论文发表百科

关于矩阵的秩的论文开题报告

发布时间:2024-07-05 01:44:02

关于矩阵的秩的论文开题报告

国内主要研究矩阵秩的变换和分解。矩阵秩的求法很多,一般归结起来有以下几种:1)通过对矩阵做初等变换(包括行变换以及列变换)化简为梯形矩阵求秩。此类求解一般适用于矩阵阶数不是很大的情况,可以精确确定矩阵的秩,而且求解快速比较容易掌握。2)通过矩阵的行列式,由于行列式的概念仅仅适用于方阵的概念。通过行列式是否为0则可以大致判断出矩阵是否是满秩。3)对矩阵做分块处理,如果矩阵阶数较大时将矩阵分块通过分块矩阵的性质来研究原矩阵的秩也是重要的研究方法。此类情况一般也是可以确定原矩阵秩的。4)对矩阵分解,此处区别与上面对矩阵分块。例如n阶方阵A,R分解(Q为正交阵,R为上三角阵)以及Jordan分解等。通过对矩阵分解,将矩阵化繁为简来求矩阵的秩也会有应用。5)对矩阵整体做初等变换(行变换为左乘初等矩阵,列变换为右乘初等矩阵)。此类情况多在证明秩的不等式过程有应用,技巧很高与前面提到的分块矩阵联系密切。

呵呵```我高数最烂了帮不了你

矩阵的秩的定义:是其行向量或列向量的极大无关组中包含向量的个数。

能这么定义的根本原因是:矩阵的行秩和列秩相等(证明可利用n+1个n维向量必线性相关)

矩阵的秩的几何意义如下:在n维线性空间V中定义线性变换,可以证明:在一组给定的基下,任一个线性变换都可以与一个n阶矩阵一一对应;而且保持线性;换言之,所有线性变换组成的空间End(V)与所有矩阵组成的空间M(n)是同构的。

扩展资料:

A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。

特别规定零矩阵的秩为零。

显然rA≤min(m,n) 易得:若A中至少有一个r阶子式不等于零,且在r

由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)≠0;不满秩矩阵就是奇异矩阵,det(A)=0。

由行列式的性质知,矩阵A的转置AT的秩与A的秩是一样的。

奇异值分解非常有用,对于矩阵A(p*q),存在U(p*p),V(q*q),B(p*q)(由对角阵与增广行或列组成),满足A = U*B*V

U和V中分别是A的奇异向量,而B是A的奇异值。AA'的特征向量组成U,特征值组成B'B,A'A的特征向量组成V,特征值(与AA'相同)组成BB'。因此,奇异值分解和特征值问题紧密联系。

如果A是复矩阵,B中的奇异值仍然是实数。

SVD提供了一些关于A的信息,例如非零奇异值的数目(B的阶数)和A的阶数相同,一旦阶数确定,那么U的前k列构成了A的列向量空间的正交基。

参考资料来源:百度百科——矩阵的秩

这个问题也不太难啊,你可以向你的学长和学姐们请教一下,或者向你的老师问问

关于矩阵的秩的毕业论文题目

A不等于I 所以A-I不等于0矩阵, 所以A-I秩>=1所以r(A+I)=n-r(A-I)

第三列减第一列,这个矩阵各行元素变换如下1,0,0,0,0,1,1,-1,0,0,0,1,1,0,0,0,0,1,1,0,0,1,0,1,1,再第二行加到第三行,矩阵各行元素如下1,0,0,0,0,1,1,0,0,0,0,1,2,0,0,0,0,1,1,0,0,1,1,1,1,至此,矩阵已化简成一个上三角的元素全部为0的矩阵,它的行列式之值等于主对角线元素之积1×1×2×1×1=2≠0,所以所求5×5矩阵之秩为5。

