金的相变特点 21610.1.3 钛合金的分类 21810.2 α钛合金 21910.3 α+β钛合金 22010.3.1 α+β钛合金合金化特点 22010.3.2 Ti-Al-V系合金(TC3、TC4、TC10) 22110.3.3 其他α+β钛合金 22210.4 β钛合金 22210.5 钛及钛合金的发展与应用 22310.5.1 钛合金生产工艺的改善 22310.5.2 钛及钛合金的新发展和新应用 223本章小结 225习题与思考题 225第11章 其他有色金属合金 22611.1 镁合金 22611.1.1 镁及镁合金的特性 22611.1.2 镁合金的成分、组织和性能 22711.1.3 变形镁合金组织和性能 23011.1,4 铸造镁合金的组织和性能 23211.1.5 镁合金的热处理 23411.1.6 镁合金的应用 23511.2 锌合金 23611.2.1 锌及锌合金的特性 23611.2.2 锌合金的组织和性能 237本章小结 238习题与思考题 239第3篇 新型金属材料第12章 金属功能材料 24012.1 磁性合金 24012.1.1 软磁合金 24012.1.2 硬磁合金 24312.2 电性合金 24512.2.1 电热合金 24512.2.2 超导材料 24712.3 形状记忆合金 24812.3.1 形状记忆原理 24812.3.2 常用形状记忆合金 25012.4 其他功能材料 25312.4.1 热膨胀合金 25312.4.2 减振合金 25412.4.3 储氢合金 256本章小结 258习题与思考题 258第13章 金属间化合物结构材料 25913.1 金属间化合物材料概述 25913.1.1 金属间化合物材料的性能特点 25913.1.2 金属间化合物结构材料发展历史 26013.2 金属间化合物的晶体结构 26113.2.1 面心立方有序衍生结构 26113.2.2 体心立方有序衍生结构 26113.2.3 密排六方有序衍生结构 26213.2.4 具有复杂晶体结构的金属间化合物 26313.3 常用金属间化合物材料及应用 26313.3.1 Ni-Al系金属间化合物合金 26313.3.2 Fe-Al系金属间化合物合金 26613.3.3 Ti-Al系金属间化合物合金 267本章小结 270习题与思考题 270第14章 金属基复合材料 27114.1 概述 27114.1.1 金属基复合材料的种类 27114.1.2 金属基复合材料的性能特点 27314.1.3 金属基复合材料的研究和应用 27414.2 金属基复合材料的强度和体系选择 27514.2.1 金属基复合材料的强度 27514.2.2 金属基复合材料的体系选择 27714.3 金属基复合材料的界面与控制 27914.3.1 金属基复合材料界面结合与界面类型 28014.3.2 金属基复合材料界面稳定性 28114.3.3 金属基复合材料界面浸润与界面反应控制 28214.4 金属基复合材料的制造工艺 28414.4.1 固态法 28414.4.2 液态法 28514.4.3 喷涂与喷射沉积法 28614.4.4 原位自生复合法 28714.5 金属基复合材料的性能 28814.5.1 纤维增强金属基复合材料 28814.5.2 短纤维及颗粒增强金属基复合材料 290本章小结 291习题与思考题 292符号说明 293参考文献 294

高温金属快速冷却.就是淬火.

轧辊论文范文

哥哥,我和你一个题目,不用这么肆无忌惮吧!!!

液压伺服系统设计 液压伺服系统设计 在液压伺服系统中采用液压伺服阀作为输入信号的转换与放大元件。液压伺服系统能以小功率的电信号输入,控制大功率的液压能(流量与压力)输出,并能获得很高的控制精度和很快的响应速度。位置控制、速度控制、力控制三类液压伺服系统一般的设计步骤如下: 1)明确设计要求:充分了解设计任务提出的工艺、结构及时系统各项性能的要求,并应详细分析负载条件。 2)拟定控制方案,画出系统原理图。 3)静态计算:确定动力元件参数,选择反馈元件及其它电气元件。 4)动态计算:确定系统的传递函数,绘制开环波德图,分析稳定性,计算动态性能指标。 5)校核精度和性能指标,选择校正方式和设计校正元件。 6)选择液压能源及相应的附属元件。 7)完成执行元件及液压能源施工设计。 本章的内容主要是依照上述设计步骤,进一步说明液压伺服系统的设计原则和介绍具体设计计算方法。由于位置控制系统是最基本和应用最广的系统,所以介绍将以阀控液压缸位置系统为主。 全面理解设计要求 全面了解被控对象 液压伺服控制系统是被控对象—主机的一个组成部分,它必须满足主机在工艺上和结构上对其提出的要求。例如轧钢机液压压下位置控制系统,除了应能够承受最大轧制负载,满足轧钢机轧辊辊缝调节最大行程,调节速度和控制精度等要求外,执行机构—压下液压缸在外形尺寸上还受轧钢机牌坊窗口尺寸的约束,结构上还必须保证满足更换轧辊方便等要求。要设计一个好的控制系统,必须充分重视这些问题的解决。所以设计师应全面了解被控对象的工况,并综合运用电气、机械、液压、工艺等方面的理论知识,使设计的控制系统满足被控对象的各项要求。 明角设计系统的性能要求 1)被控对象的物理量:位置、速度或是力。 2)静态极限:最大行程、最大速度、最大力或力矩、最大功率。 3)要求的控制精度:由给定信号、负载力、干扰信号、伺服阀及电控系统零飘、非线性环节(如摩擦力、死区等)以及传感器引起的系统误差,定位精度,分辨率以及允许的飘移量等。 4)动态特性:相对稳定性可用相位裕量和增益裕量、谐振峰值和超调量等来规定,响应的快速性可用载止频率或阶跃响应的上升时间和调整时间来规定; 5)工作环境:主机的工作温度、工作介质的冷却、振动与冲击、电气的噪声干扰以及相应的耐高温、防水防腐蚀、防振等要求; 6)特殊要求;设备重量、安全保护、工作的可靠性以及其它工艺要求。 负载特性分析 正确确定系统的外负载是设计控制系统的一个基本问题。它直接影响系统的组成和动力元件参数的选择,所以分析负载特性应尽量反映客观实际。液压伺服系统的负载类型有惯性负载、弹性负载、粘性负载、各种摩擦负载(如静摩擦、动摩擦等)以及重力和其它不随时间、位置等参数变化的恒值负载等。 拟定控制方案、绘制系统原理图 在全面了解设计要求之后,可根据不同的控制对象,按表6所列的基本类型选定控制方案并拟定控制系统的方块图。如对直线位置控制系统一般采用阀控液压缸的方案,方块图如图36所示。图36 阀控液压缸位置控制系统方块图表6 液压伺服系统控制方式的基本类型伺服系统 控制信号 控制参数 运动类型 元件组成机液电液气液电气液 模拟量数字量位移量 位置、速度、加速度、力、力矩、压力 直线运动摆动运动旋转运动 1.阀控制:阀-液压缸,阀-液压马达2.容积控制:变量泵-液压缸;变量泵-液压马达;阀-液压缸-变量泵-液压马达3.其它:步近式力矩马达 动力元件参数选择 动力元件是伺服系统的关键元件。它的一个主要作用是在整个工作循环中使负载按要求的速度运动。其次,它的主要性能参数能满足整个系统所要求的动态特性。此外,动力元件参数的选择还必须考虑与负载参数的最佳匹配,以保证系统的功耗最小,效率高。 动力元件的主要参数包括系统的供油压力、液压缸的有效面积(或液压马达排量)、伺服阀的流量。当选定液压马达作执行元件时,还应包括齿轮的传动比。 供油压力的选择 选用较高的供油压力,在相同输出功率条件下,可减小执行元件——液压缸的活塞面积(或液压马达的排量),因而泵和动力元件尺寸小重量轻,设备结构紧凑,同时油腔的容积减小,容积弹性模数增大,有利于提高系统的响应速度。但是随供油压力增加,由于受材料强度的限制,液压元件的尺寸和重量也有增加的趋势,元件的加工精度也要求提高,系统的造价也随之提高。同时,高压时,泄漏大,发热高,系统功率损失增加,噪声加大,元件寿命降低,维护也较困难。所以条件允许时,通常还是选用较低的供油压力。 常用的供油压力等级为7MPa到28MPa,可根据系统的要求和结构限制条件选择适当的供油压力。 伺服阀流量与执行元件尺寸的确定 如上所述,动力元件参数选择除应满足拖动负载和系统性能两方面的要求外,还应考虑与负载的最佳匹配。下面着重介绍与负载最佳匹配问题。 (1)动力元件的输出特性 将伺服阀的流量——压力曲线经坐标变换绘于υ-FL平面上,所得的抛物线即为动力元件稳态时的输出特性,见图37。 图37 参数变化对动力机构输出特性的影响a)供油压力变化;b)伺服阀容量变化;c)液压缸面积变化 图中 FL——负载力,FL=pLA; pL——伺服阀工作压力; A——液压缸有效面积; υ——液压缸活塞速度, ; qL——伺服阀的流量; q0——伺服阀的空载流量; ps——供油压力。 由图37可见,当伺服阀规格和液压缸面积不变,提高供油压力,曲线向外扩展,最大功率提高,最大功率点右移,如图37a。 当供油压力和液压缸面积不变,加大伺服阀规格,曲线变高,曲线的顶点A ps不变,最大功率提高,最大功率点不变,如图37b。 当供油压力和伺服阀规格不变,加大液压缸面积A,曲线变低,顶点右移,最大功率不变,最大功率点右移,如图37c。 (2)负载最佳匹配图解法 在负载轨迹曲线υ-FL平面上,画出动力元件输出特性曲线,调整参数,使动力元件输出特性曲线从外侧完全包围负载轨迹曲线,即可保证动力元件能够拖动负载。在图38中,曲线1、2、3代表三条动力元件的输出特性曲线。曲线2与负载轨迹最大功率点c相切,符合负载最佳匹配条件,而曲线1、3上的工作点α和b,虽能拖动负载,但效率都较低。 (3)负载最佳匹配的解析法 参见液压动力元件的负载匹配。 (4)近似计算法在工程设计中,设计动力元件时常采用近似计算法,即按最大负载力FLmax选择动力元件。在动力元件输出特性曲线上,限定 FLmax≤pLA= ,并认为负载力、最大速度和最大加速度是同时出现的,这样液压缸的有效面积可按下式计算: (37) 图38 动力元件与负载匹配图形 按式37求得A值后,可计算负载流量qL,即可根据阀的压降从伺服阀样本上选择合适的伺服阀。近似计算法应用简便,然而是偏于保守的计算方法。采用这种方法可以保证系统的性能,但传递效率稍低。 (5)按液压固有频率选择动力元件 对功率和负载很小的液压伺服系统来说,功率损耗不是主要问题,可以根据系统要求的液压固有频率来确定动力元件。 四边滑阀控制的液压缸,其活塞的有效面积为 (38) 二边滑阀控制的液压缸,其活塞的有效面积为 (39) 液压固有频率ωh可以按系统要求频宽的(5~10)倍来确定。对一些干扰力大,负载轨迹形状比较复杂的系统,不能按上述的几种方法计算动力元件,只能通过作图法来确定动力元件。 计算阀控液压马达组合的动力元件时,只要将上述计算方法中液压缸的有效面积A换成液压马达的排量D,负载力FL换成负载力矩TL,负载速度换成液压马达的角速度 ,就可以得到相应的计算公式。当系统采用了减速机构时,应注意把负载惯量、负载力、负载的位移、速度、加速度等参数都转换到液压马达的轴上才能作为计算的参数。减速机构传动比选择的原则是:在满足液压固有频率的要求下,传动比最小,这就是最佳传动比。 伺服阀的选择 根据所确定的供油压力ps和由负载流量qL(即要求伺服阀输出的流量)计算得到的伺服阀空载流量q0,即可由伺服阀样本确定伺服阀的规格。因为伺服阀输出流量是限制系统频宽的一个重要因素,所以伺服阀流量应留有余量。通常可取15%左右的负载流量作为伺服阀的流量储备。 除了流量参数外,在选择伺服阀时,还应考虑以下因素: 1)伺服阀的流量增益线性好。在位置控制系统中,一般选用零开口的流量阀,因为这类阀具有较高的压力增益,可使动力元件有较大的刚度,并可提高系统的快速性与控制精度。 2)伺服阀的频宽应满足系统频宽的要求。一般伺服阀的频宽应大于系统频宽的5倍,以减小伺服阀对系统响应特性的影响。 3)伺服阀的零点漂移、温度漂移和不灵敏区应尽量小,保证由此引起的系统误差不超出设计要求。 4)其它要求,如对零位泄漏、抗污染能力、电功率、寿命和价格等,都有一定要求。 执行元件的选择 液压伺服系统的执行元件是整个控制系统的关键部件,直接影响系统性能的好坏。执行元件的选择与设计,除了按本节所述的方法确定液压缸有效面积A(或液压马达排量D)的最佳值外,还涉及密封、强度、摩擦阻力、安装结构等问题。 反馈传感器的选择 根据所检测的物理量,反馈传感器可分为位移传感器、速度传感器、加速度传感器和力(或压力)传感器。它们分别用于不同类型的液压伺服系统,作为系统的反馈元件。闭环控制系统的控制精度主要决定于系统的给定元件和反馈元件的精度,因此合理选择反馈传感器十分重要。 传感器的频宽一般应选择为控制系统频宽的5~10倍,这是为了给系统提供被测量的瞬时真值,减少相位滞后。传感器的频宽对一般系统都能满足要求,因此传感器的传递函数可近似按比例环节来考虑。 确定系统方块图 根据系统原理图及系统各环节的传递函数,即可构成系统的方块图。根据系统的方块图可直接写出系统开环传递函数。阀控液压缸和阀控液压马达控制系统二者的传递函数具有相同的结构形式,只要把相应的符号变换一下即可。 绘制系统开环波德图并确定开环增益 系统的动态计算与分析在这里是采用频率法。首先根据系统的传递函数,求出波德图。在绘制波德图时,需要确定系统的开环增益K。 改变系统的开环增益K时,开环波德图上幅频曲线只升高或降低一个常数,曲线的形状不变,其相频曲线也不变。波德图上幅频曲线的低频段、穿越频率以及幅值增益裕量分别反映了闭环系统的稳态精度、截止频率及系统的稳定性。所以可根据闭环系统所要求的稳态精度、频宽以及相对稳定性,在开环波德图上调整幅频曲线位置的高低,来获得与闭环系统要求相适应的K值。 由系统的稳态精度要求确定K 由控制原理可知,不同类型控制系统的稳态精度决定于系统的开环增益。因此,可以由系统对稳态精度的要求和系统的类型计算得到系统应具有的开环增益K。 由系统的频宽要求确定K 分析二阶或三阶系统特性与波德图的关系知道,当ζh和K/ωh都很小时,可近似认为系统的频宽等于开环对数幅值曲线的穿越频率,即ω-3dB≈ωc,所以可绘制对数幅频曲线,使ωc在数值上等于系统要求的ω-3dB值,如图39所示。由此图可得K值。 图39 由ω-3dB绘制开环对数幅频特性a)0型系统;b)I型系统 由系统相对稳定性确定K 系统相对稳定性可用幅值裕量和相位裕量来表示。根据系统要求的幅值裕量和相位裕量来绘制开环波德图,同样也可以得到K。见图40。 实际上通过作图来确定系统的开环增益K,往往要综合考虑,尽可能同时满足系统的几项主要性能指标。 系统静动态品质分析及确定校正特性 在确定了系统传递函数的各项参数后,可通过闭环波德图或时域响应过渡过程曲线或参数计算对系统的各项静动态指标和误差进行校核。如设计的系统性能不满足要求,则应调整参数,重复上述计算或采用校正环节对系统进行补偿,改变系统的开环频率特性,直到满足系统的要求。 仿真分析 在系统的传递函数初步确定后,可以通过计算机对该系统进行数字仿真,以求得最佳设计。目前有关于数字仿真的商用软件,如Matlab软件,很适合仿真分析。