简单计算一下即可,答案如图所示

这个问题也不太难啊,你可以向你的学长和学姐们请教一下,或者向你的老师问问

矩阵秩的性质研究小论文

矩阵秩的结论那就太多了

不是一下子能够总结完的

特别是几个秩的不等式

在解题的时候是经常用到的

找点文献给你自己看看吧,需要就发邮件给我[1]高朝邦,祝宗山.关于矩阵的秩的等价描述[J].成都大学学报(自然科学版),2006,25(1)从行列式、矩阵的等价、线性方程组、线性空间、线性映射等角度来刻画矩阵的秩,进而用这些命题来证明与矩阵的秩有关的一些命题.[2]费绍金.用矩阵的秩判断空间中平面与平面、直线与直线及直线与平面间的位置关系[J].牡丹江教育学院学报,2007,(6)利用线性方程组解的理论讨论空间中平面与平面、直线与直线及直线与平面间的位置关系,给出用矩阵的秩判定以上关系的方法及结论.[3]严坤妹.一类矩阵的秩[J].福建商业高等专科学校学报,2005,(4)矩阵的秩是矩阵的一个重要不变量,根据两个重要的矩阵的秩的不等式以及分块矩阵的初等变换的性质,本文研究了一类矩阵的秩的特征.[4]戴红霞.关于矩阵的秩的例题教学[J].南京审计学院学报,2005,2(2)本文通过三个典型例题的具体讲解,加深学生对抽象概念"矩阵的秩"的理解和掌握.[5]余航.试论分块矩阵的秩[J].桂林师范高等专科学校学报,2001,15(3)任一矩阵都可求得它的秩,而在矩阵运算中,矩阵的分块是一个很重要的技巧.本文从不同角度,从特殊到一般地探求了分块矩阵的秩.[6]徐兰.利用分块矩阵探讨矩阵的秩的有关定理[J].昌吉学院学报,2003,(4)矩阵是线性代数的主要研究对象之一,利用分块矩阵,研究高阶矩阵的秩及矩阵在运算后秩的变化,得到有关的定理.[7]邹晓光.互素多项式矩阵的秩的一个简单结论及其应用[J].金华职业技术学院学报,2006,6(1)本文给出了互素多项式在矩阵的秩讨论中的一个简单结果:定理:设f(x),g(x)∈P[x],A是n阶方阵,若(f(x),g(x))=1,则n+r[f(A)g(A)]=r(f(A))+r(g(A)).以及结果的一些简单应用,对文献[1]中的一些结论进一步讨论.[8]张丽梅,乔立山,李莹.可逆坡矩阵与坡矩阵的秩[J].山东大学学报(理学版),2007,42(9)坡是两个元素的乘积小于等于每个因子的加法幂等半环.讨论了可逆坡矩阵的若干性质,证明了可逆坡矩阵必是满秩的.讨论了坡矩阵的行秩、列秩与Schein秩.给出了坡矩阵的Schein秩的一个重要性质.

矩阵的秩的性质如下

矩阵的秩线性代数中的一个概念。在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数,通常表示为r(A),rk(A)或rank A。

在线性代数中,一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。即如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

方阵(行数、列数相等的矩阵)的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A的秩。通常表示为r(A),rk(A)或 。

m × n矩阵的秩最大为m和n中的较小者,表示为 min(m,n)。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足(或称为“欠秩”)的。

设A是一组向量,定义A的极大无关组中向量的个数为A的秩。

定义1. 在m*n矩阵A中,任意决定α行和β列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。

例如,在阶梯形矩阵中,选定1,3行和3,4列,它们交叉点上的元素所组成的2阶子矩阵的行列式 就是矩阵A的一个2阶子式。

定义2. A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。

特别规定零矩阵的秩为零。

显然rA≤min(m,n) 易得:

若A中至少有一个r阶子式不等于零,且在r

由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)≠0;不满秩矩阵就是奇异矩阵,det(A)=0。

由行列式的性质知,矩阵A的转置AT的秩与A的秩是一样的,即rank(A)=rank(AT)。 [2]

矩阵的秩

定理:矩阵的行秩,列秩,秩都相等。

定理:初等变换不改变矩阵的秩。

定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。

定理:矩阵的乘积的秩Rab<=min{Ra,Rb};

引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。

当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。

当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)   。

这个可以继续化简:1.用第3行把的1把所有的第四列的数都化为012-900-1500001(下面的不写了)2.用第2行的-1把第1行的2消去10100-1500001(当然你也可以把第2行乘以-1)这个矩阵的非零行就是3行,所以秩就是3因为第一行的以一个1他下面的全部是0所以这个1是消不去le第2行的-1他的那一列也全部是0同理第三行

矩阵秩的研究与应用论文

随着现代科学的发展,数学中的矩阵也有更广泛而深入的应用,下面列举几项矩阵在现实生活中的应用:

这个可以继续化简:1.用第3行把的1把所有的第四列的数都化为012-900-1500001(下面的不写了)2.用第2行的-1把第1行的2消去10100-1500001(当然你也可以把第2行乘以-1)这个矩阵的非零行就是3行,所以秩就是3因为第一行的以一个1他下面的全部是0所以这个1是消不去le第2行的-1他的那一列也全部是0同理第三行

在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1] ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则[2] 。矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦()讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词[3] 。英国数学家凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯()于1898年给出的[2] 。1854年时法国数学家埃尔米特()使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具[4] 。

矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。

矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。 在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。

矩阵三种等价关系的论文开题报告

1.等价矩阵同型矩阵A,B的秩相等,那么A,B等价,即是随意两个秩相等的同型矩阵通过初等变换都可以相互转化相等与另一个2.相似矩阵的定义是:存在可逆矩阵P,使得P(-1)AP=B,则称B是A的相似矩阵。原因:A与B相似有一个必要条件就是A与B的特征值相同,即|B-aE|=|A-aE|所以|B-aE|=|P(-1)||A-aE||P|所以|B-aE|=|P(-1)AP-aP(-1)EP|即|B-aE|=|P(-1)AP-aE|所以B=P(-1)AP3.合同矩阵定义:若存在可逆矩阵C,使得C(T)AC=B,即A与B合同。对于合同矩阵要从二次型说起,二次型为:f=x(T)Ax可通过x=Cy变换,即把x=Cy带入于是f=(Cy)(T)A(Cy)=y(T)[C(T)AC]y其中令C(T)AC=B,即A与B合同