1、钳工 示范讲解: ⑴钳工的加工范围及特点。 ⑵钳工工具、量具的使用及划线、錾削、锯割、锉削、刮研等钳工基本操作; ⑶讲解钻床的构造,麻花钻及铰刀的种类、用法及应用范围;示范钻孔、铰孔、扩孔的操作方法; ⑷攻丝、套扣操作方法; ⑸简单部件的装配方法。 独立操作: ⑴工具、量具的使用; ⑵划线、锯割、锉削、钻孔、攻丝、套扣、錾削; ⑶结合典型零件进行综合训练; ⑷部件的拆装。 具体要求: ⑴掌握钳工工具、量具的使用方法; ⑵具有划线、錾削、锯割、锉削、钻孔、攻丝、套扣的基本操作技能; ⑶了解铰孔、扩孔、刮研、装配的操作方法; ⑷能根据图纸加工简单。 2、铸造* 示范讲解: ⑴铸造生产的特点及过程; ⑵铸铁的熔炼过程及浇铸; ⑶手工造型; ⑷铸件的清理; ⑸铸件的质量检验及主要缺陷。 独立操作: 以示范讲解、参观为主,学生可不进行独立操作或只进行简单操作。 具体要求: 对铸造方法及生产过程有基本了解;了解铸件常见缺陷的产生原因及其质量检验。 3、锻造* 示范讲解: ⑴下料、加热、冷却等生产过程; ⑵空气锤的构造、原理及操作方法; ⑶自由锻造基本工序; 独立操作: 以示范讲解、参观为主,学生进行简操作或不进行独立操作; 具体要求: 对锻造的特点及生产过程有初步了解。 4、焊接 示范讲解: ⑴手工电弧焊设备的大致结构及电流调节方法;电焊条的种类和焊接接头型式; ⑵手工电弧焊的基本操作方法 ; ⑶气焊设备和焊炬,割炬的构造;火焰调节;焊剂的使用; ⑷气焊、气割的基本操作方法; ⑸焊接的质量检查;常见焊接缺陷及其产生的原因和预防措施; 独立操作: ⑴用手工电弧焊和气焊进行平焊; ⑵气割*; ⑶结合具体工件进行综合训练; 具体要求: ⑴具有手工电弧焊、气焊*、气割的基本操作技能; ⑵能合理选择焊接电流、焊条;能根据需要调节火焰; ⑶熟悉焊接的质量检查、焊接常见缺陷; 5、热处理* 示范讲解: ⑴热处理的作用、分类;常用热处理设备;冷却液的种类; ⑵普通热处理操作; ⑶高频淬火、渗碳; ⑷钢铁火花鉴别。 独立操作: 以示范讲解、参观为主,学生可不进行独立操作,也可与热处理实验结合进行。 具体要求: 了解普通热处理及常见表面热处理的操作方法、设备。 6、车削加工 示范讲解: ⑴普通车床的构造及各部件的作用,车床的保养; ⑵车床的加工范围及特点; ⑶车床的操作方法,车床附件及其安装,工件的装夹; ⑷车刀的刃磨及选用; ⑸切削要素的选择; ⑹各种表面的车削方法,螺纹的车削方法; ⑺挂轮和手柄位置的调整。 独立操作: ⑴车削基本操作:车端面、外圆及外圆锥面,车阶台、车操、切断、镗孔、车螺纹; ⑵刀具的刃磨*; ⑶挂轮及手柄位置的调整。 具体要求: ⑴了解车床的构造及加工范围; ⑵了解刀具体刃磨方法; ⑶能熟练操作车床,具有车内外圆、车端面、车圆锥面、车阶台、车槽及切断、车螺纹的基本操作技能; ⑷能根据需要合理选用切削要素和车刀; ⑸能根据图纸独立加工简单零件。 7、铣削加工 示范讲解: ⑴铣刀床的分类、构造及主要部件的作用,铣床的操作方法、维护与保养,铣床的加工范围及特点; ⑵铣刀的种类、结构、安装及调试; ⑶切削用量的选择、顺铣、逆铣; ⑷铣削加工基本操作,铣床夹具的应用,铣平面、斜面、阶台面、垂直面、铣槽、切断; ⑸分度头的基本原理及其使用方法。 独立操作: ⑴铣平面、斜面、阶台面、垂直面、铣槽、切断; ⑵分度头的使用。 具体要求: ⑴了解铣床的构造、铣刀的种类、结构和安装; ⑵了解铣床的加工范围; ⑶能熟练操作铣床,具有铣平面的操作技能; ⑷掌握分度头的使用方法。 8、刨削加工 示范讲解: ⑴牛头刨床的构造及主要部件的作用; ⑵刨床的加工范围、特点、操作方法、维护与保养; ⑶刨刀的种类与安装; ⑷刨削的基本方法:刨平面、斜面、阶台面、垂直面。 独立操作:刨平面、斜面、阶台面、垂直面。 具体要求: ⑴了解刨床的构造、刨刀的种类和安装; ⑵能熟练操作刨床,能刨平面、刨键槽。 9、磨削加工* 示范讲解: ⑴磨削加工的特点; ⑵磨床的操作方法及保养、维护; ⑶砂轮的种类、选择及安装; ⑷切削用量的选择; ⑸冷却液的使用; ⑹磨加工基本方法:磨内外圆、磨平面。 独立操作:以示范讲解,可不进行或只进行简单的独立操作。 具体要求: ⑴了解磨削加工的特点和磨床的操作方法; ⑵了解磨内外圆、磨平面的方法。 10、数控加工 示范讲解: ⑴数控加工概述; ⑵数控机床的组成和工作原理; ⑶数控机床的编程及加工。 独立操作: 简单零件的数控编程及加工。 具体要求: ⑴了解数控加工的特点; ⑵了解数控机床的组成和工作原理; ⑶能对简单零件进行数控编程及加工。 四、考核方法 本课程考核内容应包括基本技能考核(包括操作考核和工件质量)、基本知识考核(包括提问和书面测验)、实习纪律及平时表现、实习报告等项目,具体考核标准和考核办法(另附)。 五、主要参考书 1、《金工实习教材》 张小亮等主编 煤炭工业出版社 2、《机械技术》 牛小铁等主编 煤炭工业出版社 六、教学建议及学生学习要求 1、实习中一定要注意安全,在各工种实习前,应首先讲解该工种的安全操作规程和注意事项。 2、在实习中,应注意让学生尽可能多地了解各工种的先进设备及先进技术,可抽出适当时间组织学生到大型机械厂参观。 3、实习的重点是车工和钳工。对于其它实习学生可仅进行简单的操作或不操作。因不同专业实习周数不同,对带“*”的内容根据具体情况和专业要求取舍。 4、建议对实习时间如下分配(各实践环节时间分配另附): 总周数 时间分配 钳工 车工 数控加工 其它机加工 热加工 6 2 2 1 5 1 4 1 1 1 3 1 1 5、对于钳工和车工,应尽可能保证人机比为1:1。 6、学生实习守则(另附)

电梯控制系统设计基于西门子PLC的电梯控制系统

轧钢辊道毕业论文讲解

辊道是轧钢车间运送轧件的主要设备,其重量占整个轧钢车间设备总重量的40%左右,是轧钢车间中使用最多的设备。轧件进出加热炉,在轧机上往复轧制及轧后输送到精整工序等工作均由辊道来完成。辊道主要由导板、卫板和若干个辊子,以及多个电动机及其传动轴和减速器组成。

液压AGC自动厚度控制技术与装备 一、前言液压AGC自动厚度控制系统是现代化轧机提高轧制精度必不可少的技术装备,是热轧窄带钢厚度精度赶上或接近热轧宽带钢的唯一选择,是生产厂家在未来激烈市场竞争中取得优势的重要保证。国内首条热轧窄带钢液压AGC自动厚度控制系统,已在唐山不锈钢有限公司热轧厂得到成功使用,经长时间运行,系统稳定可靠,带钢厚度精度提高明显,厚度为的带钢,其纵向厚度偏差由降低到,厚度精度的提高幅度达到43%。二、液压AGC自动厚度控制系统的作用1、消除带钢因水印或头尾温差造成的厚度偏差; 2、消除带钢因尾部失张造成的厚度偏差;3、减少换辊和辊缝的设定时间,提高轧机的作业率;4、增加坯料单重,最大限度地实现负公差轧制,可使带钢的综合利用率提高1~2%。5、准确显示带钢厚度,实现测厚仪功能;三、液压AGC自动厚度控制系统的主要功能1、液压AGC自动厚度控制功能;(A)厚度计AGC功能:采用动态设定型AGC,包括绝对值和相对值两种。(B)监控AGC功能(安装测厚仪时);(C)冲击补偿和轧辊热膨胀和磨损补偿。2、具有快速抬辊以及轧机标定功能;3、具有手动设定辊缝和自动设定辊缝的功能;4、具有各种过载保护与报警显示功能; 5、具有轧制过程参数的数据采集、记录、显示功能;6、具有故障记录功能;7、具有良好的人机界面与对话功能。四、液压AGC自动厚度控制系统的组成液压站、伺服油缸、PLC电控系统、测厚仪、操作平台等。五、液压AGC自动厚度控制系统的价格国内总负责,关键设备采用进口,控制模型和软件具有自主知识产权的液压AGC自动厚度控制系统,其价格仅为同类进口液压AGC自动厚度控制系统价格的1/3~1/4,而其功能和稳定性则与之相当。对热轧窄带钢生产线,投资130~160万元能装备两架轧机,厚度精度可提高30%以上,当年可以收回全部投资。若同时装备4~5架轧机,厚度精度可达到热轧宽带钢的不平。六、液压AGC系统的主要性能参数设备名称 热连轧窄带钢AGC轧制压力 200~600T系统工作压力 20~25Mpa液压缸工作行程 20~70mm液压缸压下/抬起速度 7~10 mm/s带钢压下同步精度 ≤10μm纵向同卷差 ≤响应速度 ≤15 Hz七、AGC工程项目部简介AGC工程项目部是致力于研发、推广热轧带钢轧机液压AGC成套技术与装备的专业部门。通过大量的工程实践,公司建立了多学科相配套的AGC专业项目部,可以集液压AGC自动厚度控制系统的设计、开发、制造、安装、调试于一体,并能为用户提供优质服务。本公司所推出的液压AGC自动厚度控制系统,完全可以满足热轧带钢产品厚度的精确控制,可用于新上热轧带钢轧机及老轧机的改造上。本公司可以提供成套技术与设备,负责设备的安装和调试,并负责相关的技术培训等。

轧钢的原理1、热轧原理:从炼钢厂出来的钢坯还仅仅是半成品,必须到轧钢厂去进行轧制以后,才能成为合格的产品。从炼钢厂送过来的连铸坯,首先是进入加热炉,然后经过初轧机反复轧制之后,进入精轧机。轧钢属于金属压力加工,说简单点,轧钢板就像压面条,经过擀面杖的多次挤压与推进,面就越擀越薄。在热轧生产线上,轧坯加热变软,被辊道送入轧机,最后轧成用户要求的尺寸。轧钢是连续的不间断的作业,钢带在辊道上运行速度快,设备自动化程度高,效率也高。从平炉出来的钢锭也可以成为钢板, 但首先要经过加热和初轧开坯才能送到热轧线上进行轧制,工序改用连铸坯就简单多了,一般连铸坯的厚度为150~250mm,先经过除磷到初轧,经辊道进入精轧轧机,精轧机由7架4辊式轧机组成,机前装有测速辊和飞剪,切除板面头部。精轧机的速度可以达到23m/s。2、冷轧原理:与热轧相比,冷轧厂的加工线比较分散,冷轧产品主要有普通冷轧板、涂镀层板也就是镀锡板、镀锌板和彩涂板。经过热轧厂送来的钢卷,先要经过连续三次技术处理,先要用盐酸除去氧化膜,然后才能送到冷轧机组。在冷轧机上,开卷机将钢卷打开,然后将钢带引入五机架连轧机轧成薄带卷。