相抵;相似;合同;等价类 1 预备知识 2 矩阵的等价关系 矩阵的相抵关系 定义:如果矩阵A经过有限次的初等变换后得到矩阵B,那么称A与B是相抵的。 定理:任意两个矩阵A、B相抵的充分必要条件是:1)A、B同型且秩相等;2)存在可逆阵P和Q使得PAQ=B。 矩阵的相似关系 定义:对于n阶方阵A、B,若存在一个可逆阵P,使得P-1AP=B,则称A与B相似。 由定义可得A通过相似变换变为B需要很强的约束条件:两边乘的矩阵要互逆,所以要通过引入λ-矩阵除去其约束条件,将A与 B的相似转换为λI-A与λI-B的相抵来研究,即通过相抵标准型来研究数字矩阵A与B的相似。 定理 (1)A与B相似?圳矩阵A能够经过相似变换变成矩阵B ?圳,A与B是同阶方阵且它们有相同的不变因子组 即矩阵相似关系下的全系不变量是不变因子组。 也就是说秩相等是矩阵相似的必要条件,两个同阶方阵相似的本质是它们有相同的不变因子组。 相似矩阵的性质: 矩阵相似,则它们的秩相等,迹相等,行列式相等,特征值相等,特征多项式也相等;它们还有相同的可逆性,且可逆时它们的逆矩阵也相似。 注意,两个同阶方阵如果它们可以对角化(例如实对称矩阵),则它们相似就等价于它们有完全相同的特征值(或特征多项式相等);否则,同阶方阵的特征值完全相同只是它们相似的必要条件。 矩阵的合同关系 定义:对于n阶方阵A、B,若存在可逆阵P,使得PTAP=B,则称 A与B合同。 两个矩阵合同的概念是不需要矩阵必须是实对称矩阵的。如果 A是实对称矩阵,则它一定能与对角矩阵合同。但合同一般是对于对称矩阵来说的,n阶对称矩阵必然有n个实特征根。如果两对称矩阵的不为零的特征根数相同,并且正特征根数也相同,那么两矩阵是合同的。反之,如果两矩阵合同的话,那么这两个矩阵不为零的特征根数相同,并且正特征根数也相同。 定理:在复数域上,n阶对称阵在合同关系下的全系不变量是矩阵的秩r。 定理:在实数域上,n阶对称阵在合同关系下的全系不变量是矩阵的秩r、正惯性指数p、负惯性指数q和符号差s中的任意两个。 注意:合同与二次型有关,同一数域上的二次型与对称矩阵之间一一对应,因此矩阵

一、矩阵等价、相似和合同之间的区别:

1、等价,相似和合同三者都是等价关系。

2、矩阵相似或合同必等价,反之不一定成立。

3、矩阵等价,只需满足两矩阵之间可以通过一系列可逆变换,也即若干可逆矩阵相乘得到。

4、矩阵相似,则存在可逆矩阵P使得,AP=PB。

5、矩阵合同,则存在可逆矩阵P使得,P^TAP=B。

6、当上述矩阵P是正交矩阵时,即P^T=P^(-1),则有A,B之间既满足相似,又满足合同关系。

二、矩阵等价、相似、合同之间联系:

1、矩阵等秩是相似、合同、等价的必要条件,相似、合同、等价是等秩的充分条件。

2、矩阵等价是相似、合同的必要条件,相似、合同是等价的充分条件。

3、 矩阵相似、合同之间没有充要关系,存在相似但不合同的矩阵,也存在合同但不相似的矩阵。

4、总结起来就是:相似=>等价,合同=>等价,等价=>等秩。

扩展资料:

矩阵等价:

1、同型矩阵而言。

2、一般与初等变换有关。

3、 秩是矩阵等价的不变量,其次两同型矩阵相似的本质是秩相等。

矩阵相似:

1、针对方阵而言。

2、秩相等是必要条件。

3、本质是二者有相等的不变因子。

矩阵合同:

1、针对方阵而言,一般是对称矩阵。

2、秩相等是必需条件。

3、本质是秩相等且正惯性指数相等,即标准型相同。

通过上述的对比可知,等价关系是三种关系中条件最弱的,合同与相似是特堵的等价关系,若两个矩阵相似或合同,则这两个矩阵一定等价,反之不成立,相似与合同不能互相推导,但是如果两个实对称矩阵式相似的,那一定是合同的。

参考资料:

等价矩阵-百度百科

合同矩阵-百度百科

相似矩阵-百度百科

不一样。"等价关系"指的是满足自反、对称、传递三种性质的关系,适用于所有的学科、所有的数学分支。矩阵的等价指的是可以通过初等变换互换。至于为什么这样称呼,已经不知道原因了。可以给你一种便于理解的解释:等价关系是一种比线性代数深奥的学科(抽象代数)研究的内容,更一般、更抽象。首次研究初等变换的数学家在不懂得抽象代数的情况下命名了矩阵的等价关系。后来一些人研究合同、相似,发现连同原来的矩阵等价关系一样都满足抽象代数里的等价性质,于是又把一般的等价关系写到线性代数教材里,这才弄得这么乱。

相关百科
热门百科
首页
发表服务