轧钢机plc毕业论文

摘要:通过对应急发电机自启动要求的分析,结合装备现状、配电系统的设计要求,利用PLC(可编程控制器)改造现有设备的优势,提出了详细的设计思路和方案以供参考。 关键词:PLC 应急发电机 方案 配电系统 通过对应急发电机自启动要求的分析,结合装备现状、配电系统的设计要求,利用PLC(可编程控制器)改造现有设备的优势,提出了详细的设计思路和方案以供参考。 通常传统发电机控制采用落后继电接触器控制方式,中间继电器和时间继电器太多,体积大,功能少,寿命短,线路复杂,接点多,造成故障多可靠性差,维修困难;而采用微电子技术由于集成电路(IC)的系统芯片种类繁多,体积大,设计周期长,费用低,工艺复杂,抗干扰性差,可靠性差;而可编程控制器(PLC)是以微处理器为核心,综合了计算机技术、通信技术而发展起来的一种新型、通用的自动控制装置,具有结构简单、性能优越、可靠性高、灵活通用、易于编程、使用方便等优点,近年来在工业自动控制、机电一体化、改造传统产业等方面得到了广泛的应用。 应急发电机组用PLC控制有很多优点,它主要通过软件控制,从而省去了硬件开发工作,外围电路很少,大大提高了系统的可靠性与抗干扰能力;由于它简单易行的可编程序功能,无须改变系统的外部硬件接线,便能改变系统的控制要求,使系统的“柔性”大大提高。 主要设计功能 在生产过程中突然停电,应急发电机立即给设备继续供电。应急电源原动机一般采用一台独立冷却和供油系统的柴油机,并设有自启动装置,保证在主站失电后0-50秒内启动,应急电网通常为主电网的一部分,在正常情况下,这些用电设备由总配电板供电,只是在应急情况下由应急发电机组供电,因此在应急配电板上的应急发电机主开关与主开关向应急配电板供电的开关之间设有电气联锁,以保证安全。 应急发电机组作为一个应急电源,应具备以下基本要求: 1、自动启动 当正常供电出现故障(断电)时,机组能自动启动、自动升速、自动合闸,向应急负载供电。 2、自动停机 当正常供电恢复,经判断正常后,控制切换开关,完成应急电到正常电的自动切换、然后控制机组降速到怠速、停机。 3、自动保护 机组在运行过程中,如果出现油压过低(小于)、冷却水温过高(大于95度)、电压异常故障,则紧急停机,同时发出声光报警信号,如果出现水温高(大于90度)、油温高等故障。则发出声光报警信号,提醒维护人员进行干预。 4、三次启动功能 机组有三次启动功能,若第一次启动不成功,经10秒延时后再次启动,若第二次启动不成功,则延时后进行第三次启动。三次启动中只要有一次成功,就按预先设置的程序往下运行;若连续三次启动均不成功,则视为启动失败,发出声光报警信号(也可以同时控制另一台机组起动)。 5、自动维持准启动状态 机组能自动维持准启动状态。此时,机组的自动周期性预供油系统、油和水的自动加温系统、蓄电池的自动充电装置投入工作。 6、具备手动、自动两种操作模式。 控制系统的硬件设计 应急电源多采用135系列的柴油机组,下面就以此为例用PLC实现对柴油机自启动的控制。 电路分析 设计说明:控制面板上有“手动/自动”选择旋钮, “启动”、“加速” 、 “减速、”“合闸”、“分闸”按钮,柴油机上加装接近开关(旋转编码器),用于测速度,加装油门电机用于控制柴油机转速,加装电磁铁用于停机熄火,电压检测、水温、油压都是外部开关信号。 一次启动过程:正常电失电后,经5秒确认,“启动电机”启动4秒钟,如柴油机发火运行,则接近开关(旋转编码器)测到柴油机达到启动转速,PLC立即停止“启动电机”。柴油机怠速30S后开始根据接近开关的信号加速,直到稳定转速,发电机开始发电,电压正常后合上主开关向负载供电。运行中PLC自动稳定转速。 三次启动过程:若一次启动未成功,则接近开关(旋转编码器)测到柴油机达不到启动转速速度,并在5秒后测不到柴油机转速,由PLC内部的定时器来进行控制进行再次启动,以10秒作为一个周期,三次启动时间约30秒,32秒后输出报警,如启动中接近开关(旋转编码器)测不到柴油机达转速,则直接启动失败。 启动失败及柴油机组停机:启动失败后,电磁电把油门拉回到“停机”位置,当正常电恢复时,PLC发出分闸信号并由油门电机减速到怠速60S后,电磁电将油门拉回“停机”位置,柴油机缺油熄火。 并可根据用户需要增加小型人机界面,以文字、指示灯、图案等形式显示柴油机的各种数值及状态。并可通过其面板的按钮改变柴油机的数值及状态。可修改有与时间有关的参数,对输入的数据进行范围设定,超出范围的数据拒绝输入。可以对柴油机的各种故障以文字形式显示以便于查找故障,如三次起动失败,转速高,缸温高,市电供电等等。带密码保护功能,可以防止非授权用户更改重要数据和开关量。机组--自控的特点(1)机组由柴油机发电机组和中心控制柜组成,可以单机单柜、双机单柜或联网自动化控制(无人值守)。(2)控制柜的核心是可编程序控制器(PLC),通常选用选用北京凯迪恩公司CPU306小型可编程序控制器,运行可靠,质量稳定。(3)充分利用PLC的指令和功能编制程序,尽量减少外围控制元器件和接口,电路简单,操作方便,便于维护。(4)利用PLC的高速计数器功能,准确测出机组转速,不采用原来的测速发电机、转速表,避免了安装困难并提高了可靠性。(5)控制器采用直流24V供电,并配备先进的高频开关式直流充电设备,可对蓄电池进行浮充电,保证控制柜直流供电。(6)PLC中的EPROM(只读存储器)可固化程序,使原程序长期不丢失。(7)利用PLC的通信功能可实现近程、远程集中监控。技术要求:采用旋转编码器比接近开关性能效果更好。接近开关技术要求:螺纹式接近开关检测距离10mm±10%工作电压DC型:10-30VDC 三线型响应频率400Hz 接近开关又称无触点接近开关,是理想的电子开关量传感器。当金属检测体接近开关的感应区域,开关就能无接触,无压力、无火花、迅速发出电气指令,准确反应出运动机构的位置和行程,即使用于一般的行程控制,其定位精度、操作频率、使用寿命、安装调整的方便性和对恶劣环境的适用能力,是一般机械式行程开关所不能相比的。根据所需的输入/输出点数选择PLC机型 根据自动化机组的控制要求,所需PLC的输入点数为14个,输出点数为10个。系统的控制量基本上是开关量,只有电压是模拟量,为了降低成本,可以通过检测电路把模拟量转换成开关量、如电压监测可以用电压保护器代替。这样可以选用不带模拟量输入的PLC。对于小型发电机可不加装油门电机用于控制柴油机转速。本系统选用北京凯迪恩公司CPU306小型可编程序控制器,可靠性高,体积小,输入点数为14个,输出点数为10个。电源、输入、输出电压均为24VDC。分配PLC输入输出 根据自动化机组的控制要求和电气原理图,PLC输入、输出信号分配表见表1。表1输入/输出分配表 停市电信号 油门加速 接近开关 (旋转编码器) 油门减速 接近开关** (旋转编码器)** 启动电机 电压正常 合闸 油压低 分闸 水温高 停机电磁铁 手动/自动 故障信号 启动按钮 加速按钮 减速按钮 停机按钮 合闸按钮 分闸按钮 合闸输出信号注: I全为直流24V输入Q为无源触点输出(24V3A)1表示接通0表示断开 电路设计见附录1所示:(Autocad2004打开) 发电机时序图见附录2所示:(Autocad2004打开) 发电机PLC源程序见附件:(从北京凯迪恩自动化技术有限公司网站下载最新版EasyProg软件打开)源程序是加装接近开关,柴油机每转发出6个脉冲信号,柴油机每分钟1000转,秒一个周期测速,如采用旋转编码器则秒一个周期测速,效果更佳。结论 采用PLC控制的自动化柴油发电机组,硬件结构简单,成本低廉,响应速度快,性能、价格比很高,和单片机系统相比具有极高的可靠性。经现场使用考验,性能稳定,运行可靠。另外还可以根据实际需要很方便地进行扩展。程序稍作修改,就可以满足用户不同的控制要求,对于现代智能楼宇,控制系统还可以通过通讯模块纳入到整个楼宇的监控系统之中,体现出极大的灵活性和适应性,具有极高的实际推广价值。

PLC论文相对来说比较简单,只要做熟悉一个,其他的触类旁通。。硬件图用VISIO可以很快的画出,软件编程也不复杂。难点在于和组态王结合进行相应的实时监测和控制。

PLC和变频器在中央空调系统中的节能应用摘要:介绍一种以PLC作为总控制部件,采用变频器控制中央空调冷冻水循环泵,构成恒压循环供水;变频调速循环供水,以及用PLC控制一台软起动器分别起动4台井水泵的控制系统。从而实现节能的目的,提高系统的可靠性,确保设备的安全运行。关键词:PLC;变频器;软起动器;节能1引言晶澳太阳能有限公司采用3台设备制冷机组用于生产设备制冷,设备冷冻水循环泵2台,额定功率30kW,一备一用。另采用2台空调制冷机组用于环境制冷,空调冷冻水循环泵3台,额定功率37kW,二用一备。两种循环水泵均为工频全速运转,由于设备冷冻水采用传统的固定节流方式来满足生产设备恒压供水要求和空调冷冻水采用固定节流的方式实现调节室内温度的目的,造成了大量电能的浪费,减短了水泵和阀门的使用寿命。现改造为由PLC作为核心控制部件,由变频器和设备冷冻水泵组成恒压供水系统。空调冷冻水根据温差△T控制原理,由变频器,PID温差控制器,温度变送器,循环泵组成温差△T控制变频调速系统。现公司有4口水井,井水泵额定功率为75kW,采用工频恒速运行。井水统一供给两种制冷机组冷却水、其他车间用水、消防用水等。由于井水泵的自耦降压起动方式控制机构宠大,故障率高。现改造为由PLC控制一台软起动器分别起动4台井水泵的起动方式。2硬件配置设计选用一台PLC作为核心控制部件,控制井水泵的软起动,设备冷冻水恒压供水和空调冷冻水的变频调速。其中,PLC选用Siemens公司的s7-200,CPU选用S7-222,电源模块一块,数字扩展模块选用EM223 24VDC 16输入/16输出。共24个输入点,22个输出点。数字量输入主要有循环泵手/自动运行方式的切换,循环水泵和井水泵的手动启/停操作和井水流量反馈。数字输出点用于19点继电器输出和两个冷冻水系统故障报警和井水流量报警。变频器选用MicroMaster430系列2台,一台额定功率30kW,用于控制设备冷冻水循环泵,另一台额定功率37kW,用于控制空调冷冻水循环泵。MicroMaster430系列变频器是风机类和水泵类的专用变频器,它拥有内置PID调节器,可以提高供水压力的控制精度,改善系统的动态响应。软起动器选用SIRIUS 3RW40系列一台,额定功率75kW,用于软起动井水泵。PID温差控制器一台,选用Transmit(全仕)G-2508系列PID双路温差控制器,用于设定温差,并将PID处理后的4~20mA的模拟信号送至变频器。压力变送器一个,用于检测设备冷冻水的管网压力,并将压力信号反馈给变频器。温度变送器两个,用于检测蒸发器两端的温度,并将温度信号送至PID温差控制器。3控制方案设计设备冷冻水恒压供水控制方案设计控制原理如图2所示,设备冷冻水循环系统是一个密闭的系统,由1#,2#循环泵供水,供水压力要求在±。正常情况下,一台循环泵工频全速运转时,出水压力可达 Mbar。具有很大的裕量,为避免电能的浪费,将设备冷冻水循环系统设计为恒压供水系统。方案设计有手动/自动两种工作方式。在手动方式下,工作人员可以根据实际情况现场决定起/停水泵的变频运行,并设最高优先控制级,不受PLC的自动控制,以保证检修或出现故障时的安全使用。自动方式控制过程:将控制面板上设备冷冻水泵的手动/自动开关,打到“自动”档,由井水泵的运行给定PLC设备冷冻水泵的起动信号,PLC控制KM11吸合,并与变频器通信,由变频器1F软起动1#循环泵。压力变送器检测设备冷冻水管网压力,转化为4~20mA的模拟信号反馈至变频器1F,变频器1F通过内置的PID将检测压力与压力给定值进行比较优化计算,输出运行频率调节1#循环泵的转速。当压力变送器检测到的管网压力低于给定压力时,变频器输出频率上升,增加1#泵的转速,提高管网压力;反之,则频率下降,降低1#水泵的转速。为防止备用泵在备用期间发生锈蚀现象,在自动控制方式下,将1#、2#循环泵设置起始/停止周期,使其自动定时循环使用。为避免在水泵切换时,管网压力变化过大,应采取必要的起/停时间协调措施,以尽量保证水压的稳定,并在切换过程中,对压力检测信号进行一定延时的“屏蔽”,防止变频器在较高的压力信号下不起动。切换过程为:当设定的循环周期已到时,屏蔽压力检测信号。将正在运行的水泵的频率升至50Hz后切换为工频运行,之后将备用泵变频起动(备用泵与运行泵不固定),在频率升至30Hz时,切除工频泵,并取消对压力信号的屏蔽,恢复正常运行,如此循环。在水泵切换时为了防止KM11与KM12、KM21与KM22、KM11与KM22误动作同时吸合发生故障,须将它们电气互锁和程序互锁。当工作泵发生故障时,则立即停止工作泵,将备用泵投入变频运行,并输出声光报警,提示工作人员及时检修,当变频器发生故障时则停止水泵运行立即输出报警。空调冷冻水系统循环泵变频调速控制方案设计控制原理如图3所示,空调冷冻水系统的供回水温度之差反映了冷冻水从室内携带热量的情况。温差大,说明室内温度高,应提高冷冻水泵的转速,加快冷冻水循环;反之,温差小,说明室内温度低,可以适当降低冷冻水泵的转速,减缓冷冻水循环。一般中央空调冷冻水系统设计温差为5oC~7oC。通过温差△T控制,控制冷冻水系统的循环状态,可以降低能源损耗,延长水泵的寿命。此外,空调冷冻水系统是一个密闭的系统不必考虑恒压问题。差控制器和循环泵温差闭环变频调速系统,控制冷冻水泵的转速随着室内热负载的变化而变化。工作过程为:温度变送器1、2分别在空调机组蒸发器输入和输出端测得温度后,转换为4~20mA的标准信号送入PID温差控制器,经PID与给定温差值比较处理后,输出4~20mA的标准信号到变频器2F的模拟量输入端,变频器2F输出相应频率,调节循环水泵的转速,达到控制温度的目的,形成一个完整的闭环控制系统。系统设计为手动和自动两种控制方式手动方式工作过程与设备冷冻水泵手动工作方式类似自动控制过程为:将控制面板上的空调冷冻水循环泵手动/自动控制开关打到“自动”档,系统将在自动方式下运行,由井水泵的运行给定PLC空调冷冻水泵起动指令后,首先控制KM31吸合投入3#循环泵变频运行,由温度变送器1、2检测蒸发器两端的温度,并将温度信号送到PID温差控制器,PID温差控制器将检测到的温差与给定温差比较处理后的标准信号反馈给变频器2F。若检测到的温差大于温差给定值时,变频器2F提升输出频率,提高水泵的转速,加快冷冻水的循环;反之,则降低频率,降低水泵转速。在自动运行方式下,将3台水泵设定自动循环周期,定时自动循环使用。3台水泵的开闭顺序为“先开先关”的顺序,当室内热负荷加大时,若变频器2F的输出频率已升至50Hz,经一定延时(如20min),当检测温差值仍大于温差给定值时,通过PLC程序控制,把3#水泵切换为工频运行,再投入4#水泵变频运行,如此循环,直到变频运行5#水泵。当3台水泵被全部投入运行,且变频泵频率已至50Hz,经延时若频率仍没下降,则由PLC输出报警,提醒工作人员及时修改空调机组设定值;相反,当室内热负荷减小时,变频器2F降低输出频率,降低5#泵的转速,当频率降到20Hz时,若检测温差值仍低于温差给定值时,经延时(如20min),停止3#泵,依此类推。为保证变频器2F只控制一台水泵,将KM31、KM41和KM51电气互锁和程序互锁,同时须将KM31与KM32、KM41与KM42、KM51与KM52电气互锁。当变频器2F或水泵发生故障时,由PLC输出声光报警,提示工作人员及时检修。井水泵软起动控制方案设计如图1所示,利用PLC控制一台软起动器,即可分别起动4台井水泵.将井水泵的运行方式设计为手动方式。具体控制过程为:按下控制面板上相应的起动按钮,如按下6#泵起动按钮,PLC控制KM61吸合并运行软起动器,软起动6#井水泵。当软起动器起动完毕后利用其辅助触点反馈信号给PLC,PLC断开KM61并立即闭合KM62,将6#井水泵切入工频运行,并停止运行软起动器,依此类推。为防止软起动器同时起动两台以上的井水泵,须将KM61、KM71、KM81、KM91电气互锁和程序互锁,另须将KM61与KM62、KM71与KM72、KM81与KM82、KM91与KM92电气互锁,4 S7-200与MM430变频器的通信设置S7-200PLC作为核心控制部件,它有总线访问权,可以读取或改写变频器的状态,控制软起动器的运行状态,从而达到控制和监视设备运行状态的目的。系统采用总线式拓扑结构,两台变频器采用总线接插件连入总线。S7-200选用S7-222CPU,软件采用。采用西门子Profibus屏蔽电缆及9针D形网络连接头。利用S7-222的自由通信口功能,即RS485通信口。由用户程序实现USS协议与两台MM430变频器通信。在硬件连接完毕后,需要对两台MM430变频器的通信参数进行设置,如表1所示。5软件设计在应用设计中,PLC起到“总监总控”的角色,可以对两台变频器的状态进行查询和控制。程序首先将S7-222的通信口初始化为自由通信口方式,然后程序进入一个顺序控制逻辑功能块。控制顺序为:手动起动井水泵,在井水流量满足要求的情况下,自动运行设备冷冻水循环泵和空调冷冻水循环泵。在PLC的程序中设计了井水泵的手动软起动井水泵控制、设备冷冻水循环泵和空调冷冻水循环泵自动定时循环程序;同时设计了设备冷冻水循环泵和空调冷冻水循环泵的手动控制程序。在本系统中采用了变频器自身控制的方法,这样就省去了对PLC的PID算法的编程。6结论本系统设计实际应用运行一个夏季后,得出与上个季度循环水泵电能消耗数据及故障次数如表2所示。数据显示,系统改造后节能达30%以上,并且在春,秋、冬季节空调冷冻水循环泵的节能效果会更加明显,并且故障发生次数大幅下降。因此采用调速调节流量的方式,可以大幅度降低截流能量的损耗,具有显著的节能效果,并能延长水泵的寿命,提高系统运行的稳定性,降低生产成本,提高生产效率。参考文献[1]王仁祥,王小曼.变频器在中央空调中的应用.通用变频器选型,应用与维护.北京:人民邮电出版社,2002:176-202.[2]西门子有限公司.MM430通信设置.MICROMASTER430使用大全..[3]蔡行健.S7-200模块.深入浅出西门子S7-200PLC.北京:北京航空航天出版社,2003:95-125.[4]原魁,刘伟强.变频器基础及应用.北京:冶金工业出版社,2006.[5]罗宇航.流行PLC实用程序及设计(西门子S7-200系列).西安:西安电子科技大学出版社,2004.叮叮猫进士 回答采纳率: 2010-03-24 20:38 随着我国经济的高速发展,交流变频调速技术已经进入一个崭新的时代,其应用越来越广泛。而电梯作为现代高层建筑的垂直交通工具,与人们的生活紧密相关。随着人们对其要求的提高,电梯得到了快速的发展,其拖动技术已经发展到了变压变频调速,其逻辑控制也由PLC代替原来的继电器控制。通过对变频器和PLC的合理选择和设计,大大提高了电梯的控制水平,并改善了电梯运行的舒适感,使电梯得到了较为理想的控制和运行效果。并利用旋转编码器发出的脉冲信号构成位置反馈,实现电梯的精确位移控制。通过PLC程序设计实现楼层计数、换速信号、开门控制和平层信号的数字控制,取代井道位置检测装置,提高了系统的可靠性和平层精度。该系统具有先进、可靠、经济的特色。该电梯控制系统具有司机运行和无司机运行的功能,并且具有指层、厅召唤、选层、选向等功能和具有集选控制的特点。关键词: 电梯; PLC; 变频调速; 旋转编码器ABSTRACTAs China's rapid economic development, exchange of VVVF technology has entered a new era, its application more widely. The elevator as a modern high-rise building the vertical transport, and is closely related to people's lives, as people raise their requirements, the lift has been the rapid development of its technology has developed to drag the PSA Frequency Control, the logic control Also by the PLC to replace the original control the PLC chip and a reasonable choice and design, Greatly improving the control of the elevator, the elevator and to improve the operation of comfort, so that the lift has been better control and operation results. And using a rotary encoder pulse a position feedback, and lift the precise control of displacement. PLC program designed to achieve through the floor count, for speed signal, to open the door of peace control of the digital control signals to replace Wells Road location detection devices, improving the reliability of the system accuracy of the peace. The system has advanced, reliable and economic elevator control system has run drivers and drivers operating without that manual and automatic features, and with that layer, called the Office for the election of the Commission to function, with election-control : lift ; PLC; VVVF; rotary encoder目 录1 绪论 PLC控制交流变频电梯的简介 电梯控制的国内外发展现状 题目选择的来源与意义 本文所做的主要工作 32 电梯设备的介绍 电梯设备 电梯的分类 电梯的主要参数 电梯的安全保护装置 53 变频器的选择及其参数计算 变频器的分类 变频器的选择 变频器品牌型号的选择 变频器规格的选择 选择变频器应满足的条件 VS-616G5型通用型变频器 变频器有关参数的计算 变频器容量的计算 变频器制动电阻的计算 114 PLC的选择及硬件开发 PLC简介 控制器件的选择 PLC的选择 轿厢位置的检测元件 PLC硬件系统的设计 设计思路 I/O点数的分配及机型的选择 215 系统软件开发 电梯的三个工作状态 电梯的自检状态 电梯的正常工作状态 电梯的强制工作状态 系统的软件开发方法确定 软件设计特点 软件流程 模块化编程 系统的软件开发 电路的开关门运行回路 电梯的外召唤信号的登记消除及显示回路 利用旋转编码器获取楼层信息 呼梯铃控制与故障报警 电梯的消防运行回路 36结 论 38致 谢 39参考文献 40附录 Ⅰ VS-616G5型变频器的常用参数 41附录 Ⅱ VS-616G5变频器主要参数设置表 42附录 Ⅲ 梯形图 43

PLC的,一百多份,有用的话,加分给我,1. 基于FX2N-48MRPLC的交通灯控制2. 西门子PLC控制的四层电梯毕业设计论文3. PLC电梯控制毕业论文4. 基于plc的五层电梯控制5. 松下PLC控制的五层电梯设计6. 基于PLC控制的立体车库系统设计7. PLC控制的花样喷泉8. 三菱PLC控制的花样喷泉系统9. PLC控制的抢答器设计10. 世纪星组态 PLC控制的交通灯系统11. X62W型卧式万能铣床设计12. 四路抢答器PLC控制13. PLC控制类毕业设计论文14. 铁路与公路交叉口护栏自动控制系统15. 基于PLC的机械手自动操作系统16. 三相异步电动机正反转控制17. 基于机械手分选大小球的自动控制18. 基于PLC控制的作息时间控制系统19. 变频恒压供水控制系统20. PLC在电网备用自动投入中的应用21. PLC在变电站变压器自动化中的应用22. FX2系列PCL五层电梯控制系统23. PLC控制的自动售货机毕业设计论文24. 双恒压供水西门子PLC毕业设计25. 交流变频调速PLC控制电梯系统设计毕业论文26. 基于PLC的三层电梯控制系统设计27. PLC控制自动门的课程设计28. PLC控制锅炉输煤系统29. PLC控制变频调速五层电梯系统设计30. 机械手PLC控制设计31. 基于PLC的组合机床控制系统设计32. PLC在改造z-3040型摇臂钻床中的应用33. 超高压水射流机器人切割系统电气控制设计34. PLC在数控技术中进给系统的开发中的应用35. PLC在船用牵引控制系统开发中的应用36. 智能组合秤控制系统设计37. S7-200PLC在数控车床控制系统中的应用38. 自动送料装车系统PLC控制设计39. 三菱PLC在五层电梯控制中的应用40. PLC在交流双速电梯控制系统中的应用41. PLC电梯控制毕业论文42. 基于PLC的电机故障诊断系统设计43. 欧姆龙PLC控制交通灯系统毕业论文44. PLC在配料生产线上的应用毕业论文45. 三菱PLC控制的四层电梯毕业设计论文46. 全自动洗衣机PLC控制毕业设计论文47. 工业洗衣机的PLC控制毕业论文48. 《双恒压无塔供水的PLC电气控制》49. 基于三菱PLC设计的四层电梯控制系统50. 西门子PLC交通灯毕业设计51. 自动铣床PLC控制系统毕业设计52. PLC变频调速恒压供水系统53. PLC控制的行车自动化控制系统54. 基于PLC的自动售货机的设计55. 基于PLC的气动机械手控制系统56. PLC在电梯自动化控制中的应用57. 组态控制交通灯58. PLC控制的升降横移式自动化立体车库59. PLC在电动单梁天车中的应用60. PLC在液体混合控制系统中的应用61. 基于西门子PLC控制的全自动洗衣机仿真设计62. 基于三菱PLC控制的全自动洗衣机63. 基于plc的污水处理系统64. 恒压供水系统的PLC控制设计65. 基于欧姆龙PLC的变频恒压供水系统设计66. 西门子PLC编写的花样喷泉控制程序67. 欧姆龙PLC编写的全自动洗衣机控制程序68 景观温室控制系统的设计69. 贮丝生产线PLC控制的系统70. 基于PLC的霓虹灯控制系统71. PLC在砂光机控制系统上的应用72. 磨石粉生产线控制系统的设计73. 自动药片装瓶机PLC控制设计74. 装卸料小车多方式运行的PLC控制系统设计75. PLC控制的自动罐装机系统76. 基于CPLD的可控硅中频电源77. 西门子PLC编写的花样喷泉控制程序78. 欧姆龙PLC编写的全自动洗衣机控制程序79. PLC在板式过滤器中的应用80. PLC在粮食存储物流控制系统设计中的应用81. 变频调速式疲劳试验装置控制系统设计82. 基于PLC的贮料罐控制系统83. 基于PLC的智能交通灯监控系统设计

相关百科
热门百科
首页
发表服务